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Abstract. The Buffon-Laplace needle problem is a variation of the well-known

Buffon’s needle problem, which asks what the probability of a needle, after
being dropped to a rectangular grid, intersects, or touches the grid is. In this

paper, we aim to solve some generalizations of this problem. We generalized the

problem by dropping regular polygons to the grid instead of dropping a needle.
We solved this generalization of the problem, by first using the rotational and

reflectional symmetry of the regular polygons, then splitting the number of

sides of the polygon into 4 cases, then solving each case. We also generalized
the problem by dropping arbitrary 2D shapes. We found a general formula

and an algorithmic solution to the problem. Apart from generalizations to the

problem, we also considered some variations of the problem, like dropping right
regular polygon prisms in a 3D space, with the grid being planes in each axis.

We used a similar method to solve this problem and provided a formula. We
also considered dropping a needle into a n-dimensional space. However, we

failed to get a closed form for the formula.
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1. Introduction

1.1. The Original Problems.

1.1.1. The Original Buffon’s Neddle Problem. In the 18th century, Buffon posed the
following problem: [Buf33]

“Suppose the floor is paved by parallel stripes of wood of width d. If we drop a needle
of length l onto the floor, what is the probability that the needle will lie across a line
between two strips?”

Figure 1. l ≤ d
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This is the original form of the Buffon’s Needle problem, and the probability
p(l ≤ d) is given by

p =
2

π

l

d

which can be found using probability density functions and integration.

1.1.2. The Laplace’s extension of the Buffon’s Needle Problem. Laplace extended
the Buffon’s Needle Problem [Lap20] by changing the parallel strips to rectangular
tiles with side lengths a and b. The probability p of the needle with length l(l < a, b)
lie across one or more lines between two tiles is given by

p =
2l(a+ b)− l2

πab

Figure 2. l < a, b

1.2. Our Generalizations and Variations on the Laplace-Buffon Needle
Problem. In this paper, we proposed some generalizations of the Laplace-Buffon
Needle Problem. We aim to provide a formula or an efficient algorithm for each of
those extensions.

1.2.1. Dropping Regular Polygons. This is a generalization of the Laplace-Needle
problem. Instead of dropping needles to the rectangular grid, we will drop regular
polygons with vertices with the distance of one unit away the centre of the polygon.
The whole problem is:

Suppose on a 2D plane, there are infinite rectangular tiles with width w and height
h (called the grid in this paper), now given a polygon with n sides with each vertex
located 1 unit away from the centre of the polygon, if we drop the polygon randomly
on the plane, what is the probability p that the polygon intersects with one or more
lines between two tiles (called the grid line in this paper)?

We found a formula for p in this problem. We will show our methods in this paper.
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1.2.2. Dropping Arbitrary Polygons. This is a generalization of the Laplace-Needle
problem. Instead of dropping needles to the rectangular grid, we will drop arbitrary
polygons. The whole problem is:

Suppose on a 2D plane, there is a rectangular grid with each rectangle of width w
and height h, now given a polygon Q with n vertices and the coordinates of the
vertices, if we drop Q randomly on the plane, what is the probability p that the
polygon intersects with one or more grid line(s)? We have two approaches to this
problem. Both approaches consider the fact that:

P(≥ 1 intersection) = 1− P(0 intersections)

In the first approach, we consider Q rotating about the dropping point (centre) of Q
anti-clockwise with angle θ(0 ≤ θ < π

2 ). For each rotation we compute the maximum
and minimum values in the x- and y-direction among the vertices, then integrate the
joint probability density function of θ, x, y. We found a formula by this approach.
Detailed methods will be shown below.

In the second approach, we consider the rectangular grid line rotating about the
origin clockwise with angle θ

(
0 ≤ θ < π

2

)
. We found an algorithm by this approach.

Detailed explanation of the algorithm will be shown below.

1.2.3. Dropping Right Regular Prisms in 3D Space. This is a variation of the Laplace-
Needle problem. Instead of dropping needles to the rectangular grid, we will drop
right regular prisms to the cuboidal grid in 3D space. The whole problem is:

Suppose in a 3D space, there is a cuboidal grid with each cuboid of length l, width
w and height h. Each face of the cuboid forms its corresponding grid plane. Given
a right regular prism of height k with 3n edges with each vertex located 1 unit away
from the nearest centre of the n-sided regular polygon base, if we drop the prism
randomly in the space, what is the probability p that the prism intersects with one
or more grid plane(s)?

We found a formula for p in this problem. We will show our methods in this paper.

1.2.4. Generalization to n-dimensions. This is a generalisation to the Laplace-Needle
problem. Instead of dropping needles on a two-dimensional grid, we consider drop-
ping needles on a n-dimensional grid. Unfortunately we could not get a closed form
for the formula.
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2. Dropping Regular Polygons on Rectangular Grid

Suppose on a 2D plane, there is a rectangular grid with each rectangle of width w
and height, now given a polygon with n sides with each vertex located 1 unit away
from the centre of the polygon, if we drop the polygon randomly on the plane, what
is the probability p that the polygon intersects with one or more grid lines?

We will be using integration on joint probability density functions [PD] as our main
method of finding the probability p.

Let’s first consider the case n = 4, as a demonstration of the method.

2.1. Dropping Squares on Rectangular Grid.

Theorem 2.1. Given a plane with a rectangular grid with rectangles of width w
and height h, and a square of side length l. If the square is dropped randomly on the
plane, then the probability p is given by

p =
4l

πh
+

4l

πw
− l2(π + 2)

πwh

Proof. Let the distance from the geometric centre of the square to the closest hori-
zontal line be 0 ≤ x1 ≤ w

2 .

Let the distance from the geometric centre of the square to the closest vertical line
be 0 ≤ x2 ≤ h

2 .

Let θ be the smallest angle between any side of the square and the horizontal grid
lines, so 0 ≤ θ ≤ π

4 .

x1, x2 and θ are independent random variables.

Figure 3. Showing the definition of the variables
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The uniform probability density function of x1 and x2 is:

fx1(i) =

{
2
w : 0 ≤ i ≤ w

2

0 : otherwise

fx2(j) =

{
2
h : 0 ≤ j ≤ h

2

0 : otherwise

The uniform probability density function of θ is:

fθ(k) =

{
4
π : 0 ≤ k ≤ π

4

0 : otherwise

Referring to Figure 4, the vertical distance from the centre to the point of the

Figure 4.

square with the largest y-coordinate and the horizontal distance from the centre to
the point of the square with the largest x-coordinate is:

l√
2
sin(θ +

π

4
) =

l

2
(sin θ + cos θ)

Intersection between the square and the grid lines occurs when:

l

2
(sin θ + cos θ) ≥ x1, x2

Since x1, x2 and θ are independent random variables, their joint probability density
function is:

fx1,x2,θ(i, j, k) =

{
fx1

(i) · fx2
(j) · fθ(k) = 16

πwh , 0 ≤ i ≤ w
2 ∧ 0 ≤ j ≤ h

2 ∧ 0 ≤ k ≤ π
4

0 otherwise
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Therefore,

P(intersection) = P
(
l

2
(sin θ + cos θ) ≥ x1, x2

)
= 1− P

(
l

2
(sin θ + cos θ) < x1, x2

)
= 1−

∫ π
4

0

∫ h
2

l
2 (sin θ+cos θ)

∫ w
2

l
2 (sin θ+cos θ)

fx1,x2,θ(i, j, θ)didjdθ

= 1−
∫ π

4

0

∫ h
2

l
2 (sin θ+cos θ)

∫ w
2

l
2 (sin θ+cos θ)

16

πwh
didjdθ

Which is evaluted to be,

p =
4l

πh
+

4l

πw
− l2(π + 2)

πwh
□

2.2. Dropping Arbitrary Shapes on Rectangular Grid. We will give a formula
for computing the probability of a 2D shape intersecting the grid when dropped ran-
domly which serves as a basis for the next section – dropping regular polygons on a
rectangular grid.

Figure 5. V of
this figure would be
{(2, 2), (−2, 2), (1,−2),
(2,−1)}

Given an arbitrary 2D shape Q.
Q may be a curve or a polygon.
Let V be the list of coordinates
of its vertices. If Q is a curve,
V may be an infinite list, gener-
ated by, perhaps, parametric equations.
For example, if Q is a unit circle,
V =

{
(i, j) : i, j ∈ R ∧ i2 + j2 = 1

}
.

If Q is a polygon, V is a finite
list.

Place Q on a 2D Cartesian plane
with the point (0, 0) being inside
Q. Let the dropping point of Q be
the point on Q whose coordinates
are (0, 0) on the current Cartesian
plane.
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Figure 6. Q rotating
around dropping point by
θ.

Let the vertical lines on the grid
spaced h units apart and horizontal
lines w units. When the polygon ran-
domly drops on the grid, without loss of
generality, let (x, y) be the coordinates
of the dropping point on the grid where
0 ≤ x < w and 0 ≤ y < h, and Q rotates
around the dropping point 0 ≤ θ < π

2
anticlockwise.

Let Vr be the coordinates vertices of Q
rotated θ anticlockwise about the drop-
ping point, i.e.,

Vr = {ix cos θ − iy sin θ, ix sin θ + iy cos θ} ∀i ∈ V

x, y and θ are independent random variables, meaning they have uniform probability
density functions. Their joint probability density functions are hence{

2
πwh 0 ≤ x < w ∧ 0 ≤ y < h ∧ 0 ≤ θ < π

2

0 otherwise
(1)

Q does not intersect with grid lines when

x+min
i

Vrix > 0, x+max
i

Vrix < w, y +min
i

Vriy > 0, y +max
i

Vriy < h

Hence, we get the following theorem:

Theorem 2.2. The probability of Q intersecting the grid lines when dropped ran-
domly on a rectangular grid with each rectangle being height h and width w is

P (intersect)

= 1−
∫ π

2

0

∫ max (−mini Vrix
,w−maxi Vrix)

−mini Vrix

∫ max
(
−miniVriy

,h−maxiVriy

)
−mini Vriy

2

πwh
dy dx dθ

Example 2.3. When dropping a square of side length l, one possible configuration
is

V = {(l, l), (l, 0), (0, l), (0, 0)}, and

Vr = {(l cos θ − l sin θ, l sin θ + l cos θ) , (l cos θ, l sin θ) , (−l sin θ, l cos θ) , (0, 0)}

Hence,

P (intersect) = 1−
∫ π

2

0

∫ max (l sin θ, w−l cos θ)

l sin θ

∫ max (0, h−l(cos θ+sin θ))

0

2

πwh
dy dx dθ

For 0 ≤ θ < π
2 ,

w − l cos θ > l sin θ ∧ h− l(cos θ + sin θ) > 0 holds only when l <
w√
2
,
h√
2
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P(intersect) = 1− 2

πwh

∫ π
2

0

∫ w−l cos θ

l sin θ

∫ h−l(cos θ+sin θ)

0

dy dx dθ

= 4l(
1

πh
+

1

πw
)− l2(π + 2)

πwh

This result also agrees with Theorem 2.1.

Figure 7. Demonstration of
setup with Q being a regular
pentagon

2.3. Generalisation to Regular
Polygons. We will reuse the tech-
nique of Theorem 2.2. Let Q be a n-
sided regular polygon with the dis-
tance of each of its vertices to its
centre being l.

To simplify calculations, we can
scale down the polygon with the
distance of each of its vertices to its
centre is l, down to 1 by a factor
of 1

l . At the same time, we need
to scale down the rectangles in the
rectangular grid by the same factor
of 1

l , d := d
l , w := w

l . The prob-
ability p does not change after the
scaling.

On the initial Cartesian plane, we
situate Q with its geometric centre
(centroid) being (0,0) and one of its
vertices being (1,0). Refer to Fig. 2.3.1 for a better understanding. Then

V =

{(
cos

2iπ

n
, sin

2iπ

n

)}
0≤i<n

and

Vr =

{(
cos

(
2iπ

n
+ θ

)
, sin

(
2iπ

n
+ θ

))}
0≤i<n

where θ ∈
[
0,

2π

n

)
.

An n-sided polygon has rotational symmetry order n. Therefore, the maximum
value for θ is 2π

n , to avoid counting the same rotation twice.

Lemma 2.4. For a specific rotation of Q, θ ∈
[
0, 2π

n

)
, after Q is flipped vertically,

it is the same as Q being rotated by 2π
n − θ.

Proof. Let f be a bijective function, f : {0, 1, 2, ..., n− 1} → {0, 1, 2, ..., n− 1}.

Let the i-th vertex in Q before flipping vertically become f(i)-th vertex after flipping.

Then Lemma 2.4 states, for i ∈ {0, 1, 2, ..., n− 1},
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sin

(
θ +

2iπ

n

)
= − sin

(
2π

n
− θ +

2πf(i)

n

)

Set f(i) = n− i− 1,

RHS = sin

(
θ +

−2π(n− i)

n

)
= sin

(
θ +

2iπ

n

)
= LHS

□

Example 2.5. Suppose n=8.

We can observe that Q when θ = π
16 when flipped vertically is exactly Q when

θ = π
4 − π

16 = 3π
16 .

Let P(θ ∈ {some range}) be the probability for Q not intersecting with one or more
grid lines when θ is in the range given inside the parentheses followed by p.

Lemma 2.6. For all n,

P
(
θ ∈

[
0,

2π

n

))
= 2P

(
θ ∈

[
0,

π

n

))
Proof. Using Lemma 2.3, for θ ∈

[
π
n ,

2π
n

)
, we can flip Q vertically and get a shape

with rotation θnew = 2π
n −θ, θnew ∈

[
0, π

n

)
, and has the same probability as the shape

is the same as the original shape. Therefore, the probability for Q intersecting with



INVESTIGATION ON BUFFON-LAPLACE NEEDLE PROBLEM 197

one or more grid lines when θ ∈
[
0, π

n

)
is equal to the probability for Q intersecting

with one or more grid lines when θ ∈
[
π
n ,

2π
n

)
, or equivalently,

P
(
θ ∈

[
0,

2π

n

))
= 2P

(
θ ∈

[
0,

π

n

))
.

□

Lemma 2.7. If n is odd, for a specific rotation of Q, θ ∈
[
0, π

n

)
, after Q is flipped

horizontally, it is the same as Q being rotated by π
n − θ.

Proof. Let n = 2m+ 1,m ∈ N.
Let g be a bijective function, g : {0, 1, 2, ..., n− 1} → {0, 1, 2, ..., n− 1}.
Let the i-th vertex in Q before flipping horizontally become g(i)-th vertex after
flipping.
Then Lemma 2.7 states,
For i ∈ {0, 1, 2, ..., n− 1},

cos

(
θ +

2πi

n

)
= − cos

(
π

n
− θ +

2πg(i)

n

)
Set g(i) =

{
m− i , 0 ≤ i ≤ m

n+m− i , otherwise
,

If 0 ≤ i ≤ m,
Substitute g(i) = m− i,

RHS = − cos

(
π

n
− θ +

2π(m− i)

n

)
= cos

(
π + θ − π(2m+ 1)

n
+

2πi

n

)
= cos

(
θ +

2πi

n

)
= LHS

Otherwise, or if m+ 1 ≤ i ≤ n− 1,
Substitute g(i) = n+m− i,

RHS = − cos

(
π

n
− θ +

2π(n+m− i)

n

)
= cos

(
π + θ − π(2m+ 1)

n
+

2πi

n
− 2πn

n

)
= cos

(
θ +

2πi

n

)
= LHS

□

Example 2.8. Suppose n = 9,
Referring to below figure, we can observe that Q when θ = π

36 when flipped horizon-
tally is exactly Q when θ = π

9 − π
36 = π

12 .
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Lemma 2.9. If n is odd, then

P
(
θ ∈

[
0,

2π

n

))
= 4P

(
θ ∈

[
0,

π

2n

))
Proof. Using Lemma 2.7, for θ ∈

[
π
2n ,

π
n

)
, we can flip Q horizontally and get a shape

with rotation θnew = π
n − θ, θnew ∈

[
0, π

2n

)
, and has the same probability as the

original shape. Therefore, if n is odd, the probability for Q intersecting with one or
more grid lines when θ ∈

[
0, π

2n

)
is equal to the probability for Q intersecting with

one or more grid lines when θ ∈
[

π
2n ,

π
n

)
, or equivalently,

P
(
θ ∈

[
0,

π

n

))
= 2P

(
θ ∈

[
0,

π

2n

))
Using Lemma 2.6,

P
(
θ ∈

[
0,

2π

n

))
= 4P

(
θ ∈

[
0,

π

2n

))
□

Now the only thing left is to determine which vertex contributes to the minimum
and maximum x and y when rotated, i.e., determine mini Vrix, maxi Vrix, mini Vriy,
maxi Vriy.

Lemma 2.10. For the ranges
(
cos π

n , 1
]
and

[
−1,− cosπ

n

)
, there is one or zero i

such that Vrix lies inside that range and there is one or zero j such that Vrj y
lies

inside that range.

Proof. We prove the statement there is one or zero i such that Vrix ∈
(
cos π

n , 1
]
by

contradiction. Suppose cos π
n < Vrix, Vrjx

≤ 1 where 0 ≤ i, j < n ∈ Z, i ̸= j. This
means

cos
π

n
< cos

(
2iπ

n
+ θ

)
, cos

(
2jπ

n
+ θ

)
≤ 1

Proof of cos
(
2iπ
n + θ

)
, cos

(
2jπ
n + θ

)
≤ 1 is trivial as the range of the cosine function

is [−1, 1]. We now focus on cos π
n < cos

(
2iπ
n + θ

)
, cos

(
2jπ
n + θ

)
.
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When 0 ≤ θ < π
n , i = j = 0 is the only solution - contradiction.

When θ = π
n , cos

(
2iπ
n

)
is at most cos π

n when i = 0.

When 0 < π
n < 3π

n , i = j = 1 is the only solution - contradiction.

When θ = 3π
n , cos

(
2iπ
n + θ

)
is at most cos π

n when i = 1.
Similarly, one can prove for the other ranges.
Hence, Vrjx

= cos π
n when θ = 2kπ

n + π
n , k ∈ Z and there is exactly one Vrjx

∈(
cos π

n , 1
]
otherwise.

Proof of the other range and for Vry i
are similar.

□

We split into cases according to the value of n modulo 4.

Case 1: n ≡ 0 (mod 4)

This condition suggests that initially, when θ = 0,maxi Vrix, maxi Vriy, mini Vrix,
mini Vriy are Vr0x, Vrn

4 y
, Vrn

2 x
, Vr 3n

4 y
= cos θ, cos θ,− cos θ,− cos θ respectively. No-

tice that, for θ ∈
[
0, π

n

)
, cos θ > cos π

n . According to Lemma 2.10, θ = 0, maxi Vrix,

maxi Vriy, mini Vrix, mini Vriy are Vr0x, Vrn
4 y

, Vrn
2 x

, Vr 3n
4 y

for all θ ∈
(
0, π

n

]
since

there are no greater values for the maximums and no lower values for the minimums.
Therefore,

p = 1−
∫ 2π

n

0

∫ max(−(− cos θ),w−cos θ)

−(− cos θ)

∫ max(−(− cos θ),h−cos θ)

−(− cos θ)

n

2πwh
dy dxdθ

By Lemma 2.6,

= 1− 2

∫ π
n

0

∫ max(−(− cos θ),w−cos θ)

−(− cos θ)

∫ max(−(− cos θ),h−cos θ)

−(− cos θ)

n

2πwh
dy dxdθ

= 1−
∫ π

n

0

∫ max(cos θ,w−cos θ)

cos θ

∫ max(cos θ,h−cos θ)

cos θ

n

πwh
dy dxdθ

If w, h− cos θ < cos θ, then w,h
2 ≥ cos θ. Which is only possible when w, h ≤ 2.

If w, h ≤ 2,

= 1−
∫ π

n

min(π
n ,max(arccos w

2 ,arccos h
2 ))

∫ w−cos θ

cos θ

∫ h−cos θ

cos θ

n

πwh
dy dxdθ

When θ ≤ max
(
arccos w

2 , arccos
h
2

)
, cos θ < w− cos θ, h− cos θ, so it must intersect

with the grid, thus when θ ≤ max
(
arccos w

2 , arccos
h
2

)
, the integral is 0.

= 1− n

πwh
[whθ − 2h sin θ − 2h sin θ + sin 2θ + 2θ]

π
n

min(π
n ,max(arccos w

2 ,arccos h
2 ))

If w, h > 2,

=
2n(h+ w) sin π

n − n sin 2π
n − 2π

πwh
.
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(By Lemma 2.6 and 2.9)

Example 2.11. What is the probability p of a polygon with 8 sides, and the distance
of each of its vertex to its centre is l , touches one or more grid lines when dropped
to a rectangular grid with each rectangle of width w and height h? (w, h > 2l)

Given n = 8. It falls into Case 1 as n ≡ 0 (mod 4).

w :=
w

l
, h :=

h

l
Using the formula,

p =
8l2

πwh

(
2

l
(w + h) sinπ8 + sin

2π

8
− sin

2π

8
− 2π

8

)
=

16l

π

(
1

w
+

1

h

)
sin

π

8
− l2

πwh

(
2π + 4

√
2
)

Case 2: n ≡ 1 (mod 4)

As with Case 1, we could find the vertices with maxi Vrix, maxi Vriy, mini Vrix,
mini Vriy initially. However, note that there is no vertex whose x-coordinate lies in-

side the range
[
−1,− cos π

n

)
, meaning there are two vertices whose x-coordinates are

equal to − cos π
n −Vn−1

2
and Vn+1

2
. But it suffices to take the one with smaller index

−Vr n−1
2

as mini Vrix since Vr n−1
2

= cos
(
θ + 2π(n−1

2n

)
∈
[
−1,− cos π

n

)
∀θ ∈

(
0, π

n

]
.

Therefore, we have maxi Vrix, maxi Vriy, mini Vrix, mini Vriy = Vr0x, Vrn−1
4 y

, Vrn−1
2 x

,

Vr 3n+1
4

= cos θ, sin
(
θ + 2π(n−1)

4n

)
, cos

(
θ + 2π(n−1)

2n

)
, sin

(
θ + 2π(3n+1)

4n

)
. Carefully

observing, for all Vr0x, Vrn−1
2 x

∈
(
cos π

n , 1
]
and Vrn−1

2 x
, Vr 3n+1

2

∈
[
−1,− cos π

n

)
∀0 ≤

θ < π
2n .

Hence,

p (n ≡ 1 (mod 4))

=1−
∫ 2π

n

0

∫ max(−mini Vrix
,w−maxi Vrix)

−mini Vrix

∫ max
(
−mini Vriy

,h−maxi Vriy

)
−mini Vriy

n

2πwh
dy dxdθ

=1−
∫ π

2n

0

∫ max(− cos(θ+ 2π(n−1)
2n ),w−cos θ)

− cos(θ+ 2π(n−1)
2n )

·

·
∫ max(− sin(θ+ 2π(3n+1)

4n ),h−sin(θ+ 2π(3n+1)
4n ))

− sin(θ+ 2π(3n+1)
4n )

2n

πwh
dy dx dθ

(By Lemma 2.6 and 2.9)
When w, h > 2,
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p (n ≡ 1 (mod 4))

=1− 2n

πwh

∫ π
2n

0

(
w − cos θ + cos

(
θ +

2π(n− 1)

2n

))
(
h− sin

(
θ +

2π(n− 1

4n

)
+ sin

(
θ +

2π(3n+ 1)

4n

))
dθ

=
sin π

2n

(
4n(h− w) cos π

2n + 4nw − π sin π
n

)
πhw

.

Case 3: n ≡ 2 (mod 4)

Note that in this case maxi Vriy and mini Vriy both have two possible candidates
initially. Like Case 2, we can take ones with smaller indices, meaning maxi Vrix,
maxi Vriy, mini Vrix, mini Vriy = Vr0x, Vrn−2

4 y
, Vrn

2 x
, Vr 3n−2

4

= cos θ,

sin
(

2π(n−2)
4n + θ

)
, cos

(
2πn
2n + θ

)
, sin

(
2π(3n−2)

4n + θ
)

respectively. Like Case 1, the

probability is

p (n ≡ 2 (mod 4))

=1−
∫ π

n

0

∫ max(− cos( 2πn
2n +θ),w−cos θ)

− cos( 2πn
2n +θ)

·

·
∫ max(− sin( 2π(3n−2)

4n +θ),h−sin( 2π(3n−2)
4n +θ))

− sin( 2π(3n−2)
4n +θ)

n

πwh
dy dxdθ

Example 2.12 (The Buffon-Laplace Needle Problem). Given n = 2, it falls into
case 3 as n ≡ 2 (mod 4).
Since the l in the original problem is 2 times the radius of the 2 sided polygon,

h :=
2h

l
, w :=

2w

l

l < a, b in the original problem, so h,w > 2.
Using the formula,

p =
2(2)l(2h+ 2w − l) sin

π

2
− l22π cos

π

2
4πwh

p =
2l

πw
+

2l

πh
− l2

πwh
.
This also agrees with the formula given by Laplace.
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Case 4: n ≡ 3 (mod 4)
Like previous cases, max

i
Vrix

,max
i

Vriy
,min

i
Vrix

,min
i

Vriy
= Vr0x

, Vrn+1
4 y

, Vrn−1
2 x

,

Vr 3n−1
4 y

= cos θ, sin

(
π(n+ 1)

2n
+ θ

)
, cos

(
π(n− 1)

n
+ θ

)
, sin

(
π(3n− 1)

2n
+ θ

)
.

Hence,

p (n ≡ 3 (mod 4))

= 1−
∫ π

2n

0

∫ max(− cos(π(n−1)
n +θ),w−cos θ)

− cos(π(n−1)
n +θ)

·

·
∫ max(− sin(π(3n−1)

2n +θ)·h−sin(π(n+1)
2n +θ))

− sin(π(3n−1)
2n +θ)

2n

πwh
dydxdθ

When w, h ≥ 2,

p = 1−
∫ π

2n

0

∫ w−cos θ

− cos(π(n+1)
n +θ)

∫ h−sin(π(n−1)
2n +θ)

− sin(π(3n−1)
2n +θ)

2n

πwh
dydxdθ

= −
2
(
hn sin

(
π
n

)
+ cos

(
π
2n

) (
(1− 2h)n sin

(
π
n

)
+ π cos

(
π
n

))
− 2nw sin

(
π
2n

))
πhw

3. An Algorithmic Solution to the Arbitrary Polygon Problem

Suppose on a 2D plane, there is a rectangular grid with each rectangle of width w
and height, now given a polygon with n sides with each vertex located 1 unit away
from the centre of the polygon, if we drop the polygon randomly on the plane, what
is the probability p that the polygon intersects with one or more grid lines?
We will be using integration on joint probability density functions[PD] as our main
method of finding the probability p.
Let’s first consider the case n = 4, as a demonstration of the method.
Given an arbitrary polygon Q with n vertices, if it is not a convex polygon, we can
convert it into a convex polygon, by changing Q into its convex hull. A convex hull
of a shape is the smallest convex shape that contains it. The convex hull may be
visualized as the shape enclosed by a rubber band stretched around the shape.
Consider Q rotating clockwise about its geometric centre. It can be seen as the
rectangular grid lines being rotated anticlockwise about the centre of Q. It is because
rotations about the same centre are relative.
For each rotation of grid lines by θ (0 ≤ θ < π

2 ), we need to find the equivalent
rectangle of Q. The equivalent rectangle is defined as the smallest rectangle that
bounds Q, with its sides parallel to the rotated grid lines. Then, the probability of
not intersecting the grid lines for that specific θ is,

A

wh
where A is the area of the places that can place the equivalent rectangle without
intersecting with the grid lines.
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Figure 8. Demonstrating a convex hull of a shape.

The range 0 ≤ θ < π
2 , is because the equivalent rectangle considers 4 sides of Q at

once, so θ is less than 2π
4 = π

2 .

y-gridline

x-gridline

equivalent rectangle

θ

x

y

Figure 9. A demonstration of rotating the grid lines and equiva-
lent rectangle.

To find the equivalent rectangle of Q for a specific θ, we need to find vertices which
are the maximum and minimum values in the rotated x (x′) and rotated y (y′)
directions. We can compare the slopes of the two edges connecting to the same
vertex with the gridlines.

Definition 3.1. Let the first vertex of Q be an arbitrary point on Q. Let the (i+1)-
th vertex be the next vertex of the i-th vertex in the anticlockwise direction, ∀ i ∈
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{1, 2, 3, . . . , n}. Since the vertices in Q is cyclic, the 0-th and (n+1)-th vertex/edge
are the n-th and 1-st vertex/edge respectively. Let xi, yi be the x-coordinate and
y-coordinate of i-th vertex in Q. Let i-th edge in Q be the edge connecting the i-th
and (i+ 1)-th vertices. Let mi be the slope of the i-th edge,

mi =
yi+1 − yi
xi+1 − xi

∀i ∈ {1, 2, 3, . . . , n}

For each edge in Q, we can calculate their angle from the x-axis θi, by

θi = tan−1 (mi) ,−
π

2
< θi ≤

π

2
If mi is undefined, or equivalently when the i-th edge is a vertical line, then θi =

π
2 .

Definition 3.2. x′
max, x

′
min are the vertices that touches the x′ grid line, with the

maximum and minimum x-coordinate respectively. Similarly, y′max, y′min are the
vertices that touches the y′ grid line, with the maximum and minimum y-coordinate
respectively.

Lemma 3.3. If the i-th vertex is x′
max or x′

min, then θi−1 ≤ θ < θi. Similarly, if
the i-th vertex is y′max or y′min, then θi−1 +

π
2 ≤ θ < θi +

π
2 .

Proof. We will demonstrate the proof with the use of diagrams.

Figure 10.

In Figure 10, A is the i-th vertex of Q, and the red lines are the edges of Q. A is
x′
max or x′

min. It can be seen that θi−1 ≤ θ < θi. The reason why θ is strictly less
than θi is that if θ = θi, the (A+ 1)-th vertex is considered as x′

max or x′
min instead

of A.
Similarly, in Figure 11, A is the i-th vertex of Q, and the red lines are the edges of
Q. A is y′max or y′min.
It can be seen that −θi−1 ≥ π

2 − θ > −θi ⇔ θi−1 +
π
2 ≤ θ < θi +

π
2 .

The reason why θ is strictly less than θi +
π
2 is that if θ = θi, the (A+ 1)-th vertex

is considered as y′max or y′min instead of A.
□
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Figure 11.

We need to keep track of the angle θ when either one of y′max, y
′
min, x

′
max, x

′
min

changes. Therefore, we will introduce a new term, critical angle.

Definition 3.4. The critical angle (x) for the i-th vertex in Q, which is denoted by
Cxi

, is the angle θ when either one of x′
max and x′

min changes from the i-th vertex to
the (i+ 1)-th vertex. Similarly, the critical angle (y) for the i-th vertex in Q, which
is denoted by Cyi

, is the angle θ when either one of y′max and y′min changes from the
i-th vertex to the (i+ 1)-th vertex.

Using Lemma 3.3, x′
max or x′

min changes from the i-th vertex to the (i+ 1)-th vertex
when θ = θi, and ymax or ymin changes from the i-th vertex to the (i+ 1)-th vertex
when θ = θi +

π
2 . Therefore,

Cxi
= θi

Cyi
= θi +

π

2

.

Formula 3.5. Suppose that from θ = θnow to θ = θnext, any of y′max, y
′
min, x

′
max, x

′
min

will not change. Suppose dx ≤ w, dy ≤ h ∀θ ∈ [θnow, θnext). Let the coordinates of
y′max, y

′
min, x

′
max, x

′
min be (p1, q1) , (p2, q2) , (p3, q3) , (p4, q4) respectively, then the con-

tinuous sum of probabilities of not intersecting the grid lines when θ ∈ [θnow, θnext)
is:
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(θnext − θnow )− da,b
w

(∫ θnext

θnow

| sin(α+ θ)|dθ

)
− dc,d

h

(∫ θnext

θnow

| sin(β − θ)|dθ

)

+
da,bdc,d
2wh

∫ θnext

θnow

| cos(α− β + 2θ)− cos(α+ β)|dθ

The variables used in this formula will be defined below.

Definition 3.6. For a specific θ, define A as the area of space that can place the
equivalent rectangle without intersecting the grid lines. Let dx, dy be the distance
between x′

max, x′
min which is parallel to x′, and the distance of y′max, y′min which

is parallel to y′ respectively.

A = wh− dxh− dyw + dxdy

dx =
√
a2 + b2| sin(α+ θ)|

dy =
√
c2 + d2| sin(β − θ)|
a = p1 − p2

b = q1 − q2

c = p3 − p4

d = q3 − q4

tanα =
a

b

tanβ =
d

c

Proof of formula 3.5. We can observe that the dimensions of the equivalent rectangle
are dx × dy. We will once again demonstrate the proof with the use of diagrams.
From Figure 12 and 13,

| sin(α+ θ)|+ dX
da,b

where da,b =
√
a2 + b2,

dx = da,b| sin(α+ θ)|

dx =

{
da,b sin(α+ θ), if θ > −α

−da,b sin(α+ θ), otherwise

Similarly

| sin(β − θ)| = dy
dc,d

where dc,d =
√
c2 + d2,

dy = dc,d| sin(β − θ)|

dy =

{
dc,d sin(β − θ), if θ < β

−da,b sin(β − θ), otherwise
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Figure 12.

Figure 13.

Thus,

dxdy = da,bdc,d| sin(α+ θ) sin(β − θ)|

dxdy =
da,bdc,d

2
| cos(α− β + 2θ)− cos(α+ β)|

Therefore

A = max((w − dx), 0) ·max((h− dy), 0)
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As dx ≤ w, dy ≤ h, ∀θ ∈ [θnow, θnext),

A = wh− dxh− dyw + dxdy

Therefore, the continuous sum of probability of not intersecting the grid lines when
θ ∈ [θnow, θnext) is∫ θnext

θnow

A

wh
dθ =

1

wh

∫ θnext

θnow

(wh− dxh− dyw + dxdy)dθ

= (θnext − θnow)−
da,b
w

(∫ θnext

θnow

| sin(α+ θ)|dθ

)

− dc,d
h

(∫ θnext

θnow

| sin(β − θ)dθ|

)

+
da,bdc,d
2wh

∫ θnext

θnow

| cos(α− β + 2θ)− cos(α+ β)|dθ.

□

To find the integral of | cos(α−β+2θ)−cos(α+β)|, let cos(α−β+2θ) = cos(α+β),
then

θ = β + kπ or − α+ kπ, ∀k ∈ Z
Then find all θ ∈ [θnow, θnext). For each θ, we can split the integral, then find the
sign of cos(α− η + 2θ)− cos(α+ β) in each part.

Example 3.7. There is a solution θsol. When θ ∈ [θnow, θnext), cos(α − η + 2θ) −
cos(α+ β) > 0. When θ ∈ [θsol, θnext), cos(α− η + 2θ)− cos(α+ β) < 0. Then,∫ θnext

θnow

| cos(α− η + 2θ)− cos(α+ β)|dθ

=
1

2
(sin(α− β + 2t)− sin(α− β + 2s))− (t− s) cos(α+ β)

Similarly, we can use this method to find the integral of | sin(α+θ)| and | sin(β−θ)|.

With all these preparations, we can start writing the algorithm.

3.1. Algorithm.
Q := convex hull of Q
Let dmax = 0
for each pair of vertices (i, j) do

dmax := max

(
dmax,

√
(ix − jx)2 + (iy − jy)2

)
if dmax > w or dmax > h then exit.
Let θ := 0, sum:= 0
while θ < π

2 do
find (v1, v2) such that θvi−1 +

π
2 ≤ θ ≤ θvi +

π
2 , ∀i = 1, 2

find (v3, v4) such that θvi−1
≤ θ ≤ θvi , ∀i = 3, 4

Let θcritical = min
(
Cyv1

, Cyv2
, Cxv3

, Cxv4
, π
2

)
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Let Acurrent = result of Formula 3.5 with v1, v2, v3, v4 as vertices, θnow =
θ, θnext = θcritical as input.

sum := sum+Acurrent

θ := θcritical end
p = 1− 2·sum

π

3.2. Explanation. dmax is the maximum of all dx and dy for all vertices and
θ ∈ [0, π

2 ).

If dmax > w, h then it may not meet the condition for Formula 3.5, which is dx ≤ w,
dy ≤ h for some vertices and θ. Therefore, the algorithm cannot compute the correct
probability p. The algorithm is then exited.

At the start of each loop,

We find the vertices of y′max, y
′
min as v1, v2 respectively, vertices of x

′
max, x

′
min as v3, v4

respectively, by Lemma 3.3.

Then we find the angle which one of y′max, y
′
min, x

′
max, x

′
min change, θcritical, which is

the minimum of the critical angles (x) of v1, v2, and the critical angles (y) of v3, v4.
Moreover, it cannot be greater than π

2 since 0 ≤ θ < π
2 . Therefore, we also add π

2
as a parameter in the min function.

After that, we calculate the continuous sum of the probability by Formula 3.5 with
v1, v2, v3, v4 being vertices, θnow = θ, θnext = θcritical, then add it to our sum
variable.

We then set θ to be θcritical, and continue executing the loop while θ < π
2 .

The probability that Q does not intersect with the grid lines is the sum of the
continuous sum of probabilities multiplied by the probability density function of θ,
which is 2

π .

P (no intersection) =
2 · sum

π
The final probability p that Q intersects with the grid lines is

p = 1− P (no intersection)

p = 1− 2 · sum
π

3.3. Time complexity. At the start, we will find the convex hull of Q, it requires
O(n log n) time for using Graham scan algorithm[GS].

Then, we will find that maximum distance between every pair of vertices. This can
be done using a two-pointer algorithm [2P] in O(n′), where n′ is the number of
vertices of the convex hull of Q.

y′max, y
′
min, x

′
max, x

′
min will change a total of 4n′ times at maximum. When any of

y′max, y
′
min, x

′
max, x

′
min changes, it will change to the next vertex in the anti-clockwise

direction. Therefore, each of them will change its vertex n′ times, and the loop will
be executed O(n′) times.
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In each iteration of the loop, it will find new vertices for y′max, y
′
min, x

′
max, x

′
min. We

only need to check the next vertex in the anticlockwise direction. This require O(n′)
for the first iteration, and constant time in the following iterations. The rest in the
loop can be computed in O(1).

The time complexity for the loop is O(n′) ·O(1) = O(n′). Therefore, the final time
complexity is O(n log n).

Example 3.8. Let Q be a regular polygon with 8 sides, with the distance between
each vertex and the geometric centre of the polygon being ℓ units. What is the prob-
ability p that when Q is dropped randomly to a rectangular grid with width w and
height h, intersects with one or more grid line?

We can define the i-th vertex
(
ℓ cos(πi4 ), ℓ sin(

πi
4 )
)
.

We can observe that all of y′max, y
′
min, x

′
max, x

′
min change their vertices when θ =

π
8 ,

3π
8 , π

2 .

Therefore, the loop will be executed 3 times.

• First iteration (θnow = 0, θnext =
π
8 )

Find v1, v2, v3, v4 = 0, 4, 2, 6

Using Formula 3.5 Acurrent =
π
8 − 2( ℓ

w + ℓ
h ) sin(

π
8 ) +

ℓ2

wh (
√
2
2 + π

4 )

• Second iteration (θnow = π
8 , θnext =

3π
8 )

Find v1, v2, v3, v4 = 1, 5, 3, 7

Using Formula 3.5 Acurrent =
π
4 − 4( ℓ

w + ℓ
h ) sin(

π
8 ) +

ℓ2

wh (
√
2 + π

2 )

• Third iteration (θnow = 3π
8 , θnext =

π
2 )

Find v1, v2, v3, v4 = 2, 6, 4, 0

Using Formula 3.5 Acurrent =
π
8 − 2( ℓ

w + ℓ
h ) sin(

π
8 ) +

ℓ2

wh (

√
2

2
+ π

4 )

After all iterations,

sum =
π

2
− 8

(
ℓ

w
+

ℓ

h

)
sin
(π
8

)
+

ℓ2

wh

(
2
√
2 + π

)
Therefore

p =
16

π

(
1

w
+

1

h

)
sin
(π
8

)
− 2ℓ2

wh
− 4

√
2ℓ2

πwh

This result also agrees with Example 2.11.

4. Dropping Right Regular Prisms in Cuboidal Grid

Suppose in a 3D space, there is a cuboidal grid with each cuboid of length ℓ, width
w and height h. Each face of the cuboid forms its corresponding grid plane. Given
a right regular prism of height k with 3n edges with each vertex located 1 unit away
from the nearest centre of the n-sided regular polygon base, if we drop the prism
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randomly in the space, what is the probability p that the prism intersects with one or
more grid plane(s) ?

Definition 4.1. Given a n−sided polygon placed in 3D space. The size of the poly-
gon is said to be default if each vertex of the polygon is located 1 unit away from the
geometric centre of the polygon. The position of the polygon is said to be default
when its geometric centre is located at the origin. The orientation of the polygon
is said to be default when 1 of its vertices is located at (0, 0, 1) and the polygon
lies on the xz-plane. If the size, position and orientation of the polygon are default,
let the vertex located at (0, 1) be the zeroth vertex V0 and the i−th vertex Vi be the
next vertex Vi−1 in the anticlockwise direction, ∀i ∈ {1, 2, 3, . . . , n− 1}.Otherwise,
let the zeroth vertex V0 of the polygon be an arbitrary vertex of the polygon and
the i−th vertex Vi be the next vertex of Vi−1 in the anticlockwise direction, ∀i ∈
{ 1, 2, 3, . . . , n− 1}. Since the vertices in the polygon are cyclic, the (n+1)-th vertex
is the 1-st vertex. Let xmax, xmin, ymax, ymin, zmin, zmax be the largest x-coordinate,
the smallest x-coordinate, the largest y-coordinate, the smallest y-coordinate, the
largest z-coordinate and the smallest z-coordinate of the vertices of the polygon among
the n vertices respectively.

In a n-sided regular polygon with default size, position and orientation, the coordi-
nates of Vi are given by

(
− sin 2π

n , 0, cos 2πi
n

)
Lemma 4.2. Given a n-sided polygon placed in 3D space with default position and all
vertices being equidistant from the geometric centre of the polygon. Among the n ver-
tices of the polygon, the vertices whose connections with the origin make the smallest
angles with the positive x-axis, the negative x-axis, the positive y-axis, the negative
y-axis, the positive z-axis and the negative z-axis have the largest x-coordinate, the
smallest x-coordinate, the largest y-coordinate, the smallest y-coordinate, the largest
z-coordinate and the smallest z-coordinate respectively.

Proof of Lemma 4.2. Let θn,Vi,positive x-axis, θn,Vi,negative x-axis, θn,Vi,positive y-axis,
θn,Vi,negative y-axis, θn,Vi,positive z-axis, θn,Vi,negative z-axis be the angle between ViO and
the positive x-axis, between ViO and the negative x-axis,between ViO and the pos-
itive y-axis, between ViO and the negative y-axis, between ViO and the positive
z-axis, between ViO and the negative z-axis respectively for all i ∈ {0, 1, · · · , n− 1}.
Let Vixmax

, Vixmin
, Viymax

, Viymin
, Vizmax

, Vizmin
be the vertices of the polygon whose

connections with the origin make the smallest angle with the positive x-axis, the
negative x-axis, the positive y-axis, the negative y-axis, the positive z-axis and the
negative z-axis respectively. Let s be the length of ViO.

The x-coordinate of Vi = s cos±θn,Vi,positive x-axis which is strictly decreasing for
θn,Vi,positive x-axis ∈ (0, π).

Since θn,Vi,positive x-axis ≥ θn,Vixmax
,positive x-axis, the x-coordinate of Vi ≤ the x-

coordinate of Vixmax
.
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The x-coordinate of Vi = s cos(π ± θn,Vi,negative x-axis) = −s cos θn,Vi,negative x-axis

which is strictly increasing for θn,Vi,negative x-axis ∈ (0, π).

Since θn,Vi,negative x-axis ≥ θn,Vixmin
,positive x-axis, the x-coordinate of Vi ≥ the x-

coordinate of Vixmin
.

The y-coordinate of Vi = s cos±θn,Vi,positive y-axis which is strictly decreasing for
θn,Vi,positive y-axis ∈ (0, π).

Since θn,Vi,positive y-axis ≥ θn,Viymax
,positive y-axis, the y-coordinate of Vi ≤ the y-

coordinate of Viymax
.

The y-coordinate of Vi = s cos(π ± θn,Vi,negative y-axis) = −s cos θn,Vi,negative y-axis

which is strictly increasing for θn,Vi,negative y-axis ∈ (0, π).

Since θn,Vi,negative y-axis ≥ θn,Viymin
,positive y-axis, the y-coordinate of Vi ≥ the y-

coordinate of Vixmin
.

The z-coordinate of Vi = s cos±θn,Vi,positive z-axis which is strictly decreasing for
θn,Vi,positive z-axis ∈ (0, π).

Since θn,Vi,positive z-axis ≥ θn,Vizmax
,positive z-axis, the z-coordinate of Vi ≤ the z-

coordinate of Vizmax
.

The z-coordinate of Vi = s cos(π ± θn,Vi,negative z-axis) = −s cos θn,Vi,negative z-axis

which is strictly increasing for θn,Vi,negative z-axis ∈ (0, π).

Since θn,Vi,negative z-axis ≥ θn,Vizmin
,positive z-axis, the z-coordinate of Vi ≥ the z-

coordinate of Vizmin
.

Therefore, the vertices whose connections with the origin make the smallest angles
with the positive x-axis, the negative x-axis, the positive y-axis, the negative y-
axis, the positive z-axis and the negative z-axis have the largest x-coordinate, the
smallest x-coordinate, the largest y-coordinate, the smallest y-coordinate, the largest
z-coordinate and the smallest z-coordinate respectively. □

Given a n-sided polygon which lies on the xy-plane, xz-plane or yz-plane in 3D
space with default position and all vertices being equidistant from the geometric
centre of the polygon. Using Lemma 4.2, we can now deduce that the vertices of
the polygon carrying the values of xmax, xmin,ymax, ymin,zmax, zmin do not change if
the respective angles between the line segments joining these vertices and the origin,
and the positive x-axis, the negative x-axis, the positive y-axis, the negative y-axis,
the positive z-axis and the negative z-axis are the smallest among angles between
ViO and the corresponding axes, ∀i ∈ {0, 1, . . . , n− 1}.
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Therefore, we can deduce that the rotation of a rectangle of width w, height h
with V0 =

(
w
2 , 0,

h
2

)
, V1 =

(
−w

2 , 0,
h
2

)
, V2 =

(
−w

2 , 0,−
h
2

)
and V3 =

(
w
2 , 0,−

h
2

)
respectively rotating about the x-axis, y-axis and z-axis by less than π

2 ,
π
2 and

π
2 anti-

clockwise or clockwise respectively does not change the vertices carrying the values
of xmax, xmin, ymax, ymin, zmax, zmin.

Given a n-sided regular polygon with default position and orientation. Using Lemma
4.2 and observing that V⌊n+1

4 ⌋O, V⌈n−1
2 ⌉O, Vn−⌊n+2

4 ⌋O make the smallest angle with

the negative x-axis, the negative y-axis and the positive x-axis respectively among
all line segments joining Vi, ∀i ∈ {0, 1, . . . , n} with the origin, we can deduce that
the coordinates of the vertices of the n-sided regular polygon with default position
and orientation carrying the respective values of xmin, ymin, xmax are given by,

(
− sin

2πixmin
(n)

n
, cos

2πixmin
(n)

n

)
,

(
− sin

2πiymin
(n)

n
, cos

2πiymin
(n)

n

)
,

(
− sin

2πixmax(n)

n
, cos

2πixmax(n)

n

)
,

where ixmin(n) = ⌊n+1
4 ⌋, iymin(n) = ⌈n−1

2 ⌉,ixmax(n) = n− ⌊n+1
4 ⌋

Definition 4.3. Given a right regular prism with a height of k with each vertex
located 1 unit away from the nearest centre of the n-sided regular polygon base placed
in 3D space. The position of the prism is said to be default when its geometric centre
is located at the origin. The orientation of the prism is said to be default when the
2 bases of the prism are parallel to the yz-plane and 2 of its vertices are located at(
k
2 , 0, 1

)
and

(
−k

2 , 0, 1
)
respectively. Let Vxmax , Vxmax , Vymax , Vymin , Vzmax , Vzmin be

the vertices carrying the values of xmax, xmin, ymax, ymin, zmax, zmin respectively.

Consider a right regular prism with default position and orientation with its 2 bases
being n-sided regular polygon. Within the range of −π

n ≤ α ≤ π
n , 0 ≤ β, γ ≤ π

2 , the
vertices carrying the respective values of xmax, xmin, ymax, ymin, zmax, zmin do not
change.
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By observation,

Vxmax,x =
k

2
, Vxmax,y = −1

2
sin

2πiymin(n)

n
sec

π(n− 2)

2n
,

Vxmax,z =
1

2
cos

2πiymin
(n)

n
sec

π(n− 2)

2n
, Vxmin,x = −k

2
, Vxmin,y = 0,

Vxmin,x =
1

2
sec

π(n− 2)

2n
, Vymax,x =

k

2
, Vymax,y = −1

2
sin

2πixmax
(n)

n
sec

π(n− 2)

2n

Vymax,z =
1

2
cos

2πixmax(n)

n
sec

π(n− 2)

2n
, Vymin,x = −k

2
,

Vymin,y = −1

2
sin

2πixmin(n)

n
sec

π(n− 2)

2n
, Vzmax,x =

k

2
, Vzmax,y = 0

Vzmax,z =
1

2
sec

π(n− 2)

2n
, Vzmin,x = −k

2
, Vzmin,y = −1

2
sin

2πiymin
(n)

n
sec

π(n− 2)

2n
,

Vzmin,z =
1

2
cos

2πiymin
(n)

n
sec

π(n− 2)

2n

The rotation of the vertices can be described by multiplying them with the 3D
rotation matrix [RM]

R = Rz(γ)Ry(β)Rx(α)

=

cos γ − sin γ 0
sin γ cos γ 0
0 0 1

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

1 0 0
0 cosα − sinα
0 sinα cosα

 ,

which rotates the vertices about the z-axis by γ anticlockwise, then about the y-axis
by β anticlockwise and finally about the x-axis by α anticlockwise.
Therefore, for a specific rotation (γ, β, α), the dimensions of the equivalent cuboid
are

(dx, dy, dz) =

(|(RVxmax
)x − (RVxmin

)x|, |(RVymax
)y − (RVymin

)y|, |(RVzmax
)z − (RVzmin

)z|)

Then, the volume of space free A for placing the equivalent cuboid is

A = max((l − dx), 0)max((w − dy), 0)max((h− dx), 0).

The joint probability density function of x, y, z, α, β, γ is

1

l
· 1
w

· 1
h
·
(
2

π

)2

· n

2π
=

2n

lwhπ3
.

Thus, the probability p that the prism intersects with one or more grid planes is

p = 1− 2n

lwhπ3

∫ π
2

0

∫ π
2

0

∫ π
n

−π
n

Adαdβdγ
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5. Generalisation to Higher Dimensions

In an n-dimensional space, denote its axes by X1, X2, · · · , Xn. Let the spacing be-
tween the hyperplanes be d1, d2, · · · , dn. A point P = (p1, p2, · · · , pn) is said to be
on the hyperplanes if pi = kdi if some 1 ≤ i ≤ n and k ∈ Z.

Randomly dropping a needle of length l into this space is equivalent to randomly
choosing two points whose Euclidean distance equals l. Let

A = (a1, a2, · · · , an), 0 ≤ ai ≤
di
2

be one end of the needle and

B = (b1, b2, · · · , bn), |A−B| =
√∑

i

(ai − bi)2 = l

be another end of the needle. We divide the current hyper-cuboid (the one that
A is in) bounded by hyperplanes into 2n equal hyper-cuboids and work on the one
containing the origin. Dropping needles on the other regions are symmetrical to
that one, and hence ignoring them would not change the probability. Let A be
randomly placed on the hyperspace, meaning ai are independent random variables
with uniform probability distribution functions. Then let B be a point randomly
selected on the (n− 1)-sphere centered at A with radius l. Denote the hypersphere
Tn−1 = {x ∈ Rn : |x− AT | = l}. This hypersphere is homeomorphic to the normal
unit (n − 1)-sphere, denoted Sn−1 = {x ∈ Rn : |x| = 1}. We can then establish a
bijective mapping B : Sn−1 → Tn−1 to get B.

Let x1, x2, · · · , xn be n Gaussian random variables and X be


x1

x2

...
xn

. Then the

normalised vector Xn = X
|X| is uniformly distributed on the surface Sn−1.

The probability density function of xi we chose is the normal distribution with µ = 0

and σ2 = 1, i.e., e−
x2
i
2√

2π
. Their joint probability density function is then

n∏
i=1

e−
x2
i
2

√
2π

After getting X, we can set B = l · X
|X| + A. Let the needle be AB. AB does not

intersect the hyperplanes when

bi > 0

⇔ l · xi

|X|
+ ai > 0

⇔ |X| > l · xi

−ai
(3.1)
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Because this involves the norm of X, instead of calculating the norm from X, we
calculate xn from x1···n−1 and |X|:

|X| =
√
x2
1 + x2

2 + · · ·+ x2
n

⇔ xn = ±
√
|X|2 − x2

1 − x2
2 − · · · − x2

n−1(3.2)

⇔ |X|2 ≥ x2
1 + x2

2 + · · ·+ x2
n−1.(3.3)

We split the calculation into two parts according to (3.2), namely positive xn and
negative xn.

Case 1: Positive xn

In this case, xn =
√
|X|2 − x2

1 − x2
2 − · · · − x2

n−1. Formula (3.1) is always true when

i = n. Therefore, we do not need to consider xn when determining if there is
intersection. Therefore, the probability of AB no intersecting the hyperplane when
xn is positive is

Therefore, the probability of the needle not intersecting the hyperplanes is

P (not intersect when xn is positive)

=

∫ d1
2

0

da1 · · ·
∫ dn

2

0

dan

∫ ∞

−∞
dx1 · · ·

· · ·
∫ ∞

−∞
dxn−1

∫ ∞

max

(
x2
1+x2

2+···+x2
n−1, max

1≤i<n

l·xi
−ai

) n∏
i=1

e−
x2
i
2

√
2π

d|X|

=

∫ d1
2

0

da1 · · ·
∫ dn

2

0

dan

∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞
dxn−1

∫ ∞

M

e−
|X|2−S

2

√
2π

n−1∏
i=1

e−
x2
i
2

√
2π

d|X|

(Let S = x2
1 + x2

2 + · · ·+ x2
n−1 and M = max

(
S, max

1≤i<n

l·xi

−ai

)
)

=

∫ d1
2

0

da1 · · ·
∫ dn

2

0

dan

∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞
dxn−1

∫ ∞

√
M2−S

xn√
x2
n + S

·
n∏

i=1

e−
x2
i
2

√
2π

dxn

(Putting xn =
√
|X|2 − S, ∂xn

∂|X| =
|X|√

|X|2−S
=

√
x2
N+S

xn
)

=

∫ d1
2

0

da1 · · ·
∫ dn

2

0

dan

∫ ∞

−∞
dx1 · · ·

· · ·
∫ ∞

−∞
dxn−1

n−1∏
i=1

e−
x2
i
2

√
2π

∫ ∞

√
M2−S

xn√
x2
n + S

· e
− x2

n
2

√
2π

dxn

=

∫ d1
2

0

da1 · · ·
∫ dn

2

0

dan

∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞

e
S
2 Γ
(

1
2 ,

M2

2

)
2
√
π

n−1∏
i=1

e−
x2
i
2

√
2π

dxn−1
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The function is rather complex to integrate and is left as an exercise for the reader.

Case 2: Negative xn

In this case, xn = −
√
|X|2 − S, meaning AB may intersect the hyperplanes. Pre-

cisely, it will do so when

−an · |X|
l

≥ xn = −
√

|X|2 − S

⇔ an · |X|
l

≤
√
|X|2 − S

⇔ a2n · |X|2

l2
≤ |X|2 − S

⇔ (a2n − l2)|X|2 ≤ −Sl2

⇔ |X| ≥ Sl2

l2 − a2n
.

Therefore,

P (not intersect when xn is negative)

=

∫ d1
2

0

da1 · · ·
∫ dn

2

0

dan

∫ ∞

−∞
dx1 · · ·

· · ·
∫ ∞

−∞
dxn−1

∫ ∞

max

(
M, Sl2

l2−a2
n

) e−
|X|2−S

2

√
2π

n−1∏
i=1

e−
x2
i
2

√
2π

d|X|

=

∫ d1
2

0

da1 · · ·
∫ dn

2

0

dan

∫ ∞

−∞
dx1 · · ·

· · ·
∫ ∞

−∞
dxn−1

∫ ∞√
max

(
M, Sl2

l2−a2
n

)2

−S

xn√
x2
n + S

n∏
i=1

e−
x2
i
2

√
2π

dxn.

(Putting xn =
√
|X|2 − S)

Putting all together, we get
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Theorem 5.1. The probability that a needle of length l intersects hyperplanes on
grid space d1, d2, · · · , dn is∫ d1

2

0

da1 · · ·
∫ dn

2

0

dan

∫ ∞

−∞
dx1 · · ·

· · ·
∫ ∞

−∞
dxn−1

∫ ∞

max

(
x2
1+x2

2+···+x2
n−1, max

1≤i<n

l·xi
−ai

) e−
|X|2−S

2

√
2π

n−1∏
i=1

e−
x2
i
2

√
2π

d|X|

+

∫ d1
2

0

da1 · · ·
∫ dn

2

0

dan

∫ ∞

−∞
dx1 · · ·

· · ·
∫ ∞

−∞
dxn−1

∫ ∞

max

(
x2
1+x2

2+···+x2
n−1, max

1≤i<n

l·xi
−ai

, Sl2

l2−a2
n

) e−
|X|2−S

2

√
2π

n∏
i=1

e−
x2
i
2

√
2π

dxn

6. Conclusion

6.1. Summary.

We proposed two generalizations and two variations of the Buffon-Laplace Needle
Problem. The generalizations are dropping regular polygons or arbitrary polygons on
a 2-dimensional space instead of a needle, and variations are dropping right regular
polygon prism in 3-dimensional space and dropping needles in n-dimensional space.
In each problem, we have given a formula for the answer. We have also given an
efficient algorithm in the arbitrary polygon problem.

6.2. Possible Directions for Future Research.

We may extend the 2D arbitrary polygon problem to 3D. The method of finding the
algorithm for the 2D arbitrary polygon problem may be used in the problem. We
may also give an efficient algorithm for finding the probability that a 3D arbitrary
polyhedron being dropped randomly intersects with one or more grid planes of the
cuboidal grid in 3D space.

We may also change the grid line into different types, such as concentric circles, or
regular polygon gridlines. For regular polygon gridlines, the algorithm given in the
2D arbitrary polygon problem may be modified and used in that problem.

Our investigation does not have any real-life applications. We may consider the
Happy Rainbow Game that is easily found in theme parks and arcades. It is similar
to what we are investigating on. We may apply some of our methods use in this
paper to solve this problem.

7. Appendix

7.1. A Monte-Carlo Simulation of the regular polygon problem written in
C++.
#include <algorithm>

#include <cmath>

#include <cstdio>
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#include <cstdlib>

#include <random>

#include <chrono>

double constexpr PI = 3.14159265;

int main(int argc, char **argv)

{

if (argc < 2 || argc > 6)

{

printf("Usage: %s number-of-sides [radius] [number-of-trials]

[grid-height][grid-width]\n", argv[0]);

return 1;

}

int number_of_sides = std::atoi(argv[1]),

number_of_trials = argc >= 4 ? std::atoi(argv[3]) : 1000;

double radius = argc >= 3 ? std::atof(argv[2]) : 1,

grid_height = argc >= 5 ? std::atof(argv[4]) : 1,

grid_width = argc >= 6 ? std::atof(argv[5]) : 1;

std::mt19937_64 generator(std::chrono::system_clock::now().

time_since_epoch().count());

std::uniform_real_distribution<double>

x_distribution(0.0, grid_width),

y_distribution(0.0, grid_height),

theta_distribution(0.0, 2 * PI / number_of_sides);

int number_of_intersections = 0;

for (int i = 0; i < number_of_trials; ++i)

{

double

x = x_distribution(generator),

y = y_distribution(generator),

theta = theta_distribution(generator);

double min_x = 1e9, min_y = 1e9, max_x = -1e9, max_y = -1e9;

for (int j = 0; j < number_of_sides; ++j)

{

double current_angle = 2 * PI * j / number_of_sides + theta;

min_x = std::min(min_x, radius * std::cos(current_angle));

min_y = std::min(min_y, radius * std::sin(current_angle));

max_x = std::max(max_x, radius * std::cos(current_angle));

max_y = std::max(max_y, radius * std::sin(current_angle));

}

if (x + min_x <= 0 || y + min_y <= 0 || x + max_x >= grid_width

|| y + max_y >= grid_height)

++number_of_intersections;
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}

printf("Simulation probability: %.10f (%d/%d)\n",

(double)number_of_intersections / number_of_trials,

number_of_intersections,

number_of_trials);

}

Also included in the submission of this paper.
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REVIEWERS’ COMMENTS

This paper studied a classic problem in probability theory – the Buffon-Laplace
Needle Problem – which asks for the probability that a needle of length l will land on
at least one line, given a floor with a rectangular grid of length a and width b. The
authors studied various generalizations of the problem, such as replacing the needle
by a regular polygon, and also to higher-dimensional grids. Reviewers think that
these generalizations are very natural and meaningful, and the results are non-trivial
as the proof involve the computation of complicated multiple integrals. Reviewers
find that some results made use of assumptions on the size of the polygons and the
grids, and wish the authors would have stated them clearly in the paper.
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