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Abstract. In this project, we have achieved various results using Probabilis-

tic methods. By exploiting the concept of probability and expected value, we

manage to achieve three results: on distribution of entries on a cube, on colour-
ing of vertices of a hypergraph and a lower bound of a maximal independent

set on a hypergraph.

Preface

This project is mainly about the application of probability on graph theory. We
are inspired and motivated to delve into this field by the amazing usefulness of
probability - we can claim a certain graph exist by proving the probability of its
existence larger than 0, without even constructing it. We also appreciate the works
of some celebrated Mathematicians, such as Paul Erdős.

In Chapter 1, we go over some basic concepts concerning Probability Theory and
Graph Theory, which is reorganized from the course notes on ”Probability and
Discrete Mathematics” written by Professor Roman Kotecký from University of
Warwick. This basic introduction attempts to make our following works more
”eatable”. After the introduction of Probability Theory, we have shown a piece of
our original work: a upper bound of P(X − µ ≥ λ) and P(X = 0).

Going through the basics, we attempted to demonstrate the versatility of this prob-
abilistic method in the field of graph theory in Chapter 2. With reference to the
exercises in [1], we successfully showed how such a tool can be utilized to investi-
gate orthonormal vectors and distribution of entries on a matrix. For the part of
graph theory, we extracted 3 prominent results done by Erdős, Szele and Turán. Sk
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property of a tournament was investigated by Erdős in 1947 while the existence of
a tournament with large Hamiltonian paths was proved by Szele in 1943. Last but
not least, Turán’s theorem, as suggested by its name, was Turán’s work in 1941.
With the aid of exercises in [1], we discovered a corollary of Turán’s theorem, which
is related to triangle-free graphs.

In Chapter 3, motivated by the problems we solved in the previous chapter, we
presented several pieces of our original work. We are able to extend the problem
of matrices to the world of cube. Also, we have a generalization on the problems
of matrices and cubes, which is our original work. Up till Chapter 2, the entire
discussion was based on ordinary graphs. Thanks to the probabilistic method,
we were capable of achieving some interesting results in hypergraphs, which are
featured in Chapter 3. 4-colouring problem of hypergraphs is actually a problem
created by Niranjan Balachandran. The section following, which generalized it to
k-colouring problem, is our original work.

With reference to the proof of weak Turán’s theorem on ordinary graphs, included
in [1], we generalized it by ourselves to a hypergraph version. This result is our
pride and joy in this project.

To round off this preface, we want to note down here one of the most intricate
yet beautiful discovery of this project. With the use of mean (or expected value),
we can prove the existence of objects with a property greater or less than the
mean. A straightforward method to evaluate the mean is to convert it into indicator
functions, which can in turn be replaced by probability function. By assuming
uniform distribution, the probability space constructed allow us to evaluate the
probability very easily. Thus, expected value, indicator function and probability
function form a miraculous triangle in proving existence. Not only is the concept
of probability triple is intriguing, but also is this powerful triangle.

Probability and expected value, though being mocked as useless in college mathe-
matics, in fact allow us to see a wondrous world, which was probably unexpected
by us before this project.
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1. The Notion of Probability and Graph

In high school mathematics, probability is about ”When 2 cards are drawn at
random from a deck of 52 playing cards, find the probability that there are 1 King
and 1 Queen” or ”If the letters of the word ‘WOMAN’ is rearranged randomly, find
the probability that the first letter is a vowel” [3], and we barely know what a graph
is. However, it is only a layman’s perspective and this so-called ‘probability’ barely
contribute anything to human kind. In essence, probability methods are a versatile
tool. In order to appreciate the beauty of this method, we need to understand
subtlety behind - Probability Theory.

1.1. Probability Theory

To start with, we shall introduce the probability triple (Ω,F ,P). Ω is called the
sample space which is simply a non-empty set.
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Definition 1. Let Ω be a non-empty set. A σ-algebra F is a non-empty collection
of subsets of Ω such that

1. If E ∈ F , then we have its complement Ω\E ∈ F .

2. If E1, E2, · · · ∈ F , then we have
∞⋃

n=1

En ∈ F .

For example, we have that the power set P(Ω) is an example of σ-algebra of Ω.
Throughout this report, we are going to make the following assumption.

Agreement. In this report, we are going to take Ω to be finite and F = P(Ω).

[See reviewer’s comment (2)]

Because of this assumption, we are allowed to simplify the definition of a probability
measure P as follows.

Definition 2. Let Ω be finite and F = P(Ω). A probability measure is a map
P : F → [0, 1] such that

1. P(Ω) = 1.
2. If A,B ∈ F are disjoint (A ∩B is empty), then we have

P(A ∪B) = P(A) + P(B).

[See reviewer’s comment (3)]

Example 3. Suppose we are tossing a fair coin once. The sample space is given
by Ω = {H,T}, where H and T denotes the event when a head and a tail is shown
respectively. Therefore, F = P(Ω) = {∅, {H}, {T}, {H,T}}. Since the coin is fair,

the probability measure is defined by fixing P({H}) =
1

2
and P({T}) =

1

2
. (This is

usually called the uniform probability.)

We call (Ω,F ,P) a probability triple. Again, due to our Agreement, we can
simplify the definition of a random variable, as follows.

Definition 4. A random variable is a function X : Ω→ R.

Example 5. Suppose we are tossing a fair dice. Then we obtain the obvious sample
space by

Ω = {ONE, TWO, THREE, FOUR, FIVE, SIX}



PROBABILITY, MATRICES, COLOURING AND HYPERGRAPHS 107

and F = P(Ω) as agreed. Again, as the dice is fair, we have P({x}) =
1

6
for each

x ∈ Ω. Now we can define an obvious random variable X : Ω→ R by

ONE 7→1

TWO 7→2

THREE 7→3

FOUR 7→4

FIVE 7→5

SIX 7→6

By convention (and an abuse of notations), we shall denote P(X−1{x}) simply by
P(X = x). In the previous example, we have

P(X = 1) = P(X−1{1}) = P{ONE} =
1

6

Definition 6. Let (Ω,F ,P) be a probability triple and X : Ω → R be a random
variable. We define its expectation (also called mean value) by

E(X) = EP(X) =
∑

x∈X(Ω)

xP(X = x)

and its variance by

var(X) = varP(X) = E((X − E(X))2).

[See reviewer’s comment (4)]

There are some properties of expectations worth mentioning, since they are handy
in our works throughout the project.

Theorem 7. Let (Ω,F ,P) be a probability triple and X,Y be random variables.
Then we have

1. If X ≤ Y , then E(X) ≤ E(Y ).
2. E(X + Y ) = E(X) + E(Y ) and for any c ∈ R, E(cX) = cE(X).
3. If X and Y are independent and uncorrelated, then E(XY ) = E(X)E(Y ).

[See reviewer’s comment (5)]

Proof. See [6]. [See reviewer’s comment (6)]

Example 8. We continue exploiting Example 5. The expectation of X is

E(X) =
6∑

n=1

nP(X = n) =
1

6
(1 + 2 + 3 + · · ·+ 6) =

7

2
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and its variance is
6∑

n=1

1

6

(
n− 7

2

)2

=
35

12

Tossing a fair dice is an easy yet important example that familiarises us with the for-
mal notation of probability. Now let’s put expectation and variance into somewhat
a little more practical use.

Theorem 9. Let X be a random variable with E(X) = 0 and variance σ2. For all
λ > 0, we have that

P(X ≥ λ) ≤ σ2

σ2 + λ2

Proof. Since E(X) = 0, we have the variance σ2 = E(X2) − (E(X)2) = E(X2).
Now consider the random variable X + a. We have

P(X ≥ λ) = P(X + a ≥ λ+ a)

≤ P((X + a)2 ≥ (λ+ a)2)

≤ E(X2 + 2aX + a2)

(λ+ a)2

=
σ2 + a2

(λ+ a)2

For optimum a =
σ2

λ
, we have P(X ≥ λ) ≤ σ2

σ2 + λ2
, as claimed.

[See reviewer’s comment (7)]

For Chebyshev’s inequality (see [6]), we have

P(X − µ ≥ λ) ≤ P(|X − µ| ≥ λ) ≤ σ2

λ2
.

Can we attain a better bound in certain conditions? Yes, we achieved it!

Theorem 10. Let X be a random variable with E(X) = µ and variance σ2. For
all λ > 0, we have

P(X − µ ≥ λ) ≤ σ2

σ2 + λ2
.

[See reviewer’s comment (8)]
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Proof.

P(X − µ ≥ λ) = P(X + a− µ ≥ λ+ a)

≤ P((X + a− µ)2 ≥ (λ+ a)2)

≤ E(X − µ+ a)2

(λ+ a)2

=
σ2 + a2 − 2aE(X − µ)

(λ+ a)2

=
σ2 + a2

(λ+ a)2

For optimum a =
σ2

λ
, we have P(X − µ ≥ λ) ≤ σ2

σ2 + λ2
.

Notice that if we replace (X − λ) with (λ − X), the proof is still valid. In other

words, we have P(µ−X ≥ λ) ≤ σ2

σ2+λ2 .

Corollary 11. Let X be a random variable, taking non-negative integral values.
For E(X2) <∞, then

P(X = 0) ≤ σ2

E(X2)

[See reviewer’s comment (9)]

Proof. We can see that

P(X = 0) = P(µ−X ≥ µ) ≤ σ2

σ2 + µ2
=

σ2

E(X2)− λ2 + λ2
=

σ2

E(X2)
.

We are done.

Note that here is a comparision with Chebyshev’s inequality:

P(X = 0) = P(|X − µ| ≥ µ) ≤ σ2

µ2
.

Thus we observe that
σ2

E(X2)
is a better bound.

To commence the journey of probabilistic methods, the introduction of the indicator
1A of an event A ∈ F is indispensable.

Definition 12. Define 1A(ω) = 1 for ω ∈ A and 1A(ω) = 0 for ω /∈ A.

Then we have the following equality

P(A) = E(1A),

by observing that E(1A) = 0 · P(1A = 0) + 1 · P(1A = 1) = P(A).
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1.2. Graph Theory

Graph theory is the study of graphs, and the origin of graph theory is the pa-
per written by Leonhard Euler on the Seven Bridges of Kőnigsberg in 1736. [See
reviewer’s comment (10)]

But before our introduction, we shall take the set of natural number N = {1, 2, 3, . . . }
and the set of integers Z = {. . . ,−1, 0, 1, 2, . . . }. For convenience, we also introduce
the following notations:

{x, y} an unordered pair
(x, y) an ordered pair
[n] {1, 2, 3, . . . , n}
|V | number of elements in a finite set V
|V |k the set of k-element subsets of V

[See reviewer’s comment (11)]

A graph G is made up of two elements: vertices and edges, usually denoted by a
pair (V,E), where V is a non-empty set of vertices and E is a subset of |V |2. [See
reviewer’s comment (12)]

We shall then introduce the idea of a subgraph, a clique and an independent set.

Definition 13. Let G = (V,E) be a graph.

1. A subgraph is a graph G′ = (V ′, E′) of G = (V,E) where V ′ ⊂ V and E′ ⊂ E.

2. A subgraph G = (V ′, E′) is induced by G on V ′ if all edges in E connecting
vertices in V ′ are in E′.

3. A k-clique in G is a complete subgraph (where vertices are pair-wisely con-
nected) induced by G on k vertices. Define ω(G) as the size of a biggest clique.
i.e.

ω(G) = max{|K| : K ⊂ V, induced graph G(K) is complete}.

4. An independent set in G is a subgraph without any edges induced by G. Define
α(G) as the size of a biggest independent set. i.e.

α(G) = max{|K| : K ⊂ V, induced graph G(K) is independent set}.

For example, for a graph G = (V,E) with |V | = n vertices and |E| = 0, we have
that α(G) = n. We shall show a more colourful and vivid example.
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Figure 1. Graph G

Consider the above graph G = (V,E) in Figure 1, with |V | = 5 and |E| = 5. The
black dots are vertices V and the black lines are edges E.

Figure 2. Subgraph G′

This is a subgraph G′ = (V ′, E′) of G. We then have the red dots as V ′, which is
elements of V ; similarly, the black line is E′ as elements of E. Note that a subgraph
does not necessarily contain the exact edges that V ′ are connected to in G.

Figure 3. Induced subgraph G′′

Compared to a typical subgraph, an induced subgraph contains the exact edges
that connect V ′ in G. In this subgraph G′′ = (V ′′, E′′), the blue lines E′′ connects
exactly all red dot V ′′, which is a partial mimic of graph G in Figure 1.
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Figure 4. a 2-clique of graph G

Above we have a 2-clique of G, which is also the case of ω(G) because we cannot
find three certain vertices in G such that they are all connected, i.e. a 3-clique.
Thus we have ω(G) = 2.

Figure 5. an independent set of graph G

These two purple dots are not connected in G, so they are an indepentdent set of
G. Owing to the fact that we cannot find any three unconnected vertices, i.e. an
independent set of 3 vertices, we have α(G) = 2.

2. Examples of Probabilistic Methods

Paul Erdős’ is undoutedly the pioneer of the application of probabilistic methods.
He is, in layman’s perspective, regarded as a werido. For example, he pharsed
”children” as ”epsilons”, ”people who stopped doing mathematics” as ”dead”, and
”to give a mathematical lecture” as ”to preach”. Despite his interesting personality,
his contribution to probabilistic methods is profound. In this chapter, we are going
to demonstrate some of the powerful use of probabilistic methods. It is intriguing
to see that probabilistic methods can be applied to fields other than probability
itself, such as linear algebra and graph theory - our main course.

2.1. Unit Vectors in Rn

The first example is extracted from an exercise of [1] on investigating unit vectors
in Rn. We will give our solutions to this exercise, using probabilistic methods.
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Theorem 14. Let v1, v2, . . . , vn ∈ Rn where |vi| = 1 for all 1 ≤ i ≤ n. Then there
exist ε1, ε2, . . . , εn ∈ {−1, 1} such that

|ε1v1 + ε2v2 + · · ·+ εnvn| ≤
√
n;

and also ε′1, ε
′
2, . . . , ε

′
n ∈ {−1, 1} such that

|ε′1v1 + ε′2v2 + · · ·+ ε′nvn| ≥
√
n

[See reviewer’s comment (13)]

Proof. [See reviewer’s comment (14)]

Let vj = (ij1 , ij2 , ij3 , ..., ijn), where
∑n
k=1 i

2
jk

= 1. We want to show that

E



∣∣∣∣∣∣

n∑

j=1

εjvj

∣∣∣∣∣∣


 =

√
n.

[See reviewer’s comment (15)]

Note that E



∣∣∣∣∣∣

n∑

j=1

εjvj

∣∣∣∣∣∣


 = E




n∑

k=1

n∑

j=1

εjijk


. By expanding the right hand side,

we get




n∑

j=1

εjijk




2

= ε1i
2
1k + ε1ε2i1ki2k + · · ·+ ε2ni

2
nk.

Since each εj is independent and E(εj) = 0, we have

E(εj1εj2ij1kij2k) = E(εj1)E(εj2)E(ij1k)E(ij2k) = 0,

where j1 is not equal to j2. Therefore, by summing everything, we have

E




n∑

k=1




n∑

j=1

εjijk






2

= E




n∑

k=1




n∑

j=1

ε2j i
2
jk




 .
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Since ε2j = 1, we thus have

E




n∑

k=1




n∑

j=1

εjijk






2

= E




n∑

k=1




n∑

j=1

i2jk






= E




n∑

j=1

(
n∑

k=1

i2jk

)


= E




n∑

j=1

1




= n.

Thus there exist ε1, ε2, . . . , εn ∈ {−1, 1} such that
∣∣∣∣∣∣

n∑

j=1

εjvj

∣∣∣∣∣∣

2

≥ n

and ε′1, ε
′
2, . . . , ε

′
n ∈ {−1, 1} such that

∣∣∣∣∣∣

n∑

j=1

ε′jvj

∣∣∣∣∣∣

2

≤ n.

By taking square root from the both sides, the initial claim is agreed.

2.2. Distribution of Integers on a Matrix

The following exercise is from [1] and motivate us to generalize this problem in
Chapter 3. But first we shall present our own solution to this problem.

Lemma 15. If a number k appears in a matrix for b times, there are in total at
least 2

√
b rows and columns that have k in it.

The proof is quite obvious. [See reviewer’s comment (16)] The number of rows and
columns with k will be the least if the ’k’s are arranged in a square like shape. By
direct counting, there are at least 2

√
b rows and columns with k.

Theorem 16. In an n × n matrix which each of the numbers 1, 2, . . . , n appears
exactly n times, there is a row or column in the matrix with at least

√
n distinct

numbers.

Proof. Let X be the number of distinct numbers appearing in a row/column and
Ak is the event that k ∈ {1, 2, . . . , n} appears in a row or column, we have that

E(X) =
n∑

k=1

E(1Ak
) = nE(1Ak

) = nP(Ak)
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By Lemma 15, there are in total at least 2
√
n rows and columns that have k in it,

which means P(Ak) ≥ 2
√
n

2n
. We thus have that

E(X) = nP(Ak) ≥ n2
√
n

2n
=
√
n

We are done. [See reviewer’s comment (17)]

2.3. Tournament

Back to the origin, probabilistic methods are used to solve problems of graph theory.
Below we extract two of the earliest theorems proved. [See reviewer’s comment (18)]
The first one is about them existence of a graph with a special property due to Erdő
in 1947, while the second one is done by Szele in 1943 regarding the existence of
tournaments containing a large number of Hamiltonian paths. The theorems in
this section are well-known and their proofs can be found in [1]. Yet, we rewrite
their proofs in our own words and include them in this section because these proofs
are the major motivations for achieving our results in Chapter 3 by probabilistic
methods.

Definition 17.

1. A tournament on V is an oriented graph
−→
T = (V,

−→
E ) with orientation on all

edges of the complete graph on V ; for any x, y ∈ V , x 6= y, either (x, y) ∈ −→E
or (y, x) ∈ E, but not both. If (x, y) ∈ −→E , we say that x is bearing y.

2. A tournament
−→
T has property Sk, if for every set K ⊂ V of k vertices,

|K| = k, there exists v ∈ V that is beating all x ∈ K, i.e., (v, x) ∈ −→E for
every x ∈ K.

Theorem 18. (Erdős). Let k, n ∈ N, k ≥ 2, be such that
(
n

k

)
(1− 2−k)n−k < 1.

Then there exists a tournament of n vertices that has the property Sk.

Proof. Consider a random tournament on V = [n] ≡ {1, 2, . . . , n} (each edge ori-

ented independently with probability 1/2 (a toss of a fair coin); i.e., all 2(n
2) tour-

naments occur equally likely). Fix K ⊂ V of size k; Ak is the event (set of tourna-
ments), for which there is no vertex beating all vertex in K. For any fixed v ∈ V \K,

the number of tournaments which v beats all vertices in K is 2(n
2)−k (there are two

possible directions for all edges except those linking v and all vertices in K). There-
fore, the probability that v beats all vertices in K is 2−k and that v does not beat
all vertices in K is 1− 2−k. There are (n− k) vertices in V \K and the event that
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any of them does not beat all vertices in K are mutually independent (they involve
different sets of edges). Thus, we have

P(AK) = (1− 2−k)n−k

and thus,

P(Sk not true) = P(∪K⊂V|K|=k
AK) ≤

∑

K⊂V,|K|=k
P(AK) =

(
n

k

)
(1− 2−k)n−k < 1

Except the problem concerning Sk property in a tournament, we are going to in-
vestigate another tournament problem: Hamiltonian paths in a tournament. We
shall first give the definition.

Definition 19.

1. A path is a non-empty graph P = (V,E) of the form V = {x1, x2, . . . , xk} and
E = {{x1, x2}, {x2, x3}, . . . , {xk−1, xk}}, where all vertices xi are distinct.

2. Let G = (V,E) be a graph. A path is a Hamiltonian path if it contains all
vertices of G.

3. Let
−→
T = (V,

−→
E ) be a tournament. We say that a Hamiltonian path in a

complete graph on V is according with the tournament
−→
T if each edge of the

path is passed in accordance with the orientation given by
−→
T .

Theorem 20. (Szele). There is a tournament
−→
T on n vertices that has at least

n!
2n−1 Hamiltonian paths according with

−→
T .

Proof. Consider random tournament
−→
T with uniform distribution on all orienta-

tions. For a given permutation π on {1, 2, . . . , n}, Xπ is the indicator of the event

that the Hamiltonian path given by π is according to
−→
T , i.e. the event that all

oriented edges (π(i), π(i+ 1)), i = 1, . . . , n− 1, appear in
−→
T . As the orientation of

different edges is chosen independently,

E(Xπ) = P(π(i), π(i+ 1)) ∈ −→T for i = 1, 2, . . . , n− 1 =
1

2n−1

Let X(
−→
T ) be the total number of Hamiltonian paths according with

−→
T . Its expec-

tation is E(X) =
∑
π E(X) =

n!

2n−1
. So, there must be a tournament with at least

n!

2n−1
Hamiltonian paths.
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2.4. Turán’s Theorem

The following Turán’s Theorem has inspired us to work on the lower bound on
α(H) for hypergraphs. Before we plunge into the hypergraph version of Turan’s
theorem, we shall admire the simple graph version of it.

Theorem 21. (Turán). For any graph G = (V,E), the size α(G) of the largest
independent set satisfies the lower bound

α(G) ≥ |V |2
2|E|+ |V |

Proof. See [1].

The following is a direct consequence of the Turán’s Theorem that we extracted
from an exercise of [1].

Corollary 22. Any graph on n vertices with no triangles has at most n2/4 edges.

[See reviewer’s comment (19)]

Proof. Let G = (V,E) and Ec = {e ∈ [V ]2 : e /∈ E}. By Turan’s Theorem, we have

α(G) ≥ |V |2
2|E|+ |V | .

For any graph G, we consider G′ such that Ec and E /∈ G′. Thus, we have

ω(G′) ≥ |V |2
|V |+ 2(

(
n
2

)
− |E|) .

If G′ is triangle-free, then we have ω(G′) ≤ 2. Thus, for G′ with n vertices and

trianglefree, we have 2 ≥ n2

n+ n(n− 1)− 2|E| . Rearranging this yields |E| ≤ n2

4
.

We are done. [See reviewer’s comment (20)]

3. Our Results

Finally, here comes the long expected part of original works! These results do
not stem from randomness or by sheer luck. We have distribution of entries on a
cube, colouring on hypergraphs, and independent set on hypergraphs. In essence,
Probability and expected value have led us something probably unexpected.
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3.1. First Result: On the Distribution of Entries on a Cube

Having solved the problem concerning a matrix in Theorem 16 of Section 2.2, how
about entries on a cube? We achieve a result by mimicking the proof of Theorem
17.

Lemma 23. If a number k appears in a cube for b times, there are in total at least
3b

2
3 rows, columns and aisles that have k in it.

[See reviewer’s comment (21)]

Again, the proof is quite clear. The number of rows, columns and aisles with k will
be the least if the “k”s are arranged in a cube like shape. By direct counting, there
are at least 3b

3
2 rows, columns and aisles with k.

Theorem 24. In an n× n× n cube which each of the numbers 1, 2, . . . , n appears
exactly n2 times, there is a row/column/aisle in the cube with at least n

1
3 distinct

numbers.

Proof. [See reviewer’s comment (22)] Fix a row/column/aisle. Let X be the num-
ber of distinct numbers appearing in this row/column/aisle and Ak is the event
that the number k ∈ {1, 2, . . . , n} appears in this row/column/aisle, then we have
that

E(X) =
n∑

k=1

E(1A) = nE(1Ak
) = nP(Ak).

By Lemma 23, there are at least 3n
4
3 rows, columns and aisles in the cube that

contains the number k, which implies P(Ak) ≥ 3n
4
3

3n2 = n
1
3

n . Then we have

E(X) = nP(Ak) ≥ nn
1
3

n
= n

1
3

and the result follows.

Using the idea of Theorem 16, we are able to achieve the following corollary, by
considering a matrix with numbers filled in for a not fixed number of times.

Corollary 25. In an n×n matrix in which each of the numbers {1, 2, ..., a} appears

at least b times, there is a row/column in the matrix with at least ab
1
2

n distinct
numbers.

Proof. Fix a row/column. Let X be the number of distinct numbers appearing
in this row/column and Ni is the event that i ∈ {1, 2, . . . , a} appears in this
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row/column. We have that

E(X) =
a∑

i=1

E(1Ni
)

≥ aE(1Ni
) = aP(Ak), k is the number that appears with the least frequency.

By using Lemma 23, the total number of rows and columns that contains the

number k ≥ 2b
1
2 , which means P(Ak) ≥ 2b

1
2

2n
=
b

1
2

n
. We then have

E(X) ≥ aP(Ak) ≥ ab
1
2

n

and the results follows.

In particular, when we put a = n and b = n,we get that there is a row/column

in the matrix with at least n(n
1
2 )

n =
√
n distinct numbers, which is exactly what

Theorem 16 says. The idea can also be applied when it comes to a cube, and we
get the following corollary.

Corollary 26. In an n×n×n cube which each of the numbers {1, 2, . . . , a} appears

at least b times, there is a row/column/aisle in the cube with at least ab
2
3

n2 distinct
numbers.

Proof. Fix a row/column/aisle. Let X be the number of distinct numbers appearing
in this row/column/aisle and Ni is the event that the number i ∈ {1, 2, . . . , a}
appears in this row/column/aisle. We have

E(X) =
a∑

i=1

E(1Ni
)

≥ aE(1Ni
) = aP(Ak), k is the number that appears with the least frequency.

Using Lemma 23, the total number of rows,columns and aisles with k ≥ 3b
2
3 , which

implies that P(Ak) ≥ 3b
2
3

3n2 = b
2
3

n2 . We thus have

E(X) ≥ aP(Ak) ≥ ab
2
3

n2

and the results follows.

When we put a = n and b = n2, we get that there is a row/column/aisle in the

cube with at least n(n2)
2
3

n2 = n
1
3 distinct numbers, which is exactly what we have

shown in Theorem 24.
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3.2. Second Result: Colouring on Hypergraphs

We shall begin with the definition of a n-uniform hypergraph.

Definition 27. Let V be a non-empty set of vertices.

1. A n-uniform hypergraph is a graph H = (V,E) where E ⊂ [V ]n. Elements in
E and V are called the edges and vertices of the graph respectively.

2. A graph H ′ = (V ′, E′) is a subgraph of H if V ′ ⊂ V and E′ ⊂ E.
3. A subgraph H ′ = (V ′, E′) is induced by H on V ′ if all edges satisfy the

following property: e is in E′ if all vertices in e are in V ′.
4. An independent set in H is a subgraph without any edges induced by H.

Roughly speaking, a n-uniform hypergraph is just a graph with its edges associ-
ated to n vertices. In particular, a 2-uniform hypergraph is nothing else but a
conventional graph.

Definition 28. The average degree of a n-uniform hypergraph H is given by

d(H) =
1

V (H)

∑

x∈V (H)

|{e : x ∈ e and e ∈ H}| = n|E(H)|
|V (H)| .

Let’s have a brief example of hypergraph. For clear presentation, we use a circle to
include all vertices of an edge of n-uniform hypergraph. In other words, n vertices
are included in each circle.

Above we have a 3-uniform hypergraph H. Note that a vertex can be included in
more than 1 circle; meanwhile, it is possible that a vertex is not included in any

circle. The average degree of the above graph is d(H) =
3|E(G)|
|V (G)| =

3(3)

7
=

9

7
.

The following theory concerning 4-colouring problem of hypergraphs is actually a
problem created by Niranjan Balachandran when he taught Probabilistic methods
in Combinatorics at Caltech in 2010 [2]. We shall rewrite the proof in our own
words because it is integral to our work: generalization of k-colouring hypergraph.

Theorem 29. If n ≥ 4 and H = (V,E) is a n-uniform hypergraph with |E| ≤ 4n−1

3n
,

then it is possible to colour all vertices with 4 colours such that every edge has at
least one vertex of each colour.
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Proof. [See reviewer’s comment (23)] Let a, b, c and d be four distinct colours. Let
X be the number of edges consisting of vertices with less than four differently
colours and A be the event that there is an edge consisting of vertices with less
than four colours. Denote Aa as the event that there is an edge such that the
colour a is missing, and so on for Ab, Ac, and Ad. Then we have that

E(X) = |E|E(1A)

≤ |E|E(1Aa
+ 1Ab

+ 1Ac
+ 1Ad

)

= 4|E|
(

3

4

)n
, because E(1Aa

) = P(Aa) = (3/4)n (resp. Ab, Ac, Ad.)

= |E| 3n

4n−1

Thus, if |E| ≤ 4n−1

3n
, then we have E(X) ≤ 1. Hence, there exists a graph with

X < 1 or equivalently X = 0 as X is non-negative.

We are able to generalize the above problem, which is our original work.

Theorem 30. If n ≥ k, where k is an integer ≥ 2 and H is a n-uniform hypergraph

with |E| ≤ kn−1

(k − 1)n
, then it is possible to colour all vertices with k colours such

that every edge has at least one vertex of each colour.

Proof. Let C1, C2, C3, . . . , Ck be k different colours. Let X be the number of edges
consisting of vertices with less than k different colours and A be the event that
there exists an edge consisting of vertices with less than k different colours. Denote
AC1

as the event that there exists an edge without a C1-coloured vertex, and so on
for AC2

, AC3
, . . . , ACk

respectively. Then we have

E(X) = |E|E(1A)

≤ |E|E(1AC1
+ 1AC2

+ 1AC3
+ · · ·+ 1ACk

)

= k|E|
(
k − 1

k

)n
, because E(1ACl

) = P(ACl
) =

(
k − 1

k

)n
.

= |E| (k − 1)n

kn−1

Thus, if |E| ≤ kn−1

(k − 1)n
, then we have E(X) ≤ 1. Hence, there exists a graph with

X < 1, i.e. X = 0.

In particular, if we put k = 2, it is exactly what Paul Erdős had done (See [2]).
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3.3. Third Result: Size of Maximal Independent Set on Hypergraphs

We shall denote the size of a maximal independent set of H by α(H).

Theorem 31. For a n-uniform hypergraph H of which d(H) ≥ 1, we have

α(H) ≥ |V (H)|d(H)−
1

n−1

(
1− 1

n

)

Proof. Let S be an induced subgraph of H such that the vertices of S are chosen
with a probability p ∈ (0, 1). Then we have

E(|V (S)|) =
∑

v∈V (H)

E(1v) = |V (H)|p

and

E(|E(S)|) =
∑

e∈V (H)

E(1e) = |E(H)|pn =
d(H)

n
|V (H)|pn.

Subtracting these, we have

E(|V (S)|)− E(|E(S)|) = |V (H)|p
(

1− d(H)

n
pn−1

)
.

Therefore, there exists S ⊂ H such that the difference between the number of
vertices and edges is at least

A(p) = |V (H)|p
(

1− d(H)

n
pn−1

)
. (3.1)

Then we remove one vertex from each edge of E(S). By removing at most |E(S)|
vertices and the associated edges, we obtain an independent set with at least A(p)
vertices, i.e. we have

|V (S)| − |E(S)| ≥ A(p).

We demonstrate the process of removing vertices with an example in Figure 6 on
the next page.
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Figure 6. The Process of Removing Vertices (Yellow stars refer
to the removed vertices)

By differentiating (3.1) with respect to p, we know that A(p) attains its maximum

when we choose p = d(H)−
1

n−1 . In this case, we have

A(p) = |V (H)|d(H)−
1

n−1

(
1− 1

n

)
.

Hence, we have α(H) ≥ |V (H)|d(H)−
1

n−1
(
1− 1

n

)
, as claimed.

For an integer n ≥ 2, consider a n-uniform hypergraph H = (V,E) with k disjoint
edges. In other words, we have ei ∩ ej is empty whenever ei, ej ∈ E and i 6= j.
Therefore, we have |V | = nk and the size of the maximal independent set α(H) is
given by (n− 1)k. Applying our freshly baked bound in Theorem 31, we get

|V (H)|d(H)−
1

n−1

(
1− 1

n

)
= nk

(
n|E|
|V |

)− 1
n−1

(
1− 1

n

)

= nk(1)−
1

n−1

(
1− n− 1

n

)

= (n− 1)k
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Therefore, the bound form our original Theorem 31 is indeed sharp. In particular,
we demonstrate it with an example when n = 3; let us call it the Happy Graph.

Figure 7. The Happy Graph. (Removing vertices from a 3-
uniform graph with 4 disjoint edges; yellow stars denote the re-
moved vertices.)

In the Happy Graph (Figure 7), we have a 3-uniform hypergrpah H = (V,E) where
|V | = 12 and |E| = 4. We remove one vertex from each edge in order to obtain the
largest independent set. As demonstrated in Figure 7, we need to remove 4 vertices
in total. Thus we have α(G) = 8 and this agrees with

|V (H)|d(H)−
1

n−1

(
1− 1

n

)
= 12

(
3(4)

12

)− 1
3−1
(

1− 1

3

)
= 8.

3.4. Bad Graphs: when is our bound not effective?

Despite the sharp example we have demonstrated in the Happy Graph (Figure 7),
there are some hypergraphs whose size of maximal independent set is significiantly
greater than the bound we obtained in Theorem 31. We are calling these graphs as
”bad graphs”. In this section, we are going to investigate what characteristics or
properties do these ”bad graphs” possess.

To begin with this investigation, we try to motivate ourselves by some examples
that we interpret as ”bad”. One such example is given by Figure 8. Of course, we
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shall begin with the usual graphs (or 2-uniform hypergraph) that we are familiar
with.

Figure 8. An Example of ”Bad Graphs”. (Yellow stars refer to
the removed vertices)

Let H1 = (V1, E1) be the graph in Figure 8. It is glaring that by removing one
vertex, we can obtain an independent set. Therefore, we have α(H1) = 8. According
to our bound in Theorem 31, we have

|V (H1)|d(H1)−
1

n−1

(
1− 1

n

)
= |V (H1)|

(
2|E|
|V1|

)− 1
n−1

(
1− 1

n

)

= 9

(
2(8)

9

)− 1
2−1
(

1− 1

2

)

= 2.53125

which is much smaller than 8.

For another example, consider the following 3-uniform hypergraph (Figure 9).



126 HOK KAN YU, DAVE LEI, KA CHUN WONG, SIN CHEUNG TANG

Figure 9. Another Example of ”Bad Graphs” (Yellow stars refer
to the removed vertices)

Let H2 = (V2, E2) be the graph in Figure 9. Then we have α(H2) = 12. However,
the lower bound in Theorem 31 yields

|V (H2)|d(H2)−
1

n−1

(
1− 1

n

)
= |V (H2)|

(
3|E|
|V2|

)− 1
n−1

(
1− 1

n

)

= 13

(
3(6)

13

)− 1
3−1
(

1− 1

3

)

≈ 7.365

which is significantly less than 12.

From the above two examples (Figure 8 and Figure 9), we observed that bad graphs
arises when we remove excessive vertices. In particular, in the first example H1

(Figure 8), we only have to remove one vertex, whereas in the proof of Theorem 31
we removed

E(|E1|) = 2.53125 vertices.

Similarly, in the second example H2 (Figure 9), practically we only have to remove
one single vertex, whereas in the proof of Theorem 31 we removed

E(|E2|) = 3.6826 vertices.
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To put this observation into a more technical tone, bad graphs arise when some
of the vertices have a very high degree (for example, the middle vertices in Figure
8 and Figure 9 respectively) while some, a very low degree. In other words, bad
graphs have a great variance among the degree of vertices.
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Reviewer’s Comments

We organize our comments in two parts: mathematical and expositional.

Comments on the mathematical content

1. The reviewer has comments on the wordings, which have been amended in
this paper.

2. The reviewer thinks it is better to call it an assumption rather than an agree-
ment.

3. After the definition the authors may add a sentence like this:
Since the sample space Ω is finite, a probability measure can be
constructed by defining the probability P({ω}) for each ω ∈ Ω. Then
for any A ⊂ Ω we have P(A) =

∑
w∈A P({ω}).

4. The reviewer thinks it is better to use the following definition:

E(X) =
∑

ω∈Ω

X(ω)P({ω}).

This formulation is more fundamental (as it is an integral on Ω) and avoids
writing explicitly the range X(Ω) of X.

5. Independence has not been defined yet. Also, if X and Y are independent,
they are automatically uncorrelated. So it is redundant to say that X and Y
are independent and uncorrelated.

6. State precisely the result used (e.g. Theorem 2.5.1 of [ZZ99]). Same for other
citations in the paper.

7. State that a > 0. (Otherwise, the first inequality in the display may not
hold. For example, 1 ≥ −5 but 12 < (−5)2 = 25.) Also, say that the second
inequality follows from Markov’s inequality. Finally, before the last sentence
(‘For the optimum...’), add a sentence like this one: ‘Since a > 0 is arbitrary,
we may find the best inequality by optimizing over a.’

8. This follows directly from Theorem 9: X − µ has mean 0 and variance σ2.
9. It is not required that X takes integral values. Also, give a label to the bound.

Then, we may write: ‘Since E(X2) ≥ µ2’, we see that the bound (∗) is better
than the one given by Chebyshev’s inequality. (The authors may also note
that the bound is tight: consider the case where P(X = 0) = P(X = 1) = 1

2 .)
10. Cite Euler’s paper.
11. |V |k is not a good notation for the set of subsets of V that have size k. It is

rather confusing as |V |, the size of V , is a number.
12. It may be helpful to clarify that the graph is undirected and simple.
13. Say that | · | is the Euclidean norm.
14. First mention that now you treat ε1, . . . , εn as independent random variables

that are uniformly distributed on {−1, 1} (i.e., Rademacher random vari-
ables). Also, the use of ij1, . . . , ijn for the components of vj is rather confus-
ing (because i is usually an integer). A better one may be vj = (aj1, . . . , ajn).
Another choice is vj = (vj1, . . . , vjn).
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15. The displayed equation should be

E







n∑

j=1

εjvj




2

 = n.

16. While the main idea is clear, the proof is not completely trivial. For example,
b may be not a perfect square. Please give the details and give a bound which
is an integer.

17. The authors have to explain what is random here. ‘Consider a random vari-
able X constructed as follows. First, pick a row or a column randomly. Since
the matrix is a square matrix, there are 2n choices and each row/column will
be picked with probability 1

2n . Then, we let X be the number of distinct
numbers in that row/column...’

18. Probabilistic methods are used in many areas – not only in graph theory.
The authors may say ‘In this section we present two early results that were
established by probabilistic methods’.

19. Corollary 22. Define ‘triangle’.
20. The reviewer thinks the authors mean Ec ∈ G′ and E /∈ G′. Please explain

how to use ω(G′) in Turán’s theorem.
21. The reviewer believes the bound should be 3b1/3 instead of 3b2/3. For example,

consider a cube with side 2, and suppose all entries are the same. The total
number of entries (k) is 8, and the total number of rows, columns and aisles
is 6. Then 6 = 3 · 81/3. The statements of the subsequent results should be
modified accordingly.

22. Please explain what is random in the proof (same for the proofs of the next
two corollaries).

23. Again, what is random here? Note that the hypergraph is fixed and is thus
non-random. To use probabilistic methods, one must specify a random ob-
ject (e.g. a random colouring). (This comment will not be repeated for the
remaining results.)

Comments on exposition
The overall structure of the paper is quite easy to follow. After providing in Chapter
1–2 the necessary background and motivations, the main (original) results are stated
and proved in Chapter 3.

Chapter 1. The brief review of basic probability is clear. The only comment of
the reviewer is that the examples (mainly about throwing a die) are all rather
trivial: from them it is not easy to appreciate the need and depth of the rigorous
formulation (σ-algebra, countable additivity, etc). The section on graph theory is
well written (a brief discussion of modern applications would be interesting for the
reader).
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Chapter 2. It would be great to explain why probabilistic methods are useful (espe-
cially in graph theory). For example, many combinatorial objects (with prescribed
properties) are difficult to construct explicitly, and probability provides a relatively
easy way to prove existence of these objects.

Chapter 3. The authors have to be more careful when presenting probabilistic
proofs. As mentioned above, before talking about things like expectation, the way
things are randomized must be described precisely.

There are some grammatical mistakes and misuses of language that could be avoided.
Also, there are several ‘emotional’ sentences which, in the reviewer’s opinion, are
not appropriate in an academic paper. To give an example, let us discuss one
paragraph of the paper in some detail (see the beginning of Chapter 3):

Finally, here comes the long expected part of original works! These
results do not stem from randomness or by sheer luck. We have distri-
bution of entries on a cube, colouring on hypergraphs, and independent
set on hypergraphs. In essence, Probability and expected value have led
us something probably unexpected.

The first two sentences are somewhat too emotional. The third sentence is gram-
matically incorrect. The last sentence looks better (lead ‘to’), but it is not discussed
in the remainder of the paper why the results are ‘probably unexpected’. Let us
rewrite the paragraph in a way which is more appropriate in this context:

In this chapter we present our original results achieved only after a lot
of effort. They are about the distribution of entries in a cube as well
as colourings and independent sets of hypergraphs. All these results
will be proved by probabilistic methods, especially the use of expected
values. Indeed, a main theme of this paper is that probabilistic methods
are powerful tools that allow us to obtain surprising proofs of surprising
results.




