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Abstract. This paper aims to investigate the integral solutions of the Mordell’s
Equation y2 = x3+k for a particular class of integers k. We employ some clas-

sical approaches, i.e. factorization in number fields and quadratic reciprocity.

When k = p2 for certain primes p, we can determine the set of solutions. Two
other classes of integers k are also solved in this paper.

1. Introduction

Finding rational points of Elliptic curves is an important aspect in mathematics.
In 1922, Mordell proved the group of rational points in elliptic curve, i.e. E(Q),
is finitely generated. Mazur in 1977 further found all possible torsion subgroups,
which describe all possible groups of E(Q). Nowadays, there are already algorithms
[1] that effectively compute the rational points in elliptic curves.

However, there are still a lot to be found on computing integral points in elliptic
curves. As Z is not a field, so E(Z) is usually not a subgroup of E(Q). The only
famous result for E(Z) was in 1928, Siegel has proved that E(Z) is finite. In seeing
of this, this paper aims to study a specific type of elliptic curves, i.e. Mordell Curve
and tries to develop some results.

The Mordell’s Equation y2 = x3 + k has not only properties in elliptic curves,
but also some insights when we employ classical means, e.g. when we factorize
the equation in Gaussian integers, we are able to solve the equation in a class of
integers k. Hence we choose Mordell’s equation as a subject to study. Specifically,
we want to employ classical approaches to solve the Mordell’s equation.

To deal with three different classes of k, this paper is divided into 3 parts. Each sec-
tion is guided by different intuitions to approach the problem, and lead to different
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results via classical means, namely (i) Factorization in Z, (ii) Quadratic Reciprocity
Method, and (iii) Factorization in Number Fields.

Notations Unless otherwise specified, all variables in this paper are integers, while
variable n only stands for natural numbers. p and q are denoted as primes. We
write (a, b) as the greatest common divisor of a and b. For set theory, N stands for
the set of natural numbers which excludes zero while Z+ includes zero, Fp stands
for finite field with p elements.

In this paper, we let K be a number field, where OK is the ring of integers of K,
and O×K is the group of units of OK . The Norm of an element is same as usual in
algebra, i.e.

Definition 1. Let α ∈ K have degree n, and set k = degK/n. The Norm of α is

NK/Q(α) =
∏

(Galois Conjugates of α)k

Particularly, if K = Q(i) and α = a+ bi ∈ K, the Norm is

N(a+ bi) = a2 + b2

If K = Q( 3
√

2) and α = a+ b 3
√

2 + c 3
√

4. the Norm [2] is

N(a+ b
3
√

2 + c
3
√

4) = a3 + 2b3 + 4c3 − 6abc

1.1. Investigation Background

In this section, we will present remarkable results using the theory of elliptic curves,
focusing on the case of Mordell curve over integers. They also serve as a background
motivation while we approach the problem.

Theorem 2. (Siegel, 1928) Let A,B ∈ Z and E be an elliptic curve given by the
equation

E : y2 = x3 +Ax+B

Then the integral solution set E(Z) : {(x, y) ∈ Z2 | y2 = x3 + Ax + B} is a finite
set.

This theorem shows us there are only finitely many solutions in Mordell’s Equation.
Indeed in all our theorems, they only show finitely many solutions.

Theorem 3. (Hasse, 1922) Let A,B ∈ Fp and E be an elliptic curve given by the
equation

E : y2 = x3 +Ax+B

Then we have the inequality:

|#E(Fp)− (p+ 1)| ≤ 2
√
p
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This theorem actually shows us that we cannot prove Mordell Equation has no
solutions simply by taking modulo p, as p + 1 > 2

√
p, so there are at least one

solution taking modulo p.

We now give a theorem about Mordell’s equation specifically, instead of a general
Elliptic Curve:

Theorem 4. (Baker, 1968 [3]) For any given k ∈ Z, the integral solutions (x, y)
in the equation y2 = x3 + k must satisfy the inequality:

max(|x|, |y|) ≤ exp(1010|k|10
4

)

This gives us an theoretical bound to compute all integral points.

2. Unique Factorization on Z

We first consider some special cases of the number k such that some factorization
in Z can hold. For example, if k is a square number, i.e. k = m2, then we have:

x3 = y2 −m2 = (y +m)(y −m)

if y +m and y −m are relatively prime to each other, then they are a cube itself,
which can be proved by considering the prime factorization of y +m and y −m in
Z. Guided by this motivation, we will repeatedly use this fact.

In this section, we first consider the solutions of the three cases k = 1, 4, 16, and by
using the results we can generalize into all solutions of y2 = x3 + 4n. These three
cases are dealt with individually, with not necessary elementary method.

2.1. Preliminaries

Two important theorems are needed in Section 1:

Theorem 5. (Catalan Conjecture, 2002 [4]) The only positive integral solution
(x, y, r, s) with x, y, r, s ≥ 2 of the Diophantine equation xr − ys = 1 is (3, 2, 2, 3).

This theorem can imply our Lemma 12.

The next theorem we need to state is Dirichlet’s Unit Theorem in the special case
K = Q( 3

√
2), which we have to state several definitions first.

The following definition can be found in [5].

Definition 6. Let K be a number field, and set

r1 = number of real embeddings,

r2 = number of pairs of complex embeddings.
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The signature of K is then defined as the pair (r1, r2).

As only the case K = Q( 3
√

2) is needed, all examples are concerned on this number
field.

Example 7. Let K = Q( 3
√

2), and let ω be the cube root of unity. The elements of
K are

a+ b
3
√

2 + c
3
√

4, where a, b, c ∈ Q.
The signature is (1, 1), because the three embeddings are

σ1 :
3
√

2→ 3
√

2, σ2 :
3
√

2→ 3
√

2ω, σ3 :
3
√

2→ 3
√

2ω2.

The first is real and the latter two are conjugate pairs.

Definition 8. Let µ(OK) denote the set of roots of unity contained in a number
field K. Notice that it is a finite group under multiplication.

Now we can state the Dirichlet’s Unit Theorem, which gives us a picture of what
units in OK are.

Theorem 9. (Dirichlet’s Unit Theorem) Let K be a number field with signature
(r1, r2) and set s = r1 + r2 − 1. Then there exists units u1, u2, u3, . . . , us such that
every α ∈ O×K can be written uniquely in the form

α = ω · un1
1 . . . uns

s

for ω ∈ µ(OK), n1, . . . , ns ∈ Z.

In the example of K = Q( 3
√

2), we have:

Example 10. Let K = Q( 3
√

2) with signature (1, 1). Then s = 1, so we have

exactly one fundamental unit which is 1 + 3
√

2 + 3
√

4. So

O×K = {±(1 +
3
√

2 +
3
√

4)n, n ∈ Z}

This ends our preliminary, now we put all these into practice:

2.2. Results on k = 4n

Our main result in this section is the solution in y2 = x3 +4n, given by the theorem
below:

Theorem 11. The only integral solutions to y2 = x3 + 4n (with n ∈ N) are

(x, y) =

{
(0,±2n), (22n/3+1,±3× 2n), (−22n/3, 0) if n ≡ 0 (mod 3)

(0,±2n) otherwise

But before we provide the proof, three lemmas are required.
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Lemma 12. The only integral solutions to y2 = x3 + 1 are

(x, y) = (2,±3), (0,±1), (−1, 0)

This lemma follows from Catalan Conjecture, while some technical work is still
needed.

Proof. If x, y ≥ 2, then by Catalan Conjecture, the only solution is (x, y) = (2, 3).
If −1 ≤ x < 2, by exhaustion we have the three trivial solutions (0,±1) and (−1, 0),
similar argument also holds if −1 ≤ y < 2. If x ≤ −2, then notice y2 = x3 + 1 < 0,
which is impossible, hence there are no solutions. At last we are left with case
x ≥ 2 and y ≤ −2. Now write y′ = −y, then we still have essentially the same
equation y′2 = x3 + 1 with y′ ≥ 2 and x > 2, so by Catalan Conjecture we have
(x, y′) = (2, 3), which corresponds to (x, y) = (2,−3). Hence they are all possible
solutions.

Lemma 13. The only integral solutions to y2 = x3 + 4 are (x, y) = (0,±2).

Proof. From the equation, we have (y− 2)(y+ 2) = x3. If y is odd, then y+ 2 and
y−2 is relatively prime. Therefore the two factors are cubes. However, no two odd
cubes differ by 4, so we obtain a contradiction. Hence y is even, write y = 2y1.

We obtain the equation:
4y21 = x3 + 4

Notice that x is even. Write x = 2x1 we have:

y21 = 2x31 + 1

Notice that y1 is odd. Write y1 = 2m+ 1 we have:

(2m+ 1)2 = 4m2 + 4m+ 1 = 2x31 + 1

simplifying both sides yields:

2m(m+ 1) = x31

Once again we have x1 as an even number, write x1 = 2x2, we obtain that m(m+
1) = 4x32. As m and m+ 1 are relatively prime, then the only two possibilities are:

m = a3 and m+ 1 = 4b3

and
m = 4a3 and m+ 1 = b3

This yields to the final Diophantine equation concerning on 4b3 − a3 = 1 and
b3 − 4a3 = 1, which are essentially Skolem Equation x3 + dy3 = 1 for d = −4. We
claim that this equation has no nontrivial integral solution.

We consider the equation in K = Q( 3
√

2), notice that N(−a+ b 3
√

4) = 4b3−a3 = 1,

so −a + b 3
√

4 is a unit by the equation, hence by Dirichlet’s Unit Theorem, there
exists g ∈ Z such that

a− b 3
√

4 = ±(1 +
3
√

2 +
3
√

4)g
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Notice that R.H.S must consists of a cube root of 2 (for g > 0), which contradict
to L.H.S, hence there is no integer solution for g > 0. For g < 0, notice that
(1 + 3

√
2 + 3
√

4)−1 = 3
√

2 − 1 which must consist of a cube root of 2. Hence g = 0
which we have a = ±1 and b = 0.

Hence the only solutions are (a, b) = (−1, 0) and (0, 1) respectively, which corre-
sponds to x1 = 0, and (x, y) = (0, 2). Hence (x, y) = (0,±2).

Lemma 14. The only integral solutions to y2 = x3 + 16 are (x, y) = (0,±4).

Proof. Rewrite the equation as (y−4)(y+4) = x3. Assume y is odd then y+4 and
y − 4 are relatively prime. Hence they are both odd cubes but that is impossible
as no odd cubes differ by 8. Hence y is even and so x is even too.

The R.H.S. of the equation is divisible by 8, so we have 4 | y. Let y = 4y′, then
16y′2 = x3 + 16, therefore 4 | x. Let x = 4x′, then y′2 = 4x′3 + 1, showing that y′

is odd. Further we let y′ = 2m+ 1, then m2 +m = x′3.

Notice that m(m + 1) = x′3. As (m,m + 1) = 1, so both of them are cubes. The
only consecutive cubes are {−1, 0, 1}, hence m or m + 1 are 0. Therefore x′ = 0.
Hence x = 0 and y = ±4.

Notice that our three lemmas are just first three cases of our main theorem, where
n = 0, 1, 2. In our proof of our main theorem, we will reduce the equation into our
three forms in our lemmas.

Proof of main theorem 11. By Lemma 12-14, we can assume n > 2. Rewrite the
equation as

x3 = y2 − 4n = (y + 2n)(y − 2n)

If y is odd, consider the greatest common divisor d = (y+2n, y−2n). As y+2n and
y−2n are odd, d must be odd. However d must divides (y+2n)−(y−2n) = 2n+1,
hence d = 1, i.e. they are relatively prime. Hence they are both cubes. Now write
u3 = y + 2n and v3 = y − 2n (Notice u and v are odd). Consider the equation
u3 − v3 = (u− v)(u2 + uv + v2) = 2n+1. Since u2 + uv + v2 ≡ 12 + 1× 1 + 12 ≡ 1
(mod 2), which is odd, but that results in u− v = 2n+ 1 and u2 +uv+ v2 = 1. We
claim that it has no solutions.

Write u = v + 2n+1. Substitution yields (v + 2n+1)2 + v(v + 2n+1) + v2 = 1, which
implies that 3v2 + 2n+1 · 3v + 22n+2 = 1. Considering the discriminant of the
quadratic equation in v, we have ∆ = 12(1− 22n) < 0. Hence the equation has no
real solutions.

Now we have x and y is even. The R.H.S. of equation y2 = x3 +4n is divisible by 8,
so 4 | y. Writing y = 4y′, we have 16y′2 = x3 + 4n. Therefore 4 | x. Write x = 4x′,
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so y′
2
1 = 4x′

3
+ 4n−2. Then we have 2 | y′ again, write y′ = 2y1 and we attain

y′
2
1 = x′

3
1 + 4n−3

Notice that this is the same equation as the original one, except now 4n is reduced
by 4n−3. We can repeat the process until we have

Case 1: n = 3k Denote xk = 4−kx and yk = 8−ky similarly, we have:

y2k = x3k + 1

by Lemma 12, the only integral solutions are (xk, yk) = (2,±3) with trivial solutions
(0,±1) and (−1, 0), which corresponds to (x, y) = (22k+1,±3 × 8k), (0, 8k) and
(−4k, 0) for n = 3k.

Case 2: n = 3k + 1 Now we have

y2k = x2k + 4

By Lemma 13, the only solutions are (xk, yk) = (0,±2). Hence, (x, y) = (0,±23k+1).

Case 3: n = 3k + 2 Now we have

y2k = x2k + 16

By Lemma 14, we have xk = 0 and yk = ±4, which corresponds to (x, y) =
(0,±23k+2).

3. Quadratic Reciprocity Method

We notice that performing factorization in Z only works in a small class of integers
k. Hence we want to switch to another completely different approach to proceed.

This time, we try to use the factorization identity x3+m3 = (x+m)(x2−mx+m2).
That is, k = m3 − k1.

We have

y2 + k1 = x3 +m3 = (x+m)(x2 −mx+m2)

The intuition is to consider a modulo p version of the equation. By the theory
of Quadratic Residue, there will be restrictions on the congruence condition on p.
However if we can find a prime factor that doesn’t satisfy the congruence condition
in R.H.S., then by choosing a suitable p, a contradiction will arise.

Lemma 15 will be in great use later, so we present the result first.

Lemma 15. Let p be a prime. Then

1. −1 is a quadratic residue modulo p if and only if p ≡ 1 (mod 4);
2. 2 is a quadratic residue modulo p if and only if p ≡ 1, 7 (mod 8);
3. −2 is a quadratic residue modulo p if and only if p ≡ 1, 3 (mod 8).
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In this section, we present four propositions.

Proposition 16. The equation y2 = x3+k has no solutions if there exists m, b ∈ Z
such that k = m3 − b2 in which m ≡ 2 (mod 4) and b is an odd number.

Proof. Assume the contrary, i.e. there exists a set of integral solution (x, y).

If x is even then y2 = x3 + k ≡ k ≡ m3− b2 ≡ 7 (mod 8), but that is impossible as
7 is not a quadratic residue of 8. Hence x is odd.

We have

y2 + b2 = x3 +m3 = (x+m)(x2 −mx+m2) = (x+m)

((
x− m

2

)2
+

3m2

4

)
As x and m

2 are both odd,
(
x− m

2

)2
+ 3m2

4 ≡ 3 (mod 4). Since the product of primes
that are in the form 4k+1 still have residue 1 modulo 4, the above expression must
have a prime factor p ≡ 3 (mod 4).

The same p divides the left hand side of the equation, i.e. y2 + b2. Hence, y2 ≡ −b2

(mod p). We consider
(
−b2
p

)
=
(
b2

p

)(
−1
p

)
, which is equal to −1 as (x

2

p ) = 1 for

all x and (−1p ) = −1 for p 6≡ 1 (mod 4).

Hence, by considering the equation modulo p with p ≡ 3 (mod 4), we have a
contradiction.

Proposition 17. The equation y2 = x3+k has no solutions if there exists m, b ∈ Z
such that k = −m3 − 4b2 where m ≡ 1 (mod 4).

Proof. Assume the contrary, i.e. there exists a set of solution (x, y). Take modulo
4 in the whole equation.

Here is the table of values of y2 and x3 − 1 modulo 4.

y y2 (mod 4) x x3 − 1 (mod 4)
0 0 0 3
1 1 1 0
2 0 2 3
3 1 3 2

The only common value of y2 and x3 − 1 modulo 4 is 0, so y is even and x ≡ 1
(mod 4). Now y2 + 4b2 = x3 − m3 = (x − m)(x2 + mx + m2). Consider factor

x2 + mx + m2 =
(
x− m

2

)2
+ 3m2

4 ≥ 0. As x ≡ 1 (mod 4), x2 + mx + m2 ≡
m2 + m + 1 ≡ 3 (mod 4), so there exist a prime factor p in x2 + mx + m2 such
that p ≡ 3 (mod 4). Then we have y2 + 4b2 ≡ 0 (mod p), so p must be congruent
1 modulo 4, contradiction.
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Proposition 18. The equation y2 = x3 +k has no solutions if there exist m, b ∈ Z
such that k = −m3 + 2b2 where m ≡ 2 (mod 8) and b is an odd number.

Proof. Assume the contrary, i.e. there exists a set of solution (x, y).

If x is even then y2 ≡ k ≡ −m3 + 2b2 ≡ −23 + 2 ≡ 2 (mod 8), which is not a
square. Therefore x is odd and so y is odd too.

We then have x3 = y2−k ≡ 1+6 ≡ 7 (mod 8). Since x is odd, x3−x ≡ x(x2−1) ≡
x(1− 1) ≡ 0 (mod 8). Hence x ≡ x3 ≡ 7 (mod 8). Since

y2 − 2b2 = x3 −m3 = (x−m)(x2 +mx+m2),

we further know that x2 +mx+m2 ≡ 72 + 7m+m2 ≡ m2−m+ 1 ≡ 3 (mod 8) by
m ≡ 2 (mod 8). Hence there exists a prime factor p of x2 +mx+m2 with residue
±3 (mod 8).

However, y2 ≡ 2b2 (mod p), which corresponds to the congruent relation p ≡ ±1
(mod 8) by Lemma 15 and similar argument as above. It leads to contradiction.
The result follows.

Proposition 19. The equation y2 = x3 +k has no solutions if there exist m, b ∈ Z
such that k = m3 − 2b2 in which m ≡ 2 (mod 8) and b ≡ 1 (mod 8).

Proof. Assume the contrary, i.e. there exists a set of solution (x, y).

If x is even, then y2 ≡ k ≡ m3 − 2b2 ≡ 6 (mod 8), which is not a square. Hence
x is odd and so y is odd. Then x3 ≡ x ≡ y2 − k ≡ 1 − 6 ≡ 3 (mod 8). Now,
y2 + 2b2 = x3 + m3 = (x + m)(x2 − mx + m2). Since for all prime factor p in
x2 −mx + m2 we have y2 + 2b2 ≡ 0 (mod p), so p ≡ 1, 3 (mod 8) by Lemma 15,
but that results in all prime factors p of x2 − mx + m2 ≡ 1, 3 (mod 8), which
contradicts the fact that x2 −mx+m2 ≡ m2 − 3m+ 9 ≡ 7 (mod 8).

4. Factorization in Number fields

Although considering Quadratic Residue is quite powerful, it can only prove the
Mordell’s Equation has no integral solution. Hence some Mordell’s Equation with
solutions (be it trivial or non-trivial) should not be solved by the trick in simple
manner. In order to solve some class of Mordell’s Equation with solutions, we are
forced to consider factorization again. Consider the Mordell’s Equation:

y2 = x3 + k

this time we try to factorized in Number field, i.e.

y2 − k = (y +
√
k)(y −

√
k) = x3
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By similar argument, if the two factors in L.H.S are relatively prime and the Number
field Q(

√
k) are Unique Factorization Domain (UFD)1, then they are both cubes.

4.1. Results using factorization in Principal Ideal Domain

Let us begin with Proposition 20, illustrating our method.

Proposition 20. The only integral solution to y2 = x3 − 1 is (x, y) = (1, 0).

Proof. Similar to above, we first check the parity of x and y. Suppose x is even,
then y2 + 1 = x3 ≡ 0 (mod 8). Hence, y2 ≡ −1 (mod 8). But that is impossible
given by Lemma 15. Contradiction. Hence x is odd and so y is even.

We then rewrite the equation as

x3 = y2 + 1

in which when we factorize it in Z[i], we get

x3 = (y + i)(y − i)

We now claim that y+ i and y− i are relatively prime. Let δ be a common divisor
of them. Since δ | (y + i)− (y − i) = 2i, we have N(δ) | N(2i) = 4.

Furthermore, N(δ) | N(y + i) = y2 + 1 = x3 which is odd by its definition, and we
deduce that N(δ) divides 4 and is odd. Hence N(δ) = 1 and δ is a unit in Z[i], and
so y + i and y − i are relatively prime.

Now notice that since they are relatively prime and their product is a cube, each
factor must be a cube up to unit multiple, by unique factorization in Z[i]. Moreover,
notice that every unit in Z[i] are cubes, i.e. 1 = 13,−1 = (−1)3, i = (−i)3,−i = i3.
Hence the unit multiples can be absorbed into the cubes. Thus, y+ i and y− i are
both cubes.

Therefore, by the above argument we must have

y + i = (m+ ni)3

for some m,n ∈ Z. Expanding the cube and equating real and and imaginary parts,
we get

y = m3 − 3mn2 = m(m2 − 3n2), 1 = 3m2n− n3 = n(3m2 − n2)

The equation on the right tells us n = ±1. We separate into two cases: If n = 1,
then 1 = 3m2 − 1 =⇒ 3m2 = 2, which has no integral solutions. If n = −1, then
1 = −(3m2 − 1) =⇒ m = 0. Therefore y = 0 and x3 = y2 + 1 = 1. Thus x = 1.

Hence the only integral solution to y2 = x3 − 1 is (x, y) = (1, 0).

1In this project, we would not deal with non-principal ideal domain.
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Theorem 21. Given that p is a prime such that p ≡ 3 (mod 4), all solutions of
equation y2 = x3 − p2 are given below:

1. If there exist m ∈ N such that p = 3m2 − 1, then the only 2 solutions are
(x, y) = (m2 + 1,±(m3 − 3m)).

2. If there exist m ∈ N such that p2 = 3m2 + 1, then the only 2 solutions are
(x, y) = (4m2 + 1,±(8m3 + 3m)).

These two cases are mutually exclusive and if p are not one of the cases, it will
have no solutions.

Proof. Before we factorize the equation, notice that by taking the equation modulo
4, i.e. y2 ≡ x3− p2 ≡ x3− 1, referencing on the parity argument of Proposition 17,
we have y is even and x is odd.

We factorize the equation into x3 = (y + pi)(y − pi). We want to show that y + pi
and y − pi are relatively prime.

Let δ be a common divisor of y + pi and y − pi. Then δ | (y + pi) − (y − pi) =
2pi and δ | (y + pi) + (y − pi) = 2y. N(δ)|N(2pi) = 4p2. At the same time,
N(δ) | N(y + pi) = y2 + p2 = x3 ≡ 1 (mod 2). Hence N(δ) is odd. Hence the only
possibilities of N(δ) is 1, p and p2. We have to rule out the possibility of p and p2.

Write δ = a + bi, where a, b ∈ Z. If N(δ) = p, then p = a2 + b2. However as
p ≡ 3 (mod 4), so it cannot be written sum of two squares. Hence we derive a
contradiction.

Similar holds to the case of p2, we have a2 + b2 = p2. By the famous Pythagorean
triple generator, we have a pair of integer m and n with a scale factor g such that
a = g(m2 − n2), b = g(2mn) and p = g(m2 + n2). Now we have g = 1 or p.

If g = 1 then we have m2 +n2 = p. As p ≡ 3 (mod 4), it cannot be written as sum
of two squares, so the case is impossible.

If g = p, we have δ = p (or pi, which only have a difference of unit). Hence we have
p divides both x and y. Write x = pu and y = pv we obtain,

v2 = pu3 − 1

However by modulo p, we have −1 is a quadratic residue modulo p, which is im-
possible as p ≡ 3 (mod 4) by Lemma 15.

Hence we also derive a contradiction. This left to N(δ) = 1, which is a unit.

With a similar argument as above, every unit in Z[i] are cubes, and so y + pi and
y − pi are both cubes.
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We can write

y + pi = (m+ ni)3

for some m,n ∈ Z now. Equating real and imaginary parts, we get

y = m(m2 − 3n2), p = n(3m2 − n2).

We consider the latter equation, i.e. p = n(3m2 − n2). Since n is a factor of p,
we know that n = ±1,±p as p is a prime. We will closely analyze this four cases
separately.

Case of n = −1: We have 3m2 = −p+ 1. But this is impossible as
p > 2 =⇒ −p+ 1 < 0 which cannot be a positive
multiple of a square.

Case of n = 1: We have n = 1 and 3m2 = p+ 1, hence p can be written
as the form 3m2 − 1, then we have y = m(m2 − 3), and
x3 = y2 + p2 = (m3 − 3m)2 + (3m2 − 1)2 = (m2 + 1)3,
hence if p = 3m2 − 1, then we obtain solution
(x, y) = (m2 + 1,±(m3 − 3m)). Notice if p can be written
in this form, we have 2 solutions.

Case of n = p: We have 3m2 = p2 + 1. This cannot be achieved as −1 is
not a quadratic residue modulo 3 by Lemma 15.

Case of n = −p: We have p2 = 3m2 + 1. If p can be written as this form,
then y = −8m3 − 3m and x = 4m2 + 1. Hence we have
the solution (x, y) = (4m2 + 1,±(8m3 + 3m)). We have 2
solutions.

We now prove that the two cases are mutually exclusive. Assume not, we have
p2 = (3m2

1 − 1)2 = 3m2
2 + 1, then m2

1(3m2
1 − 2) = m2

2, which means that 3m2
1 − 2

is a square. Write h2 = 3m2
1 − 2. Notice that p = 3m2

1 − 1. Hence we have
p = h2 + 1, which cannot be represented by a sum of two squares. Hence we derive
a contradiction.

The above theorem can be further generalized to the proposition below:

Proposition 22. Given that p, q are distinct primes such that p, q ≡ 3 (mod 4),
all solutions of equation y2 = x3 − (pq)2 are given below:

1. If there exists m ∈ N such that pq = 3m2 − 1, then

(x, y) = (m2 + 1,±(m3 − 3m))

are solutions.
2. If there exists m ∈ N such that p2 + q = 3m2, then

(x, y) = (m2 + p2,±m(m2 − 3p2))

are solutions.
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3. If there exists m ∈ N such that q2 + p = 3m2, then

(x, y) = (m2 + q2,±m(m2 − 3q2))

are solutions.
4. If there exists m ∈ N such that (pq)2 = 3m2 + 1, then

(x, y) = (4m2 + 1,±(8m3 + 3m))

are solutions.

Proof. Similarly, y is even and x is odd. We have

x3 = (y + pqi)(y − pqi)

Let δ be a common divisor of y+pqi and y−pqi. Then δ | (y+pqi)(y−pqi) = 2pqi
and δ | (y + pqi) + (y − pqi) = 2y. We have N(δ) | N(2pqi) = 4p2q2. At the same
time, N(δ) | N(y + pi) = y2 + p2 = x3 ≡ 1 (mod 2). Hence N(δ) is odd. Hence
the only possibilities of N(δ) is 1, p, p2, q, pq, q2, p2q, pq2 and p2q2. We rule out the
possibilities of the rest by similar argument. Hence y + pqi and y − pqi are both
cubes. Write

y + pqi = (m+ ni)3

for some m,n ∈ Z. Equating real and imaginary parts, we get

y = m(m2 − 3n2), pq = n(3m2 − n2)

We have n = ±1,±p,±q and ±pq.

Case of n = −1: We have 3m2 = −pq + 1. But this is
impossible as pq > 2 =⇒ −pq + 1 < 0 which
cannot be a positive multiple of a square.

Case of n = 1: We have 3m2 = pq + 1, hence pq can be
written as the form 3m2 − 1, then we have
y = m(m2 − 3), and x3 = y2 + (pq)2 =
(m3 − 3m)2 + (3m2 − 1)2 = (m2 + 1)3, hence
if pq = 3m2 − 1, then we obtain solution
(x, y) = (m2 + 1,±(m3 − 3m)). Notice if pq
can be written in this form, we have 2
solutions.

Case of n = p and n = q: We have 3m2 = p2 + q, if it can be written as
this form, we have y = m(m2 − 3p2) and
x = m2 + p2. Hence we will have
(x, y) = (m2 + p2,±m(m2 − 3p2)). Similarly,
if p+ q2 can be rewritten as 3n2, then we
have (x, y) = (n2 + q2,±n(n2 − 3q2)).
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Case of n = −p and n = −q: We have 3m2 = p2− q. Consider the equation
modulo 4, we have 3m2 ≡ 32 − 3 ≡ 2
(mod 4), which is impossible.

Case of n = pq: We have (pq)2 + 1 = 3m2, which cannot be
achieved considering modulo 4.

Case of n = −pq: We have (pq)2 − 1 = 3m2. If pq can be
written as this form, then y = −8m3 − 3m
and x = 4m2 + 1. Hence we have the solution
(x, y) = (4m2 + 1,±(8m3 + 3m)).

[See reviewer’s comment (3)]

We bravely proceed to a more terrible case.

Theorem 23. Given that p1, p2, . . . , pj are distinct primes such that pi ≡ 3 (mod 4)
for all 1 ≤ i ≤ j, all solutions of the equation y2 = x3 − k2, where k = p1p2 . . . pj
are given below:

If there exists m ∈ N and n = ±pa11 p
a2
2 . . . p

aj
j , where ai ∈ {0, 1} for all 1 ≤ i ≤ j

such that

3m2 =
k

n
+ n2,

then (x, y) = (m2 + n2,±m(m2 − 3n2)) are solutions.

Proof. We still have y is even and x is odd. We have

x3 = (y + ki)(y − ki)
Let δ be a common divisor of y + ki and y − ki. Then δ | (y + ki)− (y − ki) = 2ki
and δ | (y+ki)+(y−ki) = 2y. We have N(δ) | N(2ki) = 4p21p

2
2 . . . p

2
j . At the same

time, N(δ) | N(y + ki) = y2 + k2 = x3 ≡ 1 (mod 2). Hence N(δ) is odd. Hence
the only possibilities of N(δ) is pa11 p

a2
2 . . . p

aj
j , where ai ∈ {0, 1, 2} for all 1 ≤ i ≤ j.

We have to rule out all possibilities except 1.

If there exists 1 ≤ i ≤ j such that ai is odd, then it cannot be represented by a
sum of two squares.

If it is not the case, then ai is even for all 1 ≤ i ≤ j. Let N(δ) = a2 + b2.
We use Pythagorean triple generator again for this situation. We have a pair of
integers α and β with a scale factor g such that a = g(α2 − β2), b = g(2αβ) and√
N(δ) = g(α2 + β2). If g is composed of even powers of primes, then

√
N(δ)

g
cannot be represented by a sum of two squares. Hence g must be composed of odd
powers of primes.
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Then we have g | x and g | y. Write x = gx1 and y = gy1. We obtain:

y21 = gx31 −
k2

g2

Consider modulo prime p which is p | g, we obtain a contradiction. Hence y + ki
and y − ki are both cubes. Write

y + ki = (m+ ni)3

for some m,n ∈ Z. Equating real and imaginary parts, we get

y = m(m2 − 3n2), k = n(3m2 − n2).

We have n = ±pa11 p
a2
2 . . . p

aj
j , where ai = 0, 1 for all 1 ≤ i ≤ j and the result

follows.

This ends our results. However, we cannot solve for the case p ≡ 1 (mod 4). We
propose a conjecture for this matter:

Conjecture 24. Given that p is a prime such that p ≡ 1 (mod 4), all solutions of
equation y2 = x3 − p2 are given below:

1. If there exist m ∈ N such that p = m2 + 1, then the only 2 solutions are
(x, y) = (p, pm).

2. If there exist m ∈ N such that p2 = 3m2 + 1, then the only 2 solutions are
(x, y) = (4m2 + 1,±(8m3 + 3m)).

These two cases are mutually exclusive and if p is not in one of the cases, it will
have no solution.

[See reviewer’s comment (4)]

5. Conclusion

In this project, we have discussed two main classical approaches, factorizing in
number fields and Quadratic Reciprocity method.

In the first section, we consider the case of k = 4n, for n ∈ N. We reduce the
equation into the cases k = 1, 4, 16 and successfully obtain all solutions.

In the second section, we consider congruence and quadratic residue to prove a
certain set of k have no integral solutions, as presented in Proposition 16 to 19.

In the last section, we consider factorizing in number field, and we solved the case
when k = −p2, where p is a prime congruent to 1 modulo 4.



166 TIN WAI LAU

REFERENCES

[1] J. E. Cremona, Algorithm for Modular Elliptic Curves, (1997) 62-103.
[2] K. Conrad, Trace and Norm, 1-11

[3] A. Baker, On the representation of integers by binary forms, Philos. Trans. A 263 (1968)

173-208
[4] P. Mihailescu, On Catalan’s Conjecture (2002) 1-2.

[5] E. Chen, An Infinitely Large Napkin. (2017) 379-395.

[6] K. Conrad, Examples of Mordell’s equation. 1-11.



INVESTIGATION ON MORDELL’S EQUATION 167

Reviewer’s Comments

The aim of this paper is to investigate the solutions of the Mordell’s equation
y2 = x3 + k for some special classes of k. The first section is an introduction. The
second section uses basic number theory, together with a result of Mihailescu. (The
reviewer was unable to find the reference [4] with the exact title.) He also made
use of the law of quadratic reciprocity in Section 3. For the results in Section 4,
the main tool is the unique factorization in the ring of Gaussian integers Z[i].

This paper is well-written and the results are correct as far as the reviewer can
tell. Regarding the originality of this paper, a search of the reference articles shows
that this paper is based on the paper by K. Conrad (reference [6] in the paper), in
which a number of explicit numerical examples of the Mordell equation are worked
out. Nevertheless, the author was able to generalize these examples and carried out
detailed analysis in a number of cases. The methods are somewhat ad-hoc and it
is desired that a more systematic viewpoint can be applied to study or classify this
equation. Nevertheless, this is nice work for a high school student and the reviewer
hopes the author will continue the investigation in the future.

Regarding the style, the reviewer has the following comments:

• The references are not cited at all. Only the titles of the papers/books are
given but not the publisher information, which makes it hard to locate the
exact reference. For example the reviewer was unable to locate the reference
[4]. As the references are not cited, it is not clear to me how they are related
to this paper (e.g. the reference [5] is an encyclopedia consisting of 600+
pages and it is unclear which section in that paper is relevant).

• Some of the “bigger” results (e.g. Dirichlet’s unit theorem, law of quadratic
reciprocity and Lemma 15) are not referenced or proved. It is desirable to
cite a proper reference for these results.

• There are a number of notations and definitions in Section 1 which are not
used in the later sections. For example, “Galois conjugates” are not defined,
the symbols OK , O×K are also not used at all.

• Since the results are scattered and they are proved in a case-by-case basis, it
would be much more helpful if a table is set up to list the different cases of k
for easier comparison. The table may look like:

k Result All solutions (x, y)
1 Lemma 12 (0,±1), (2,±3), (−1, 0)
4 Lemma 13 (0,±2)
· · · · · · · · ·

There are some typos/mistakes in the paper:

1. The reviewer has comments on the wordings, which have been amended in
this paper.
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2. In a number of places, it is mentioned that if p ≡ 3 (mod 4), then p cannot
be expressed as a sum of squares without further comment. This appears a
number of times in the proof of Theorem 21 and also in the proof of Theo-
rem 23. The reviewer thinks it is better to add a lemma similar to Lemma 26
below as a corollary to Lemma 15 to make it clear to the reader.

3. In fact, in the proof of Theorem 22, the proof that y ± pqi are relatively
prime is omitted, and the analogous part in the proof of Theorem 23 looks a
bit messy. The reviewer would suggest writing it in a more systematic way
similar to Theorem 30 below.

4. Conjecture 24 (1) is not true (and it should read “only 2 solutions are (x, y) =
(p,±pm). ”). A counterexample is m = 6 so that p = 37 = m2 + 1 and
p2 = 1369. Besides the solutions (x, y) = (37,±222), the pairs (x, y) =
(185,±2516) also satisfy y2 = x3 − 1369.

Below the reviewer will give a proof of a generalization Theorem 23, which in the
reviewer’s opinion is more systematic than the treatment in the paper.

Notation 25. a ≡n b means a ≡ b (mod n).

Lemma 26. If p is a prime such that p ≡4 3, then a2 + b2 ≡p 0 has only trivial
solution a ≡p 0 and b ≡p 0.

Proof. Suppose not, without loss of generality b 6≡p 0, then 0 ≡p a2 + b2 implies
(ab−1)2 ≡p −1, contradicting p ≡4 3 (Lemma 15 in the paper).

By pigeonhole principle and unique factorization, we have

Lemma 27. If p is an irreducible element such that pn|a1 · · · ak (in either Z or

Z[i]), then pd
n
k e divides one of the ai.

Lemma 28. If q, a, b ∈ Z such that q|a+ bi or q|a− bi, then q2|(a+ bi)(a− bi).

Proof. If q|a+bi, then taking the conjugate implies q|a−bi. The result follows.

Combining Lemma 27 and Lemma 28,

Lemma 29. Let p be a prime number with p ≡4 3. If pn|ww for some w ∈ Z[i],
then p2d

n
2 e|ww.

Similarly if pn|x3 for some x ∈ Z, then p3d
n
3 e|x3.

Theorem 30 (Generalization of Theorem 23). Theorem 4.4 is true if k = pβ1

1 · · · p
βj

j

where βj ∈ {1, 2} and pi are distinct primes with pi ≡4 3.

Outline of the proof. As in the proof in the paper, the keypoint is the following

Claim: y + pβ1

1 · · · p
βj

j i and y − pβ1

1 · · · p
βj

j i are relatively prime.
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Reason: Suppose there exists an irreducible (which is non-unit by definition) com-

mon factor δ = a+ bi of y + pβ1

1 · · · p
βj

j i and y + pβ1

1 · · · p
βj

j i.

As in the paper, δ|2pβ1

1 · · · p
βj

j implies N(δ) is of the form pγ11 · · · p
γj
j where one of the

γi is ≥ 1. But δδ is the unique factorization of N(δ) in Z[i] and regarding pi ∈ Z[i],
we conclude that N(δ) is either pi or p2i for some i. Without loss of generality,

N(δ) = p1 or N(δ) = p21. Let q = pβ2

2 · · · p
βj

j and write p = p1, β = β1. Then from

the above, a2 + b2 ≡p 0. By Lemma 26, p|a and p|b. But then by irreducibility this
is only possible if δ = ±p or ±pi. So we have

p|y

⇒p2|y2 + p2βq2 = x3

⇒p3|x3 = (y + pβqi)(y − pβqi) (Lemma 29)

⇒p4|(y + pβqi)(y − pβqi) = x3 (Lemma 29)

⇒p6|x3 = (y + pβqi)(y − pβqi) (Lemma 29)

⇒p3|y + pβqi or p3|y − pβqi (Lemma 27)

In both cases, by considering the imaginary part we have p3|pβq which is impossible
as β ≤ 2.

The rest of the proof is similar to Theorem 23.


