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Abstract. In this paper, we are going to investigate the Erdős-Straus Con-
jecture : For any positive n ≥ 2, there exists positive integers k, k1, k2 such

that
4

n
=

1

k
+

1

k1
+

1

k2

Firstly, we will solve a simpler form
3

n
=

1

x
+

1

y
as a starting point. Next we

will investigate the Erdős-Straus Conjecture in the following dimensions: the

related geometric representation of the Erdős-Straus Conjecture, the properties

of solutions of the Erdős-Straus Conjecture, further investigation of some paper
of the Erdős-Straus Conjecture, existence of special forms of solutions of the

Erdős-Straus Conjecture, and the investigation of the Erdős-Straus Conjecture

in algebraic dimension. The aim of this report is to find evidence that shows
the Erdős-Straus Conjecture is true. If evidence is not strong enough, we

still hope that this report can make an improvement to the researched result
at present.

1. Notation.

1.1 p is a prime number.
1.2 (p, q) represents the greatest common divisor of p, q.
1.3 p, q are called relatively prime when (p, q) = 1 .
1.4 N = the set of all natural numbers.
1.5 Z = the set of all integers.
1.6 Q = the set of all rational numbers.
1.7 R = the set of all real numbers.
1.8 k, k1, k2 are the solutions of the Erdős-Straus Conjecture if there exists a

prime number such that

4

p
=

1

k
+

1

k1
+

1

k2
.

1
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1.9 Two integers a, b are said to be congruent to modular m if the remainders of
a, b divided by m are the same. We notify it by a ≡ b (mod m).

2. Preliminary Knowledge:

2.1 Perpendicular Distance Formula
Given L : Ax+By+C = 0. Then the perpendicular distance from a point

(p, q) to the line L is

d =
|Ax+By + C|√

A2 +B2
.

2.2 Lens formula
If the distances from the object to the lens and from the lens to the image

are u and v respectively, for a lens of negligible thickness, in air, the distances
are related by the thin lens formula:

1

f
=

1

u
+

1

v
.

2.3 Chinese remainder theorem
For any given sequence of integers a1, . . . , ak, there exists an integer x

solving the following system of simultaneous congruences.




x ≡ a1 (mod n1)

. . . . . . where (ni, nj) = 1, i 6= j ≤ k.

x ≡ ak (mod nk)

(1)

(2)

(3)

The solution of x is given by

x ≡ a1t1 + a2t2 + · · ·+ aktk (mod lcm(n1, n2, . . . , nk))

where Am satisfy

tm =
lcm(n1, n2, . . . , nk)

nm
×Am ≡ 1 (mod nm)

We will use it in Excel file for calculation.

3. Introduction

Erdős-Straus Conjecture:

For any positive n ≥ 2, there exists positive integers k, k1, k2 such that

4

n
=

1

k
+

1

k1
+

1

k2
.

Egypt fractions is a topic researched for a long time, but until now we still can’t
understand all of its properties. The Erdős-Stratus Conjecture is one of the famous
open problems in it. It is known that this conjecture is true when p < 1014 [1], but
the existence of its solutions for all prime p remains a mystery. Why we only need
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to consider prime number p will be explained later. Therefore this report aims to
find evidence that support this conjecture. In addition to algebraic dimensions, we

will provide a geometric model of
4

p
=

1

k
+

1

k1
+

1

k2
and use it as a new dimension

discovering this conjecture.

4. The form
3

n
=

1

x
+

1

y
and its related geometric representation

It is too complicated for us to deal with the Erdős-Stratus conjecture directly. So

we start from finding the relationship between one particular fraction (i.e.
3

n
) and

the sum of 2 unit fractions, and see that can it help us to understand about the
addition of unit fractions.

Theorem 1. Given that n ∈ N. Then, all positive integral solutions (x, y) of
1

n
=

1

x
+

1

y
are given by x = n+ s and y = n+

n2

s
, i.e.

1

n
=

1

n+ s
+

1

n+
n2

s

where s ∈ N and
n2

s
∈ N.

First proof:

1

n
=

1

a
+

1

b
a− n
an

=
1

b

b =
an

a− n (1)

From (1), we have a > n. Since b ∈ N, then (a− n) | an, an = k(a− n) where k is
a positive integer.

a =
kn

k − n (2)

Let s = k − n and then s ∈ N for k > n. By (2), we have

a =
n(s+ n)

s

a = n+
n2

s
(3)

From (3), we have
n2

s
∈ N for a > n.
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Put (3) into (1):

b =

n

(
n+

n2

s

)

n2

s

= s+ n

Hence
1

n
=

1

n+ s
+

1

n+
n2

s

where s ∈ N and
n2

s
∈ N.

Second proof: The second proof shows the geometric idea of the Theo-

rem by using the idea of lens formula
1

f
=

1

u
+

1

v
.

Consider the above figure where AB//CD//EF , CM ⊥ AB and CN ⊥ EF .

We will first prove the relationship
1

CD
=

1

AB
+

1

EF
.

Proof. We know that 4CDF ∼ 4FAB and 4BCD ∼ 4BEF

Then
CD

EF
=
BD

BF
(1)

and
CD

AB
=
DF

FB
(2)

(1) + (2):
CD

AB
+
CD

EF
=
BD +DF

BF

∴ 1

CD
=

1

AB
+

1

EF

AM

CD
=
s

n
=
BD

DF
=
CD

EN

Therefore,
1

CD
=

1

AB
=

1

EF
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By letting CD = n and AM = s, we have AB = n+ s.

Also, CD =
n2

s
, we have

1

n
=

1

n+ s
+

1

n+
n2

s

.

Third Proof: For every n ∈ N , a relationship
1

n
=

1

a
+

1

b
must exist where a, b > n

and a, b ∈ N.

Hence we let a = n+ s and b = n+ r. Then

1

n+ r
=

1

n
− 1

n+ s
=

1

n(n+ s)

s

=⇒ n+ r = n+
n2

s
=⇒ r =

n2

s
.

Hence we can discover that for every n ∈ N, s | n2 ∈ N.

For
1

n
=

1

a
+

1

b
, we have

1

n
=

1

n+ s
+

1

n+
n2

s

where s ∈ N and
n2

s
∈ N.

We have proved that we can find a way to represent
1

n
as sum of two unit fractions,

but for
m

n
, where 1 < m ∈ N, we still do not have a conclusion. Here we are going

to find out the result of the case when m = 3.

Theorem 2.
3

n
=

1

x
+

1

y
exists for some x, y ∈ N if and only if

(i) n = 3k or (ii) n = 3k + 2 or (iii) n = 3k + 1

where there exists a positive integer f | n such that f ≡ 2 (mod 3).

Proof. The “if” part:

(i) When n = 3k, then
3

n
=

1

k
. By Theorem 1, there exists x, y to have

1

k
=

1

x
+

1

y
.

Hence,
3

n
=

1

x
+

1

y
.

(ii) When n = 3k + 2, let x = k + 1 and y = (k + 1)(3k + 2). Then,

1

x
+

1

y
=

1

k + 1
+

1

(k + 1)(3k + 1)
=

3

3k + 2
=

3

n
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(iii) When n = 3k+ 1, if there exists where f | (3k+ 1) such that f ≡ 2 (mod 3),

then we can construct x = 3k + 1 + f ∈ N and y = 3k + 1 +
(3k + 1)2

f
∈ N.

By direct checking:

1

x
+

1

y
=

1

3k + 1 + f
+

1

3k + 1 +
(3k + 1)2

f

=
1

3k + 1

Since 3k + 1 + f ∈ N and 3k + 1 +
(3k + 1)2

f
∈ N,

∴ 3

n
=

1

x
+

1

y

The “only if” part:

Consider the excluded case, i.e Case (iv) :

n = 3k + 1 where there exists no positive integer f | n such that f ≡ 2 (mod 3).

We assume solutions of
3

n
=

1

x
+

1

y
exist in this case. Then from Theorem 1, all

solutions of
3

n
=

1

x
+

1

y
are given by

x =
1(

3k + 1 + f

3

) and y =
1


3k + 1 +

(3k + 1)2

f

3




Since
3k + 1 + f

3
and

3k + 1 +
(3k + 1)2

f

3
∈ N,

∴ f ≡ 2 (mod 3)

But there exists no positive integer f | n such that f ≡ 2 (mod 3). Contradiction!

Therefore by rejecting the excluded case,
3

n
=

1

x
+

1

y
exists for some x, y ∈ N if and

only if (i) n = 3k or (ii) n = 3k+ 2 or (iii) n = 3k+ 1 where there exists a positive
integer f | n such that f ≡ 2 (mod 3).
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5. The Erdős-Straus Conjecture and its related geometric representation

Original Erdős-Straus Conjecture

For any positive n ≥ 2, there exists positive integers k, k1, k2 such that

4

n
=

1

k
+

1

k1
+

1

k2
.

However, we only need to consider n as a prime p. When n = pq where p is a prime

and
4

p
=

1

k
+

1

k1
+

1

k2
, then n also satisfies the Erdős-Straus Conjecture because

4

n
=

4

pq
=

(
1

k
+

1

k1
+

1

k2

)(
1

q

)
=

1

qk
+

1

qk1
+

1

qk2

Hence, we only need to consider the amended Conjecture:

Erdős Straus Conjecture (amended):

For any positive prime p ≥ 2, there exists positive integers k, k1, k2 such that

4

p
=

1

k
+

1

k1
+

1

k2
.

Without notification, we will consider this amended Conjecture in the
remaining part of the paper.

Also, without loss of generality: We let k ≤ k1 ≤ k2 and p is prime.

Geometric Consideration of Erdős Straus Conjecture:

Figure 1 shows a 4EBF with in-circle with centre H and its radius p and three
ex-circles with centers K,M and N and their corresponding radii be 4k, 4k1, 4k2
respectively. Also, O is the origin of the coordinate plane with these in-circles and
3 ex-circles touching the axes as shown below. In addition, D,A,C be the points
of contact of circles with centre M,H,K and x-axis respectively.

Theorem 3. Any triangle with r be the radius of the in-circle and x, y, z be the
radii of 3 ex-circles respectively has:

1

r
=

1

x
+

1

y
+

1

z
.

Proof. We can refer to Figure 1.

Let FB = a,EB = c and FE = b and x, y and z be the radii of the circles with
the centers K,N and M respectively.

Consider FKBE,

the area of 4FEB = area of FKBE − area of 4FKB (1)



8 YUK LUN FONG

Figure 1

By tangent properties, area of FKBE =
1

2
bx+

1

2
cx, area of 4FKB =

1

2
ax.

Also by the properties of incentre of triangle, the area of 4FEB = rs where

s =
a+ b+ c

2
.

Then (1) becomes

(b+ c− a)x = 2rs (2)

Similarly, by considering NEFB and MFBE, we can set up the other two equa-
tions:

(a+ b− c)y = 2rs (3)

(c+ a− b)x = 2rs (4)
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(2)+(3)+(4),

2a+ 2b+ 2c− a− b− c =
2rs

x
+

2rs

y
+

2rs

z

=⇒ 1

r
=

1

x
+

1

y
+

1

z

Theorem 4. Refer to Figure 1. Let H(p, p),K(x, 4k),M(x1, 4k1), N(x2,−4k2)
be the centres of the middle, right, left and the bottom circles respectively with
k ≤ k1 ≤ k2. We have: 




k = k

k1 =

(
m2 + pk

4k − p

)

k2 =
pk

m2

(
m2 + pk

4k − p

)

(4)

(5)

(6)

where BC = 2m.

Proof. By knowing that k ≤ k1 ≤ k2, we have the radii 4k ≤ 4k1 ≤ 4k2 and the
circle with centre N is the largest ex-circle and the circle with centre K is the
smallest ex-circle. From the proof of Theorem 3, EB = c, EF = b and FB = a.

By (2), (3), (4) from the previous proof, we have

4k2 =
2rs

(2s− 2c)
=

rs

s− c ,

4k1 =
rs

s− b ,

4k =
rs

s− a.

Then 4k ≤ 4k1 ≤ 4k2 =⇒ c ≥ b ≥ a.

We have EB ≥ EF ≥ FB and ∠EFB is the greatest angle.

Then ∠FBE and ∠FEB are acute because ∠EFB is the greatest angle.

Let θ be ∠BKC. Then ∠ABH = ∠BKC = θ.

Let BC = 2m .

In 4BKC,

tan θ =
2m

4k
=
m

2k
.

In 4ABH,

AB =
p

tan θ
=

p
m
2k

=
2pk

m
.
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Hence, AC =
2pk

m
+ 2m = 2

(
pk

m
+m

)
.

For 4AEH ∼ 4CEK,

EO + p

EO + p+AC
=

p

4k

EO =
p2 + pAC − 4kp

4k − p

EO =

p2 + p(2)

(
pk

m
+m

)
− 4kp

4k − p
Also,

OB = p+AC − 2m

OB = p+ 2

(
pk

m
+m

)
− 2m = p+

2pk

m
;

EB = EO +OB

EB =
p2 +

2p2k

m
+ 2pm− 4kp

4k − p + p+
2pk

m

EB =
p2 +

2p2k

m
+ 2pm− 4kp+ 4kp+

8pk2

m
− p2 − 2p2k

m
4k − p

EB =
2pm+

8pk2

m
4k − p =

2p

m

(
m2 + 4k2

4k − p

)
.

Now, let l1 : m1x− y + c1 = 0 and l2 : m2x− y + c2 = 0.

Let N(x2,−4k2) = (a2,−r2).

If (a2,−r2) is below both l1, l2, thenm1a2−(−r2)+c1 > 0 andm2a2−(−r2)+c2 > 0.
Hence, by perpendicular distance formula, we have

r2 =
m1a2 − (−r2) + c1√

m2
1 + 1

=
m2a2 − (−r2) + c2√

m2
2 + 1

.

By making a2 as the subject, we have

r2(
√

1 +m2
2 − 1)− c2

m2
=
r2(
√

1 +m2
1 − 1)− c1

m1

r2 =
m1c2 −m2c1

m1(
√

1 +m2
2 − 1)−m2(

√
1 +m2

1 − 1)
.
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For c1 = EO tan θ1 and c2 = −OB tan θ2 where θ1, θ2 are the inclinations of l1 and
l2 respectively.

r2 =
−(OB + EO) tan θ1 tan θ2

tan θ1(
√

1 + tan2 θ2 − 1)− tan θ2(
√

1 + tan2 θ1 − 1)

r2 =
−EB × sin θ1 sin θ2

− sin θ1 − sin θ1 cos θ2 − sin θ2 + sin θ2 cos θ1

for
√

1 + tan2 θ1 =
1

cos θ1
and

√
1 + tan2 θ2 =

−1

cos θ2
.

For sin θ1 =
2t

1 + t21
, sin θ2 =

2t2
1 + t22

, cos θ1 =
1− t21
1 + t21

and cos θ2 =
1− t22
1 + t22

and

r2 = 4k2 where t1 = tan
θ1
2

and t2 = tan
θ2
2

.

Then, we have

4k2 =
−EB × 4t1t2

−2t1 − 2t1t22 − 2t1 + 2t1t22 − 2t2 − 2t2t21 + 2t2 − 2t2t21

4k2 =
−EB × 4t1t2
−4t1 − 4t2t1

4k2 =
EB × t2
1 + t1t2

.

Let M(x1, 4k1) = (a1, r1).

If (a1, r1) is above l1 and below l2, then m1a1− r1 + c1 < 0 and m2a1− r1 + c2 > 0.

Hence, by perpendicular distance formula, we have

r1 = −
(
m1a1 − r1 + c1√

m2
1 + 1

)
=
m2a1 − r1 + c2√

m2
2 + 1

.

By making a2 as the subject, we have:

r1(1−
√
m2

1 + 1)− c1
m1

=
r1(
√
m2

2 + 1 + 1)− c2
m2

,

r2 =
m2c1 −m1c2

m2(1−
√
m2

1 + 1)−m1(1 +
√
m2

2 + 1)
.

For c1 = EO tan θ1 and c2 = −OB tan θ2 where θ1, θ2 are the inclinations of l1 and
l2 respectively.

r1 =
(OB + EO) tan θ1 tan θ2

tan θ2(1−
√

1 + tan2 θ1)− tan θ1(
√

1 + tan2 θ2 + 1)
,

r1 =
EB × sin θ1 sin θ2

sin θ2 cos θ1 − sin θ2 − sin θ1 cos θ2 + sin θ1

for
√

1 + tan2 θ1 =
1

cos θ1
and

√
1 + tan2 θ2 =

−1

cos θ2
.
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For sin θ1 =
2t

1 + t21
, sin θ2 =

2t2
1 + t22

, cos θ1 =
1− t21
1 + t21

and cos θ2 =
1− t22
1 + t22

and

r1 = 4k1 where t1 = tan
θ1
2

and t2 = tan
θ2
2

. Then, we have

4k1 =
EB × 4t1t2

(2t2)(1− t21)− 2t2(1 + t21)− 2t1(1− t22) + 2t1(1 + t22)
,

4k1 =
EB × 4t1t2
−4t2t21 + 4t1t22

,

4k1 =
EB

t2 − t1
,

k2 =
EB

4(t2 − t1)
.

For

t1 =
4k − p

4q
=

(4k − p)m
2(pk +m2)

,

t1 = tan
θ2
2

=
2k

m
.

Also, we have previously,

EB =
2p

m

(
m2 + 4k2

4k − p

)
.

Therefore,

k2 =
EBt2

1 + t1t2

=

2p

m

(
m2 + 4k2

4k − p

)(
2k

m

)

4

(
1 +

(4k − p)m
2(pk +m2)

·
(

2k

m

))

=

p

k

(
m2 + 4k2

4k − p

)

4

(
pk +m2 + 4k2 − pk

pk +m2

)

=

4pk

m2

(
m2 + 4k2

4k − p

)

4

(
m2 + 4k2

pk +m2

)

=
pk

m2
(
m2 + pk

4k − p ).
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k1 =
EB

t2 − t1

=

2p(m2 + pk)

m(4k − p)
(4k − p)m
2(pk +m2)

−
(

2k

m

)

=

2p(m2 + pk)

m(4k − p)(
4km2 − pm2 − 4k2p− 4km2

2m(pk +m2)

)

=
pk +m2

4k − p .

Hence, we have 



k = k

k1 =

(
m2 + pk

4k − p

)

k2 =
pk

m2

(
m2 + pk

4k − p

)

(7)

(8)

(9)

where k ≤ k1 ≤ k2.

From the above result, we can relate this geometric result with the solutions of
Erdős Straus Conjecture and this attempt may be better to explore the Conjecture
because we can express k, k1, k2 separately by m2 and k. Some results about the
Conjecture can be obtained after the following Theorem 5.

Theorem 5.
4

p
=

1

k
+

1

k1
+

1

k2
where k, k1, k2 are positive integers if and only if





k = k

k1 =

(
m2 + pk

4k − p

)

k2 =
pk

m2

(
m2 + pk

4k − p

)

(10)

(11)

(12)

where k, k1, k2 are positive integers and m2 > 0.

Proof. Prove the “If part”:

Clearly,
1

k
+

1

k1
+

1

k2
=

1

k
+

4k − p
m2 + pk

+
m2

pk

(
4k − p
m2 + pk

)
=

4

p
.
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Prove the “Only if part”:

If we have
4

p
=

1

k
+

1

k1
+

1

k2
where k, k1, k2 are positive integers, then let m2 =

pkk1
k2

.

Then, m2 > 0. Since
k1k2
pk

=
k1 + k2
4k − p by

4

p
=

1

k
+

1

k1
+

1

k2
, then

m2 + pk

4k − p =

pkk1
k2

+ pk

4k − p

=
pk(k1 + k2)

k2(4k − p)

=
pk

k2

(
k1k2
pk

)

= k1.

Also,

pk

m2

(
m2 + pk

4k − p

)
=

pk

m2
k1

=
pkk1(
pkk1
k2

)

= k2.

Theorem 6. If 



k = k

k1 =

(
m2 + pk

4k − p

)

k2 =
pk

m2

(
m2 + pk

4k − p

)

(13)

(14)

(15)

where k, k1, k2 are positive integers, then m2 ∈ N and m2 | p2k2.

Proof. k1 =
m2 + pk

4k − p =⇒ m2 = k1(4k − p)− pk, then m2 is an integer.

k1, k, p are all positive integers and m2 =
pkk1
k2

, hence, m2 ∈ N.

Also, k2 =
pk

m2

(
m2 + pk

4k − p

)
=
pk +

(pk)2

m2

4k − p and k2 is a positive integer.

Then, m2 | (pk)2.
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6. Properties of the Solutions of the Erdős Straus Conjecture:

6.1.

From a Japanese website

(www.asahi-net.or.jp/∼kc2h-msm/mathland/math01/erdstr00.htm),

we quote a list of the solutions of the Erdős Straus Conjecture when p is small:

From the above list of the solutions, although p is small, we still could observe some
patterns and obtain some corresponding Theorems as follows:
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Theorem 7. k < p and then k is not divisible by p.

Proof. Assume the contrary that k ≥ p. For k ≤ k1 ≤ k2, then p ≤ k ≤ k1 ≤ k2.

Since
4

p
=

1

k
+

1

k1
+

1

k2
, then

4

p
=

1

k
+

1

k1
+

1

k2
≤ 1

p
+

1

p
+

1

p

=⇒ 4

p
≤ 3

p

=⇒ 4 ≤ 3.

Contradiction!

Since k is positive and 0 < k < p, k is not divisible by p.

Theorem 8. k2 is divisible by p that is p | k2.

Proof. We have k = k ≤ k1 =
m2 + pk

4k − p ≤ k2 =
pk

m2

(
m2 + pk

4k − p

)
. From Theorem 7,

we have k is not divisible by p.

Case 1: If m2 is not divisible by p, then (p,m2 + pk) = 1. We have k1 is also not
divisible by p and k2 is divisible by p.

Case 2: If m2 is divisible by p, then k is also divisible by p because if (4k−p) has no

p as a factor, we have
m2 + pk

4k − p has p as a factor k1 that is divisible by p, otherwise,

(4k− p) is divisible by p, we have p = 2, then by
4

2
=

1

2
+

1

2
+

1

1
=⇒ k1is divisible

by p.

Case 2(a): m2 is not divisible by p2

Then k2 =
pk

pm′2
(k1) where we let m2 = pm′2 and m′2 is not divisible by p.

We have k2 =
k

m′2
(k1). For k1 is also divisible by p, then k2 is also divisible by p.

Case 2(b): m2 is divisible by p2.
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Case 2(b)(i): If k1 = k2, then pk = m2. Since k is not divisible by p then m2 is not
divisible by p2. We have a contradiction.

Case 2(b)(ii): If k1 < k2, then

=⇒ pk

m2
> 1 for k2 =

pk

m2
k1

=⇒ pk

p2m′2
> 1 where we let m2 = p2m′2

=⇒ k > pm′2

=⇒ k > p

Hence, p < k ≤ k1 ≤ k2, and we have

4

p
<

1

p
+

1

p
+

1

p
,

4

p
<

3

p
.

We have contradiction!!!

Theorem 9. None of k, k1, k2 can be divisible by p2.

Proof. Case A: p = 2.

By
4

2
=

1

2
+

1

2
+

1

1
=⇒ k = 1, k1 = 2, k2 = 2. Hence none of k, k1, k2 can be

divisible by p2.

Case B:

By Theorem 7, k cannot be divisible by p and then k is also not divisible by p2.

Case B1: k1 is divisible by p2.

Then, m2 + pk must be divisible by p2. We have p | m2 but m2 is not divisible by

p2 from the previous proof, k2 =
pk

m2

(
m2 + pk

4p− k

)
is also divisible by p2 for m2 is

not divisible by p2 and (2, 4k − p) = 1.

Case B2: k2 is divisible by p2.

From the previous proof, p | m2 but m2 is not divisible by p2. Then m2 + pk must

be divisible by p2 for k2 =
pk

m2

(
m2 + pk

4p− k

)
and (2, 4k − p) = 1. Hence, k1 is also

divisible by p2.
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Hence if one of k1, k2 is divisible by p2, by Case B1 or CaseB2, both are divisible
by p2. Now, we assume that they are divisible by p2. We can let k1 = p2a and
k2 = p2b. Then,

4

n
=

1

k
+

1

k1
+

1

k2

=⇒ 4

p
− 1

k
=

1

p2a
+

1

p2b

=⇒ 4k − p
pk

<
2

p2

=⇒ 4k − p
k

<
2

p

=⇒ 4k − p < 2k

p

=⇒ k <
p

4− 2

p

=⇒ k <
p

4

(
1− 1

2p

)

=⇒ k <
p

4

(
1 +

1

2p
+ . . .

)

=⇒ k <
p

4
+
p

4

(
1

2p

)(
1 +

1

2p
+ . . .

)

=⇒ k <
p

4
+

1

8




1

1− 1

2p


 (1)

Also,
4

p
=

1

k
+

1

k1
+

1

k2
, then

4

p
>

1

k
(2)

Combine (1) and (2), we have

p

4
< k <

p

4
+

1

8




1

1− 1

2p




p < 4k < p+
1

2

(
1− 1

2p

)
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As,

1 < p

p < 2p− 1
p

2p− 1
< 1

1

2

(
1− 1

2p

) < 1

Hence, p < 4k < p+ 1.

We have 4k is not an integer. We have contradiction!!! Therefore, both Case B1
and Case B2 are wrong. Hence, no k, k1, k2 can be divisible by p2.

6.2. The bounds of k,k1,k2

Theorem 10. The bounds of k, k1, k2 are




1

4
p < k ≤ 3

4
p

k ≤ k1 ≤
3

2
p2

k1 ≤ k2 ≤
9

16
p4

(16)

(17)

(18)

Proof. The bounds for k, k1, k2:

If
4

p
=

1

k
+

1

k1
+

1

k2
, then

1

k
<

4

p
and

4

p
≤ 3

k

=⇒ p

4
≤ k ≤3p

4

Also,

k1 =
m2 + pk

4k − p

≤ pk + pk

1
for

pk

m2
≥ 1 and 4k − p ≥ 1

= 2pk

≤ 2p

(
3p

4

)

=
3

2
p2
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And,

k2 =
pk

m2

(
m2 + pk

4k − p

)

≤ pk

1
(k1) for m2 ≥ 1

≤ pk
(

3p2

4

)

≤ 3

4
p3
(

3p

4

)

=
9

16
p4

Hence,





1

4
p < k ≤ 3

4
p

k ≤ k1 ≤
3

2
p2

k1 ≤ k2 ≤
9

16
p4

(19)

(20)

(21)

6.3. Geometric Results related to Erdős-Straus Conjecture

Let k, k1, k2 be the solutions of the Erdős-Straus Conjecture.

Let 4EBF be the triangle constructed in Figure 1.

Let the 3 sides of the triangle 4EBF with the inscribed circle with radius p be a, b
and c where c ≥ b ≥ a.

Let ∆ be the area of the triangle. Then

∆ =
1

2
p(a+ b+ c) where s =

a+ b+ c

2

=
1

2
p(2s)

= ps.
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Also, we know from the proof of Theorem 4,





4k =
ps

s− a
4k1 =

ps

s− b where c ≥ b ≥ a

4k2 =
ps

s− c .

(22)

(23)

(24)

Hence,

64kk1k2 =
(ps)2

(s− c)(s− b)(s− a)

=
p3s3

∆2

s

=
p3s3

(ps)2

= ps2

s2 =
64kk1k2

p

Since, by Theorem 8, p | k2, then

s2 =
64kk1k2

p
∈ N

s2 = 64k

(
m2 + pk

4k − p

)
pk

m2

(
m2 + pk

4k − p

)

=
64k2(m2 + pk)2

m2(4k − p)2

s =
8k(m2 + pk)

m(4k − p)

s = 8m

(
k2
p

)
(1)

Since,

∆ = ps

∆ = p

(
8mk2
p

)
= 8mk2 (2)
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In addition,

s− a =
ps

4k

a =
s(4k − p)

4k

a =
8k(m2 + pk)(4k − p)

m(4k − p)(4k)

a =
2(m2 + pk)

m

a = 2

(
m+

pk

m

)
(3)

And,

s− b =
ps

4k1

s− b =

8k(m2 + pk)

m(4k − p) p

4

(
m2 + pk

4k − p

)

s− b = 2

(
pk

m

)

b = s−
(

2pk

m

)
(4)

b =
2k(4m2 + p2)

m(4k − p) (4’)

And,

s− c =
ps

4k2

s− c =

8k(m2 + pk)

m(4k − p) p

4

(
pk

m2

)(
m2 + pk

4k − p

)

s− c = 2m

c = s− 2m (5)

c =
2p(4k2 +m2)

m(4k − p) (5’)

With (1), (2), (3), (4) and (5), if m ∈ N and m | 2pk =⇒ s,∆, a, b, c ∈ N. Hence,
we have Theorem 11 as follows:
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Theorem 11. If k, k1, k2 are the solutions of the Erdős-Straus Conjecture that
make m ∈ N and m | 2pk, then we can form a Herion triangle with sides a, b, c and
area ∆ and





s = 8m

(
k2
p

)
∈ N

∆ = 8mk2 ∈ N

c = 2

(
m+

pk

m

)
∈ N

b =
2k(4m2 + p2)

m(4k − p) ∈ N

a =
2p(4k2 +m2)

m(4k − p) ∈ N

(25)

(26)

(27)

(28)

(29)

Proof. Proved before.

From Theorem 11, if p = 4k − 1 where k ∈ N, we can make m = 1, and we have a
Herion triangle with





∆ = 8kp(1 + pk) ∈ N
c = 2p(4k2 + 1) ∈ N
b = 2k(4 + p2) ∈ N .

a = 2(1 + pk) ∈ N

(30)

(31)

(32)

(33)

By reducing the size by a factor
1

2
for lengths, we have a smaller Herion triangle

with





∆′ = 2kp(1 + pk) ∈ N
c′ = p(4k2 + 1) ∈ N
b′ = k(4 + p2) ∈ N
a′ = (1 + pk) ∈ N

(34)

(35)

(36)

(37)

where ∆′, a′, b’, c′ are the corresponding area of the triangle and 3 sides respectively.

Theorem 12. The Herion triangle formed in Theorem 11 cannot be a rational
triangle.
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Proof. By Theorem 11, we have a Herion triangle with sides a, b, c and area ∆ and





a = 2

(
m2 + pk

m

)

b =
2k(4m2 + p2)

m(4k − p)

c =
2p(4k2 +m2)

m(4k − p) .

∆ =
8k(m2 + pk)p

m(4k − p)

(38)

(39)

(40)

(41)

If the Herion triangle is a rational triangle, then

1

2
ab = ∆

1

2

(
2k

m

)(
4m2 + p2

4k − p

)
× 2(m2 + pk)

m
=

8k

m

(
m2 + pk

4k − p

)
p

4p =
4m2 + p2

m

0 = 4m2 − 4mp+ p2

0 = (2m− p)2
p = 2m

p = 2 and m = 1 for p is prime.

By Theorem 10, we have
1

4
p < k ≤ 3

4
p, so k can only be 1.

Then, k2 =
(1)2 + 2(1)

4(1)− 2
/∈ N.

Hence, the Herion triangle cannot be a rational triangle.

Some Observations we have:

Consider p = 4k − 1 where k ∈ N and make m = 1. Then, we obtained previously
a Herion triangle 4EBF and





∆ = 8kp(1 + pk) ∈ N
c = 2p(4k2 + 1) ∈ N
b = 2k(4 + p2) ∈ N .

a = 2(1 + pk) ∈ N

(42)

(43)

(44)

(45)
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Let h be the height corresponding to the largest base c of the Herion triangle
4EBF .

h =
2∆

c
,

h =
16kp(1 + pk)

2p(4k2 + 1)
=

8k(1 + pk)

4k2 + 1
.

Although 4EBF is not a rational triangle, we could obtain a rational triangle from
4EBF .

If we construct an altitude FG from F to EB of 4EBF . Let e be the base of the
right-angled triangle 4BGF

e2 = a2 − h2

= (2(1 + pk))2 −
(

8k(1 + pk)

4k2 + 1

)2

=
4(1 + pk)2(4k2 + 1)2 − 82k2(1 + pk)2

(4k2 + 1)2

=
4(1 + pk)2(4k2 − 1)2

(4k2 + 1)2
.

Hence,

e =
2(1 + pk)(4k2 − 1)

(4k2 + 1)
.

Then,

the area of the right-angled triangle =
1

2

2(1 + pk)2(4k2 − 1)2

(4k2 + 1)2
· 8k(1 + pk)

4k2 + 1

=
8k(4k2 − 1)(1 + pk)2

(4k2 + 1)2
.

If we magnify the 3 sides of the triangle 4BGF by
1

2

(
4k2 + 1

1 + pk

)
times, we have a

new right-angle triangle 4B′G′F ′ with 3 sides a′, h′, e′ :





a′ = 4k2 + 1

h′ = 4k

e′ = 4k2 − 1

(46)

(47)

(48)

and they are positive integers and the area of 4E′G′F ′ = 2k(4k2 − 1) is also a
positive integer. Hence, the area of this triangle is a congruent number. If we
consider the general case, we still have a similar result.
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Let h be the height of the triangle.

1

2

2p(4k2 +m2)

m(4k − p) · h =
8kp(m2 + pk)

m(4k − p)

h =
8k(m2 + pk)

(4k2 +m2)

a2 − h2 = e2

e2 =
4(m2 + pk)2

m2
− 64k2(m2 + pk)

(4k2 +m2)2

=
4(m2 + pk)2(4k2 −m2)2

m2(4k2 +m2)2

e =
2(m2 + pk)(4k2 −m2)

m(4k2 +m2)
.

Area of the right-angled triangle 4BGF =
1

2

2(m2 + pk)(4k2 −m2)

m(4k2 +m2)
· 8k(m2 + pk)

4k2 +m2

=
8k(m2 + pk)2(4k2 −m2)

m(4k2 +m2)2
.

If we magnify the 3 sides of the triangle 4BGF by
1

2

(
4k2 +m2

m2 + pk

)
times, we have

a new right-angle triangle 4B′G′F ′ with 3 sides:




a′ =
4k2 +m2

m
h′ = 4k

e′ =
4k2 −m2

m

(49)

(50)

(51)

are positive rational numbers and the area of 4B′G′F ′ =
2k(4k2 −m2)

m
is also a

positive rational. Hence, if m | 8k3, then the area of this triangle is a congruent
number.

7. Existence of special forms of solutions of the Erdős-Straus Conjecture

7.1. Solutions of the Erdős-Stratus conjecture when m2 = k

We want to prove that to which type of prime will k, k1, k2 exist when m2 = k.

Theorem 13. k, k1 ,k2 exist when m2 = k if there exist J ∈ N such that

4J − 1 | p+ 1.
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Proof. Consider k1 =
k(p+ 1)

4k − p . Since (4k − p, k) = 1, 4k − p | p+ 1.

We let p = 4p′ + 1 and k = p′ + J, J ∈ N, i.e k1 =
k(p+ 1)

4J − 1
.

Also, consider k2 =
pk(p+ 1)

4J − 1
= pr1.

By (4k − p, p) = 1, k2 exist if and only if k1 exist.

Therefore k, k1, k2 exist when m2 = k if and only if there exist J ∈ N s.t

4J − 1 | p+ 1.

Theorem 14. When p ≡ 5 (mod 8), k, k1, k2 exist when m2 = k.

Proof. Consider p ≡ 5 (mod 8) =⇒ p+ 1 ≡ 6 (mod 8).

By direct checking
1

4

(
p+ 1

2
+ 1

)
is an natural number.

Therefore J will exist by letting J =
1

4

(
p+ 1

2
+ 1

)
by Theorem 13.

7.2. Solutions of the Erdős-Stratus conjecture when m2 = 2k

We want to prove that to which type of prime will k, k1, k2 exist when m2 = 2k.

Theorem 15. k, k1, k2 exist when m2 = 2k if and only if (p+ 2) contains factors
in the form of 8k1 + 5 for p ≡ 1 (mod 8) for p ≥ 3.

Proof. Consider k2 =
pk

m2

(
m2 + pk

4k − p

)
=
pk(p+ 2)

2(4k − p) =⇒ 2 | k.

Also, consider r1 =
m2 + pk

4k − p =
k(p+ 2)

4k − p .

∵ (p, 4k − p) = 1, we have

Case 1: (4k − p) | 2.

(a) 4k − p = 1 =⇒ p = 4k − 1 =⇒ p ≡ 3 (mod 4). We have a contradiction
because p ≡ 1 (mod 4) originally.

(b) 4k − p = 2 =⇒ k = 1 and p = 2.

Case 2: 4k − p | p+ 2.
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We have p+ 2 = t1(4k − p) for some positive integer t1. Then,

p(t1 + 1) = 4kt1 − 2

By Theorem 14, we only consider the situation for p ≡ 1 (mod 8) (explanation will
be given for the rejected case p ≡ 3 (mod 8) and p ≡ 7 (mod 8)).

We can let p = 8p′′ + 1

=⇒ 8p” + 1 = 4k − 4k + 2

t1 + 1
.

Let k = p” + z.

8p” + 1 = 8p” + 8z − 8(p′′ + z) + 2

t1 + 1

8z − 8(p′′ + z) + 2

t1 + 1
= 1

8z

(
t1

t1 + 1

)
= 1 +

8p′′ + 2

t1 + 1

8z = 1 +
8p′′ + 3

t1
.

In order to satisfy 1 +
8p′′ + 3

t1
≡ 0 (mod 8), we need t1 ≡ 5 (mod 8). That means

(p+ 2) must contain factors in the form of 8k1 + 5.

7.3. Solutions of the Erdős-Stratus conjecture when m2 = p

We want to prove that to which type of prime will k, k1, k2 exist when m2 = p.

Theorem 16. k, k1, k2 exist if and only if p + 4 contains factors in the forms of
4j + 1, j ∈ N.

Proof. Consider k1 =
p(1 + k)

4k − p .

By (p, 4k − p) = 1, 4k − p | k + 1, i.e. k + 1 = (4k − p)j, j ∈ N.

=⇒ pj + 1 = k(4j − 1)

=⇒ k =
pj + 1

4j − 1
=

1

4

(
4pj + 4

4j − 1

)
=

1

4

(
p+

p+ 4

4j − 1

)
.

By p+ 4 ≡ 1 (mod 4) and 4j − 1 ≡ 3 (mod 4), if j exists then

(
p+

p+ 4

4j − 1

)
≡ 0

(mod 4). Therefore
1

4

(
p+

p+ 4

4j − 1

)
∈ N.
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Also consider k2 =
pk(1 + k)

4k − p = kk1. By (4k − p, k) = 1, k2 exists if and only if

k1 exists. Therefore k, k1, k2 exist when m2 = p if there exists j ∈ N such that
4j − 1 | p+ 4.

7.4. Solutions of the Erdős-Stratus conjecture when m2 = 2p

We want to prove that to which type of prime will k, k1, k2 exist when m2 = 2p.

Theorem 17. k, k1, k2 exist if p+ 8 contains factors in the form of 8j − 1.

Consider k2 =
kp(k + 2)

2(4k − p) =⇒ 2 | k.

Let k = 2k′. Consider k1 =
2p(1 + k′)

4k − p . Since (p, 4k − p) = 1, we have

Case 1: (4k − p) | 2.

(a) 4k − p = 1 =⇒ p = 4k − 1 =⇒ p ≡ 3 (mod 4). We have a contradiction
because p ≡ 1 (mod 4) originally.

(b) 4k − p = 2 =⇒ k = 1 and p = 2.

Case 2: (4k − p) | (k′ + 1).

=⇒ k′ + 1 = (8k′ − p)j for some positive integer j.

=⇒ k′ =
pj + 1

8j − 1

=⇒ k′ =
1

8

(
p+

p+ 8

8j − 1

)

Since, we can let p = 8p′′ + 1 for some positive integer k′′,

k′ =
1

8

(
8p′′ + 1 +

8(p′′ + 1) + 1

8j − 1

)
.

Similarly, for p = 8p′′ + 5,

k′ =
1

8

(
8p′′ + 5 +

8(p′′ + 1) + 5

8j − 1

)
.

Therefore if we assume that k′ exists, k, k1, k2 exist if p+ 8 contains factors in the
forms of 8j − 1.

From the above, we can see some patterns of the conditions that show
the existence of k, k1, k2 when m2 = hk and m2 = up, u, p ∈ N. We will
do some further investigation, see appendix.
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7.5. The Existence of the solutions of the Erdős Straus Conjecture

For the solutions of the Erdős Straus Conjecture, we have found that we only need
to investigate p ≡ 1 (mod 4). The reasons will be shown as follows:

Case 1: When p = 4t−1 where t is a positive integer, then we can choose k = t ∈ N,
and by Theorem 5,

k1 =
m2 + pt

4t− (4t− 1)
= m2 + pt ∈ N where we can choose m2 | p2t2,

k2 =
pt

m2
(m2 + pt) ∈ N for m2 | p2t2.

Hence, we have solution for
4

p
=

1

k
+

1

k1
+

1

k2
.

Note: For m2, we can find m2 | p2t2. For example, taking m2 = 1, then the solution
for Erdős-Straus Conjecture is as follows:





k = k

k1 = 1 + pt .

k2 = pt(1 + pt)

(52)

(53)

(54)

Case 2: When p = 4t− 2, but this is not a prime. This case is rejected.

Case 3: When p = 4t− 3, we choose k = t ∈ N,

k2 =
m2 + pt

4t− (4t− 3)
=
m2 + pt

3
.

Case 3(a): When t = 3t′, where t′ is a positive integer, then p = 4(3t′)−3 = 3(4t′−1)
is not a prime for 4t′ − 1 > 0. This case is rejected.

Case 3(b): When t = 3t′ + 2, then p ≡ 2 (mod 3) and t ≡ 2 (mod 3).

Taking m2 = p, then

m2 + pt = p+ pt = p(1 + t) ≡ p(1 + 2) ≡ 0 (mod 3)

Hence, k1 ∈ N and also k2 ∈ N. Therefore, we have solution for

4

p
=

1

k
+

1

k1
+

1

k2
.

Case 3(c): When t = 3t′ + 1, then p ≡ 1 (mod 3) and t ≡ 1 (mod 3).

If t has a factor b such that b ≡ 2 (mod 3), then we can take m2 = b.

We have m2 + pt ≡ 2 + (1)(1) ≡ 0 (mod 3).
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Hence, k ∈ N and also k2 ∈ N. Therefore, we have solution for

4

p
=

1

k
+

1

k1
+

1

k2
.

Theorem 18.

(a) If p ≡ 3 (mod 4), there exists a solution of Erdős-Straus Conjecture.
(b) If p ≡ 1 (mod 4) and p = 4t− 3 where t ∈ N, then

(i) When t = 3t′+2, then there exists a solution of Erdős-Straus Conjecture.
(ii) When t has a factor of (3t′ + 2), then there exists a solution of Erdős-

Straus Conjecture.

Proof. See the above arguments.

Theorem 19.
4

p
=

1

k
+

1

k1
+

1

k2
has a solution where k = k1 ≤ k2 if and only if

p ≡ 3 (mod 4) and k = k1 =
p+ 1

2
.

Proof. Prove the “only” part:

4

p
=

1

k
+

1

k
+

1

k2

=⇒ 4

p
=

2

k
+

1

k2

=⇒ 4

p
=

2k2 + k

kk2
=⇒ 4kk2 = p(2k2 + k) (*)

=⇒ 2 | k or 2 | p

If 2 | p =⇒ p = 2 =⇒ 4

p
=

1

1
+

1

2
+

1

2
=⇒ k 6= k1 by Appendix 11.1. Hence, we

have only 2 | k. Let k = 2k′ where k′ is a positive integer.

4

p
=

2

2k′
+

1

k2
,

4

p
=

1

k′
+

1

k2
.

Let k2 = pk′2 where k′2 is not divisible by p by Theorem 9. Then,

4

p
=

1

k′
+

1

pk′2

=⇒ 4

p
=
pk′2 + k′

pk′k′2
=⇒ 4k′k′2 = pk′2 + k′

=⇒ k′2 | k′.
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Also, from (*), for (k, p) = 1, then

k |(2k2 + k)

=⇒ k |2k2
=⇒ 2k′ |2k2
=⇒ k′ |k2
=⇒ k′ |pk′2
=⇒ k′ |p′2 for (k, p) = 1.

Hence we have k′ = k′2. Then,

4

p
=

1

k′
+

1

pk′

=⇒ 4

p
=
p+ 1

pk′

=⇒ 4k′ = p+ 1

=⇒ p = 4k′ − 1 ≡ 3 (mod 4).

Also,

4

p
=

1

k′
+

1

pk′

=⇒ 4

p
=

1

k

2

+
1

pk

2

=⇒ 4

p
=

2

k
+

2

pk

=⇒ 2

p
=
p+ 1

pk

=⇒ 2k = p+ 1

=⇒ k = k1 =
p+ 1

2
.

Prove the “if” part:

This is a constructive proof (This usual method can be found in some papers.)

p ≡ 3 (mod 4) =⇒ (p+ 1)

2
,
p(p+ 1)

4
are positive integers.

Also,
4

p
=

1
p+ 1

2

+
1

p+ 1

2

+
1

p(p+ 1)

4
That is the conjecture has a solution when p ≡ 3 (mod 4).



INVESTIGATION ON THE ERDŐS-STRAUS CONJECTURE 33

Theorem 20.
4

p
=

1

k
+

1

k1
+

1

k2
has a solution where k ≤ k1 = k2 if and only if

p ≡ 3 (mod 4) or p = 2.

Proof. Prove the “only if” part:

If
4

p
=

1

k
+

1

k1
+

1

k2
has a solution where k ≤ k1 = k2, then

k1 =
pk

m2
k1

=⇒ pk = m2

=⇒ k1 =
2pk

4k − p .

Since (p, 4k − p) = 1 and (k, 4k − p) = 1, then 4k − p = 1 or 4k − p = 2.

Case 1:

4k − p = 1

=⇒ p = 4k − 1

=⇒ p = 3 (mod 4).

Case 2:

4k − p = 2

=⇒ 2 | p
=⇒ p = 2.

Prove the “if” part:

Case 1:

If p ≡ 3 (mod 3), then let p = 4k − 1 where k is a positive integer.

Construct k1 = k2 = 2pk.

Then,
1

k
+

1

k1
+

1

k2
=

2p+ 2

2pk
=
p+ 1

pk
=

4k

pk
=

4

p
.

Hence,
4

p
=

1

k
+

1

k1
+

1

k2
has a solution where k ≤ k1 = k2.

Case 2:

If p = 2, then by Appendix 11.1,
4

2
= 1 +

1

2
+

1

2
.

Hence,
4

p
=

1

k
+

1

k1
+

1

k2
has a solution where k ≤ k1 = k2.
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Theorem 21. (k1, k2) 6= 1 except p = 3.

Proof.

k1 =
m2 + pk

4k − p
k1(4k − p)− pk = m2

k2 =
pk

m2
(k1)

k2 =
pkk1

k1(4k − p)− pk .

Assume that (k1, k2) = 1. Then k1 | k1(4k− p)− pk and we have (k1(4k− p)− pk)
must be divisible by all prii where k1 = pr11 p

r2
2 . . . prnn , =⇒ prii | pk.

Case 1:

pi | p, that is pi = p for some i. Therefore, p | k1. Also, by Theorem 8, p | k2 so
p | (k1, k2) =⇒ (k1, k2) > 1. We have a contradiction.

Case 2:

All pki
i | k =⇒ k1 ≤ k. Since k ≤ k1, we have k = k1. By Theorem 19, we have

p ≡ 3 (mod 4). Let p = 4q + 3 where q is a non-negative integer.

Case 2(a): q ≥ 1

By Theorem 19,

k1 =
p+ 1

2
=

4q + 3 + 1

2
=

4(q + 1)

2
= 2(q + 1),

k2 =
p(p+ 1)

4
=
p(4)(q + 1)

4
= p(q + 1).

Hence, (k1, k2) ≥ (q + 1) > 1. We have a contradiction.

Case 2(b): When q = 0, k1 = 2(0 + 1) = 2, k2 = p(0 + 1) = p = 3 for q = 0.

We have (k1, k2) = 1.

Hence, (k1, k2) > 1 except p = 3.

8. Further investigation on the results obtained from some papers of the
Erdős-Straus Conjecture

From some papers, we know that when the prime number p ≡ 12, 112, 132, 172,
192, 232 (mod 840) (refer to Appendix 11), we do not know whether all these
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prime numbers satisfy the Erdős-Straus Conjecture or not, but we make some good
refinements of the above situation in this paper.

Now we consider the several cases of the existence of the solutions of Erdős-Straus
Conjecture.

We assume that p ≥ 3, otherwise p = 2 and we have a solution of Erdős-Straus
Conjecture in Appendix 11.1.

Firstly, we consider the situation that:

k1 =
m2 + pk

4k − p , m2 | pk and (k, p) = 1.

However, this situation is not true for all the solutions found from the Erdős Straus
Conjecture.

By Mathlab, we can find an example.

When p = 2521, all the solutions for
4

2521
=

1

k
+

1

k1
+

1

k2
satisfy that pk is not

divisible by m2 but (pk)2 is divisible by m2.

k k1 k2 m2

636 69748 131876031 848
636 70588 5611746 20168
638 51997 23833534 3509
638 55462 804199 110924
644 30252 1217643 40336
652 18908 23833534 1304
658 14946 131876031 188
748 4004 42899857 176
1026 1634 55610739 76

By direct checking, all the above m2 make the fact that pk is not divisible by m2

but (pk)2 is divisible by m2.

Anyway, we still consider the case: k1 =
m2 + pk

4k − p , m2 | pk and (k, p) = 1.

Firstly, by Theorem 18, we only need to consider p ≡ −3 (mod 4) that is p = 4k′−3
where k′ is a positive integer.

Secondly, we consider the following cases.

Case 1: m2 | k only.
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m2 | k =⇒ ∃r ∈ N such that m2r = k, i.e. m2 =
k

r

=⇒ k1 =

k

r
+ pk

4k − p =
k(1 + pr)

r(4k − p)

=⇒ k

r
∈ N and

pr + 1

4k − p ∈ N

=⇒
{

k = rx (1)

1 + pr = (4k − p)y (2)

(55)

(56)

where x, y are positive integers.

By (2), we have

1 + pr

y
+ p = 4k.

For p ≡ −3 (mod 4), we have
1 + pr

y
≡ 3 (mod 4).

Then, we let
1 + pr

y
= 4a+ 3 where a is a non-negative integer.

By (2), we have

4k − p = 4a+ 3

4k = 4k′ − 3 + 4a+ 3

4k = 4k′ + 4a

k = k′ + a (3)

From (2):

1 + pr = (4a+ 3)y

pr = (4a+ 3)y − 1 (4)

Since p ≡ −3 (mod 4), that is p ≡ 1 (mod 4), then by (4), we have r ≡ 3(y + 1)
(mod 4).

Let r = 4z + 3(y + 1) where z is a non-negative integer.

We consider p ≡ g2 (mod 840), g = 1, 11, 13, 17, 19, 23, p = 840n + g2 for some
non-negative integers n.
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Since p = 4k′ − 3,

4k′ − 3 = 840n+ g2

k′ = 210n+
g2 + 3

4

By (3) and (1),

210n+
g2 + 3

4
+ a = (4z + 3(y + 1))x

210n = (4z + 3(y + 1))x− a−
(
g2 + 3

4

)

Since 210 = 2× 3× 5× 7, then we have congruences:





(4z + 3(y + 1))x− a−
(
g2 + 3

4

)
≡ 0 (mod 2)

(4z + 3(y + 1))x− a−
(
g2 + 3

4

)
≡ 0 (mod 3)

(4z + 3(y + 1))x− a−
(
g2 + 3

4

)
≡ 0 (mod 5)

(4z + 3(y + 1))x− a−
(
g2 + 3

4

)
≡ 0 (mod 7)

(57)

(58)

(59)

(60)

However, the above system of equations is difficult to be solved. Up to now, we
haven’t made any further investigations.

Case 2:

m2 = p

(
k

r

)
where r | k =⇒ k1 =

k

r
+ pk

4k − p =
k(1 + pr)

r(4k − p)
=⇒ r | pk and (4k − p) | (1 + r)

where (4k − p, p) = (4k − p, k) = 1.

Case 2A: r = p

Since (4k − p) | (1 + p) =⇒ (4k − p)n = 1 + p where n is an integer.

(4k − 4k′ + 3)n = 1 + 4k′ − 3

4k = 4k′ − 3 +
2(2k′ − 1)

n

4k = 4k′ − 3 +
2k′ − 1

n′

where p = 4k′ − 3 and n = 2n′ where n′ is an integer.
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We have,

2k′ − 1

n′
= 4k′ + 3 for an integer k′′.

If we only consider the prime p ≡ g2 (mod 840) where g = 1, 11, 13, 17, 19, 23,
then

840n+ g2 = 4k′ − 3

k′ = 210n+
g2 + 3

4

2k′ − 1 = 420n+
g2 + 1

2

where k′ and n are integers.

If we want
2k′ − 1

n′
= 4k′ + 3, then 420n +

g2 + 1

2
has a factor in the form 4x + 3

where x is an integer. Since
g2 + 1

2
≡ 1 (mod 4), then we can let

420n+
g2 + 1

2
= (4x+ 3)(4y + 3) where y is a non-negative integer.

= 16xy + 12x+ 12y + 8 + 1

= 4(4xy + 3x+ y + 2) + 1

105n = 4xy + 3x+ 3y + 2 +
1− g2

8
.

For g = 1,

4xy + 3x+ y + 2 ≡ 0 (mod 3) (1)

4xy + 3x+ y + 2 ≡ 0 (mod 5) (2)

4xy + 3x+ y + 2 ≡ 0 (mod 7) (3)

and

n =

(
4xy + 3x+ y + 2 +

1− g2
8

)

105
.

By using Excel, we can find all values of n when x, y are the residues under the
congruent to 105. The corresponding values of m are shown below and you may
refer to the excel file provided. (document name: Excel for case 2A. For the others
Excel, we have also named according to their corresponding cases )
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x y n
2 47 5
47 2 5
49 4 9
4 49 9
17 17 12
10 31 13
31 10 13
35 11 16
11 35 16
5 86 19
86 5 19
7 67 20
67 7 20
40 16 26
16 40 26
20 41 33
41 20 33
14 74 42
74 14 42
34 34 46
79 19 60
19 79 60
65 26 67
26 65 67
25 91 90
91 25 90
77 32 97
32 77 97
52 52 106
37 82 119
82 37 119
70 46 126
46 70 126
59 59 136
62 62 150
44 89 153
89 44 153
55 76 163
76 55 163
95 56 207
56 95 207
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100 61 237
61 100 237
80 101 313
101 80 313
94 94 342
97 97 364
104 104 418

Case 2B: r | k only.

Then we have (4k − p) | (1 + r) for k1 =
pk(1 + r)

r(4k − p) .

Let

k = rx (1)

1 + r = (4k − p)y, (2)

where x, y are integers.

From (2),

1 + r

y
+ p = 4k.

For p ≡ −3 (mod 4), then
1 + r

y
≡ 3 (mod 4). We can let 1 + r = (4a+ 3)y where

a is a non-negative integer. Hence, (4k − p) = 4a+ 3.

Now we consider four cases of y under the modulus of 4 although it is not necessary
to do like that.

Case 2(b)(i): y ≡ 0 (mod 4).

Let y = 4b where b is a positive integer. Then,

1 + r = (4a+ 3)(4b)

r = (4a+ 3)(4b)− 1 (3)

Since,

4k − p = 4a+ 3

4k = p+ 4a+ 3

4k = 4k′ − 3 + 4a+ 3

k = k′ + a.
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From (1) and (3),

k′ + a = [(4a+ 3)(4b)− 1]x

k′ = [(4a+ 3)(4b)− 1]x− a.

For p ≡ g2 (mod 840) where g = 1, 11, 13, 15, 17, 19, 23, as before, we let

p = 840n+ g

for some integers n.

4k′ − 3 = 840n+ g

4k′ = 840n+ g + 3

k′ = 210n+

(
g + 3

4

)

Then,

210n+
g + 3

4
= [(4a+ 3)(4b)− 1]x− a

210n = [(4a+ 3)(4b)− 1]x− a− g + 3

4

Since, 210 = 2× 3× 5× 7, then a, b, x must satisfy the following congruences:

[(4a+ 3)(4b)− 1]x− a−
(
g + 3

4

)
≡ 0 (mod 2)

[(4a+ 3)(4b)− 1]x− a−
(
g + 3

4

)
≡ 0 (mod 3)

[(4a+ 3)(4b)− 1]x− a−
(
g + 3

4

)
≡ 0 (mod 5)

[(4a+ 3)(4b)− 1]x− a−
(
g + 3

4

)
≡ 0 (mod 7)

By solving these congruences, we can have

n =

[(4a+ 3)(4b)− 1]x− a−
(
g + 3

4

)

210
,

where a, b, x are the residues under the module of 210. Then there are many choices
of n, please refer to the excel file.

Case 2(b)(ii): y ≡ 1 (mod 4).

Let y = 4b+ 1 where b is a positive integer. Then,

1 + r = (4a+ 3)(4b+ 1)

r = (4a+ 3)(4b+ 1)− 1 (3)
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Since,

4k − p = 4a+ 3

4k = p+ 4a+ 3

4k = 4k′ − 3 + 4a+ 3

k = k′ + a

From (1) and (3),

k′ + a = [(4a+ 3)(4b+ 1)− 1]x

k′ = [(4a+ 3)(4b+ 1)− 1]x− a

For p ≡ g2 (mod 840) where g = 1, 11, 13, 15, 17, 19, 23, as before, we let p =
840n+ g for some integers n.

4k′ − 3 = 840n+ g

4k′ = 840n+ g + 3

k′ = 210n+
g + 3

4

Then,

210n+
g + 3

4
= [(4a+ 3)(4b+ 1)− 1]x− a

210n = [(4a+ 3)(4b+ 1)− 1]x− a−
(
g + 3

4

)

Since, 210 = 2× 3× 5× 7, then a, b, x must satisfy the following congruences:

[(4a+ 3)(4b+ 1)− 1]x− a−
(
g + 3

4

)
≡ 0 (mod 2)

[(4a+ 3)(4b+ 1)− 1]x− a−
(
g + 3

4

)
≡ 0 (mod 3)

[(4a+ 3)(4b+ 1)− 1]x− a−
(
g + 3

4

)
≡ 0 (mod 5)

[(4a+ 3)(4b+ 1)− 1]x− a−
(
g + 3

4

)
≡ 0 (mod 7)

By solving these congruences, we can have

n =

[(4a+ 3)(4b+ 1)− 1]x− a−
(
g + 3

4

)

210
,

where a, b, x are the residues under the module of 210. Then there are many choices
of n, please refer to the excel file.

Case 2(b)(iii): y ≡ 2 (mod 4).
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Let y = 4b+ 2 where b is a non-negative integer. Then,

1 + r = (4a+ 3)(4b+ 2)

r = (4a+ 3)(4b+ 2)− 1 (3)

Since,

4k − p = 4a+ 3

4k = p+ 4a+ 3

4k = 4k′ − 3 + 4a+ 3

k = k′ + a

From (1) and (3),

k′ + a = [(4a+ 3)(4b+ 2)− 1]x

k′ = [(4a+ 3)(4b+ 2)− 1]x− a

For p ≡ g2 (mod 840) where g = 1, 11, 13, 15, 17, 19, 23, as before, we let

p = 840n+ g

for some integers n.

4k′ − 3 = 840n+ g

4k′ = 840n+ g + 3

k′ = 210n+

(
g + 3

4

)

Then,

210n+
g + 3

4
= [(4a+ 3)(4b+ 2)− 1]x− a

210n = [(4a+ 3)(4b+ 2)− 1]x− a−
(
g + 3

4

)

Since, 210 = 2× 3× 5× 7, then a, b, x must satisfy the following congruences:

[(4a+ 3)(4b+ 2)− 1]x− a−
(
g + 3

4

)
≡ 0 (mod 2)

[(4a+ 3)(4b+ 2)− 1]x− a−
(
g + 3

4

)
≡ 0 (mod 3)

[(4a+ 3)(4b+ 2)− 1]x− a−
(
g + 3

4

)
≡ 0 (mod 5)

[(4a+ 3)(4b+ 2)− 1]x− a−
(
g + 3

4

)
≡ 0 (mod 7)
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By solving these congruences, we can have

n =

[(4a+ 3)(4b+ 2)− 1]x− a−
(
g + 3

4

)

210
,

where a, b, x are the residues under the module of 210. Then there are many choices
of n, please refer to the excel file.

Case 2(b)(iv): y ≡ 3 (mod 4).

Let y = 4b+ 3 where b is a positive integer. Then,

1 + r = (4a+ 3)(4b+ 3)

r = (4a+ 3)(4b+ 3)− 1 (3)

Since,

4k − p = 4a+ 3

4k = p+ 4a+ 3

4k = 4k′ − 3 + 4a+ 3

k = k′ + a

From (1) and (3),

k′ + a = [(4a+ 3)(4b+ 3)− 1]x

k′ = [(4a+ 3)(4b+ 3)− 1]x− a

For p ≡ g2 (mod 840) where g = 1, 11, 13, 15, 17, 19, 23, as before, we let

p = 840n+ g

for some integer n.

4k′ − 3 = 840n+ g

4k′ = 840n+ g + 3

k′ = 210n+

(
g + 3

4

)

Then,

210n+
g + 3

4
= [(4a+ 3)(4b+ 3)− 1]x− a

210n = [(4a+ 3)(4b+ 3)− 1]x− a−
(
g + 3

4

)
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Since, 210 = 2× 3× 5× 7, then a, b, x must satisfy the following congruences:

[(4a+ 3)(4b+ 3)− 1]x− a−
(
g + 3

4

)
≡ 0 (mod 2)

[(4a+ 3)(4b+ 3)− 1]x− a−
(
g + 3

4

)
≡ 0 (mod 3)

[(4a+ 3)(4b+ 3)− 1]x− a−
(
g + 3

4

)
≡ 0 (mod 5)

[(4a+ 3)(4b+ 3)− 1]x− a−
(
g + 3

4

)
≡ 0 (mod 7)

By solving these congruences, we can have

n =

[(4a+ 3)(4b+ 3)− 1]x− a−
(
g + 3

4

)

210
,

where a, b, x are the residues under the module of 210. Then there are many choices
of n, please refer to the excel file.

Other than the Case 1 and Case 2(a) and 2(b), we have observed many solutions
of Erdős-Straus Conjecture (refer to Appendix 11) are in the following forms:

Let p = 4(3q + 1)− 3.

We only consider q is even, otherwise when q is odd then (3q+ 1) is even such that
(3q + 1) has 2 as a factor. By Theorem 18, p with q is odd must have a solution of
Erdős Straus Conjecture.

Hence, we only consider p with q is even.

Case 3(A): We let k be even and then letm2 = 2p (it is legitimate becausem2 | (pk)2

by Theorem 6) and let k = (3q + 1) + t.

For k is even and q is even, then t is odd. For k1 =
m2 + pk

4k − p , we have

k1 =
2p+ pk

4k − p =
p(2 + (3q + 1) + t)

4t+ 3

For k1 is a positive integer and 4t + 3 is not divisible by p for (4k − p, p) = 1 by
Theorem 7 and (4k − p) = 4t+ 3, we have

2 + (3q + 1) + t

4t+ 3
= 3

(
q − t
4t+ 3

)
+ 1

is a positive integer, then 4t+ 3 = 3 or (4t+ 3) | (q − t).

However, when 4t + 3 = 3, we have t = 0. Contradiction for t is odd. Hence,
(4t+ 3) | (q − t).
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We have, q − t = (4t+ 3)x where x is a non-negative integer.

q = (4t+ 3)x+ t = 4tx+ 3x+ t

Consider p ≡ 12 (mod 840) that is p = 840n+ 1 for a positive integer.

Also p = 4(3q + 1)− 3, we have q = 70n. Hence, n =
4xt+ 3x+ t

70
.

Now, we let x = a and t = b′. We have, n =
4ab+ 3a+ b′

70
where b′ id odd for t is

odd.

Let b′ = 2b+ 1. We have

n =
4ab+ 3a+ b′

70
=

4a(2b+ 1) + 3a+ 2b+ 1

70
=

8ab+ 7a+ 2b+ 1

70
.

To solve for n, we can solve the system of congruences:




8ab+ 7a+ 2b+ 1 ≡ 0 (mod 2)

8ab+ 7a+ 2b+ 1 ≡ 0 (mod 5)

8ab+ 7a+ 2b+ 1 ≡ 0 (mod 7)

(61)

(62)

(63)

The solutions of n can be referred to the excel file where the solutions of n are
obtained from

n =
8ab+ 7a+ 2b+ 1

70
where a, b are the residues under the module of 70.

Note: Case 3(A): m2 = 2p is under the Case 2B (ii).

Case 3(B): Let k be even and we can let m2 = 2k and k = (3q + 1) + t where t is
also odd.

For k1 =
m2 + pk

4k − p , we have

k1 =
2k + pk

4k − p

=
k(2 + p)

4k − p

=
k(2 + 4(3q + 1)− 3)

4t+ 3

=
k(3)(4q + 1)

4t+ 3

=
k(3)(280n+ 1)

4t+ 3
where q = 70n.

For (k, 4t+ 3) = 1 by Theorem 7,
3(280n+ 1)

4t+ 3
is a positive integer.
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Case 3B(i): 280n+ 1 has a factor (4x+ 1).

We have, 280n+ 1 = (4x+ 1)(4y + 1) where x and y are non-negative integers.

We let 3(4y + 1) = 4t + 3 for t is also odd then y is also odd. [See reviewer’s
comment (2)]

Then,

3(280n+ 1)

4t+ 3
=

(4x+ 1)(3)(4y + 1)

4t+ 3
= 4x+ 1

which is a positive integer.

Hence, by 280n+ 1 = (4x+ 1)(4y+ 1) where x and y are non-negative integers and
y is odd, we have

280n+ 1 = (4x+ 1)(4y + 1)

70n = 4xy + x+ y

Then,

n =
4xy + x+ y

70
=

4a(2b+ 1) + a+ 2b+ 1

70
=

8ab+ 5a+ 2b+ 1

70

where x = a and y = 2b+ 1.

To solve for n, we can solve the system of congruences:





8ab+ 5a+ 2b+ 1 ≡ 0 (mod 2)

8ab+ 5a+ 2b+ 1 ≡ 0 (mod 5)

8ab+ 5a+ 2b+ 1 ≡ 0 (mod 7)

(64)

(65)

(66)

The solutions of n can be referred to the excel file where the solutions of n are
obtained from

n =
8ab+ 5a+ 2b+ 1

70

where a, b are the residues under the module of 70.

Case 3B (ii): 280n + 1 has a factor (4x+ 3).

280n+ 1 = (4x+ 3)(4y + 3) where x and y are non-negative integers.

We let (4y + 3) = 4t + 3. For t is also odd then y is also odd. [See reviewer’s
comment (3)]

Then
(280n+ 1)

4t+ 3
=

(4x+ 3)(4y + 3)

4t+ 3
= 4x+ 1

which is a positive integer.
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Hence, by 280n+ 1 = (4x+ 3)(4y+ 3) where x and y are non-negative integers and
y is odd, we have

280n+ 1 = 16xy + 12x+ 12y + 9,

70n = 4xy + 3x+ 3y + 2.

Then,

n =
4xy + 3x+ 3y + 2

70
=

4a(2b+ 1) + 3a+ 3(2b+ 1) + 2

70
=

8ab+ 7a+ 6b+ 5

70

where x = a and y = 2b+ 1.

To solve for n, we can solve the system of congruences:





8ab+ 7a+ 6b+ 5 ≡ 0 (mod 2)

8ab+ 7a+ 6b+ 5 ≡ 0 (mod 5)

8ab+ 7a+ 6b+ 5 ≡ 0 (mod 7)

(67)

(68)

(69)

The solutions of n can be referred to the excel file where the solutions of n are
obtained from

n =
8ab+ 7a+ 6b+ 5

70

where a, b are the residues under the module of 70.

Case 3C: Let k be even and let m2 =
k

2
and k = (3q + 1) + t where t is odd.

k

2
+ pk

4t+ 3
=

k

2
(1 + 2p)

4t+ 3
=

k

2
(1 + 2(4(3q + 1)− 3))

4t+ 3
=
k

2

(
24q + 3

4t+ 3

)

For (k, 4t+ 3) = 1,
3(8q + 1)

4t+ 3
is a positive integer.

It is easy to see that 8q + 1 can be equal to (8x+ 1)(8y + 1) or (8x+ 3)(8y + 3) or
(8x+ 7)(8y + 7) where x and y are non-negative integers.

But 8q + 1 = (8x + 1)(8y + 1) and 8q + 1 = (8x + 3)(8y + 3) where x and y are
non-negative integers do not work now.

If 8q+1 = (8x+1)(8y+1), then let 3(8y+1) = 4t+3. But t is odd. Contradiction.

If 8q+ 1 = (8x+ 3)(8y+ 3), then let (8y+ 1) = 4t+ 3. But t is odd. Also, we have
a contradiction.

Hence, we can let 8q+1 = (8x+7)(8y+7) where x and y are non-negative integers.
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Then,

560n+ 1 = 64xy + 56x+ 56y + 49

70n = 8xy + 7x+ 7y + 6

n =
8ab+ 7a+ 7b+ 6

70
where a = x and b = y.

To solve for n, we can solve the system of congruences:





8ab+ 7a+ 7b+ 6 ≡ 0 (mod 2)

8ab+ 7a+ 7b+ 6 ≡ 0 (mod 5)

8ab+ 7a+ 7b+ 6 ≡ 0 (mod 7)

(70)

(71)

(72)

The solutions of n can be referred to the excel file where the solutions of n are
obtained from

n =
8ab+ 7a+ 7b+ 6

70
where a, b are the residues under the module of 70.

For Case 3:

For the general solutions of n, we could need to amend the equations we obtain
before:

Case 2B(ii):

n =
((4a+ 3)b− 1)c− a− g − 3

4
210

+ ((4a+ 3)b− 1)r, r ∈ N for q = 1.

Case 3A:

n =
8ab+ 7a+ 2b+ 1

70
+ (4a+ 1)r, r ∈ N.

(one more general case will be

n =
8ab+ 7a+ 2b+ 1

70
+ (4a+ 1)r + (8b+ 7)s+ 280rs, r, s ∈ N

but we only consider s = 0, the other cases are also considered similarly.)

Case 3B(i):

n =
8ab+ 5a+ 2b+ 1

70
+ (4a+ 1)r, r ∈ N.

Case 3B(ii):

n =
8ab+ 7a+ 6b+ 5

70
+ (4a+ 3)r, r ∈ N.
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Case 3C:

n =
8ab+ 7a+ 7b+ 6

70
+ (8a+ 7)r, r ∈ N.

Now, we will consider other forms of p ≡ g2 (mod 840) for g = 1, 11, 13, 17, 19, 23.

When p ≡ 112 (mod 840), for p = 4(3q + 1)− 3, we have

840n+ 121 = 4(3q + 1)− 3,

n =
q − 10

70
.

Then, the corresponding 4 cases:

Case 2B(ii):

n =
((4a+ 3)b− 1)c− a− g − 3

4
210

+ ((4a+ 3)b− 1)r, r ∈ N for q = 11.

Case 3A:

n =
8ab+ 7a+ 2b− 9

70
+ (4a+ 1)r, r ∈ N.

Case 3B(i):

n =
8ab+ 5a+ 2b− 9

70
+ (4a+ 1)r, r ∈ N.

Case 3B(ii):

n =
8ab+ 7a+ 6b− 5

70
+ (4a+ 3)r, r ∈ N.

Case 3C:

n =
8ab+ 7a+ 7b− 4

70
+ (8a+ 7)r, r ∈ N.

When p ≡ 132 (mod 840), for p = 4(3q + 1))− 3, we have

840n+ 169 = 4(3q + 1)− 3,

n =
q − 14

70
.

Then, the corresponding 4 cases:

Case 2B(ii):

n =
((4a+ 3)b− 1)c− a− g − 3

4
210

+ ((4a+ 3)b− 1)r, r ∈ N for q = 13.
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Case 3A:

n =
8ab+ 7a+ 2b− 13

70
+ (4a+ 1)r, r ∈ N.

Case 3B(i):

n =
8ab+ 5a+ 2b− 13

70
+ (4a+ 1)r, r ∈ N.

Case 3B(ii):

n =
8ab+ 7a+ 6b− 9

70
+ (4a+ 3)r, r ∈ N.

Case 3C:

n =
8ab+ 7a+ 7b− 8

70
+ (8a+ 7)r, r ∈ N.

When p ≡ 172 (mod 840), for p = 4(3q + 1)− 3, we have

840n+ 289 = 4(3q + 1)− 3,

n =
q − 24

70
.

Then, the corresponding 4 cases:

Case 2B(ii):

n =
((4a+ 3)b− 1)c− a− g − 3

4
210

+ ((4a+ 3)b− 1)r, r ∈ N for q = 17

Case 3A:

n =
8ab+ 7a+ 2b− 23

70
+ (4a+ 1)r, r ∈ N

Case 3B(i):

n =
8ab+ 5a+ 2b− 23

70
+ (4a+ 1)r, r ∈ N

Case 3B(ii):

n =
8ab+ 7a+ 6b− 19

70
+ (4a+ 3)r, r ∈ N

Case 3C:

n =
8ab+ 7a+ 7b− 18

70
+ (8a+ 7)r, r ∈ N
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When p ≡ 192 (mod 840), for p = 4(3q + 1)− 3, we have

840n+ 361 = 4(3q + 1)− 3

n =
q − 30

70

Then, the corresponding 4 cases:

Case 2B(ii):

n =
((4a+ 3)b− 1)c− a− g − 3

4
210

+ ((4a+ 3)b− 1)r, r ∈ N for q = 19.

Case 3A:

n =
8ab+ 7a+ 2b− 29

70
+ (4a+ 1)r, r ∈ N.

Case 3B(i):

n =
8ab+ 5a+ 2b− 29

70
+ (4a+ 1)r, r ∈ N.

Case 3B(ii):

n =
8ab+ 7a+ 6b− 25

70
+ (4a+ 3)r, r ∈ N.

Case 3C:

n =
8ab+ 7a+ 7b− 24

70
+ (8a+ 7)r, r ∈ N.

When p ≡ 232 (mod 840), for p = 4(3q + 1)− 3, we have

840n+ 529 = 4(3q + 1)− 3

n =
q − 44

70

Then, the corresponding 4 cases:

Case 2B(ii):

n =
((4a+ 3)b− 1)c− a− g − 3

4
210

+ ((4a+ 3)b− 1)r, r ∈ N for q = 23.

Case 3A:

n =
8ab+ 7a+ 2b− 43

70
+ (4a+ 1)r, r ∈ N.
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Case 3B(i):

n =
8ab+ 5a+ 2b− 43

70
+ (4a+ 1)r, r ∈ N.

Case 3B(ii):

n =
8ab+ 7a+ 6b− 39

70
+ (4a+ 3)r, r ∈ N.

Case 3C:

n =
8ab+ 7a+ 7b− 38

70
+ (8a+ 7)r, r ∈ N.

9. Investigation of the Erdős-Straus Conjecture in algebraic dimension

In this Chapter we transform the Erdős-Straus Conjecture to diophantine equations
with special requirements.

Assume
4

p
=

1

k
+

1

a
+

1

b
.

Let 4k = p+ z, i.e.
4

p
=

1

p+ z
+

1

4a
+

1

4b
where a > b > k.

=⇒ z

p(p+ z)
=

1

4a
+

1

4b
and z ≡ 3 (mod 4)

Then we have the following relationship:

a+ b = nz (1)

4ab = pn(n+ z) (2)

where n satisfy two cases: case (i) an non-negative integer or case (ii) n =
1

m
where

m | z ∈ N.

Theorem 22. (n, p) = 1 when n is a non-negative integer.

Proof. We first prove (2). By Theorem 8 we know that
4ab

p
is a non-negative integer

(a, b are actually k1, k2 using the notation in chapter 5 ) and (
4ab

p
, p) = 1.

Therefore
4ab

p
= n(p+ z) and (n(p+ z), p) = 1.

Then (n, p) = 1 when n is a non-negative integer.
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Next, taking square of (1) and minus (2), we have

a− b =
√

(zn)2 − pm(p+ z)

a =
zn+

√
(zn)2 − pm(p+ z)

2

b =
zn−

√
(zn)2 − pm(p+ z)

2

In order to prove the existence of a, b that are integers, the necessary condition is√
(zn)2 − pn(p+ z) is a non-negative integer, i.e. (zn)2 − pn(p+ z) = q2, where q

is a non-negative integer.

Then we let q = zn− t, where t is a non-negative integer. We have

−pn(p+ z) = −2znt+ t2

=⇒ zn(2t− p) = p2n+ t2

=⇒ n | t2

where t2 = nt when n is a non-negative integer.

Continues simplifying,

z =
p2n+ t2

n(2t− p) =
1

2n

(
t+

2p2n+ pt

2t− p

)
=

1

2n

(
t+

1

2

(
p+

p2(4n+ 1)

2t− p

))

where 4n+ 1 ∈ N.

Theorem 23. n is a non-negative integer.

Proof. Consider case ii) n =
1

m
where m | z ∈ N, i.e.

4n+ 1 =
4

m
+ 1 =⇒ m = 1, 2, 4.

But since we have assumed m | z ∈ N and z ≡ 3 (mod 4), m can only be 1.

Since the values of 4n + 1 are limited, the choices of s (i.e factors of p2(4n + 1) )
are also limited.

If we assume z exists, then we have the following cases:

Case 1: 2t− p = s where (p, s) = 1.
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Then

t =
p+ s

2

=⇒ z =
1

4n

(
2p+ s+

p2(4n+ 1)

s

)
=
m

4


2p+ s+

p2
(

4

m
+ 1

)

s


 ,

m = 1 =⇒ s = 1, 5.

Then when s = 1, z =
1

4
(5p2 + 2p+ 1) = p2 +

1

4
(p+ 1)2.

Since p ≡ 1 (mod 4),
1

4
(p+ 1)2 is odd and p2 +

1

4
(p+ 1)2 is even,

this contradicts with our assumption z ≡ 3 (mod 4).

When s = 5, z =
1

4
(p2 + 2p+ 5) = 1 +

1

4
(p+ 1)2.

Since p ≡ 1 (mod 4),
1

4
(p+ 1)2 is odd and 1 +

1

4
(p+ 1)2 is even,

this contradicts with our assumption z ≡ 3 (mod 4).

Case 2: 2t− p = ps where (p, s) = 1.

Then

t =
p(s+ 1)

2

=⇒ z =
1

4n

(
p(s+ 2) +

p(4n+ 1)

s

)
=
m

4


p(s+ 2) +

p

(
4

m
+ 1

)

s


 ,

m = 1 =⇒ s = 1, 5.

Then when s = 1, z =
1

4
(5p+ 3p) = 2p,

this contradicts with our assumption z ≡ 3 (mod 4).

When s = 5, z =
1

4
(7p+ p) = 2p,

this contradicts with our assumption z ≡ 3 (mod 4).
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Case 3: 2t− p = p2s where (p, s) = 1.

Then

t =
p(ps+ 1)

2

=⇒ z =
1

4n

(
p(ps+ 2) +

p(4n+ 1)

s

)
=
m

4


p(ps+ 2) +

p

(
4

m
+ 1

)

s


 ,

m = 1 =⇒ s = 1, 5.

Then when s = 1, z =
1

4
(p2 + 2p+ 5) = 1 +

1

4
(p+ 1)2.

Since
1

4
(p+ 1)2 is odd and p2 +

1

4
(p+ 1)2 is even,

this contradicts with our assumption z ≡ 3 (mod 4).

When s = 5, z =
1

4
(5p2 + 2p+ 1) = p2 +

1

4
(p+ 1)2.

Since p ≡ 1 (mod 4),
1

4
(p+ 1)2 is odd and p2 +

1

4
(p+ 1)2 is even,

this contradicts with our assumption z ≡ 3 (mod 4).

By the above discussion, there is a contradiction when we assume n =
1

m
where

m | z ∈ N.

Therefore by rejecting case, n is an non-negative integer.

Now we have known that n is an non-negative integer and we have the following
cases:

Case 1: 2t− p = s where (p, s) = 1

Case 2: 2t− p = ps where (p, s) = 1

Case 3: 2t− p = p2s where (p, s) = 1

Now we focus on solving Case 2.

Theorem 24. s ≤ 11 in case 2.
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Proof. 2t− p = ps we have

z =
1

n

(
p(s+ 1)

2
+
p

2

(
1 +

4n+ 1

s

))

=
p

n

(
s+ 1

2
+

1

2

(
1 +

4n+ 1

s

))

=
p

n

(
1 +

1

2

(
s+

4n+ 1

s

))
.

Since (n, p) = 1, n

∣∣∣∣ 1 +
1

2

(
s+

4n+ 1

s

)
.

And by 4n+ 1 ∈ N, we let 4n+ 1 = sr, s ≥ r, where r ∈ N.

=⇒ n =
sr − 1

4
=⇒ sr − 1

4

∣∣∣∣ 1 +
s+ r

2

Then,

1 +
s+ r

2
≥ sr − 1

4
=⇒ 4 + 2(s+ r) ≥ sr − 1

=⇒ (s− 2)(r − 2) ≥ 9

Therefore by s ≥ r, s ≤ 11.

Since the values of s is limited for all primes, we can find the existence of solutions
of the Erdős-Stratus Conjecture in this case by direct checking (i.e. The method
used in Theorem 23). Therefore, we should focus on the other two cases.

The remaining two cases are complicate to solve, and until now we still don’t have
remarkable result. But we have further discussion, see Appendix.

10. Conclusion

Here we list out the results of the report.

On Chapter 4:

1. Given that n ∈ N, all integral solutions (x, y) of
1

n
=

1

x
+

1

y
are given by

x = n+ s and y = n+
n2

s
,
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i.e.

1

n
=

1

n+ s
+

1

n+
n2

s

where s ∈ N and
n2

s
∈ N.

2.
3

n
=

1

x
+

1

y
exists for some x, y ∈ N if and only if

(i) n = 3k or (ii) n = 3k + 2 or (iii) n = 3k + 1

where there exists a positive integer f | n such that f ≡ 2 (mod 3).

On the Erdős-stratus Conjecture:

1.
4

p
=

1

k
+

1

k1
+

1

k2
where k, k1, k2 are positive integers if and only if





k = k

k1 =

(
m2 + pk

4k − p

)

k2 =
pk

m2

(
m2 + pk

4k − p

)

(73)

(74)

(75)

where k, k1, k2 are positive integers and m2 > 0.

Using the notation above, the properties of k, k1, k2,m
2 are as follows:

2. If




k = k

k1 =

(
m2 + pk

4k − p

)

k2 =
pk

m2

(
m2 + pk

4k − p

)

(76)

(77)

(78)

where k, k1, k2 are positive integers, then m2 ∈ N and m2 | p2k2.

3. k < p and k is not divisible by p.

4. k2 is divisible by p.

5. None of k, k1, k2 can be divisible by p2.
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6. The bounds of k, k1, k2 are




1

4
p ≤ k ≤ 3

4
p

k1 ≤
3

2
p2 .

k2 ≤
9

4
p4

(79)

(80)

(81)

(82)

About the existence of solutions of The Erdős-stratus Conjecture:

7. When m2 = k, solutions of The Erdős-stratus Conjecture exist if and only if
(p+ 1) contains factors in the form of 4J − 1.

8. When m2 = 2k, solutions of The Erdős-stratus Conjecture for p ≡ 1 (mod 8)
exist if and only if (p+ 2) contain factors in the form of 8k1 + 5.

9. When m2 = p, solutions of The Erdős-stratus Conjecture exist if and only if
p+ 4 contains factors in the forms of 4j − 1.

10. When m2 = 2p, solutions of The Erdős-stratus Conjecture exist if and only if
p+ 8 contains factors in the forms of 8j − 1.

11. When p = 4t− 1 where t is a positive integer, we have a solution for

4

p
=

1

k
+

1

k1
+

1

k2
.

12. When p = 4t− 3, where t is a positive integer, we have a solution for

4

p
=

1

k
+

1

k1
+

1

k2
when

Case (i) t = 3t′ + 2;
Case (ii) t = 3t′ + 1, t has a factor b such that b ≡ 2 (mod 3), excluding the
case t = 3t′.

13.
4

p
=

1

k
+

1

k1
+

1

k2
has a solution where k = k1 ≤ k2 if and only if p ≡ 3 (mod 4).

14.
4

p
=

1

k
+

1

k1
+

1

k2
has a solution where k ≤ k1 = k2 if and only if

p ≡ 3 (mod 4) or p = 2.

15. (k1, k2) 6= 1 except p = 3.

16. From solutions for some special forms we can discuss that for many values of
n checked, e.g. for 1 ≤ n ≤ 3000, if p = 840n+ 1 is prime, n must satisfy one
of the Case 2b(ii), 3A, 3B, 3C. We hope that all these 4 cases can cover all
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the values of n such that p = 840n+ 1 is prime.

Also, now we are investigating p = 840n + g2 such that it is a prime. Here
g = 11, 13, 17, 19, 23 are not checked.

On further applications,

17. If the solution of k, k1, k2 make m ∈ N and m | 2pk, then we can form a
Herion triangle for 




s = 8m

(
k2
p

)
∈ N

∆ = 8mk2 ∈ N

c = 2

(
m+

pk

m

)
∈ N

b =
2k(4m2 + p2)

m(4k − p) ∈ N

a =
2p(4k2 +m2)

m(4k − p) ∈ N

(83)

(84)

(85)

(86)

(87)

(88)

18. The Herion triangle formed in (17) cannot be a rational triangle.

11. Appendix

11.1. There is only one solution of
4

2
=

1

k
+

1

k1
+

1

k2
where k ≤ k1 ≤ k2 and

k = 1, k1 = k2 = 2.

Proof. Firstly, k < 2, otherwise if k ≥ 2 then
4

2
≤ 1

2
+

1

2
+

1

2
, and we have 2 ≤ 3

2
.

Contracdtion.

Hence, we have k = 1.

Secondly,
4

2
=

1

1
+

1

k1
+

1

k2
=⇒ 1 =

1

k1
+

1

k2
. We have k1 < 3.

Otherwise if k1 ≥ 3 then 1 ≤ 1

3
+

1

3
, and we have 1 ≤ 2

3
. Contradiction.

Thirdly, if k1 = 1, then 1 =
1

1
+

1

k2
=⇒ 0 =

1

k2
. Contradiction. Hence,

k1 = 2 =⇒ k2 = 2.
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11.2. when the prime number p ≡ 12, 112, 132, 172, 192, 232 (mod 840), we do
not know whether all these prime numbers satisfy the Erdős-Straus
Conjecture(Ch.8)

Here we provide the proof from [1] as a reference.

Here we first set up a equation

na+ b+ c = 4abcd (1)

Dividing both sides by abcdn, we obtain

4

n
=

1

bcd
+

1

nabd
+

1

nacd

Then by

• letting a = 2, b = 1, c = 1, from (1) we get n = 4d− 1,
• letting a = 1, b = 1, c = 1, from (1) we get n = 4d− 2,
• letting a = 1, b = 1, c = 2, from (1) we get n = 8d− 3,
• letting a = 1, b = 1, d = 1, from (1) we get n = 3c− 1.

When n = 4, 1 =
1

3
+

1

3
+

1

3
.

When n = 3,
4

3
=

1

3
+

1

2
+

1

2
.

From the above we know that the Erdős-Straus Conjecture is true except

n ≡ 1 (mod 24).

Similarly,

• letting a = 1, b = 1, d = 2, from (1) we get n = 7c− 1,
• letting a = 1, b = 2, d = 2, from (1) we get n = 7c− 2,
• letting a = 2, b = 1, d = 1, from (1) we get 2n = 7c− 1.

Let c = 2t− 1, then n = 7t− 4.

Also,
4

7
=

1

2
+

1

28
+

1

28
and we know the solutions of the Erdős-Straus Conjecture

exist except for n ≡ 1 (mod 7), n ≡ 2 (mod 7), n ≡ 4 (mod 7).

Similarly,

• letting a = 1, b = 2, d = 2, from (1) we get n = 15c− 2,
• letting a = 2, b = 1, d = 2, from (1) we get 2n = 15c− 1.

Let c = 2t− 1, then n = 15t− 8.
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Also,
4

5
=

1

2
+

1

5
+

1

10
and we know the Erdős-Straus Conjecture is true except for

n ≡ 1, 2, 3, 4, 6, 8, 9, 11, 12, 14 (mod 15).

From the above we know that the Erdős-Straus Conjecture is true except

n ≡ 2, 0 (mod 3)

and not true except

n ≡ 1, 4 (mod 5).

Sumarise the above, we have proved the Erdős-Straus Conjecture is true except

n ≡ 1 (mod 24) or n ≡ 1 (mod 7), n ≡ 2 (mod 7), n ≡ 4 (mod 7)

or n ≡ 1, 4 (mod 5).

Therefore we have the following 6 cases:

n ≡ 1 (mod 24) and n ≡ 1 (mod 7) and n ≡ 1 (mod 5);

n ≡ 1 (mod 24) and n ≡ 1 (mod 7) and n ≡ 4 (mod 5);

n ≡ 1 (mod 24) and n ≡ 2 (mod 7) and n ≡ 1 (mod 5);

n ≡ 1 (mod 24) and n ≡ 2 (mod 7) and n ≡ 4 (mod 5);

n ≡ 1 (mod 24) and n ≡ 4 (mod 7) and n ≡ 1 (mod 5);

n ≡ 1 (mod 24) and n ≡ 4 (mod 7) and n ≡ 4 (mod 5).

Since (24, 7) = (5, 7) = (24, 5) = 1, by Chinese remainder theorem, we have

n ≡ 1, 121, 169, 361, 529 (mod 840).

11.3. Mathlab program for finding the solutions of Erodos-Straus Con-
jecture

Referred to the paper [3].

11.4. Solutions in the form m2 = hk, m2 = up where (h,p) = (u,p) = 1 if
the solutions of Erdő-Straus Conjecture exist (Ch.7)

Here we consider the general case m2 = hk,m2 = up, where (h, p) = (u, p) = 1.

11.4.1. The case m2 = hk

Consider k2 =
pk(p+ h)

h(4k − p) .

Since (h, h+ p) = 1, h | k if we want k2 exist, i.e. k = hk′ and 4k − p | k′(h+ p).
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Also consider k1 =
k(p+ h)

4k − p = h

(
k′(p+ h)

4k − p

)
, k1 exist if k2 exist.

Therefore our target is to solve 4k − p | k′(h+ p).

We let

t =
k′(p+ h)

4k − p =
1

4

(
4hk′ + 4pk′

4hk′ − p

)
=

1

4

(
1 +

4pk′ + p

4hk′ − p

)
=

1

4

(
1 +

p(4k′ + 1)

4hk′ − p

)
.

By (p, 4hk′ − p) = 1, we have 4hk′ − p | 4k′ + 1 and
p(4k′ + 1)

4hk′ − p ≡ 3 (mod 4).

Continue Simplifying,

t =
1

4

(
1 +

p(4k′h+ h)

h(4hk′ − p)

)
=

1

4

(
1 +

p

h

(
1 +

p+ h

4hk′ − p

))
.

Since
p(4k′ + 1)

4hk′ − p is an natural number, 1 +
p+ h

4hk′ − p is also an natural number.

In other words, if there exist h and k′ such that 4hk′− p | p+h, the solution of the
Erdős-Straus Conjecture for this prime exists in the form m2 = hk. For Example,
when we put h = 1, we exactly get the same result as Theorem 14. But until now
we are still trying to observe the patterns in this form of solutions

11.4.2. The case m2 = up

Consider k1 =
p(k + u)

4k − p .

By (p, 4k − p) = 1 we have 4k − p | k + u.

Also consider k2 =
kp(k + u)

u(4k − p) , then we have u | k2.

Since we match up these two relationships, we assume u | k, i.e. k = vu.

Hence we have k1 =
pu(v + 1)

4uv − p .

By (4uk − p, u) = 1, we have 4uv − p | v + 1, i.e. v + 1 = (4uv − p)J , J ∈ N
pJ + 1 = v(4vJ − 1)

=⇒ v =
pJ + 1

4uJ − 1
=

1

4u

(
4upJ + u

4uJ − 1

)
=

1

4u

(
p+

p+ 4u

4uJ − 1

)
.

Since
pJ + 1

4uJ − 1
is an natural number,

p+ 4u

4uJ − 1
is also an natural number.
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In other words, if there exist u and J such that 4uJ −1 | p+ 4u, the solution of the
Erdős-Straus Conjecture for this prime exist in the form m2 = up. For Example,
when we put h = 1, we exactly get the same result as Theorem 16. But until now
we are still trying to observe the patterns in this form of solutions.

11.5. Further discussion on Case 1: 2t− p = s where (p, s) = 1 (Ch.9)

From the discussion in Ch.9, we know that t2 = nt′ when n is a non-negative
integer. To match up the other conditions, we try to let t = nv1.

Then p+ s = 2t = 2nv. Also, s | 4n+ 1.

In other words, 2nv1 − p | 4n+ 1.

Therefore we let y =
4n+ 1

2nv1 − p
, where x is an natural number.

Then,

py + 1 = 2nyv1 − 4n

=⇒ py + 1 = 2n(yv1 − 2)

=⇒ 2n =
py + 1

yv1 − 2
.

Here we let p = Lv1 + I, I, L ∈ N, i.e.

2n =
(Lv1 + I)y + 1

yv1 − 2

= L+
Iy + 2L+ 1

yv1 − 2

= L+
1

v1

(
Iv1y + 2v1L+ v1

v1y − 2

)

= L+
1

v1

(
I +

2p+ v1
v1y − 2

)

and
2p+ v1
v1y − 2

∈ N.

Therefore, if there exist v1, y such that v1y − 2 | 2p + v1, then the solution of the
Erdős-Straus Conjecture exist for this prime. Until now we are still observing the
patterns.
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Reviewer’s Comments

This paper may be too long and contain too many theorems. It is better to rewrite
some theorems as lemmas or claims. There are lots of errors in this paper and the
following is an incomplete list of corrections and stylistic suggestions.

1. The reviewer has comments on the wordings, which have been amended in
this paper.

2. Rewrite this line as “Let 3(4y + 1) = 4t + 3. Then t and y have the same
parity.”

3. Rewrite this line as “Let 4y + 3 = 4t+ 3. Then t = y.”




