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ABSTRACT. In this paper, we are going to investigate the Erdds-Straus Con-
jecture : For any positive n > 2, there exists positive integers k, k1, k2 such

that
4 1 " 1 n 1
n k ki ke
. . . 3 1 1 . .
Firstly, we will solve a simpler form — = — + — as a starting point. Next we

n x y
will investigate the Erdds-Straus Conjecture in the following dimensions: the

related geometric representation of the Erdds-Straus Conjecture, the properties
of solutions of the Erd&s-Straus Conjecture, further investigation of some paper
of the Erdés-Straus Conjecture, existence of special forms of solutions of the
Erdés-Straus Conjecture, and the investigation of the Erdds-Straus Conjecture
in algebraic dimension. The aim of this report is to find evidence that shows
the Erdds-Straus Conjecture is true. If evidence is not strong enough, we
still hope that this report can make an improvement to the researched result
at present.

1. Notation.

1.1 p is a prime number.

1.2 (p, q) represents the greatest common divisor of p, q.

1.3 p, q are called relatively prime when (p,q) = 1.

1.4 N = the set of all natural numbers.

1.5 Z = the set of all integers.

1.6 Q = the set of all rational numbers.

1.7 R = the set of all real numbers.

1.8 k, k1, ko are the solutions of the Erdés-Straus Conjecture if there exists a
prime number such that
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1.9 Two integers a, b are said to be congruent to modular m if the remainders of
a,b divided by m are the same. We notify it by a = b (mod m).

2. Preliminary Knowledge:

2.1 Perpendicular Distance Formula
Given L : Ax+ By+ C = 0. Then the perpendicular distance from a point
(p, q) to the line L is
de |Az + By + C|
VA2 B2
2.2 Lens formula
If the distances from the object to the lens and from the lens to the image
are u and v respectively, for a lens of negligible thickness, in air, the distances
are related by the thin lens formula:
1 1 1

foou v
2.3 Chinese remainder theorem
For any given sequence of integers ai,...,ay, there exists an integer x

solving the following system of simultaneous congruences.

x=a; (modny)

...... where (n;,n;) =1,i# j <k.

x=ar (mod ng)
The solution of z is given by

T = ayty + agte + -+ + agty  (mod lem(ny,na, ..., ng))

where A, satisfy

_ lem(ny,na,...,ng)

tm X Apm =1 (mod nyy,)

Nm

‘We will use it in Excel file for calculation.

3. Introduction

Erdés-Straus Conjecture:

For any positive n > 2, there exists positive integers k, k1, ko such that
4 1 1 1

nk kR

Egypt fractions is a topic researched for a long time, but until now we still can’t
understand all of its properties. The Erdds-Stratus Conjecture is one of the famous
open problems in it. It is known that this conjecture is true when p < 10 [1], but
the existence of its solutions for all prime p remains a mystery. Why we only need
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to consider prime number p will be explained later. Therefore this report aims to

find evidence that support this conjecture. In addition to algebraic dimensions, we

4 1 1 1
will provide a geometric model of — = T + . + T and use it as a new dimension
p 1 2

discovering this conjecture.

3 1 1
4. The form — = — 4+ — and its related geometric representation
nox vy

It is too complicated for us to deal with the Erd6s-Stratus conjecture directly. So

3
we start from finding the relationship between one particular fraction (i.e. —) and

the sum of 2 unit fractions, and see that can it help us to understand about the
addition of unit fractions.

Theorem 1. Given that n € N. Then, all positive integral solutions (z,y) of
2

1 1 . n° .
—=—4—aregwenbyxr=n+sandy=n+ —, i.e.
n oz y S
1 1
n n+s n?
n2
where s € N and — € N.
s
First proof:
171+1
n a b
a—n 1
an b
an
b= 1
p— (1)

From (1), we have a > n. Since b € N, then (a —n) | an, an = k(a — n) where k is
a positive integer.

kn
= 2
a=— (2)
Let s = k —n and then s € N for k > n. By (2), we have
a:n(s+n)
s
2
n
- = 3
a n+8 (3)

2

From (3), we have " eNfora>n.
s
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Put (3) into (1):

Hence

2

WhereseNandn—eN. O
s

Second proof: The second proof shows the geometric idea of the Theo-

1 1 1
rem by using the idea of lens formula rin + —.
u v
A
E
C

M N
B D F

Consider the above figure where AB//CD//EF, CM L AB and CN L EF.

1 1

1
We will first prove the relationship D~ 4B + B

Proof. We know that ACDF ~ AFAB and ABCD ~ ABEF

Then
oD _ BD n
EF  BF
CD DF
aIld E—ﬁ (2)
(1) +(2)
@+@7BD+DF
AB EF BF
L1 1AM s BD (D
CD AB EFCD n DF EN
1 1 1
Therefore7 CiD = E = ﬁ D
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By letting CD =n and AM = s, we have AB =n + s.

2 1 1 1
Also, CD = n—,we have — = + —. O
S n n-+s n
n+ —
S

1 1 1

Third Proof: Forevery n € N, arelationship — = ,_|_g must exist where a,b > n
n o a

and a,b € N.

Hence we let a =n + s and b=n +r. Then

1 1 1 1 n? n?
= — — = — n+r=n+— —> 1r=—.
n+r n n+s nn+s) s s

S

Hence we can discover that for every n € N, s | n? € N.

1 1 1 1 1 1 2
For — = — + —, we have — = + 2WhereseNandn—EN. O
n a b n n+s n S
n+ —
S

1
We have proved that we can find a way to represent — as sum of two unit fractions,
n

m
but for —, where 1 < m € N, we still do not have a conclusion. Here we are going

n
to find out the result of the case when m = 3.
3 1 1
Theorem 2. — = — + — exists for some x,y € N if and only if
n o x y

(i) n =3k or (i) n =3k +2 or (i) n =3k +1

where there exists a positive integer f | n such that f =2 (mod 3).

Proof. The “if” part:

1
(i) When n = 3k, then 3 =7 By Theorem 1, there exists x,y to have
n

1 1
Hence, — = — 4+ —.
n

Y
(ii) Whenn =3k +2,let x =k+ 1 and y = (k+ 1)(3k + 2). Then,
1 1 1 1 3 3

sy E+l I D@k+D 3k+2 n
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(iii) When n = 3k + 1, if there exists where f | (3k + 1) such that f =2 (mod 3),

3k+1)2
thenwecanconstructx:?)k—i-l—i—fENandy:?)k—i—l—i—(j;)GN.
By direct checking:
LS DR DR 1 1
r y 3k+1 E+1)2  3k+1
Ty +1+f 3k+1+(3 +1) +
f
k+1)2
Since3k+1—|—f€Nand3k+1+(3—;)EN,
3 1 1
e
n x y

The “only if” part:
Consider the excluded case, i.e Case (iv) :

n = 3k + 1 where there exists no positive integer f | n such that f =2 (mod 3).

3 1 1
We assume solutions of — = — 4+ — exist in this case. Then from Theorem 1, all
n T vy

. 3 1 1 .
solutions of — = — + — are given by
Y

n oz
1 q 1
r=————— and y=
3k+1 2
(++f> 3k+1+w
3 f
3
3k+1+(3k+1)2
Sin 3k+1+fad f eN,
3 3
f=2 (mod 3)

But there exists no positive integer f | n such that f =2 (mod 3). Contradiction!

3 1 1
Therefore by rejecting the excluded case, — = — 4 — exists for some z,y € N if and
n

only if (i) n = 3k or (ii) n = 3k + 2 or (iii) n = 3k + 1 where there exists a positive
integer f | n such that f =2 (mod 3). O
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5. The Erdés-Straus Conjecture and its related geometric representation

Original Erd6s-Straus Conjecture

For any positive n > 2, there exists positive integers k, k1, k2 such that
4 1 1 1

n k+k1 kQ.

However, we only need to consider n as a prime p. When n = pq where p is a prime

4 1 1 1
and — = T + T + e then n also satisfies the Erdés-Straus Conjecture because
1 2

4_4_<1+1+1>(1>_1+1+1
no pq ko ki ko) \q gk qk1  qks
Hence, we only need to consider the amended Conjecture:

Erdés Straus Conjecture (amended):

For any positive prime p > 2, there exists positive integers k, k1, ko such that
4 1 1 1

p R B R
Without notification, we will consider this amended Conjecture in the
remaining part of the paper.

Also, without loss of generality: We let k < k; < ks and p is prime.
Geometric Consideration of Erd6és Straus Conjecture:

Figure 1 shows a AEBF with in-circle with centre H and its radius p and three
ex-circles with centers K, M and N and their corresponding radii be 4k, 4kq, 4ko
respectively. Also, O is the origin of the coordinate plane with these in-circles and
3 ex-circles touching the axes as shown below. In addition, D, A, C' be the points
of contact of circles with centre M, H, K and x-axis respectively.

Theorem 3. Any triangle with v be the radius of the in-circle and x,y,z be the
radii of 8 ex-circles respectively has:

1 1 1 1

roox oy oz
Proof. We can refer to Figure 1.

Let FB=a,EB =cand FE = b and z,y and z be the radii of the circles with
the centers K, N and M respectively.

Consider FKBE,
the area of AFEB = area of FKBE — area of AFKB (1)
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FAELYS]

Mx, 4k, )

FIiGURE 1

1 1 1
By tangent properties, area of FKBE = gbx + 5%, area of AFKB = 50

Also by the properties of incentre of triangle, the area of AFEB = rs where
a+b+c

2
Then (1) becomes

(b+c—a)x=2rs (2)

Similarly, by considering NEFB and M FBE, we can set up the other two equa-
tions:

(a+b—c)y=2rs (3)
(c+a—b)x=2rs (4)
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(2)+B3)+4), o e
% +2+2—a—b—c=—o 42204 50
x y z

O

Theorem 4. Refer to Figure 1. Let H(p,p), K(x,4k), M (x1,4k1), N(xo, —4ks)
be the centres of the middle, right, left and the bottom circles respectively with
k < ki <ks. We have:

k=k
2

ey = m* + pk
4k —p
pk (m? + pk

ko= — | ———
m2 \ 4k —p

where BC' = 2m.

Proof. By knowing that k < k1 < ko, we have the radii 4k < 4k; < 4ky and the
circle with centre N is the largest ex-circle and the circle with centre K is the
smallest ex-circle. From the proof of Theorem 3, EB = ¢, EF =b and FB = a.

By (2), (3), (4) from the previous proof, we have

2rs TSs
4ky = =
> (25—-20) s—c
rs
4k =
1 S—b’
gk = 2
s—a

Then 4k < 4k < 4ky — c>b > a.
We have EB > EF > FB and ZEF' B is the greatest angle.
Then ZFBE and ZFEB are acute because ZEF B is the greatest angle.

Let 0 be ZBKC. Then ZABH = Z/BKC = 0.

Let BC =2m .
In ABKC,
t n@—Q—m—ﬁ
MY T ok
In AABH,
2pk
AB p <P
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Hence,AC—%JrQ 2<pk+m>.
m m

For AAEH ~ ACEK,

_EO+p _ p
EO+p+ AC 4k

2 _
po - - pAC — 4kp

4k —p
k
p* +p(2) (fn +m> — dkp
EO =
4k —p

Also,

OB=p+ AC —2m

OB = p+2<k+m)—2m p—i—ﬁ
m

EB=FO+ OB

2%k

2
p°+ + 2pm — 4kp 9
EB = 1 +p +ik
4k —p m
2%k Spk? 2p%k
p2+ + 2pm — 4kp + 4kp + 5 —p?— P
EB = m
4k —p
Spk?
i 2pm + 7m B 2£ m2 +4k2
- Adk—p m \ 4dk—p )

Now, let Iy :mix —y+c1 =0and ls : mox —y + co = 0.
Let N(l‘g, —4]€2) = (ag, _TQ).

If (ag, —r3) is below both 1, I, then myas—(—r2)+c1 > 0 and moas—(—r3)+cg > 0.
Hence, by perpendicular distance formula, we have

miag — (—ry) +c1  maaz — (—712) + o

mi+1 m3+1

By making as as the subject, we have

ro(y/14+m3—1)—cy  ra(y/14+mi—1)—c

ma mi

micza —MmacCy

mi(V/1tmE —1) —ma(y/I+m2 —1)

o =
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For ¢; = EOtan 0, and co = —OB tan f; where 01,05 are the inclinations of /; and
lo respectively.
ry = —(OB + EO) tan 6, tan 6,
tan 01 (v/ 1+ tan? 0y — 1) — tan fa(1/1 + tan? 6y — 1)
ry = —FEB X sin 0 sin 65

—sinf; — sin 8y cos 03 — sin 05 + sin 65 cos 0,

1 -1
for /1 + tan?6; = and /1 + tan? 0y =

cos 6 cosfy
2t 1—t2 112
For sinf) = ——, sinfy = 722, cosf; = % and cosfy = 3 and
142 1+ 2 142 1+ 12
0 [%
ro = 4ko where t1 = tan 51 and t5 = tan 72
Then, we have
—FEB x 4t1t2
Aky = 2 2 2 2
—2t1 — 2185 — 2t + 2815 — 2t — 2tot] + 2ty — 2t9ty
—FEB x 4tqt
sy = LB X0t
—4t1 — 4taty
EB xt
Ay = =222,
1+ t1ts

Let M(x1,4k1) = (a1,71).
If (ay,7r1) is above l; and below Iy, then mya; —r1 +¢1 < 0 and moa; — 71 +c¢o > 0.

Hence, by perpendicular distance formula, we have

, miar — 11 +C1 maa1 — 71+ C2

1= — = .
m? + 1 m3+ 1

By making as as the subject, we have:

ri(l—/m?2+1)—c _ ri(ymi+1+1)—co
mo ’

mi

maC1 — M1C2

ma(1—/m2+1)—mi(1+m2+1)
For ¢; = EOtan 6, and co = —OB tan > where 61,65 are the inclinations of /; and
ly respectively.

Tro =

(OB + EO) tan 6 tan 6,
ry = ,
' tan fo(1 — /1 +tan?0;) — tan 01 (1/1 + tan? 65 + 1)
, E B x sin 0 sin 0,
1 =

sin 5 cos 61 — sin 69 — sin 64 cos 65 + sin 64

1 -1
for /1 + tan?6;, = and /1 4+ tan? 0y =

cos 6 cosfy
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2t 2t 1t} 1—13
For sinf; = —, sinf, = 722, cosbt; = ; and cosfy = 3 and
1+ 1+13 1+ 2 14123

0 1%
r; = 4k, where ¢; = tan 51 and ¢5 = tan ?2 Then, we have

Ay — EB x 4t1t2
T 2t) (1 = 2) — 2ta(1 4 12) — 261 (1 — £2) + 26, (1 + £2)”
EB x 4t4t
Aky = %,
—4tot] +4t1t2
EB
4k = —,
to — 1
EB
hy= 0
T Aty — ty)
For
b 4k —p  (4k —p)m
YT 4 T 20pk+m2)
0y 2k
t] =tan — = —.
2 m

Also, we have previously,
2 2
pp= 2 (M AN
4k —p
Therefore,

_ EBty
T 14 tty

2p (m? + 4k? 2k
a6
(4k — p)m 2k
(1 agreas ()
p (m? + 4k?

k( 4k —p )
4(pk+m2+4k2—pk:)
pk + m?2

dpk (m? + 4k
_ mQ( 4k —p >
N 4(m2+4k2>
pk +m?
pk  m? + pk
ﬁ( 4k —p )

2
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EB
to—t
2p(m? + pk)
m(4k — p)
(4k — p)m 2k
2(pk +m?) <m)
2p(m? + pk)
m(4k — p)
4km? — pm? — 4k?p — 4km?
( 2m(pk + m?2) )
_ pk+m?

k=

Hence, we have

m? + pk
ki=|—"—
4k —p
pk (m? + pk
ko == | ———
m 4k —p
where k < k1 < ko.

13

O

From the above result, we can relate this geometric result with the solutions of
Erd6s Straus Conjecture and this attempt may be better to explore the Conjecture
because we can express k, k1, ks separately by m? and k. Some results about the

Conjecture can be obtained after the following Theorem 5.
1 1
ko ki ke

1
Theorem 5. — = — + — + — where k, k1, ko are positive integers if and only if
p

k=k
2
P (e ¥
4k —p

pk (m? + pk
ko= | —F—
m 4k —p

where k, k1, ko are positive integers and m? > 0.

Proof. Prove the “If part”:

Clearly,
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Prove the “Only if part”:

4 1 1 1 kk
If we have — = — 4+ —+— where k, k1, ko are positive integers, then let m? = P
p k ki ko ka
k1ka k1 + ko 4 1 1 1
= by - =+ —+ —, th
ok dh—p Vo k& TR

pkky
m? +pk Tz+pk
dk—p  4dk—p
_ pk(k1 + k2)
- ka(4k — p)

vk [(kiks
- kg pk‘

= k.

Then, m? > 0. Since

Also,

Pk (m® +pk _ ph
m2\ 4k—p ) !

Theorem 6. If
k=k

m? + pk
= (R
4k —p
pk [ m? + pk
by = 28 (IR
m 4k —p

where k, k1, ko are positive integers, then m? € N and m? | p?k>.

m? + pk

T = m? = ky(4k — p) — pk, then m? is an integer.

Proof. ki1 =

pkky
2

k1, k, p are all positive integers and m? = , hence, m? € N.

(pk)?
2 k pk +
Also, ko = ﬁ (m P ) = m? and ks is a positive integer.

m2 \ 4k —p 4k —p

Then, m? | (pk)?. O
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6. Properties of the Solutions of the Erdds Straus Conjecture:

6.1.

From a Japanese website

(www.asahi-net.or.jp/~kc2h-msm/mathland /math01/erdstr00.htm),

we quote a list of the solutions of the Erdés Straus Conjecture when p is small:

A/p = 1/a + /b + 1/¢c

EEE W[ e

| 2| 1 2] 2
' 4 12

1 |
3 B| B
| 2 z| 3
4| 20
- . 5| 10
15[ zi0
16| 112
2 15| 63
" 21| 42
28| 28
| 3 6| 14
| 4 4 14
%[ 122
| 3%
3 42| 154
44| 132
1 B6 | B6
al 3%
4 11| 44
12 | 33
| g 6| 33
18| 468
4 L1130
A | 52
| 3| w| 130
5 30 510
34| 170

17 :
| 15 | cin

&

= 30 s
34 170
1T ; i !
8 15 510
17 102
98| 9120
100/ 1900
5 114 570
120 456
190 190
19 23| 2822
. 24 456
30 95
38| 57
i B 12| 456
| 10 10 95
139 19182
140 9860
141 6498
142| 4899
144 3312
147| 2254
§ 150/ 1725
156 1198
161 86
174 BET
184 552
23 207 414
230 345
276 278
| T 42 138
23 154
! 2 24| 138
' [ 16 3312
| °l 1

138

15

From the above list of the solutions, although p is small, we still could observe some

patterns and obtain some corresponding Theorems as follows:
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Theorem 7. k < p and then k is not divisible by p.

Proof. Assume the contrary that & > p. For k < ky < ko, then p < k < k1 < ko.

4 1 1 1
Since §:E+E+E7then

41, 1,1 1,11
k ki ke " p p p
4 3
R -< =
p p
— 4 S 3.
Contradiction!
Since k is positive and 0 < k < p, k is not divisible by p. O
Theorem 8. ks is divisible by p that is p | k2.
2 k k 2 k
Proof. We have k =k <k, = m-tpk < kg = Pl (M~ pk . From Theorem 7,
4k —p m2 \ 4k —p

we have k is not divisible by p.

Case 1: If m? is not divisible by p, then (p, m? + pk) = 1. We have k; is also not
divisible by p and ks is divisible by p.

Case 2: If m? is divisible by p, then k is also divisible by p because if (4k —p) has no

2 k
p as a factor, we have TZkJ has p as a factor k; that is divisible by p, otherwise,
-PD
1 1 1

4
(4k — p) is divisible by p, we have p = 2, then by 353 + 5 + 1 = kyis divisible
by p.

Case 2(a): m? is not divisible by p?
pk

Then kg = —— (k1) where we let m? = pm’? and m/? is not divisible by p.
pm

k
—/Z(kl) For k; is also divisible by p, then k5 is also divisible by p.
m

We have ko =

Case 2(b): m? is divisible by p.
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Case 2(b)(i): If k1 = ko, then pk = m?2. Since k is not divisible by p then m? is not
divisible by p?. We have a contradiction.

Case 2(b)(ii): If k1 < ko, then

k k
— p72 >1 for kQ = %kl
m m
k
S % >1 where we let m? = p*m/?
p2>m
= k> pm”?
= k>p
Hence, p < k < k1 < ks, and we have
4 1 1 1
p p p P
4 3
- < -
p p
We have contradiction!!! O

Theorem 9. None of k, k1, ks can be divisible by p>.

Proof. Case A: p=2.

4 1 1 1
By 5= §+§+I — k=1, ki =2, ks = 2. Hence none of k, k1, ks can be

divisible by p?.

Case B:

By Theorem 7, k cannot be divisible by p and then & is also not divisible by p?.

Case B1: k; is divisible by p?.

Then, m? + pk must be divisible by p2. We have p | m? but m? is not divisible by
pk [ m? + pk

p? from the previous proof, ky = — | ————
m2 \ 4p—k

not divisible by p? and (2,4k —p) = 1.

) is also divisible by p? for m? is

Case B2: ky is divisible by p2.
From the previous proof, p | m? but m? is not divisible by p?. Then m? + pk must

k 2 4+ pk
be divisible by p? for ko = e (nw;) and (2,4k — p) = 1. Hence, k; is also

m2
divisible by p?.
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Hence if one of ki, ks is divisible by p?, by Case B1 or CaseB2, both are divisible
by p?. Now, we assume that they are divisible by p?. We can let k; = p?a and
ko = p?b. Then,

4 11 1
n_k k’l kg
. 411
p k  p¥a p%
4k —p 2
— < —
pk P’
4k — 2
— p<,
k P
2k
— 4k —p < —
p
== k< —=
2
4=
p
= k< pl
(=)
2p
- k<P 1+i+
1 o T
p p/1 1
E<=4=(=—)(1+=—+...
- <4+4(2p>(+2 + )
p 1 1
kE<=+4-< 1
— <its L (1)
2p
4 1 1 1
Also, - = = 4+ — + —, th
so,p k;+k‘1+k‘2’ en
4 1
- 2
~> 1 2)
Combine (1) and (2), we have
P p 1 1
£ E <12
R
2p
p<4k <p+
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As,
1<p
p<2p—1
p
<1
2p—1
1
<1

e

Hence, p < 4k < p+ 1.

19

We have 4k is not an integer. We have contradiction!!! Therefore, both Case Bl

and Case B2 are wrong. Hence, no k, ky, ko can be divisible by p?.
6.2. The bounds of k, kq, ks

Theorem 10. The bounds of k, k1, ko are

L <k <3
4]? _419
kE<k <32
< 1_217
9
ky <ky < —p?
1 2 1617
Proof. The bounds for k, kq, ko:
4 1 1 1
If-=—-+—+—,th
> k+k1+k2’ en
1 4 4 3
S<Zand<
k p8Ln p~ k
p 3p
—<k<—=
— 1=v=y
Also,
m? + pk
k1= ———
4k —p

k k k
<ﬂforp—zland4k—p21
1 m2

= 2pk

3p
<=
< (%)

3 o

[\

O
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And,

Hence,

—
=~ W

k§k13§ 2

9 4
< < —
k1_k2_16p

[\)

6.3. Geometric Results related to Erd6s-Straus Conjecture

Let k, k1, ko be the solutions of the Erdés-Straus Conjecture.
Let AEBF be the triangle constructed in Figure 1.

Let the 3 sides of the triangle AEBF with the inscribed circle with radius p be a,b
and ¢ where ¢ > b > a.

Let A be the area of the triangle. Then

a+b+ec

1
A:ip(a—l—b—kc)wheres: 5

1
= 510(23)
= ps.
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Also, we know from the proof of Theorem 4,

ps
s—a

4k = psb where ¢ > b > a

4k =

Hence,

(ps)?
)(s =b)(s—a)

64kk1ke =

w |

(s—c

p’s
=53
5

B p3s3
(ps)?
= p82
2 _ 64kk1ko

p

S

Since, by Theorem 8, p | ko, then

o G4kkuky
p
s? = 64k <m2 “’k) Pk (m2 +Pk>
4k —p ) m2 \ 4k —p
64k (m? + pk)?
~ m2(4k — p)?
8k(m? + pk)
~ m(4k - p)

s =8m (ICQ)
p

eN

Since,

A =ps

A=p <8n;k2> = 8mky

21



22 YUK LUN FONG

In addition,

.= P
s—a=_o
_ s(4k —p)
“T Tk
B 8k(m? + pk)(4k — p)
m(4k — p)(4k)
_ 2(m? + pk)
“= m
a=2 (m + pk:)
m
And,
_ ps
s—b= 1
8k(m? + pk)
m(4k — p)
b=
s m? + pk
4k —p
_pe (p"f)
m
b=s— (2}9/{)
m
b 2k(4m? + p?)
m(4k — p)
And,
_ . b5
§—c= 1y
8k(m? + pk)
s e m(4k — p) p
m2 4k —p
s—c=2m

c=s8—2m
B 2p(4k? +m?)
- m(4k — p)

(57)

With (1), (2), (3), (4) and (5), if m € N and m | 2pk = s,A,a,b,c € N. Hence,

we have Theorem 11 as follows:
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Theorem 11. If k, k1,ko are the solutions of the Erdds-Straus Conjecture that
make m € N and m | 2pk, then we can form a Herion triangle with sides a,b, ¢ and

area A and
s =8m (kQ> eN
D

A =8mky €N

c:2(m+pk> eN
m

_ 2k(4m? + p?)

N
m(dk—p) ©
2 2 2
_ p(4k* + m*) N
m(4k — p)
Proof. Proved before. O

From Theorem 11, if p = 4k — 1 where k € N, we can make m = 1, and we have a
Herion triangle with

A = 8kp(1 + pk) € N
c=2p(4k* +1) eN
b=2k(4+p?) €N
a=2(1+pk)eN

1
By reducing the size by a factor 5 for lengths, we have a smaller Herion triangle
with

A’ = 2kp(1 + pk) € N
¢ =p4k*+1)eN
V¥ =k(4+p*)eN
o =(1+pk)eN

where A’, a’, I, ¢’ are the corresponding area of the triangle and 3 sides respectively.

Theorem 12. The Herion triangle formed in Theorem 11 cannot be a rational
triangle.
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Proof. By Theorem 11, we have a Herion triangle with sides a, b, ¢ and area A and

2
azg(mﬂ’k)
m

 2k(4m? + p?)
~ m(4k —p)
_ 2p(4k* +m?)
 m(4k —p)
_ 8k(m? + pk)p
-~ m(4k —p)

If the Herion triangle is a rational triangle, then

1
iab:A
1 (2k\ (4m® +p° X2(m2+pk)_% m? + pk
2 \m 4k —p m ~ m \ 4k —p b
4 2 2
gp— M
m
0 = 4m? — 4mp + p*
0= (2m — p)*
p=2m

p=2and m =1 for p is prime.

1 3
By Theorem 10, we have Zp < k < —p, so k can only be 1.

4
(1)2+2(1)
Then, ko = ———> ¢ N.
en k=g ¢
Hence, the Herion triangle cannot be a rational triangle. O

Some Observations we have:

Consider p = 4k — 1 where k € N and make m = 1. Then, we obtained previously
a Herion triangle AEBF and

A =8kp(1+pk) €N
c=2p(4k* +1) €N
b=2k(4+p?) €N
a=2(1+pk)eN
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Let h be the height corresponding to the largest base ¢ of the Herion triangle
AEBF.

2

h ;
C

_ 16kp(1+pk)  8k(1 + pk)
C 2p(4k2+ 1) 4k2+1

Although AEBF is not a rational triangle, we could obtain a rational triangle from
AEBF.

If we construct an altitude F'G from F to EB of AEBF'. Let e be the base of the
right-angled triangle ABGF

o2 — g2 — B2

2
= 01+ pn - (SR

4(1 + pk)?(4k* + 1)% — 82Kk%(1 + pk)?

(4k2 +1)2
_A(1 + pk)?(4k% — 1)2
B (4k2 +1)2
Hence,
_2(1 + pk)(4k* — 1)
B (4k2 +1)
Then,

12(1 4 pk)?(4k? —1)2 8k(1 + pk
the area of the right-angled triangle = 3 (14 pk)~( ) (1 + pk)

(4k2 +1)2 AR+ 1
_ 8k(4k? — 1)(1 + pk)?
(4k% 4+ 1)
_ , , 1 (4k* +1Y .
If we magnify the 3 sides of the triangle ABGF by 2\ Tor times, we have a
p

new right-angle triangle AB'G'F’ with 3 sides o, b/, ¢ :

a =4k* +1

n =4k

e =4k” -1

and they are positive integers and the area of AE'G'F’ = 2k(4k? — 1) is also a
positive integer. Hence, the area of this triangle is a congruent number. If we
consider the general case, we still have a similar result.
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Let h be the height of the triangle.

12p(4k? +m?) | 8kp(m? + pk)
2 m@k—p) = mdk—p)
, _ Bk(m® + pk)
(4k2 +m?)

a’® —h? =¢?
2 A(m* + pk)®  64k*(m* + pk)
m? (4k2 + m?2)?
4(m? + pk)?(4k? — m?)?
B m?2(4k? +m?2)?
2(m? + pk)(4k* — m?)
B m(4k2 + m?2) '

12(m? + pk)(4k? — m? k(m? + pk
Area of the right-angled triangle ABGF = = (m” + pk)( m’)  8k(m” + pk)

2 m(4k? + m?2) AR+ m?
_ 8k(m? + pk)?(4k* —m?)
B m(4k2 + m?2)2 ’

1 [ 4k* +m?
If we magnify the 3 sides of the triangle ABGF by 3 (mzi;r;c

) times, we have

a new right-angle triangle AB’G’'F’ with 3 sides:

o — 4k? + m?
B m

h =4k

o 4k? —m?
B m

2k (4k? — m?)

are positive rational numbers and the area of AB'G'F' = is also a

m
positive rational. Hence, if m | 83, then the area of this triangle is a congruent
number.

7. Existence of special forms of solutions of the Erdés-Straus Conjecture
7.1. Solutions of the Erd&s-Stratus conjecture when m? =k

We want to prove that to which type of prime will k, k1, ko exist when m? = k.
Theorem 13. k, ki ,ky exist when m? = k if there exist J € N such that
4J—-1|p+1.
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k 1
Proof. Consider k; = % Since (4k —p,k)=1,4k—p|p+ 1.
-p
k 1
Welet p=4p +1and k=p' + J,J €N, i.e ki = %.
. _ pk(p+1)
Also, consider ko = -1 - pry.

By (4k — p,p) = 1, ko exist if and only if ky exist.

Therefore k, ki, ko exist when m? = k if and only if there exist J € N s.t

4J—-1|p+1.

O

Theorem 14. When p =5 (mod 8), k, k1, ko exist when m? = k.

Proof. Consider p=5 (mod 8) = p+1=6 (mod 8).

1 1
By direct checking 1 (p; + 1> is an natural number.
I . L/p+1
Therefore J will exist by letting J = 1 (2 + 1) by Theorem 13. O

7.2. Solutions of the Erdés-Stratus conjecture when m? = 2k

We want to prove that to which type of prime will k, ki, ko exist when m? = 2k.

Theorem 15. k, ki, ko exist when m? = 2k if and only if (p+2) contains factors
in the form of 8k1 +5 for p=1 (mod 8) for p > 3.

k
Proof. Consider kg = p—g (
m

2
m +pk>pk(p+2) ok

4k —p ) 2(4k —p)

m?+pk  k(p+2)
dk—p  dk—p

Also, consider r; =

o (p,4k — p) = 1, we have
Case 1: (4k —p) | 2.

(a) dk—p=1 = p=4k—1 = p =3 (mod 4). We have a contradiction
because p = 1 (mod 4) originally.

(b)dk—p=2 = k=1and p=2.

Case 2: 4k —p|p+2.
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We have p + 2 = t1(4k — p) for some positive integer ¢1. Then,
p(tl + 1) = 4]€t1 -2

By Theorem 14, we only consider the situation for p =1 (mod 8) (explanation will
be given for the rejected case p =3 (mod 8) and p =7 (mod 8)).

We can let p = 8p” +1

4k + 2
= 8p’ +1 =4k — .
P t+1
Let k=p” + 2.
8(p" +2)+2
8" +1=8p" +8z —
Pt P+ o2 t1+1
/!
8ZfM:1
t1+1
t1 8p”—|—2
8 =1
Z(t1+1> LT
'
82:1+M.
131
) 8p" +3
In order to satisfy 1+ ; =0 (mod 8), we need t; =5 (mod 8). That means

1
(p + 2) must contain factors in the form of 8k; + 5. O

7.3. Solutions of the Erdés-Stratus conjecture when m? = p

We want to prove that to which type of prime will k, k1, ko exist when m? = p.
Theorem 16. k, ki, ke exist if and only if p + 4 contains factors in the forms of
45+1, 5N

Proof. Consider k; = M

4k —p

By (p,dk —p)=1,4k—p|k+1,ie k+1= (4k —p)j,j € N.
= pj+1=kH4j—-1)

pitl 1 [ dpj+4) 1 p+4
451 4(4j—1 1\ P

0

4
By p+4=1 (mod 4) and 45 — 1 = 3 (mod 4), if j exists then (p+ fjt 1)

1 4
(mod 4). Therefore 1 <p + fjt 1> e N.
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k(1+Ek
Also consider ky = ]% = kk1. By (4k — p, k) = 1, ko exists if and only if
-p
k1 exists. Therefore k, ki, ko exist when m? = p if there exists j € N such that
4j—1|p+4. O

7.4. Solutions of the Erdés-Stratus conjecture when m? = 2p

We want to prove that to which type of prime will k, ky, ko exist when m? = 2p.

Theorem 17. k, ki, ko exist if p+ 8 contains factors in the form of 85 — 1.

kp(k + 2)

Consider k2 = m == 2 | k.
2p(1 + K
Let k = 2k'. Consider ky = % Since (p, 4k — p) = 1, we have
-Pp

Case 1: (4k —p) | 2.

(a) dk—p=1 = p=4k—1 = p =3 (mod 4). We have a contradiction
because p =1 (mod 4) originally.

(b)dk—p=2 = k=1and p=2.
Case 2: (4k—p) | (K’ +1).

= k' +1 = (8K’ — p);j for some positive integer j.

pj+1
— k/:
8j — 1
1 p+8
— K==
8<p+8j—1>

Since, we can let p = 8p” + 1 for some positive integer k",

1 8(p”+1)+1>

k
8 85— 1

(8])” 41+
Similarly, for p = 8p” + 5,

k’:l(Sp’/+5+8(p/l+1)+5>
' .

8j — 1

Therefore if we assume that k' exists, k, k1, k2 exist if p + 8 contains factors in the
forms of 85 — 1.

From the above, we can see some patterns of the conditions that show
the existence of k, ki, ko when m? = hk and m? = up, u, p € N. We will
do some further investigation, see appendix.



30 YUK LUN FONG

7.5. The Existence of the solutions of the Erd6s Straus Conjecture

For the solutions of the Erdds Straus Conjecture, we have found that we only need
to investigate p =1 (mod 4). The reasons will be shown as follows:

Case 1: When p = 4t —1 where t is a positive integer, then we can choose k =t € N,
and by Theorem 5,

2
m” + pt 2 2 ,2,2
kh=——71—"—-= t € N wh h t
1 Ty m-+p where we can choose m* | p“t*,
4
ko = p—Q(m2 + pt) € N for m? | p*t2.
m
4 1 1 1
Hence, we have solution for — = — + — 4+ —.
p k ko ke
Note: For m?, we can find m? | p?t2. For example, taking m? = 1, then the solution

for Erdos-Straus Conjecture is as follows:
k=k
kl = ]. =+ pt
ko = pt(l + pt)

Case 2: When p = 4t — 2, but this is not a prime. This case is rejected.

Case 3: When p = 4t — 3, we choose k =t € N,
m? + pt m? + pt

T4 —(4t—3) 3

ko

Case 3(a): When t = 3¢/, where t’ is a positive integer, then p = 4(3t')—3 = 3(4¢'—1)
is not a prime for 4t — 1 > 0. This case is rejected.

Case 3(b): When t = 3t' + 2, then p =2 (mod 3) and ¢t =2 (mod 3).
Taking m? = p, then
m2+pt=p+pt=p(1+t)=p(1+2)=0 (mod 3)

Hence, k1 € N and also ks € N. Therefore, we have solution for
4 1 1 1

P k+k‘1 k‘g.

Case 3(c): When t = 3t' + 1, then p =1 (mod 3) and t =1 (mod 3).
If ¢ has a factor b such that b = 2 (mod 3), then we can take m? = b.

We have m? +pt =2+ (1)(1) = 0 (mod 3).
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Hence, k£ € N and also k; € N. Therefore, we have solution for
4 1 1 1

p k Kk N ko
Theorem 18.

(a) If p=3 (mod 4), there exists a solution of Erdds-Straus Conjecture.
(b) If p=1 (mod 4) and p = 4t — 3 where t € N, then
(i) Whent = 3t'+2, then there exists a solution of Erdds-Straus Congecture.
(ii) When t has a factor of (3t' + 2), then there exists a solution of Erdds-
Straus Conjecture.

Proof. See the above arguments. O

4 1 1 1
Theorem 19. }; =z + = + T has a solution where k = k1 < ko if and only if
1 2

p=3 (mod 4) and k =k = ——

Proof. Prove the “only” part:

41 11
Pk E ks
12 1
42kt
p kks
= 4kko = p(2ky + k) ()
= 2|kor2|p
4 1 1 1 .
If2|p = p=2 = 521—1—5—&-5 = k # k1 by Appendix 11.1. Hence, we
have only 2 | k. Let k = 2k’ where k' is a positive integer.
42 1
g = o + Ea
4 11
g y + E.
Let ko = pk}, where k) is not divisible by p by Theorem 9. Then,
411
p Wk,
4  pkh+ K
- P kR,

—  4K'K, = pk + K
= ko | K.
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Also, from (*), for (k,p) =1, then
k|(2k2 + k)
k |2k
2%’ |2ks
K ks
k' |pksy
k' |ph for (k,p) = 1.

el

Hence we have k' = k). Then,

4_1, 1
p K pk
4 p+1
— - =
p Pk
= 4k =p+1
= p=4k —1=3 (mod 4).
Also,
1_1, 1
p K pk
4 1 1
T E
2 2
_, 4_2,2
p k  pk
2 1
. 2_p+l
p  pk
= 2k=p+1
1
— kzklzl%.

Prove the “if” part:

This is a constructive proof (This usual method can be found in some papers.)

+1 +1 s :
(p ) pp ) are positive integers.

p=3 (mod 4) =

2 4
Also,
4_ 11
p P+l p+1l  pp+1)
2 2 4

That is the conjecture has a solution when p = 3 (mod 4).



INVESTIGATION ON THE ERDOS-STRAUS CONJECTURE 33

1 1
— = — 4+ — + — has a solution where k < k1 = ko if and only if
p k k1 kz
orp=2.

Theorem 20.
p=3 (mod4) o

Proof. Prove the “only if” part:

4
If - = ——l———i— has a solution where k < ki = ko, then
p k Kk k
k
k= 2k
m
— pk:m2
2pk
k1= .
= ! 4k —p
Since (p,4k —p) =1 and (k,4k —p) =1, then 4k —p=1or 4k —p = 2.
Case 1:
4k —p=1
= p=3 (mod 4).
Case 2:
dk—p=2
= 2| p
- p=2.

Prove the “if” part:

Case 1:

If p =3 (mod 3), then let p = 4k — 1 where k is a positive integer.
Construct k1 = ko = 2pk.

1 1 1 242 p+1 4k 4
Th —_ Pr— _— = = — e = —,
T TR k. ok ko

1 1 1
— = — + — + — has a solution where k < k1 = k».
p k ki ke

Hence,

Case 2:

4 1 1
If p = 2, then by Appendix 11.1, 3= 1+ 5 + 3

4 1 1 1
Hence, — = — + — has a solution where k < k1 = ks. O
P k: k1 ko
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Theorem 21. (ki,ks) # 1 except p = 3.

Proof.
2
fy = PR
4k —p
k1 (4k — p) — pk = m?
pk
ke = "5 (k1)
ko — pkky
* 7 ki(4k —p) — pk’

Assume that (k1,k2) = 1. Then k; | k1 (4k — p) — pk and we have (ki (4k — p) — pk)
must be divisible by all p;* where k; = pi'ps?...pi», = p;* | pk.

Case 1:

p; | p, that is p; = p for some i. Therefore, p | k1. Also, by Theorem 8, p | ko so
p| (k1,k2) = (k1,k2) > 1. We have a contradiction.

Case 2:

All pf k = ky < k. Since k < ky, we have k = k1. By Theorem 19, we have
p =3 (mod 4). Let p = 4¢q + 3 where ¢ is a non-negative integer.

Case 2(a): ¢ >1

By Theorem 19,

_p+1  4g+3+1  4(g+1)
2 2 - 2
+1 (g+1
p(p4 ) _ p( )(Z ):p(q+1)'

ko =
Hence, (k1,k2) > (¢+ 1) > 1. We have a contradiction.

k1

=2(¢+1),

Case 2(b): When ¢ =0, k1 =2(0+1) =2, ko =p(04+1) =p =3 for ¢ = 0.
We have (k1, k) = 1.
Hence, (k1,k2) > 1 except p = 3. O

8. Further investigation on the results obtained from some papers of the
Erdds-Straus Conjecture

From some papers, we know that when the prime number p = 12, 112, 132, 172,
192, 232 (mod 840) (refer to Appendix 11), we do not know whether all these
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prime numbers satisfy the Erdés-Straus Conjecture or not, but we make some good
refinements of the above situation in this paper.

Now we consider the several cases of the existence of the solutions of Erdés-Straus
Conjecture.

We assume that p > 3, otherwise p = 2 and we have a solution of Erdds-Straus
Conjecture in Appendix 11.1.

Firstly, we consider the situation that:

m? + pk

oy = ——
1 4k—p7

m? | pk and (k,p) = 1.

However, this situation is not true for all the solutions found from the Erdos Straus
Conjecture.

By Mathlab, we can find an example.

1 1

1
When p = 2521, all the solutions for 550l — & + n + ™ satisfy that pk is not

divisible by m? but (pk)? is divisible by m?.

k k‘l k‘Q m2
636 69748 131876031 848
636 70588 5611746 20168
638 51997 23833534 3509
638 55462 804199 110924
644 30252 1217643 40336
652 18908 23833534 1304
658 14946 131876031 188
748 4004 42899857 176
1026 1634 55610739 76

By direct checking, all the above m? make the fact that pk is not divisible by m?
but (pk)? is divisible by m?2.

m? + pk

Anyway, we still consider the case: k; = pr— m? | pk and (k,p) = 1.

Firstly, by Theorem 18, we only need to consider p = —3 (mod 4) that is p = 4k’ —3
where k' is a positive integer.

Secondly, we consider the following cases.

Case 1: m? | k only.
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k
m? | k = 3r € N such that m?r = k, ie. m? = =
r
i k
k—p  r(4k —p)
k 1
= — € Nand prt eN
r 4k —p
k=rx (1)
=
1+ pr=(4k —ply (2)
where z, y are positive integers.
By (2), we have
1
+or +p =4k.
1
For p = —3 (mod 4), we have e 3 (mod 4).
Y
1
Then, we let e 4a + 3 where a is a non-negative integer.
By (2), we have
4k —p=4a+3
4k =4k =3+ 4a+3
4k = 4K" + 4a
k=K +a (3)
From (2):
1+pr=(4a+3)y
pr=4a+3)y—1 (4)

Since p = —3 (mod 4), that is p = 1 (mod 4), then by (4), we have r = 3(y + 1)
(mod 4).

Let r =4z 4 3(y + 1) where z is a non-negative integer.

We consider p = ¢g? (mod 840), g = 1, 11, 13, 17, 19, 23, p = 840n + ¢? for some
non-negative integers n.



INVESTIGATION ON THE ERDOS-STRAUS CONJECTURE 37
Since p = 4k’ — 3,
4k — 3 = 840n + ¢*
9°+3

k' =210n +

By (3) and (1),

g*+3

210n + +a=4z+3y+1))x

243
210n:(4z+3(y+1))w—a—(gz_ )

Since 210 =2 x 3 x 5 x 7, then we have congruences:

(42 +3(y+ 1))z —a— <92+3) —0 (mod 2)
(4z 43+ 1)z —a— <Q2I3) =0 (mod 3)
(4z+3(y+1)z—a— <9213> =0 (mod 5)
(42 +3(y+ 1)z —a— (92+3> =0 (mod 7)

However, the above system of equations is difficult to be solved. Up to now, we
haven’t made any further investigations.

Case 2:

k
k Pk k14 pr)

2: - h =T =
m p<r> where r | k = k1 =p " raE—p)

= r|pkand (4k —p) | (1+7r)

where (4k — p,p) = (4dk — p, k) = 1.
Case 2A:r=p

Since (4k —p) | (1 +p) = (4k — p)n = 1 + p where n is an integer.
(4k — 4K +3)n =1+ 4k" — 3

!/
-1
4k:4k’—3+M

n
2k — 1

n/

4k =4k -3+

where p = 4k’ — 3 and n = 2n/ where n’ is an integer.
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We have,
2k —1

!

= 4k’ + 3 for an integer k”.
n

If we only consider the prime p = g? (mod 840) where g = 1, 11, 13, 17, 19, 23,
then

840n + g°> = 4k’ — 3

2
3
K =210n+ L
9> +1
2k" — 1 = 420n +
where k' and n are integers.
2k —1 241
If we want = 4k’ + 3, then 420n + g+ has a factor in the form 4z + 3
g +1

where z is an integer. Since =1 (mod 4), then we can let

2
1
420n + g ; = (4x + 3)(4y +3) where y is a non-negative integer.
=16zy +12x + 12y +8 +1
=4(dzy+3x+y+2)+1
1— 92
105n = 4oy + 32 + 3y + 2 + g
For g =1,
dey+3x+y+2=0 (mod 3) (1)
dry+3x+y+2=0 (mod 5) (2)
doy+3x+y+2=0 (modT7) (3)

and

1—g°
doy+3z+y+2+ 3

n =

105

By using Excel, we can find all values of n when x,y are the residues under the
congruent to 105. The corresponding values of m are shown below and you may
refer to the excel file provided. (document name: Excel for case 2A. For the others
Excel, we have also named according to their corresponding cases )
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T y
2 47
a7 2

49 4

1 49
17 17
10 31
31 10
35 11
11 35
5 86
86 5

7 67
67 7

40 16
16 40
20 41
41 20
14 74
74 14
34 34
79 19
19 79
65 26
26 65
25 91
91 25
77 32
32 77
52 52
37 82
82 37
70 46
16 70
59 59
62 62
44 89
89 44
55 76
76 55
95 56
56 95

39
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100 61 237
61 100 237
30 101 313
101 80 313
04 94 342
97 97 364
104 104 418

Case 2B: r | k only.

k(1
Then we have (4k —p) | (1 + ) for k1 = M

Let

k=rz
147 = (4k — p)y,
where z,y are integers.
From (2),
1+7r

+p = 4k.

147

For p = —3 (mod 4), then Y =3 (mod 4). We can let 1+ r = (4a + 3)y where

a is a non-negative integer. Hence, (4k — p) = 4a + 3.

Now we consider four cases of y under the modulus of 4 although it is not necessary

to do like that.
Case 2(b)(i): y =0 (mod 4).

Let y = 4b where b is a positive integer. Then,

1+ 7= (4da + 3)(4b)

r=(4a+3)(4b) — 1

Since,

4k —p=4a+3
4k =p+4a+3

4k =4k —3+4a+3

E=k +a.
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From (1) and (3),
K +a=[(4a+ 3)(4b) — 1]z
kK =[(4a + 3)(4b) — 1]z — a.

For p = g% (mod 840) where g = 1,11,13,15,17, 19, 23, as before, we let
p=2840n+g
for some integers n.
4k’ —3 =840n + g
4k" = 840n + g+ 3

K = 210n +<gz3)

Then,

210n + # — [(4a +3)(4b) — 1]z —a

210n = [(4a + 3)(4b) — 1]z —a — g+3

Since, 210 =2 x 3 x 5 X 7, then a, b, r must satisfy the following congruences:
3
[(4a + 3)(4b) — 1]z — (9 + > =0 (mod 2)

[((4a + 3)(4b) — 1]z

() =0
[(4a+3)(4b—lx—a—(gl—3>z (mod 5)
[(da + 3)(4b) —1x—a—< Z )

By solving these congruences, we can have

4
n = )

210

where a, b, x are the residues under the module of 210. Then there are many choices
of n, please refer to the excel file.

[(4a +3)(4) — 1]z — a — (W’)

Case 2(b)(ii): y =1 (mod 4).
Let y = 4b + 1 where b is a positive integer. Then,

1+r=(4a+3)(4b+1)
= (4a+3)(4b+1) -1 (3)
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Since,
4k —p=4a+3
dk=p+4a+3
4k = 4k' — 3 +4a+3
k=k +a
From (1) and (3),
E'4+a=[(4a+3)(4b+1) — 1]z
K =[4a+3)4b+1) -1z —a

For p = ¢ (mod 840) where g = 1,11,13,15,17,19,23, as before, we let p =
840n + g for some integers n.
4k —3 =840n+g
4k’ = 840n +g+3

3
K = 210n + %

Then,
210n + QTH) =[(4a+3)4b+1) -1z —a
2100 = [(4a + 3)(4b+ 1) — 1]z — a (T’)
Since, 210 =2 x 3 x 5 X 7, then a, b, r must satisfy the following congruences:

[(4a+3)(4b+1) — 1]z —a — <g+3> =0 (mod 2)

[(4a+3)(4b+1) — 1]z —a —

(=)
(da+3)(4b+1) = e —a— (9“’) —0 (mod5)
[(4a+3)(4b+1)1}xa< )

By solving these congruences, we can have
[(4da+3)(4b+1) — 1]z —a — (913>
210 ’

where a, b, x are the residues under the module of 210. Then there are many choices
of n, please refer to the excel file.

n =

Case 2(b)(iii): y =2 (mod 4).
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Let y = 4b 4 2 where b is a non-negative integer. Then,
147 =(4a+3)(4b+2)
r=(4a+3)(4b+2) -1
Since,
4k —p=4a—+3
4k =p+4a+3
4k =4k" —3+4a+3
k=K +a
From (1) and (3),
K +a=[(4a+ 3)(4b+2) — 1]z
K =[(4a+3)(4b+2) — 1]z —a

For p = g% (mod 840) where g = 1,11,13,15,17,19, 23, as before, we let

p=2840n+g
for some integers n.

4k’ —3 =840n +g¢
4k’ = 840n +g + 3

K = 210n + (T)’)

Then,
210n + # =[(4a+3)(4b+2) —1llx —a
210n = [(4da+3)(4b+2) — 1]z —a — (T’)
Since, 210 =2 x 3 x 5 x 7, then a, b, x must satisfy the following congruences:
(4a+3)(4b+2) — 1]z —a — (T) =0 (mod 2)
g+3

[(4a+3)(4b+2) — 1]z —a —

()
[(4a+3)(4b+2)—1}m—a_<9+3)EO (mod 5)
[<4a+3)(4b+2>—1}x_a_( )

43



44 YUK LUN FONG

By solving these congruences, we can have

[(da+3)(4b+2) — 1]z —a — (91-3>

210

where a, b, x are the residues under the module of 210. Then there are many choices
of n, please refer to the excel file.

Case 2(b)(iv): y =3 (mod 4).
Let y = 4b + 3 where b is a positive integer. Then,

1+7r=(4a+3)(4b+ 3)
r=(4a+3)(4b+3)—1 (3)

Since,

4k —p=4a+3
4k =p+4a+3
4k = 4k' =3+ 4a+3
k=K +a
From (1) and (3),
K +a=[(4a+3)(4b+3) — 1]z
kK =[(4a+3)(4b+3) — 1]z —a

For p = g% (mod 840) where g = 1,11,13,15,17,19, 23, as before, we let
p=2840n+g
for some integer n.

4k’ —3 =840n + g
4k’ =840n + g+ 3

K = 210n + <g4+3)

Then,

210n + QT”’ — [(4a+3)(4b+3) — 1]z —a

210n = [(4a + 3)(4b +3) — Lz —a - (T’)
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Since, 210 = 2 x 3 x 5 X 7, then a, b, r must satisfy the following congruences:

[(4a +3)(4b+3) — 1]z —a — <g+3> =0 (mod 2)

[(4a+3)(4b+3)1}xa< 1 )O (mod 3)
(da+3)(4b+3) — 1o —a— (T’) =0 (mod 5)
[(4a+3)(4b+3) — 1]z —a — (T}) =0 (mod?7)

By solving these congruences, we can have

[(4a+3)(4b+3) — 1]z —a — (T)
" 210 )

where a, b, x are the residues under the module of 210. Then there are many choices
of n, please refer to the excel file.

Other than the Case 1 and Case 2(a) and 2(b), we have observed many solutions
of Erdés-Straus Conjecture (refer to Appendix 11) are in the following forms:

Let p=4(3¢+1) — 3.

We only consider ¢ is even, otherwise when ¢ is odd then (3¢ + 1) is even such that
(3¢ + 1) has 2 as a factor. By Theorem 18, p with ¢ is odd must have a solution of
Erdés Straus Conjecture.

Hence, we only consider p with ¢ is even.

Case 3(A): We let k be even and then let m? = 2p (it is legitimate because m? | (pk)?
by Theorem 6) and let k = (3¢ + 1) +¢.

2 k
For k is even and ¢ is even, then ¢ is odd. For ky = %, we have
o — 2p+pk  p(2+(3¢+1) +1)
YT 4k —p 4t +3

For k is a positive integer and 4t 4+ 3 is not divisible by p for (4k — p,p) = 1 by
Theorem 7 and (4k — p) = 4t + 3, we have

24+ (3¢+1)+t qg—t
= 1
4t +3 5 wr3) "

is a positive integer, then 4t +3 = 3 or (4t +3) | (¢ — ©).

However, when 4t + 3 = 3, we have ¢t = 0. Contradiction for ¢ is odd. Hence,
(4t+3) | (g —1).
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We have, g — t = (4t + 3)z where z is a non-negative integer.
g=4t+3)xr+t=4tx+3x+1
Consider p = 12 (mod 840) that is p = 840n + 1 for a positive integer.

4xt 4+ 3 t
Also p=4(3¢ + 1) — 3, we have ¢ = 70n. Hence, n = %
4ab v
Now, we let x = a and t = b'. We have, n = dabt 3a+ 0 where V' id odd for ¢ is

70
odd.
Let b = 2b+ 1. We have
. dab+3a+b0"  4a(2b+1)+3a+2b+1  8ab+Ta+2b+1

70 70 70
To solve for n, we can solve the system of congruences:

8ab+7a+2b+1=0 (mod 2)
8ab+Ta+2b+1=0 (mod 5)
8ab+T7a+2b+1=0 (mod7)

The solutions of n can be referred to the excel file where the solutions of n are

obtained from
- 8ab+ Ta+2b+1

70
where a, b are the residues under the module of 70.

Note: Case 3(A): m? = 2p is under the Case 2B (ii).

Case 3(B): Let k be even and we can let m? = 2k and k = (3¢ + 1) + t where ¢ is
also odd.

m? + pk

For kl = m

, we have

i _ 2k +pk
te 4k —p
_ k(2+0p)
4k —p
E(2+4(3¢+1) —3)
4t +3
_ k(3)(4g+1)
- 4t+3
 k(3)(280m + 1)
N 4t + 3

where ¢ = 70n.

(280n + 1)

3
For (k,4t + 3) = 1 by Theorem 7, r3 is a positive integer.
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Case 3B(i): 280n + 1 has a factor (4z + 1).
We have, 280n + 1 = (4o + 1)(4y + 1) where z and y are non-negative integers.

We let 3(4y + 1) = 4t + 3 for ¢ is also odd then y is also odd. [See reviewer’s
comment (2)]

Then,
3(280n+1) _ (4e+DE)M4y+1) _ o0
4t +3 4t +3

which is a positive integer.

Hence, by 280n+1 = (4z+ 1)(4y + 1) where = and y are non-negative integers and
y is odd, we have

280n + 1= (4o + 1)(4dy + 1)
On=4dxy+x+y
Then,

- dey+r+y  4a(204+1)+a+2b+1  8ab+5a+2b+41
B 70 n 70 - 70

where x = a and y = 2b + 1.

To solve for n, we can solve the system of congruences:

8ab+5a+2b+1=0 (mod 2)
8ab+5a+2b+1=0 (mod 5)
8ab+5a+2b+1=0 (mod7)
The solutions of n can be referred to the excel file where the solutions of n are

obtained from
- 8ab+ 5a +2b+1

70
where a, b are the residues under the module of 70.

Case 3B (ii): 280n + 1 has a factor (4x + 3).
280n + 1 = (4x + 3)(4y + 3) where x and y are non-negative integers.

We let (4y + 3) = 4t + 3. For t is also odd then y is also odd. [See reviewer’s
comment (3)]

Then
(280n + 1) _ (4x +3)(4dy + 3) dp 41
4t + 3 4t + 3

which is a positive integer.
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Hence, by 280n + 1 = (4x + 3)(4y + 3) where z and y are non-negative integers and
y is odd, we have

280n + 1 = 16y + 12z + 12y + 9,
70n = 4dxy + 3x + 3y + 2.

Then,

. dzy+3z+3y+2  4a(2b+1)+3a+3(2b+1)+2  8ab+Ta+6b+5
- 70 N 70 N 70

where x = a and y = 2b+ 1.

To solve for n, we can solve the system of congruences:

8ab+7a+6b+5=0 (mod 2)
8ab+Ta+6b+5=0 (mod 5)
8ab+ T7a+6b+5=0 (mod 7)

The solutions of n can be referred to the excel file where the solutions of n are
obtained from

- 8ab + 7Ta + 6b+5
- 70

where a, b are the residues under the module of 70.

k
Case 3C: Let k be even and let m? = 5 and k = (3¢ + 1) + ¢t where ¢ is odd.

k k k
4+ 3 4t + 3 4t +3 2\ 4t+3
1
For (k,4t+3) =1, 3(48;7_:—3) is a positive integer.

It is easy to see that 8¢ + 1 can be equal to (8 + 1)(8y + 1) or (8z + 3)(8y + 3) or
(82 + 7)(8y + 7) where x and y are non-negative integers.

But 8¢+1 = (8x 4+ 1)(8y + 1) and 8¢+ 1 = (82 + 3)(8y + 3) where x and y are
non-negative integers do not work now.

If 8¢+1 = (8z+1)(8y+1), then let 3(8y+1) = 4t +3. But ¢ is odd. Contradiction.

If 8¢+ 1= (8x+3)(8y + 3), then let (8y +1) = 4¢+ 3. But ¢ is odd. Also, we have
a contradiction.

Hence, we can let 8¢+ 1 = (824 7)(8y+7) where z and y are non-negative integers.
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Then,

560n + 1 = 64xy + 562 + 56y + 49
70n =8xy+7x+ 7y +6
8ab+ T7a+Tb+6

"= 70

where a =z and b =y.

To solve for n, we can solve the system of congruences:

8ab+7a+Tb+6=0 (mod2)
8ab+7a+T7h+6=0 (mod5)
8ab+Ta+Tb+6=0 (modT7)

The solutions of n can be referred to the excel file where the solutions of n are
obtained from

,_Bab+Ta+7b+6

70
where a, b are the residues under the module of 70.

For Case 3:

For the general solutions of n, we could need to amend the equations we obtain
before:

Case 2B(ii):

(da+3)b—1)e—a— 913
" 210 4 +((4a+3)b_1)7~’ r € Nforg=1.

Case 3A:
- 8ab+ Ta +2b+1
B 70

+ (da+1)r, r € N.

(one more general case will be

8ab+ Ta+2b+1
n =
70
but we only consider s = 0, the other cases are also considered similarly.)

+ (da+ 1)r+ (8b+7)s + 280rs, r, s € N

Case 3B(i):
_ 8ab+5a+2b+1
" 70

+ (da+ 1)r, r € N.

Case 3B(ii):
- 8ab + Ta + 6b+ 5
B 70

+ (4a+3)r, r € N.
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Case 3C:
" 8ab+ Ta+ 7b+ 6
B 70

+ 8a+T7)r, reN.

Now, we will consider other forms of p = g? (mod 840) for g = 1,11,13,17,19, 23.

When p = 112 (mod 840), for p = 4(3¢g + 1) — 3, we have
840n + 121 = 4(3¢ + 1) — 3,

_q—10
70
Then, the corresponding 4 cases:
Case 2B(ii):
-3
(da+3)b—1c—a— L2
"o 210 4 4 ((4a+3)b—1)r, reNforg=11.
Case 3A:
8ab+ 7 26— 9
=t + (4a+1)r, r € N.
70
Case 3B(i):

8ab+ 5a +2b—9
n =
70

+ (da+ 1)r, r € N.

Case 3B(ii):
- 8ab + Ta + 6b —5
B 70

+ (4da+3)r, r € N.

Case 3C:

" 8ab+ Ta+Tb—4

- + B8a+7)r, reN.

When p = 132 (mod 840), for p = 4(3¢g + 1)) — 3, we have
840n + 169 = 4(3¢ + 1) — 3,
q—14
n = :
70

Then, the corresponding 4 cases:

Case 2B(ii):
(4a+3)b—1)c—a— 9-3

"o 210 ! + ((4a+3)b—1)r, r € Nfor ¢ = 13.
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Case 3A:
- 8ab + Ta + 2b— 13
N 70

+ (da+ Dr, r € N.

Case 3B(i):
- 8ab + 5a + 2b — 13
B 70

+ (da+Dr, r e N.

Case 3B(ii):
- 8ab+ Ta + 6b—9
- 70

+ (4a+3)r, r e N.

Case 3C:
- 8ab+ Ta+7b— 8
B 70

+ (8a+T)r, r€N.

When p = 172 (mod 840), for p = 4(3q + 1) — 3, we have
840n + 289 = 4(3¢ + 1) — 3,

_q—24
70
Then, the corresponding 4 cases:
Case 2B(ii):
-3
(da+3)b—1)c—a— L=
"= 1 + (4a+3)b—1)r, r € Nfor ¢ =17
210
Case 3A:
8ab + Ta + 2b — 23
- anls +(4a+1)r, reN
70
Case 3B(i):

n_8ab+5a—|—2b—23
B 70

+ da+1Dr, reN

Case 3B(ii):
_ Sab+Ta+6b—19
B 70

+ (4a+3)r, reN

Case 3C:
— 8ab + Ta + 7b — 18 L
N 70

(8a+T)r, r €N

51
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When p = 192 (mod 840), for p = 4(3q + 1) — 3, we have
840n + 361 = 4(3¢ + 1) — 3

"= q—30
70
Then, the corresponding 4 cases:
Case 2B(ii):
-3
(4da+3)b—1)c—a— g=—-2
"o 210 ! +((4a+3)b—1)r, r € N for ¢ = 19.
Case 3A:
b+ 7 2b — 29
R + (4a+1)r, r e N.
70

Case 3B(i):

- 8ab + ba + 2b — 29
N 70

+ (4a+1)r, reN.

Case 3B(ii):

. _ 8abtTa+6b—25

=0 + (4a+3)r, re N.

Case 3C:
" 8ab + Ta + 7b — 24
B 70

+ (8a+T)r, r€N.

When p = 232 (mod 840), for p = 4(3¢ + 1) — 3, we have
840n + 529 = 4(3¢ + 1) — 3

q—44
n =
70
Then, the corresponding 4 cases:
Case 2B(ii):
(da+3)b—1)e—a— I3
n = 4 + ((4a+3)b—1)r, r € N for ¢ = 23.

210

Case 3A:
- 8ab + Ta + 2b — 43 n
B 70

(da+ 1)r, r € N.
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Case 3B(i):
" 8ab + ba + 2b — 43 L
B 70

(da+1)r, re N.

Case 3B(ii):
- 8ab + Ta + 6b — 39
B 70

+ (4a+3)r, reN.

Case 3C:
- 8ab + Ta + 7b — 38
B 70

+ B8a+T7)r, reN.

9. Investigation of the Erd6és-Straus Conjecture in algebraic dimension

In this Chapter we transform the Erdés-Straus Conjecture to diophantine equations
with special requirements.

Assume

1 1 1
——— + —+ — wh b>k.
p+z+4a+4bwerea> >

— ==+ = = 4
( Z) 4 1b and =z 3 (mod )

Then we have the following relationship:

4
Let 4k =p+z,ie. — =
p

a+b=nz (1)
4ab = pn(n + z) (2)

. . . . 1
where n satisfy two cases: case (i) an non-negative integer or case (i) n = — where
m

m|zeN.

Theorem 22. (n,p) = 1 when n is a non-negative integer.

4ab
Proof. We first prove (2). By Theorem 8 we know that isa non-negative integer

4ab
(a,b are actually ki, ko using the notation in chapter 5 ) and (i,p) =1.
p

4
Therefore %b =n(p+z) and (n(p+ 2),p) = 1.

Then (n,p) = 1 when n is a non-negative integer.
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Next, taking square of (1) and minus (2), we have
a—b=+/(zn)2 — pm(p + 2)
_ zn+y/(n)? — pm(p + 2)
B 2

zn—+/(zn)? —pm(p + 2)
2

b:

In order to prove the existence of a,b that are integers, the necessary condition is
V/(2n)2 — pn(p + 2) is a non-negative integer, i.e. (2n)? — pn(p + 2) = ¢%, where ¢
is a non-negative integer.

Then we let ¢ = zn — ¢, where t is a non-negative integer. We have

—pn(p + z) = —2znt +
= (2t —p) =p*n+t?
= n|t?

where t? = nt when n is a non-negative integer.

Continues simplifying,

’n + t2 1 2pn + pt 1 1 2(4n +1
SO i R PO 0 W N (PP S i G
n(2t —p) 2n 2t —p 2n 2 2t —p

where 4n + 1 € N. O

Theorem 23. n is a non-negative integer.

. . 1 .
Proof. Consider case ii) n = — where m | z € N, i.e.
m

4
in+1l=—+4+1 = m=124
m
But since we have assumed m | z € N and z = 3 (mod 4), m can only be 1.

Since the values of 4n + 1 are limited, the choices of s (i.e factors of p*(4n + 1))
are also limited.

If we assume 2z exists, then we have the following cases:

Case 1: 2t — p = s where (p,s) = 1.
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Then
p+s

2

t:

2(dn+1

1
= z:<2p+s+
4dn

|3

m=1— s=1,5.

1 1
Then when s =1,z = Z(Sp2 +2p+1)=p*+ Z(p—k 1)2.

1 1
Since p =1 (mod 4), z(p +1)% is odd and p* + K(p +1)? is even,
this contradicts with our assumption z = 3 (mod 4).

1 1
Whens:5,z:Z(p2+2p+5):1+1(p+1)2.

1 1
Since p =1 (mod 4), Z(p +1)%is odd and 1 + Z(p +1)% is even,
this contradicts with our assumption z = 3 (mod 4).

Case 2: 2t — p = ps where (p,s) = 1.

Then
_p(s+1)

m=1 = s=1,5.
1
Then when s =1,z = Z(5p-|— 3p) = 2p,
this contradicts with our assumption z = 3 (mod 4).
1
When s =5,z = Z('?p +p) = 2p,

this contradicts with our assumption z = 3 (mod 4).
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Case 3: 2t — p = p*s where (p,s) = 1.
Then
,_ pps+1)

m=1 = s=1,5.
1, 1 5
Thenwhens=1,z:i(p +2p+5):1+i(p+1) ]

1 1
Since Z(p +1)% is odd and p* + z(p +1)? is even,
this contradicts with our assumption z = 3 (mod 4).

1 1
When s =5,z = 1(5p2+2p+1) =p?+ Z(erl)z'

1 1
Since p =1 (mod 4), Z(p +1)? is odd and p? + Z(p +1)? is even,
this contradicts with our assumption z = 3 (mod 4).
1
By the above discussion, there is a contradiction when we assume n = — where
m
m|zeN.

Therefore by rejecting case, n is an non-negative integer. O

Now we have known that n is an non-negative integer and we have the following
cases:

Case 1: 2t — p =s where (p,s) =1
Case 2: 2t — p = ps where (p,s) =1
Case 3: 2t — p = p?s where (p,s) =1
Now we focus on solving Case 2.

Theorem 24. s < 11 in case 2.
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1 4 1
M+£ 14+ n+
2 2 s
4n+1)>
+
s
< 4n+1>)
S+ .
s
1 4 1
1—|—(s+ nt )
2 s

And by 4n+1 € N, we let 4n+ 1 = sr, s > r, where r € N.

Proof. 2t — p = ps we have

w
|

7N
=

\V]

Sk 3II 3+

T N 7 N N
w
+
—_
+
N

N |

1+

Since (n,p) =1, n

s+r
2

sr—1 sr—1 14
— n = —
4 4

Then,
s+r S sr—1
/. |

1+

= 44+2(s+7r)>s
= (s—2)(r—2)>9

Therefore by s > r, s < 11.

57

O

Since the values of s is limited for all primes, we can find the existence of solutions
of the Erdés-Stratus Conjecture in this case by direct checking (i.e. The method

used in Theorem 23). Therefore, we should focus on the other two cases.

The remaining two cases are complicate to solve, and until now we still don’t have

remarkable result. But we have further discussion, see Appendix.

10. Conclusion

Here we list out the results of the report.
On Chapter 4:

1

1 1
1. Given that n € N, all integral solutions (z,y) of — = — + — are given by
r oy

n

2
n

r=n+s and y=n+ —,
S
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ie.
1 1 1 2
= +— where s € N and - € N.
n n+s n s
n+—
S
3 1 1 | . .
2. — = — + — exists for some z,y € N if and only if
n xr y

(i) n=3kor (i) n=3k+ 2 or (iii) n =3k + 1
where there exists a positive integer f | n such that f =2 (mod 3).
On the Erdés-stratus Conjecture:

4 1 1

1
1. — = -+ — 4+ — where k, k1, ko are positive integers if and only if
p k ki ke

k=k
2

by = m* + pk
4k —p

pk [ m? + pk
ke =" | ———
m 4k —p

where k, kq, kg are positive integers and m? > 0.

Using the notation above, the properties of k, ki, ks, m? are as follows:

2. If

E=k
2
P (b L
4k —p

pk ([ m? + pk
ke =" | ———
m 4k —p

where k, k1, ko are positive integers, then m? € N and m? | p?k2.
3. k < pand k is not divisible by p.
4. ko is divisible by p.

5. None of k, k1, ko can be divisible by p2.
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The bounds of k, k1, ko are
1 3
—p< k< -
4])_ > 4p
3
ki < 51’2
9
ke < ZP4

About the existence of solutions of The Erdés-stratus Conjecture:

7. When m? = k, solutions of The Erdds-stratus Conjecture exist if and only if

10.

11.

12.

13.

14.

15.

16.

(p + 1) contains factors in the form of 4J — 1.

When m? = 2k, solutions of The Erdés-stratus Conjecture for p =1 (mod 8)
exist if and only if (p 4 2) contain factors in the form of 8%k, + 5.

When m? = p, solutions of The Erdés-stratus Conjecture exist if and only if
p + 4 contains factors in the forms of 45 — 1.

When m? = 2p, solutions of The Erdés-stratus Conjecture exist if and only if
p + 8 contains factors in the forms of 85 — 1.

When p = 4t — 1 where t is a positive integer, we have a solution for
4 1 1 1
Pk ki ke
When p = 4t — 3, where ¢ is a positive integer, we have a solution for
4

1+1+1 b
e T n
p ko Kk kzwe

Case (i) t = 3t' + 2;
Case (ii) t = 3¢’ + 1, ¢ has a factor b such that b = 2 (mod 3), excluding the
case t = 3t’.

1 1 1
= —+-—+4— has asolution where k = ky < ko ifand only ifp = 3

4

2_Z d 4).
p k ki ko (mod 4)
4 1 1 1 . . .

— = — 4+ — 4+ — has a solution where k < k1 = ko if and only if

p k ky ko

p=3 (mod4)orp=2.

(k1,k2) # 1 except p = 3.
From solutions for some special forms we can discuss that for many values of

n checked, e.g. for 1 < n < 3000, if p = 840n + 1 is prime, n must satisfy one
of the Case 2b(ii), 3A, 3B, 3C. We hope that all these 4 cases can cover all
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the values of n such that p = 840n + 1 is prime.

Also, now we are investigating p = 840n + g2 such that it is a prime. Here
g =11, 13, 17, 19, 23 are not checked.

On further applications,

17. If the solution of k, ki, ks make m € N and m | 2pk, then we can form a

Herion triangle for
k
s =8m (2) eN
p

A:8mk2€N

c:2(m+pk>€N
m

_ 2k(4m? + p?)

m(dk—p) © N
B 2p(4k? +m?) cN
 m(4k —p)

18. The Herion triangle formed in (17) cannot be a rational triangle.

11. Appendix
. . 4 1 1 1
11.1. There is only one solution of 3 = z + T + . where k < k; < kg and
1 2
k=1,k =ky=2.

4 1 1 1
Proof. Firstly, k < 2, otherwise if k > 2 then 3 < 3 + 5 + oL and we have 2 <

N W

Contracdtion.

Hence, we have k = 1.

4 1 1 1 1 1
S dly, - =-4+—+-— = 1= -—4 —. We have k; < 3.
econdly, 5 1+k1 +k2 o +k2 € have F; <

Otherwise if k1 > 3 then 1 < = + =, and we have 1 < —. Contradiction.

Wl =
[

=] =

Contradiction. Hence,

T|= i

1

Thirdly, if ki = 1, then 1 = T + = = 0=
2

ki =2 = ky=2. O



INVESTIGATION ON THE ERDOS-STRAUS CONJECTURE 61

11.2. when the prime number p = 12,112,132,172%,192,23% (mod 840), we do
not know whether all these prime numbers satisfy the Erd6s-Straus
Conjecture(Ch.8)

Here we provide the proof from [1] as a reference.

Here we first set up a equation

na + b+ ¢ = 4abed (1)

Dividing both sides by abcdn, we obtain
4 1 1 1

n bed + nabd + nacd

Then by
e letting a =2,b=1,c =1, from (1) we get n = 4d — 1,
e letting a =1,b=1,¢ =1, from (1) we get n = 4d — 2,
e lettinga=1,b=1,¢c =2, from (1) we get n = 8d — 3,
e lettinga=1,b=1,d =1, from (1) we get n = 3¢ — 1.
1 1 1
Wh =4, 1==-4+ -+ .
enn 3+3+3
1 1 1
Wh =3 4=+ =
en n , 3+ +2

From the above we know that the Erddés-Straus Conjecture is true except

n=1 (mod 24).
Similarly,

e lettinga=1,b=1,d =2, from (1) we get n = 7c — 1,
o letting a =1,b=2,d =2, from (1) we get n = Tc — 2
e letting a =2,b=1,d =1, from (1) we get 2n = 7c — 1.
Let c=2t—1,thenn="Tt—4

1 1
Also, =5 + %8 + — and we know the solutions of the Erdds-Straus Conjecture

exist except forn = 1 (mod 7), n =2 (mod 7), n =4 (mod 7).

Similarly,

e letting a =1,b=2,d =2, from (1) we get n = 15¢ — 2,
e letting a =2,b=1,d = 2, from (1) we get 2n = 15¢ — 1.
Let ¢ =2t — 1, then n = 15¢ — 8.
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1 1 1
Also, F=5 4+ - + — and we know the Erdds-Straus Conjecture is true except for

n=1,2,3,4,6,8,9,11,12,14 (mod 15).

From the above we know that the Erdds-Straus Conjecture is true except
n=2,0 (mod 3)

and not true except
n=1,4 (mod 5).

Sumarise the above, we have proved the Erdés-Straus Conjecture is true except

n=1 (mod24) or n=1 (mod7), n=2 (mod7), n=4 (mod?7)

or n=1,4 (mod}5).

Therefore we have the following 6 cases:

n=1 (mod24) andn=1 (mod 7) and =1 (mod 5);
n=1 (mod24) andn=1 (mod 7)and =4 (mod 5);
n=1 (mod24) andn=2 (mod 7) and =1 (mod 5);
n=1 (mod24) andn=2 (mod 7) and =4 (mod 5);
n=1 (mod24) andn=4 (mod 7) and =1 (mod 5);
n=1 (mod24) andn=4 (mod 7)and 4 (mod 5).

Since (24,7) = (5,7) = (24,5) = 1, by Chinese remainder theorem, we have
n=1,121,169,361,529 (mod 840).

11.3. Mathlab program for finding the solutions of Erodos-Straus Con-
jecture

Referred to the paper [3].

11.4. Solutions in the form m? = hk, m? = up where (h,p) = (u,p) =1 if
the solutions of Erdé-Straus Conjecture exist (Ch.7)

Here we consider the general case m? = hk, m? = up, where (h,p) = (u,p) = 1.

11.4.1. The case m? = hk

. k(p+ h
Consider ky = ];z(il]j:—p;

Since (h,h+p) =1, h | k if we want ko exist, i.e. k= hk’ and 4k —p | k' (h + p).
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/
Also consider k; = kii t Z) = (kﬁ?j—;)

), kq exist if ko exist.

Therefore our target is to solve 4k — p | k' (h + p).

We let
tfk/(erh),l 4hk" +4pk’\ 1 1+4pk’+p 1 1+p(4k’+1)
- 4dk—p 4N\ 4hk —p ) 4 4hk' —p) 4 4hk' —p )’
4K +1
By (p,4h/<;’—p):1,wehave4hk’—p|4k;’—|—1anduEB(mod4).

4hk' — p
Continue Simplifying,

1 p(4k'h + h) 1 P p+h
= — —_— = — 1 - 1 " .
t 4 <1 + h(4hk’ — p) 4 * h * 4hk’ — p

4k’ +1 h
u is an natural number, 1 + P+

ARk —p m is also an natural number.

Since

In other words, if there exist h and &’ such that 4hk’ —p | p+ h, the solution of the
Erdés-Straus Conjecture for this prime exists in the form m? = hk. For Example,
when we put h = 1, we exactly get the same result as Theorem 14. But until now
we are still trying to observe the patterns in this form of solutions

11.4.2. The case m? = up

p(k + w)

Consider k = .
onsider kq pT—

By (p,4k —p) =1 we have 4k —p | k + u.

kp(k + u)

m7 then we have u | k2.

Also consider kg =

Since we match up these two relationships, we assume u | k, i.e. k = vu.

1
Hence we have k; ZM.
duv —p
By (4uk —p,u) =1, we have duv —p |v+1,1ie. v+ 1= (duv —p)J, JEN
pJ+1=v(4vJ—1)
_pJ+1 1 <4upJ+u)1 ( p+4u>

T hug -1 4w\ dug —1 du dug —1

pJ+1
4uJ — 1

Since is also an natural number.

. p+4
tural ber, ———
is an natural number, g —1
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In other words, if there exist u and J such that 4uJ —1 | p+ 4u, the solution of the
Erdés-Straus Conjecture for this prime exist in the form m? = up. For Example,
when we put h = 1, we exactly get the same result as Theorem 16. But until now
we are still trying to observe the patterns in this form of solutions.

11.5. Further discussion on Case 1: 2t — p = s where (p,s) =1 (Ch.9)

From the discussion in Ch.9, we know that t> = nt’ when n is a non-negative
integer. To match up the other conditions, we try to let ¢t = nuv;.

Then p + s = 2t = 2nv. Also, s | 4n + 1.

In other words, 2nv; — p | 4n + 1.

4 1
Therefore we let y = L, where z is an natural number.
2nv; —p

Then,
py + 1 =2nyvy —4n
= py+1=2n(yv —2)

_py+1

— 2 .
" yvp — 2

Here we let p=Lvy + I, I,L € N| i.e.
(Lot Dy+1
Yy — 2
Iy+2L+1
yvy — 2
:L-i-i (Iv1y+2v1L+v1>

2n =

U1 my — 2
1 2
L+O+p+w>
(%} my — 2
and
2p+ vy

eN.
vy — 2

Therefore, if there exist vq,y such that viy — 2 | 2p + vy, then the solution of the
Erdos-Straus Conjecture exist for this prime. Until now we are still observing the
patterns.
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Reviewer’s Comments

This paper may be too long and contain too many theorems. It is better to rewrite
some theorems as lemmas or claims. There are lots of errors in this paper and the
following is an incomplete list of corrections and stylistic suggestions.

1. The reviewer has comments on the wordings, which have been amended in
this paper.

2. Rewrite this line as “Let 3(4y + 1) = 4t + 3. Then ¢ and y have the same
parity.”

3. Rewrite this line as “Let 4y +3 =4t + 3. Then t = y.”





