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Abstract. A lot of work has been put into solving special cases of the famous

Square Peg Problem, which focuses on the two dimensional space. The aim of
this project is to investigate the generalization of the Triangle Peg Problem into

manifolds of higher dimensions.

By considering the Triangle Peg Problem, we have successfully proven the
Tetrahedron Peg Problem, i.e. for every smooth compact connected surface,

there exists four distinct points on the surface which can form a regular tetra-

hedron. Finally, by induction, we have generalized a variant of the Triangle Peg
Problem to even higher dimensions.
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1. Introduction

1.1. Motivation. The famous unsolved problem in Mathematics, the Square Peg
Problem (or Toeplitz’ Conjecture) proposed by Otto Toeplitz in 1911, discusses if
every simple closed curve in the two dimensional plane inscribes a square. More
preciously,

Conjecture 1.1 (Square Peg Problem). For all simple closed curve γ ⊂ R2, there
exist four distinct points x, y, z, w ∈ γ such that they form a square, i.e.

∥x− y∥ = ∥y − z∥ = ∥z − w∥ = ∥w − x∥.

This problem has remained unsolved for over a century.
In the early stage of our research, we were inspired by the paper ‘Equilateral

triangles and continuous curves’ by Mark D. Meyerson [1]. It proves several results
related to the triangle peg problem and even the stronger, fixed peg variant of it,
which states that each point on every simple closed curve in the two dimensional
plane is a vertex of an inscribed equilateral triangle. Formally,

Theorem 1.2 (Fixed Equilateral Triangle Peg Problem). Given any simple closed
curve γ ⊂ R2 and a point x ∈ γ, there exist two distinct points y, z ∈ γ such that
x, y, z is an equilateral triangle, i.e.

∥x− y∥ = ∥y − z∥ = ∥z − x∥.

Based on the results, we decided to make a proof on the Regular Tetrahedron Peg
Problem, and it aided us to deduce some strategies to tackle it in the early phase.

We have also considered other possible shapes such as cuboids and pyramids.
However, considering the simple properties of a tetrahedron, we believe that the
tetrahedron is the most suitable for our generalized topic.

1.2. Outline of the Paper. In our research, we firstly revisit the Equilateral Tri-
angle Peg Problem and examine the crucial properties of simple closed curves and
equilateral triangles to understand the possible methods to generalize and solve the
problem.

Then, we attempt to extend our vision from two to three dimensional space
to investigate the Regular Tetrahedron Peg Problem: the possibility that all four
vertices of a regular tetrahedron lie on a three dimensional compact surface, mainly
focusing on its fixed peg variant.

Problem 1.3. Under what condition for a compact surface S ⊂ R3 and being given
a point x ∈ S do there exist three distinct points y, z, w ∈ S which form a regular
tetrahedron with x?
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Finally, manifolds in higher dimensions would also be a part of our investigations.
By considering the outline of our proofs in lower dimensions, we have generalized
the Regular Tetrahedron Peg Problem to higher dimensional manifolds, which will
be further discussed below.

1.3. Notations and Definitions. Before we begin the investigation, let us define
some common terminologies and symbols used in this document.

Definition 1.4. R denotes the set of all real numbers.

In this document, an n-dimensional point P ∈ Rn may sometimes refer to the

position vector
−−→
OP where O is the origin.

Definition 1.5. An n-dimensional unit sphere Sn =
{
x ∈ Rn+1 : ∥x∥ = 1

}
.

Definition 1.6. A curve γ ⊂ Rn is the image of a continuous function f : [0, 1] →
Rn. f is called the parametrization of γ.

Definition 1.7. Define a function R : (R2,R2,R) → R2 with

R(y, x, θ) =

[
cos θ − sin θ
sin θ cos θ

]
(y − x) + x,

where x and y are the column vector representations of the points, which returns the
image of y under a rotation about x by an angle θ anti-clockwise.

Definition 1.8. ∂S denotes the boundary of the set S.

Definition 1.9. cl(S) denotes the closure of the set S, i.e. S ∪ ∂S.

2. Revisiting the Jordan Curve

2.1. Introduction to the Jordan Curve. As aforementioned, the Equilateral
Triangle Peg Problem investigates simple closed curves, i.e. Jordan curves. We
define Jordan curves as follows:

Definition 2.1. A curve is closed if f(0) = f(1) where f : [0, 1] → R2 is its
parametrization.

Definition 2.2. A Jordan curve is a closed curve whose parametrization f : [0, 1] →
R2 is injective on [0, 1).

In addition, the definition of the Jordan arc is useful in later proofs.

Definition 2.3. A Jordan arc is a proper, path-connected subset of a Jordan curve.

Let us recall an important fact about continuity:

Theorem 2.4 (Intermediate value theorem). Given a continuous function f :
[0, 1] → R, if f(0) ≤ f(1), then ∀y ∈ [f(0), f(1)] ,∃x ∈ [0, 1] such that f(x) = y.
Similarly, if f(0) ≥ f(1), then ∀y ∈ [f(1), f(0)] ,∃x ∈ [0, 1] such that f(x) = y.

In addition, Jordan curves have a simple property, which is stated in the Jordan
curve theorem.
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Theorem 2.5 (Jordan curve theorem). For a Jordan curve γ, R2 \ γ consists of
exactly two connected components, one bounded and one unbounded, and γ is the
boundary of each component. [3]

The following definition is adopted for easier reference to the bounded and un-
bounded commponents (which are, in fact, the “interior” and the “exterior”) of a
Jordan curve in this paper:

Definition 2.6. For every Jordan curve γ, define γint and γext to be its bounded
(i.e. the interior) and unbounded (i.e. the exterior) connected component of R2 \ γ
respectively.

In other words, a Jordan curve γ divides the 2D plane R2 into three connected
components, the curve γ, the interior γint and the exterior γext.

When the Jordan curve theorem and the intermediate value theorem are put
together, we get the following fact:

Lemma 2.7. Given a Jordan curve γ and a curve with parametrization f : [0, 1] →
R2, if f(0) ∈ γ ∪ γint and f(1) ∈ γ ∪ γext, or f(0) ∈ γ ∪ γext and f(1) ∈ γ ∪ γint,
then ∃x ∈ [0, 1] where f(x) ∈ γ.

Proof. By the Jordan curve theorem, define a sign function over R2 of

ϵ(x) =


−1, x ∈ γint

0, x ∈ γ

1, x ∈ γext

.

And since γ is closed, there exists a well-defined and continuous signed distance
function to γ, d : R2 → R with

d(x) = ϵ(x)min {∥y − x∥ : y ∈ γ} ,
which returns the closest distance of x to γ with the sign indicating whether x is
inside or outside γ. Note that d ◦ f is a continuous function.

For f(0) ∈ γ ∪ γint and f(1) ∈ γ ∪ γext, d ◦ f(0) ≤ 0 and d ◦ f(1) ≥ 0. Similarly,
for f(0) ∈ γ ∪ γext and f(1) ∈ γ ∪ γint, d ◦ f(0) ≥ 0 and d ◦ f(1) ≤ 0.

By the intermediate value theorem, ∃x ∈ [0, 1] where d ◦ f(x) = 0 and thus
f(x) ∈ γ. □

This lemma is essential in later proofs as it provides a way to show that there
exists a point lying on a Jordan curve.

2.2. The Equilateral Triangle Peg Problem. Before we tackle the Equilateral
Triangle Peg Problem, let us prove two lemmas related to the closest and furthest
points to a Jordan curve from a given point.

Lemma 2.8. Given a Jordan curve γ and a point x ∈ γ ∪ γint, let y ∈ γ be a
point where ∥y − x∥ is maximum, i.e. a furthest point from x. Then ∀z ∈ R2 where
∥z − x∥ = ∥y − x∥, z ∈ γ ∪ γext.

Proof (by contradiction). Assume z ∈ γint. Since γint is bounded, ∃r > 0 where
∀w ∈ γint, ∥w − x∥ < r, and so ∥z − x∥ < r. Then pick a point z1 on the ray xz
where ∥z1 − x∥ ≥ r. Hence z1 /∈ γint.
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Let a point z2 continuously move along the line segment zz1 from z ∈ γint to
z1 ∈ γ∪γext. By Lemma 2.7, there exists a z2 on zz1 such that z2 ∈ γ. Since xzz2z1
is a straight line,

∥z2 − x∥ = ∥z2 − z∥+ ∥z − x∥ ≥ ∥z − x∥ = ∥y − x∥,
which contradicts with ∥y − x∥ being maximum. Therefore, z /∈ γint. □

Lemma 2.9. Given a Jordan curve γ and a point x ∈ γ ∪ γint, let y ∈ γ be a point
where ∥y − x∥ is minimum, i.e. a closest point to x. Then for every point z ∈ R2

where ∥z − x∥ = ∥y − x∥, z ∈ γ ∪ γint.

Proof (by contradiction). Assume z ∈ γext. Let a point w continuously move along
the line segment xz from x to z. By Lemma 2.7, ∃w ∈ γ on xz. Since z ∈ γext,
z ̸= w. And since xwz is a straight line,

∥w − x∥ < ∥z − x∥ = ∥y − x∥,
which contradicts with ∥y − x∥ being minimum. Therefore, z /∈ γext. □

With these two lemmas, we can prove the Equilateral Triangle Peg Problem,
which, to recall, is:

Theorem 2.10 (Equilateral Triangle Peg Problem). Given a Jordan curve γ, there
exists three distinct points x, y, z ∈ γ such that x, y, z form an equilateral triangle.

The idea is to consider the third point, z of the equilateral triangle when two
of its other points x, y are on γ. Then we will construct a path to move z from
the interior to the exterior of γ, hence achieving all three points being on γ in the
process. The following is a more concrete proof, mainly focusing on the construction
to make z lie in the interior of γ.

Proof. Let w ∈ γint. Let a point x ∈ γ where ∥x−w∥ is minimum, i.e. x is a closest
point on γ to w. Let C be the circle centered at w which passes through x. There
exist two points y1, z1 ∈ C such that x, y1, z1 form an equilateral triangle. Since
∥y1−w∥ = ∥z1−w∥ = ∥x−w∥, which is minimum, by Lemma 2.9, y1, z1 ∈ γ ∪γint.
Now let y3 be the intersection point of γ and ray xy1 which minimizes ∥y3 − x∥.

γ w

C
x

y1

z1

y3

z3

z2

θ

Figure 1. Construction of y3 and z3.
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Similarly, let z2 be the intersection point of γ and ray xz1 which minimizes ∥z2−x∥.
Without loss of generality, assume ∥y3 − x∥ ≤ ∥z2 − x∥. There exists a point z3 on
the line segment xz2 which forms an equilateral triangle with x and y3.

If z3 ∈ γext, there exists a point p ∈ γ on the line segment xz3. Since z2 ∈ γ and
z3 /∈ γ, z3 ̸= z2. Since xpz3z2 is a straight line, ∥p−x∥ < ∥z2−x∥, which contradicts
with ∥z2 − x∥ being minimum. So z3 ∈ γ ∪ γint. If z3 ∈ γ, the proof is done, so now
suppose z3 ∈ γint. Let θ = π

3 or −π
3 be the angle where z3 = R (y3, x, θ), i.e. z3 is

the image of y3 under the rotation about x by θ.
Let a point y4 where ∥y4 − x∥ is maximum, i.e. y4 is a furthest point from x.

Let a point z4 = R(y4, x, θ), which forms equilateral triangle with y4 and x. Since
∥z4 − x∥ = ∥y4 − x∥, by Lemma 2.8, z4 ∈ γ ∪ γext.

There exists two distinct Jordan arcs γ1, γ2 ⊂ γ whose end-points are y3 and y4
as y3 ̸= y4. Since y3, y4 ̸= x, either γ1 or γ2 contains x. Without loss of generality,
assume x /∈ γ1. Now let a point y continuously move along γ1 from y3 to y4. Let a
point z = R(y, x, θ), which forms an equilateral triangle with x and y. Then z will
move from z3 ∈ γint to z4 ∈ γ ∪ γext. By Lemma 2.7, ∃y ∈ γ1 where z ∈ γ in the
process. Since y ∈ γ1 and x1 /∈ γ1, x ̸= y. Therefore, x, y, z are distinct, all on γ
and form an equilateral triangle. □

2.3. A Fixed Peg. A stronger version of the equilateral triangle peg problem is that
for every point x on a Jordan curve γ, there exist two points y, z ∈ γ where x, y, z
form an equilateral triangle. In other words, one of the vertices of the equilateral
triangle is fixed. This, in fact, has been proven by D. Meyerson [1]. In this paper, we
attempt to extend the problem to isosceles triangles with any vertex angle, whose
result is useful in later proofs.

First, let us consider a variation where the fixed peg is in the interior of γ, rather
than on γ.

Theorem 2.11. Given a Jordan curve γ and a point x ∈ γint, for all angle θ, there
exists a point y ∈ γ where R(y, x, θ) ∈ γ.

Proof. Pick two points y1, y2 ∈ γ where ∥y1 − x∥ is maximum and ∥y2 − x∥ is
minimum. By Lemma 2.8, R(y1, x, θ) ∈ γ ∪ γext, and by Lemma 2.9, R(y2, x, θ) ∈
γ ∪ γint. Move a point y along γ from y1 to y2. Then R(y, x, θ) moves from γ ∪ γext
to γ ∪ γint. And so by Lemma 2.7, ∃y ∈ γ where R(y, x, θ) ∈ γ. □

Corollary 2.12. Given a Jordan curve γ and a point x ∈ γint, there exists two
points y, z ∈ γ such that x, y, z form an equilateral triangle.

Proof. Notice that, without loss of generality, z = R(y, x, π
3 ). Therefore, simply set

θ = π
3 in the previous theorem. □

Moreover, let us define the smoothness of functions and curves.

Definition 2.13. A function is smooth at a point x in its domain if it is continuously
differentiable at x, i.e. of differentiability class C1.

Definition 2.14. A curve with parametrization f is smooth at a point f(t) if f is
smooth at t.
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Now let us consider the original problem with the fixed peg being on the Jordan
curve, with the added condition of the curve being smooth at the peg.

Theorem 2.15. Given a Jordan curve γ and a point x ∈ γ where γ is smooth at x,
for all angle θ ∈ [0, π), ∃y ∈ γ such that R(y, x, θ) ∈ γ and y ̸= x .

The reason why θ ̸= π is that there is no such y when γ is strictly convex at x,
meaning there exists a straight line passing through x which γ \ {x} lies on one of
the open half-planes of the line. An example of such curve is a circle.

Besides, the theorem requires γ to be smooth at x to prevent sharp points at x.
A counterexample is a convex polygon.

A way to visualize the theorem is to consider the intersections between γ and the
image of γ under the rotation about x by the angle θ anticlockwise.

γ

R(γ, x, π)

x

γ

R
(
γ, x, 3π

4

)
x

Figure 2. Example of a strictly convex curve (left) and a con-
vex polygon (right) where γ and its rotation about x (denoted as
R(γ, x, θ) = {R(y, x, θ) : y ∈ γ}) does not have a intersection other
than x.

Once again, the focus of the proof is on the construction such that the third point
is inside the curve.

Proof. Let y1 ∈ γ where ∥y1−x∥ is maximum. By Lemma 2.8, R(y1, x, θ) ∈ γ∪γext.
Let D(r) = {p ∈ R2 : ∥p − x∥ < r} be the disc around x of radius r. By

differentiability and continuity, there exists a tangent line T at x and some δ > 0
whereD(δ)∩γ is a connected Jordan arc, and for all points z ∈ cl(D(δ))∩γ and z ̸= x,
the angle between the secant line xz and T < π−θ

2 . Then let {y2, y3} = ∂D(δ) ∩ γ
be the two end-points of the Jordan arc in D(δ)∩γ. Let α be the angle between the
secant line xy2 and T , and β be that between xy3 and T . Then the angle at center
formed by y2 and y3

∠y2xy3 ≥ π − α− β > π − π − θ

2
− π − θ

2
= θ.

C(δ) \ γ has exactly two connected components, C1, C2.

Claim. One of C1 and C2 is a proper subset of γint, and the other one is a proper
subset of γext.
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γ

∂D(δ)

Tx
α β

y2
y3

Figure 3. Construction of Theorem 2.15.

If there exist z1 ∈ C1 ∩ γint and z2 ∈ C1 ∩ γext, move a point z from z1 to z2 on
C1. Then there exists a z ∈ C1 ∩ γ, which contradicts with C1 ⊂ C(δ) \ γ. So C1 is
a proper subset of either γint or γext. The same applies to C2.

If both C1, C2 ⊂ γint, then D(δ) ⊂ γ ∪ γint, i.e. γ encloses the whole D(δ), which
contradicts with D(δ) ∩ γ being a connected Jordan arc ⊂ γ.

If both C1, C2 ⊂ γext, then γ ⊂ cl(D(δ)), i.e. cl(D(δ)) encloses the whole γ.
Construct a line L perpendicular to T passing through x. Then there exists a point
z ∈ γ ∩L and z ̸= x. Then the angle between line xz and L = π

2 , which contradicts

with the angle between secant lines and T < π−θ
2 ≤ π

2 for θ ≥ 0. So at least one of
C1, C2 ⊂ γint. Thus, one of C1 and C2 is a proper subset of γint, and the other one
is a proper subset of γext.

Since ∠y2xy3 > θ, one of R(y2, x, θ) and R(y3, x, θ) is in C1 and the other one is
in C2. Therefore, since one of C1 and C2 is a proper subset of γint, without loss of
generality, assume R(y2, x, θ) ∈ γint.

Move a point y from y1 to y2 along the Jordan arc of γ not containing x. Then
since R(y1, x, θ) ∈ γ ∪ γext and R(y2, x, θ) ∈ γint, by Lemma 2.7, there exists some
y ̸= x where R(y, x, θ) ∈ γ. □

Corollary 2.16. Given a Jordan curve γ and a point x ∈ γ, if γ is smooth at x,
then there exists two points y, z ∈ γ such that x, y, z form an equilateral triangle.

Proof. Notice that, without loss of generality, z = R(y, x, π
3 ). Therefore, simply set

θ = π
3 in the previous theorem. □

3. Extending to the 3-Dimensional Space

Here, we investigate the Regular Tetrahedron Peg Problem, i.e. the possibility of
forming a regular tetrahedron with its 4 vertices on an arbitrary compact connected
surface, which is the 3-dimensional case for the equilateral triangle peg problem.

We define a surface as follows:
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Definition 3.1. A n-dimensional hypersurface (n-hypersurface) is a
(n − 1)-dimensional manifold (a topological space where each point has a neigh-
borhood homeomorphic to the (n − 1)-dimensional Euclidean space), embedded in
n-dimensional Euclidean space.

Definition 3.2. A surface is a 3-hypersurface.

In fact, by the classification of closed surface, a compact connected surface is
homeomorphic to either the sphere or the connected sum of g tori where g ≥ 1.

A compact connected hypersurface is similar to a Jordan curve in the way that
both divides the two dimensional space into the interior and the exterior. In fact,
a compact connected 2-hypersurface is a Jordan curve. This property is stated in
the Jordan-Brouwer separation theorem, a higher dimensional generalization of the
Jordan curve theorem.

Theorem 3.3 (Jordan-Brouwer separation theorem). For a compact connected hy-
persurface S in Rn, Rn\S consists of exactly two connected components, one bounded
and one unbounded, and S is the boundary of each component. [2]

Similar to the Jordan curves, we define Sint and Sext for easier reference.

Definition 3.4. For a compact connected n-hypersurface S, define Sint and Sext be
its bounded (i.e. the interior) and unbounded (i.e. the exterior) connected component
of Rn \ S respectively.

Due to the similarity in properties between Jordan curves and compact connected
hypersurfaces, Lemma 3.7 to 3.9 are also applicable to the latter.

Finally, as we will use the locus of points forming an equilateral triangle with two
given points extensively in this section, let us define a function for the locus.

Definition 3.5. Define a function

L(x, y) =
{
z ∈ R3 : ∥z − x∥ = ∥z − y∥ = ∥y − x∥

}
where x, y ∈ R3, returning the locus of points forming an equilateral triangle with x
and y.

3.1. The Regular Tetrahedron. First, let us take a look at some properties of a
regular tetrahedron which will be useful in later proofs.

Lemma 3.6. Given two points x, y ∈ R3, L(x, y) is a circle on the plane normal to
the line xy passing through the mid-point of xy.

Proof. Let z be a movable point such that x,y,z form an equilateral triangle, where
∠xyz = ∠yzx = ∠zxy = π

3 . Given x, y, z ∈ R3, the locus of z is the circle rotated
about the midpoint of the axis xy. □

Lemma 3.7. Given three points x, y ∈ R3 and z ∈ L(x, y), a point w forms a
regular tetrahedron with x,y,z if and only if w ∈ L(x, y) and its angle at centre with
z is cos−1 1

3 on the circle L(x, y).

Proof. Let ∥y − x∥ = l and let c be the mid-point of the line segment xy.
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Suppose x, y, z and w forms a regular tetrahedron, we have

∥x− y∥ = ∥x− z∥ = ∥y − z∥ = ∥x− w∥ = ∥y − w∥ = ∥z − w∥ = l,

and so w is on the locus. Therefore,

∥z − c∥ = ∥w − c∥ = l sin
π

3
=

√
3l

2
.

Hence, the angle at centre of w with z is given by

∠zcw = cos−1

(√
3l
2

)2
+
(√

3l
2

)2
− l2

2
(√

3l
2

)(√
3l
2

) = cos−1 1

3
.

Now suppose w is on the locus and the angle at centre is cos−1 1
3 . Then, ∥x−y∥ =

∥x− z∥ = ∥y − z∥ = ∥x−w∥ = ∥y −w∥ = l and ∥z − c∥ = ∥w − c∥ = l sin π
3 =

√
3l
2 .

Therefore,

∥z − w∥ =

√√√√(√
3l

2

)2

+

(√
3l

2

)2

− 2

(√
3l

2

)(√
3l

2

)
cos∠zcw = l

and therefore, x, y, z and w forms a regular tetrahedron. □

3.2. An Extension to the Intermediate Value Theorem. Just as a continu-
ous function f : [a, b] → R has roots if f(a) ≤ 0 and f(b) ≥ 0 by the intermediate
value theorem, a naturally raised question is whether the extension to a continu-
ous function defined over two dimensions or even n dimensions is correct. More
preciously:

Problem 3.8. Define D = {x ∈ Rn : r1 ≤ ∥x∥ ≤ r2} be the domain of the function
for some r1, r2 > 0. Let C1 = {x ∈ Rn : ∥x∥ = r1} and C2 = {x ∈ Rn : ∥x∥ = r2}.
For any continuous function f : D → R, if

• ∀x ∈ C1, f(x) ≤ 0; and
• ∀x ∈ C2, f(x) ≥ 0,

then does there always exist a compact connected n-hypersurface S where f(p) = 0
for all p ∈ S, and the origin ∈ Sint?

However, a counterexample can be found by considering the distance function to
a variant of the topologist’s sine curve,

{(r (t) cos t,−r (t) sin t) : t ∈ (−π, 0)}

∪
{(

3

2
, 0

)}
∪ {(r (t) cos t, r (t) sin t) : t ∈ (0, π]}

where r (t) =
1

3
sin

1

t
+

3

2
.

Therefore, an additional condition has to be added to f .
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x

y

f ≤ 0

r1

f ≥ 0

r2

f = 0

Figure 4. An illustration of the proposed extension and its counterexample.

Theorem 3.9. Define D = {x ∈ Rn : r1 ≤ ∥x∥ ≤ r2} be the domain for some r1, r2 >
0. Let C1 = {x ∈ Rn : ∥x∥ = r1} and C2 = {x ∈ Rn : ∥x∥ = r2}. For any continuous
function f : D → R, if

• ∀x ∈ C1, f(x) ≤ 0; and
• ∀x ∈ C2, f(x) ≥ 0,

and f is smooth at x when f (x) = 0, then there exists a compact connected
n-hypersurface S where f(p) = 0 for all p ∈ S, and the origin ∈ Sint.

Proof. Consider the strict subzero set S1 = {x ∈ D : f (x) < 0}. Note that f (x) = 0
for all x on the boundary ∂S1. C1 ⊆ cl (S1), and C2 ⊆ D \ S1.

Let S2 be the connected component of cl (S1) which contains C1. Let S3 =
D \ (S2). Pick S4 be the connected component of cl (S3) which contains C2.

Let S5 = D \S4, which is connected. By the unicoherence of Rn, the intersection
cl (S5) ∩ S4 = ∂S5 is connected. By the inverse function theorem, since f is smooth
at every point in ∂S5, there exists a compact connected n-hypersurface S ⊂ ∂S5

where the origin ∈ S. Since ∂S5 ⊆ ∂S1, ∀x ∈ S, f(x) = 0. □

Theorem 3.10. Define D = {x ∈ Rn : r1 ≤ ∥x∥ ≤ r2} be the domain for some
r1, r2 > 0. Let C1 = {x ∈ Rn : ∥x∥ = r1} , C2 = {x ∈ Rn : ∥x∥ = r2}. For any
continuous function f : D → R, if there exists an open connected set C0 ⊂ C1 where
cl(C0) ̸= C1 such that

• ∀x ∈ C0, f(x) < 0;
• ∀x ∈ ∂C0, f(x) = 0;
• ∀x ∈ C1 \ cl(C0), f(x) > 0; and
• ∀x ∈ C2, f(x) ≥ 0,

and f is smooth at x when f (x) = 0, then there exists a compact connected n-
hypersurface S where f(p) = 0 for all p ∈ S and ∂S = ∂C0.

The proof is similar to Theorem 3.9.
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Proof. Consider the strict subzero set S1 = {x ∈ D : f (x) < 0}. ∀x ∈ ∂S1, f (x) =
0. Then C0 ⊆ S1, ∂C0 ⊆ ∂S1 and C1 \ cl(C0) ⊆ D \ cl (S1).

Pick S2 be the connected component of S1 which contains C0. Let S3 = D \ S2.
Pick S4 be the connected component of S3 which contains C2.

Let S5 = D \S4, which is connected. By the unicoherence of Rn, the intersection
cl (S5) ∩ S4 = ∂S5 is connected. By the inverse function theorem, since f is smooth
at every point in ∂S5, there exists a connected n-hypersurface S ⊂ ∂S5 which
∂C0 = ∂S. Since ∂S5 ⊆ ∂S1, ∀x ∈ S, f(x) = 0. □

We can combine Theorem 3.9 and 3.10 with Theorem 2.11 to achieve the following
results, which can be thought of as the intermediate value theorem on a cylinder:

Corollary 3.11. Given a continuous function f :
(
S1, [0, 1]

)
→ R where ∀θ ∈ S1,

f (θ, 0) ≤ 0 and f (θ, 1) ≥ 0, if f is smooth whenever f (θ, t) = 0, then for all angle

ϕ, there exists some θ ∈ S1 and t ∈ [0, 1] such that f(θ, t) = f
(
R(θ, 0⃗, ϕ), t

)
= 0.

Proof. Let g be a function
{
x ∈ R2 : 1 ≤ ∥x∥ ≤ 2

}
→ R with

g(x⃗) = f(x̂, ∥x⃗∥ − 1).

Note that for all x ∈ R2, for ∥x∥ = 1, g(x) = f(x̂, 0) ≤ 0, and for ∥x∥ = 2,
g(x) = f(x̂, 1) ≥ 0.

By Theorem 3.9, there exists a Jordan curve γ ⊂
{
x ∈ R2 : 1 ≤ ∥x∥ ≤ 2

}
such

that the origin is inside γ and for all points x ∈ γ, g(x) = 0. Then by Theorem 2.11,

there exist a point x ∈ γ where g(R(x, 0⃗, ϕ)) ∈ γ.

Therefore, g(x) = f(x̂, ∥x⃗∥−1) = 0 and g(R(x, 0⃗, ϕ)) = f(R(x̂, 0, ϕ), ∥x⃗∥−1) = 0.

And so, for t = ∥x⃗∥ − 1 and θ = x̂, f(θ, t) = f(R(θ, 0⃗, ϕ), t) = 0. □

Corollary 3.12. Given a continuous function f :
(
S1, [0, 1]

)
→ R, θ0 ∈ S1 and an

angle ϕ0 ∈ [0, 2π) where

• ∀ϕ ∈ (0, ϕ0) , f
(
R(θ0, 0⃗, ϕ), 0

)
< 0;

• f (θ0, 0) = f
(
R(θ0, 0⃗, ϕ0), 0

)
= 0; and

• ∀θ ∈ S1, f (θ, 1) ≥ 0,

if f is smooth whenever f (θ, t) = 0, then for all angle ϕ ∈ [0, ϕ0], ∃θ ∈ S1 and

t ∈ [0, 1] such that f(θ, t) = f(R(θ, 0⃗, ϕ), t) = 0.

f < 0f > 0

ϕ0

θ0

Figure 5. Illustration of the condition of f (θ, 0) in Corollary 3.12.
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Proof. Trivially, if ϕ = 0 or ϕ0, f(θ0, 0) = f(R(θ0, 0⃗, ϕ), 0) = 0.
Now assume ϕ ∈ (0, ϕ0). Let g be a function

{
x ∈ R2 : 1 ≤ ∥x∥ ≤ 2

}
→ R with

g(x⃗) = f(x̂, ∥x⃗∥ − 1).

g satisfies the condition in Theorem 3.10, and so there exists a Jordan arc γ ⊂{
x ∈ R2 : 1 ≤ ∥x∥ ≤ 2

}
whose end-points are θ0 and R(θ0, 0⃗, ϕ0) such that ∀x ∈

γ, g(x) = 0.
Construct a open Jordan arc C by constructing a line segment from the origin to

θ0 and then another one to R(θ0, 0⃗, ϕ0). Note that ∀p ∈ C, ∥p∥ < 1. Let γ′ be the

Jordan curve C ∪ γ. R(θ0, 0⃗, ϕ) ∈ γ′
int.

Pick a point y0 ∈ γ′ such that ∥y0∥ is maximum, i.e. a furthest point from the

origin, and by Lemma 2.8, R(y0, 0⃗, ϕ) ∈ γ′ ∪ γ′
ext. Since y0 ∈ γ, continuously move

a point y ∈ γ from θ0 to y0. Then by Lemma 2.7, ∃y ∈ γ such that R(y, 0⃗, ϕ) ∈ γ′.

Since ∥R(y, 0⃗, ϕ)∥ = ∥y∥ ≥ 1, R(y, 0⃗, ϕ) /∈ C and so R(y, 0⃗, ϕ) ∈ γ. Therefore,

y ∈ γ =⇒ g(y) = 0 =⇒ f(ŷ, ∥y⃗∥ − 1) = 0

and

R(y, 0⃗, ϕ) ∈ γ =⇒ g
(
R(y, 0⃗, ϕ)

)
= 0 =⇒ f

(
R(ŷ, 0⃗, ϕ), ∥y⃗∥ − 1

)
= 0

□

3.3. Putting All Together. Now, we will tackle the tetrahedron peg problem with
one fixed peg. As with before, let us first look into the variation in which the fixed
peg is inside the surface.

Theorem 3.13. Given a smooth compact connected surface S and a point x0 ∈ Sint,
then there exist three points w, y, z ∈ S forming a regular tetrahedron with x0.

Proof. There exists a function µ : (S1,R3,R3) → R3 where for some fixed x and y,
µ(θ, x, y) maps θ to the corresponding point on L(x, y), and is continuous when x,y
are changing.

By the Jordan-Brouwer separation theorem, define a sign function over R3 of

ϵ(x) =


−1, x ∈ Sint

0, x ∈ S

1, x ∈ Sext

.

In addition, define a signed distance function d : R3 → R with

d(x) = ϵ(x)min {∥y − x∥ : y ∈ S} ,

returning the minimum distance from a point x to a point on S, negative when inside
and positive when outside. Note that d is a continuous function, and is smooth at
every x ∈ S.

Pick a point y0 ∈ S which minimizes ∥y0 − x0∥, i.e. a closest point to x0 on S.
Consider any point z ∈ L(x0, y0) which forms an equilateral triangle with x0 and
y0. By Lemma 2.9, since ∥z − x0∥ = ∥y0 − x0∥, which is minimal, z ∈ S ∪ Sint.
Therefore, L(x0, y0) ⊂ S ∪ Sint.
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Now pick a point y1 ∈ S which maximizes ∥y1 − x0∥. For every z ∈ L(x0, y1),
x0y1z form an equilateral triangle. Since ||y1 − x0|| = ||z − x0||, by Lemma 2.8,
z ∈ S ∪ Sext. Thus, L(x0, y1) ⊂ S ∪ Sext.

Move a point y along a path γ : [0, 1] → S from γ(0) = y0 to γ(1) = y1 not
passing through x0. Then L(x0, y) will continuously transform from S ∪ Sint to
S ∪ Sext. Since S is a smooth manifold, γ is also smooth. Now define a function
f : (S1, [0, 1]) → R with

f(θ, t) = d(µ(θ, x0, γ(t))),

returning the d value of the point at angle θ on the circle at time t. Since f is a
composition of continuous functions, f itself is continuous too. Moreover, as d is
smooth whenever µ

(
θ, x0, γ(t)

)
∈ S, f is smooth whenever f = 0. Note that for all

θ ∈ S1,
µ (θ, x0, γ (0)) ∈ L (x0, γ (0)) ⊂ S ∪ Sint =⇒ f (θ, 0) ≤ 0

and
µ (θ, x0, γ (1)) ∈ L (x0, γ (1)) ⊂ S ∪ Sext =⇒ f (θ, 1) ≥ 0.

Then by Corollary 3.11, there exists some θ ∈ S1 and t ∈ [0, 1] where f(θ, t) =
f(R

(
θ, 0, cos−1 1

3

)
, t) = 0. Let y = γ(t). Therefore,

f(θ, t) = d(µ(θ, x0, γ(t))) = 0 =⇒ µ(θ, x0, y) ∈ S

and

f
(
R
(
θ, 0, cos−1 1

3

)
, t
)
= d
(
µ
(
R(θ, 0, cos−1 1

3
), x0, γ(t)

))
= 0

=⇒ µ
(
R
(
θ, 0, cos−1 1

3

)
, x0, y

)
∈ S.

Let z = µ (θ, x0, y) and w = µ
(
R
(
θ, 0, cos−1 1

3

)
, x0, y

)
. The angle at center

formed by z and w in L(x0, y) is cos−1 1
3 . By Lemma 3.7, w, x0, y, z ∈ S form a

regular tetrahedron. □

When x0 ∈ Sint, we can easily find a point y0 ∈ S such that any point forming an
equilateral triangle with x0 and y0 lies on or inside S. For x0 ∈ S, however, there
does not always exist such y0. An example of such surface is a sphere.

Figure 6. The locus of points forming an equilateral triangle with
two points x0, y0 ∈ S where S is a sphere. The points a and b
represent the intersections between the locus and S.

Therefore, we will make use of the fact that S is smooth at x0 to help construct
a locus which proves the case where x0 ∈ S.
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Theorem 3.14. Given a smooth compact connected surface S and a point x0 ∈ S,
there exists three distinct points w, y, z ∈ S forming a regular tetrahedron with x0.

Proof. There exists a function µ : (S1,R3,R3) → R3 where for some fixed x and y,
µ(θ, x, y) maps θ to the corresponding point on L(x, y), and is continuous when x,y
are changing.

Pick a point y1 ∈ S where ||y1 − x0|| is maximum. Then L(x0, y1) ⊂ S ∪ Sext.
By differentiability and continuity, there exists a point y0 in a neighbourhood of

x such that L(x0, y0) ∩ S = {z1, z2} for some z1, z2 with angle at center ≥ cos−1 1
3

with one of the connected components of L(x0, y0) \ {z1, z2} is a subset of Sint and
the other one is a subset of Sout.

Move a point y along a continuous path γ : [0, 1] → S from γ(0) = y0 to γ(1) = y1
not passing through x. Then L(x0, y) will continuously transform from “about
halfly” inside S and “about halfly” outside S to on or outside S.

Define a function f : S1, (0, 1) → R with

f(θ, t) = d(µ(θ, x0, γ(t))).

By Theorem 3.12, ∃θ ∈ S1, t ∈ [0, 1] such that f(θ, t) = f
(
R(θ, 0⃗, cos−1 1

3

)
= 0.

Similar to 3.13, y = γ (t) , z = µ(θ, x0, y) and w = µ(R(θ, 0, cos−1 1
3 ), x0, y) are all

on S form a regular tetrahedron with x0. □

4. Generalizing to Higher Dimensions

After we have proven the regular tetrahedron peg problem for arbitrary smooth
compact connected surface, we are going to generalize the results for cases in even
higher dimensions, e.g. 4-dimensional space.

4.1. The Regular n-simplex. First, let us generalize the tetrahedron to higher
dimensions.

Definition 4.1. A regular n-simplex is a convex hull of a set of (n + 1) points
{x0, x1, . . . , xn} where for every i, j where 0 ≤ i, j ≤ n and i ̸= j, ∥xi−xj∥ is equal,
i.e. any two points are equidistant from each other.

Just as before, we are interested in the locus of points forming n-simplexes. Let
us consider the cases in R2 and R3.

• In R2, given two points x1, x2, the locus of points forming an equilateral
triangle with x1, x2 is

{
R
(
x2, x1,

π
3

)
, R
(
x2, x1,−π

3

)}
, which is a 0-sphere.

• In R3, given two points x1, x2, the locus of points forming a regular tetra-
hedron with x1, x2 is a circle (1-sphere), shown in Lemma 3.6. Then, after
picking a point x3 on the locus, the locus of forming a regular tetrahedron
with the three points is two points, a 0-sphere.

The pattern emerged is formulated and proven in the following theorem, which
generalizes it to higher dimensions:

Theorem 4.2. Given m distinct points X1, X2, . . . , Xm ∈ Rn where 2 ≤ m ≤ n, let
L be the locus of points forming a regular m-simplex with all Xi, where 1 ≤ i ≤ m.
If all Xi form a regular (m− 1)-simplex, then L is an (n−m)-sphere.

Proof (by induction on m). Let R be the side length of the (m− 1)-simplex.
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Claim. The locus L is an (n−m)-sphere with radius rm, where

rm =

{
R, m = 1

R
√

1− R2

4r2m−1
, m > 1

.

For m = 2, under isometry, assume X1 is the origin and X2 = (R, 0, 0, · · · , 0). A
point P = (p1, p2, · · · , pn) ∈ L if and only if

{
p21 + p22 + · · ·+ p2n = R2,

(p1 − d)2 + p22 + · · ·+ p2n = R2
.

Subtracting the two equations yields

(p1 −R)2 − p21 = 0

p21 − 2p1R+R2 − p21 = 0

p1 =
R

2
.

Then

n∑
i=2

p2i =
3R2

4
.

The locus of P satisfying this equation is an (n − 2)-sphere with radius r2 =√
1− R2

4R2R =
√

3
4R =

√
3
2 R.

Whenm = k where 2 ≤ k < n, let L0 be the locus. Assume L0 is an (n−k)-sphere
with radius rk.

For m = k + 1, let X̃ = Xk+1. Since X̃ forms an k-simplex with all Xi where

1 ≤ i ≤ k, X̃ ∈ L0. For a point P ∈ L, i.e. P forms an (k + 1)-simplex with all Xi,

P forms an k-simplex with all Xi for 1 ≤ i ≤ k and PX̃ = R. Hence, the locus L is

all points in L0 where PX̃ = R.

Let Y be the point in L0 such that X̃Y is a diameter of L0. Recall that the radius

of L0 is rk. Then the diameter X̃Y is 2rk. Notice that L can be in three forms:

• If R > 2rk, then L = ∅.
• If R = 2rk, then L = {Y }.
• If R < 2rk, then L is a (n− k − 1)-sphere.
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X̃

Y

R > 2rk

R

2rk

X̃

Y

R = 2rk

X̃

Y

R < 2rk

Figure 7. An example of the three cases of L when L0 is a 1-
sphere. The black circle shows L0, and the red circle is centered at

X̃ with radius R. L is the intersection between the two circles. L
is, from left to right, ∅, {Y } or a 0-sphere (which is two points).

Notice that rm > 0 for all m ≥ 1. If rm ≤ 1√
2
R, m ̸= 1, and

rm = R

√
1− R2

4r2m−1

≤ 1√
2
R

1− R2

4r2m−1

≤ 1

2

R2

4r2m−1

≥ 1

2

r2m−1 ≤ 1

2
R2

rm−1 ≤ 1√
2
R,

which, by induction, yields a contradiction. Therefore, rm > 1√
2
R > 1

2R, and so

R < 2rk. L is a (n− k − 1)-sphere.

Consider a hyperplane containing P, X̃, Y . Recall that PX̃ = R and X̃Y = 2rk.

Since X̃Y is a diameter of L0 and P ∈ L0, X̃P ⊥ PY . Using Pythagoras’ theorem,
PY =

√
4r2k −R2.

Let O be the center of L. By symmetry, O is on X̃Y and X̃Y ⊥ OP . ∆X̃PY ∼
∆POY .
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X̃ Y

P

O

R
√
4r2k −R2

2rk

Figure 8. A geometric figure of the plane containing P , X̃ and Y .

Then

PX̃

X̃Y
=

OP

PY

R

2rk
=

OP√
4r2k −R2

OP =
R
√
4r2k −R2

2rk

= R

√
1− R2

4r2k

= rk+1.

Therefore, L is a (n− k − 1)-sphere with radius rk+1. □

4.2. The Regular n-simplex Peg Problem. Now we have formulate a method
of picking points and reducing the number of dimensions of the locus. We can now
prove the Regular n-Simplex Peg Problem with a fixed interior peg by induction.

Theorem 4.3. Given a compact connected n-hypersurface S with n ≥ 2 and two
points x0 ∈ Sint, then there exists n points x1, x2, . . . , xn ∈ S which form a n-simplex
with x0.

Proof (by induction on n). Base case. For n = 2, S is a Jordan curve. This has
already been proven in Corollary 2.12.

Induction step. Assume when n = k for a k ≥ 2, given a smooth com-
pact connected k-hypersurface S and a point x0 ∈ Sint, then there exists k points
x1, x2, . . . , xk ∈ S which form a k-simplex with x0.

For n = k + 1, we will define L, µ, d, y1, f similarly to Theorem 3.13:
Define a function L(x, y) =

{
z ∈ Rk+1 : ∥z − x∥ = ∥z − y∥ = ∥y − x∥

}
where x, y ∈

Rk+1 and x ̸= y. By Theorem 4.2, the locus is a (k − 1)-sphere.
There exists a function µ :

(
Sk−1,Rk+1,Rk+1

)
→ Rk+1 where for some fixed x

and y, θ, x, y maps θ to the corresponding point on the (k − 1)-sphere L(x, y), and
is continuous when x and y are changing.
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By assumption, L (x0, y0) ⊂ Sint ∪ S. Pick a point y1 ∈ S which maximizes
∥y1 − x0∥. By Lemma 2.8, L (x0, y1) ⊂ S ∪ Sext.

Move a point y along a path γ : [0, 1] → S from γ (0) = y0 to γ (0) = y1. Then
L (x0, y) will continuously transform from S∪Sint to S∪Sext. Now define a function
f :
(
Sk−1, [0, 1]

)
→ R with

f (θ, t) = d (µ (θ, x0, γ(t))) .

Note that f is continuous. In addition, f (θ, 0) ≤ 0 and f (θ, 1) ≥ 0 for all θ ∈ Sk−1.
Now define another function g :

{
x ∈ Rk : 1 ≤ ∥x∥ ≤ 2

}
with

g (x⃗) = f (x̂, ∥x∥ − 1) .

By Theorem 3.9, since g (x) ≤ 0 for all x ∈ Rk where ∥x∥ = 1, and g (x) ≥ 0 for
all x ∈ Rk where ∥x∥ = 2, there exists a compact connected k-hypersurface S′ such
that ∀p ∈ S0, g (p) = 0, and the origin ∈ S′

int.
Pick a closest point y′ ∈ S′ which minimizes ∥y′∥. All the points forming an

equilateral triangle with the origin and y′ is, by Lemma 2.9, on or inside S′. Then
by the induction assumption, there exists k distinct points x′

1, x
′
2, . . . , x

′
k which forms

a k-simplex with the origin.
Let t = ∥x′

1∥ − 1 = ∥x′
2∥ − 1 = . . . = ∥x′

k∥ − 1 and y = γ (t). Moreover, for all

1 ≤ i ≤ k, let xi = µ
(
x̂′
1, x0, y

)
∈ L (x0, y). Notice that

x′
i ∈ S′

=⇒ 0 = g (x′
i)

= f
(
x̂′
i, ∥x

′
i∥ − 1

)
= d

(
µ
(
x̂′
i, x0, γ (∥x′

i∥ − 1)
))

= d
(
µ
(
x̂′
i, x0, y

))
= d (xi)

=⇒ xi ∈ S.

Since all x′
i forms a (k − 1)-simplex, all xi also forms a k-simplex. Combined with

xi ∈ L (x0, y), the (k+1) points of y and all xi are on S and form a (k+1)-simplex
with x0. □
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5. Conclusion

In conclusion, by making use of the fundamental principle in the triangle peg
problem, we have generalized it to even higher dimensions, such as the tetrahedron
peg problem in the 3-dimensional case. Based on the generalized triangle peg prob-
lem, we believe that the case for disphenoids (a class which regular tetrahedra also
belong to) and other shapes such as cuboids are some possible directions of future
investigations. In addition, as equilateral triangles are ideal shapes in the aesthetics
of architecture, the theorems of generalized triangle peg problem may be applicable
to fields of architectural studies.
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REVIEWERS’ COMMENTS

This paper considered the generalization of the classical Triangle Peg problem
which says that each point on every simple closed curve in the two dimensional plane
is a vertex of an inscribed equilateral triangle. The author extended the idea from
plane curves to higher dimensional hypersurfaces cases in Euclidean spaces, proving
that given a smooth compact connected surface, there always exist four points on the
surface which form a regular tetrahedron. Reviewers think that the authors, being
high school students, have good knowledge on college-level mathematical analysis
and differential geometry, and suggest that some careful justification on the use of,
for instance, implicit/inverse function theorem is needed in the paper.
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