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Abstract. In this project we planned to study the division of a circle with
the shortest curve. In a party, we often divide a circular cake into equal and

unequal parts. Suppose that bacteria grow on the exposed surface area of a

cake. In order to keep the cake hygienic, we should divide the cake with the
shortest cut. We investigated this problem by using a simple mathematical

model: dividing a circle into equal or unequal areas with the shortest curve.

The first possible solution was the radius method. It meant that we used
radii to divide a circle into parts. But, were there any ways to divide a circle

with a curve shorter than that of the radius method?

The results included:
1. Radius method is the solution of the problem for n = 2, 3 and equal

division.
2. Radius method is not a solution of the problem for n = 4 and equal

division.

3. Orthogonal circular arc is the solution of the problem for n = 2 and
unequal division.

4. We found a necessary condition of the problem for n = 3 and unequal

division by a “Y-shaped” curve.
[See reviewer’s comment (2) and (3)]

Introduction

After reading the book written by Polya [10], we were interested in the problem
which is actually the problem in our project n = 2 and equal division. We thought
that we could have our ways to solve the problem by geometry and calculus.

By isoperimetric inequality and its variants, we would like to claim the curve must
be a circle, a straight line or a circular arc. Actually, it was not very easy to prove
that the region, enclosed by the shortest curve, with a non-major segment, had
to be convex because bad operations might move parts of the curve outside the
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circle. However, when we overcame this difficulty, we had the claim and could use
simple geometry theorems to compare the length of the radius method and that of
a circular cut.

Besides geometrical method, we could also use calculus to solve the problem after
we had the claim in the former paragraph. An interesting result was that the
circular arcs or the straight line had to be orthogonal to the circle no matter it was
an equal division or not. Therefore, we solved the problem for n = 2 and unequal
division.

Then we came to the idea of this project. We planned to study the division of a
circle with the shortest curve. The first possible solution was the radius method.
It meant that we used radii to divide a circle into equal or unequal areas. But,
were there any ways to divide a circle with a curve less than that of the radius
method? If so, what was the method with the shortest curve? We planned to
study this problem in details. More precisely, we would start our investigation with
two directions:

1. equal division or unequal division,
2. n = 2, 3, 4, . . . [See reviewer’s comment (4)]

For the problem for n = 3 and equal division, radius method consisted of three radii
with 120◦. That meant O was the many different centres of the three points on the
circumference. Obviously, shortest curve related to the Fermat point. Therefore,
we tried to use the Fermat point in our proof. The four cases:

Case 1: Two closed curves inside the circle,

Case 2: Two closed curves nested together,

Case 3: A closed curve and a curve ending on the circle, and

Case 4: Two curves ending on the circle,

could be proven not a solution to this problem. The remaining task was to cope
with the

Case 5: A “Y-shaped” curve.

We had two directions of thought here. First, we tried to find some necessary
condition of this problem to justify a curve not to be the shortest. Second, we tried
to use the Fermat point to solve this problem. As O was the Fermat point of any
three points divides the circumference equally, we hoped to find some operations
to satisfy the following two conditions:

1. the curve was shorter after operation; and
2. the end-points of the curve divide the circumference equally after operation.
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Later, we solved this problem.

Some of the necessary conditions for the problem of n = 3 and equal division could
be generalized to that of unequal division.

When surfing on the web for the minimum spanning tree problem for another
competition about System Modeling & Optimization, we accidentally found the
minimum Steiner tree problem and the Euclidean Steiner tree. We used this idea
to disprove that the radius method is a solution of the problem for n = 4 and equal
division, although we could not find the shortest cut. Actually, the key idea of
disproof was only the Fermat point.

Symbols used [See reviewer’s comment (5)]

• We define the circle to be divided as the unit circle, named S. Therefore, the
area is π.
• A generalized circular arc means a circular arc or a line segment.

• dn = the minimum length of a curve ending on S to enclose an area of
π

n
.

• l(curve) = length of the curve. For example, l(the unit circle) = 2π

With reference to Fig 1.1,

• A(θ) = the area enclosed by a minor
segment of S and an orthogonal
generalized circular arc
corresponding to an angle θ.

• p(θ) = the length of an orthogonal
generalized circular arc
corresponding to an angle θ.

• p(A) = the minimum length of a curve
ending on S to enclose an area
of A

Literature Review and Lemmas [See reviewer’s comment (6a)]

Isoperimetric Inequality and its variants

From the books written by Polya [10], Choi [1], and the web pages [3-5], we had
the followings:

The Isoperimetric Inequality: Closed curves, circle is the best

• Among all planar shapes with the same perimeter, the circle has the largest
area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1.1a)
• Among all planar shapes with the same area, the circle has the shortest

perimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1.1b)
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Curves with end-points on a straight line, semi-circle is the best

• Among all planar curves with two end-points lying on a straight line and the
same length, the semi-circle encloses the largest area with the straight line
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1.2a)

• Among all planar curves with two end-points lying on a straight line and
the same enclosed area with the straight line, the semi-circle has the shortest
length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1.2b)

Curves with two fixed end-points, circular arc is the best

• Among all planar curves with two fixed end-points and the same length, the
circular arc encloses the largest area with the line segment joining the two
fixed points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(1.3a)
• Among all planar curves with two fixed end-points and the same enclosed

area with the line segment joining the two fixed points, the circular arc has
the shortest length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1.3b)

Theorems (1.2b) and (1.3b) are not actually from the books. However, starting
from theorems (1.2a) and (1.3a), using the spirit of the proof of the equivalence of
Isoperimetric Inequality (1.1a) and (1.1b) in [6], we can prove them.

Fermat Point

From the papers written by Cheung [2], Cheng [3], and the web pages [8], we
had the followings:

• Fermat point of a triangle is a point such that the sum of its distance from
the three vertices of the triangle is a minimum. The Fermat point is unique.

If 4ABC is a triangle with all angles less than 120◦, then

• P is the Fermat point ⇐⇒ angles among AP,BP and CP are 120◦. . . . (2)

Shortest curve between two points

From web page [12], the triangle inequality can be extended by mathematical in-
duction to the following:

• Any polygonal path is longer than the line segment joining its end-points.

By definition, the arc-length of a curve is the least upper bound of the lengths of
all polygonal approximations of the curve. The above statement can be further
extended to the following:

• The shortest curve between two points is a straight line. . . . . . . . . . . . . . . . . (3)
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Lemma 4. The shortest path (curve) between a fixed point inside a circle and a
point on the circle is the shorter line segment lying on a diameter of the circle (OA
in Fig 2.1 and Fig 2.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)

By theorem (3), it suffices to prove that OA is shorter than or any line segment
joining O and a point on the circle. [See reviewer’s comment (6b)]

Proof by Calculus:

Equation of the circle:

(x− (p− r))2 + y2 = r2 for x ∈ [p− 2r, p]

l = the distance between O and a point (x, y)

on the circumference

=
È
x2 + y2

=
È
x2 + r2 − x2 + 2(p− r)x− (p− r)2

=
È
r2 + 2(p− r)x− (p− r)2

dl

dx
=

p− rÈ
r2 + 2(p− r)x− (p− r)2

< 0 as p < r

Therefore, the minimum l is p at x = p.

Proof by Geometry (Fig 2.2).

Let C be the centre of the fixed circle C1 and
O be the fixed point. Extend CO to meet
the circle at A. Draw a circle C2 with centre
O and radius OA. Draw a straight line T
passing A and ⊥ CA.

T is the common tangent of the two circles.
O lies inside C1 =⇒ C1 and C2 touch each
other internally.

[See reviewer’s comment (6c)]

Therefore, C2 lies inside C1

Hence, any line segment joining O and a point
on C1 is not shorter than OA.
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Lemma 5. In a triangle, longer side opposite larger angle, and vice versa. . . .(5)

From the web pages [10-11], or by the sine formula, we can have this lemma.

Lemma 6. If A ∈ {(x1, y1) : x21 + y21 = 1, x1 ≤ 0} and B ∈ {(x2, 0) : 0 ≤ x2 ≤ 1},
then the length of any curve dAB ≥ 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6)

Again, by theorem (3), it suffices to prove that AB ≥ 1.

Proof by Algebra:

AB =
È

(x1 − x2)2 + y21

=
È
x21 − 2x1x2 + x22 + y21

≥
È
x21 + y21 = 1

as x1, x2 ≤ 0, x22 ≥ 0.

Proof by Geometry (Fig 2.3):

∠AOB ≤ 90◦ or B = O

=⇒ ∠AOB ≤ 90◦ or B = O

=⇒ AB > AO or AB = AO (lemma 4)

=⇒ AB ≥ AO = 1

Therefore, we proved lemma (6).

Lemma 7 (a). If l is the shortest curve with end-points on the circle dividing a
circle into 2 EQUAL parts, then

1. l is a generalized circular arc; and
2. The region enclosed by l and a non-major arc must be convex . . . . . . . . . (7a)
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Proof.
In Fig 2.4, A1 is the region enclosed by any curve

(blue) and the minor arc
_

AB, with

area of A1 = area of A2

In Fig 2.5, we use an elastic band (red curve) to
trap the A1. We noted that

area of A′1 ≥ area of A1,

A′1 is convex, and

l(red curve) ≤ l(blue curve) (theorem 3)

In Fig 2.6, we move the red curve in the direction
⊥ A′B′ until

area of A′′1 = area of A1

Let A′′ and B′′ be the points of intersection be-
tween the circle and the red curve. We coloured
the red curve within A′′ and B′′ green. We noted
that

area of A′′1 = area of A1,

A′1is convex =⇒ A′′1 is convex, and

l(green curve) ≤ l(red curve)

In Fig 2.7, the orange curve is the circular arc
with end-points A′′ and B′′ and an enclosed area
equal to area of A′′1 .

By variant of isoperimetric inequality (1.3b),

l(orange curve) ≤ l(green curve),

equality holds iff the green curve is a generalized
circular arc.
As a result, if the blue curve is not a generalized
circular arc, we can find an orange curve so that
it also divides the circle into 2 equal parts and

l(orange curve) < l(blue curve).
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We proved the lemma 7(a) with two remarks:

1. End-points of orange and blue curves may not be the same.
2. Orange and blue curves divide the circle into equal areas.

Lemma 7 (b). If l is the shortest curve with FIXED end-points on the circle
dividing a circle into 2 parts of GIVEN AREAS, then

1. l is a generalized circular arc; and
2. The region with area not less than the segment with the common arc on S

must be convex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7b)

[See reviewer’s comment (6d)]

Proof.

In Fig 2.8, A1 is the region enclosed by any curve

(blue) and the minor arc
_

AB, with

area of A1 > area of minor segment AB

In Fig 2.9, we use an elastic band (red curve) to
trap the A1. We noted that

area of A′1 ≥ area of A1,

A′1 is convex, and

l(red curve) ≤ l(blue curve) (theorem 3)

In Fig 2.10, we draw the line AB and move the
line to left until area of A′′1 = area of A1.
We noted that

A′1is convex =⇒ A′′1 is convex, and

l(green curve) ≤ l(red curve) (theorem 3)

In Fig 2.11, the orange curve is the circular arc
with end-points A and B and an enclosed area
equal to area of A′′1 .
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By variant of isoperimetric inequality (1.3b),

l(orange curve) ≤ l(green curve)

equality holds iff the green curve is a generalized
circular arc.

As a result, if the blue curve is not a generalized
circular arc, we can find an orange curve so that
it also divides the circle into 2 parts of given areas
and

l(orange curve) < l(blue curve)

For the case of area of A1 < area of minor segment AB, equivalently,

area of A2 > area of major segment AB,

do similar operations on A2, we can obtain the same result.

For the case of area of A1 = area of minor segment AB, the solution is trivial,
minimum curve is the line segment AB.

We proved the lemma 7(b) with two remarks:

1. End-points of orange and blue curves are the same.
2. Orange and blue curves divide the circle into 2 parts of given areas.

Lemma 7 (c). If l is the shortest curve with end-points on the circle dividing a
circle into 2 parts of GIVEN AREAS, then

1. l is a generalized circular arc;
2. The region enclosed by l and a non-major arc must be convex. . . . . . . . . .(7c)

Proof.

By lemma 7(b), l is a generalized circular arc. Let
A1 be the region enclosed by l and a non-major arc.
By suitable rotation, end-points of l, A and B, are on
the same vertical line. Let A0B0 be a vertical line
with end-points on the circle such that the area minor
segment enclosed by A0B0 = area of A1.

Suppose, on the contrary, A1 is concave (Fig 2.12).
Then we have

area of A1 <
π

2
and

_

A0B0<
_

AB≤ π.
l > AB > A0B0 which is a contradiction.

By contradiction, A1 is convex.
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We proved the lemma 7(c) with two remarks:

1. End-points of curves are not fixed.
2. The curve divides the circle into 2 parts of given areas.

Solving the problem for n = 2 and equal division

To divide a circle into 2 equal areas, there are two possible ways:

Case 1:
A closed curve
which is embed-
ded fully inside
the circle

Case 2:
A curve which
ends on the
circumference of
the circle

Case 1: A closed curve which is embedded fully inside the circle

According to the isoperimetric inequality (1.1b), a circle has the shortest perimeter.
Therefore, perimeter of circle must be smaller than that of other closed curves.

l( ) ≤ l( )

Let r be the radius of a circle in Case 1, then

πr2 =
π

2
=⇒ r =

√
2

2

=⇒ perimeter of a circle in Case 1 = 2πr =
√

2π > 4.44 > 2

However, the length of a diameter of S is 2. The perimeter of a circle in Case 1 is
larger than the length of a diameter of S. A diameter of S also divides S into 2
equal areas. Therefore, Case 1 must not be the solution.

Case 2: A curve which ends on the circumference of the circle

Applying Lemmas 7(a) or 7(b) or 7(c), we have the following:

1. The shortest curve must be a generalized circular arc.
2. Region enclosed by a curve and a non-major arc must be convex.

Method 1: To prove that the minimum cut is the radius method by
geometry

Suppose AB is not a diameter and úAMB the shortest cut.
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By suitable rotation, x-coordinates of A and B are the same and positive.

Suppose, on the contrary, that úAMB does not cut PQ.

π

2
= area of AMBE < area of PQE =

π

2
.

By contradiction, úAMB cuts PQ.

By symmetry about x-axis, let F and G be the points of intersection between úAMB
and PQ such that F and G lies on the positive and negative y-axis, respectively.

÷AF > PF (Lemma 4)

úFMG > FG (Theorem 3)

÷GB > GQ (Lemma 4)

÷AB = ÷AF +úFMG+÷GB
> PF + FG+GQ = PQ

Therefore, the minimum cut is the radius method and the length of cut is 2.

Method 2: To prove that the minimum cut is the radius method by
calculus

A = area =
π

2

= θ − 1

2
sin 2θ + r2φ− 1

2
r2 sin 2φ (8)

p = length of curve = 2rφ (9)

r =
sin θ

sinφ
(10)

Sub (10) into (8),

A =
π

2

= θ − 1

2
sin 2θ +

φ sin2 θ

sin2 φ
− sin2 θ cosφ

sinφ
(11)
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Differentiate both sides with respect to θ,

0 = 1− cos 2θ +
2φ sin θ cos θ

sin2 φ
− 2 sin θ cos θ cosφ

sinφ

+
dφ

dθ

�
sin2 θ

sin2 φ
− 2φ sin2 θ cosφ

sin3 φ
+

sin2 θ sinφ

sinφ
+

sin2 θ cos2 φ

sin2 φ

�
0 = 2 sin2 θ +

2 sin θ cos θ(φ− sinφ cosφ)

sin2 φ
+
dφ

dθ

�
2 sin2 θ

sin3 φ
(sinφ− φ cosφ)

�
dφ

dθ
= − [sin θ sin2 φ+ cos θ(φ− sinφ cosφ)] sinφ

sin θ(sinφ− φ cos θ)
(12)

Sub (10) into (9),

p = 2φ
sin θ

sinφ
(13)

Differentiate both sides with respect to θ,

dp

dθ
= 2

2
64dφ
dθ

�
sin θ

sinφ

�
+

cos θ sinφ− dφ

dθ
cosφ sin θ

sin2 φ
φ

3
75

1

2

dp

dθ
=
dφ

dθ

�
sin θ(sinφ− φ cosφ)

sin2 φ

�
+
φ cos θ

sinφ
(14)

Sub (12) into (14)

1

2

dp

dθ

= − [sin θ sin2 φ+ cos θ(φ− sinφ cosφ)] sinφ

sin θ(sinφ− φ cos θ)

�
sin θ(sinφ− φ cos θ)

sin2 φ

�
+
φ cos θ

sinφ

= − [sin θ sin2 φ+ cos θ(φ− sinφ cosφ)]

sinφ
+
φ cos θ

sinφ

= − sin θ sinφ+ cos θ cosφ

= cos(θ + φ) (15)
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Differentiate both sides with respect to θ,

1

2

d2p

dθ2

= −
�

1 +
dφ

dθ

�
sin(θ + φ)

= −
�

1− [sin θ sin2 φ+ cos θ(φ− sinφ cosφ)] sinφ

sin θ(sinφ− φ cosφ)

�
sin(θ + φ)

= −
�

sin θ(sinφ− φ cosφ)− [sin θ sin2 φ+ cos θ(φ− sinφ cosφ)] sinφ

sin θ(sinφ− φ cosφ)

�
× sin(θ + φ)

= −
�

sin θ sinφ(1− sin2 φ)− φ(sin θ cosφ+ cos θ sinφ) + cos θ sin2 φ cosφ

sin θ(sinφ− φ cosφ)

�
× sin(θ + φ)

= −
�

sinφ cosφ(sin θ cosφ+ cos θ sinφ)− φ(sin θ cosφ+ cos θ sinφ)

sin θ(sinφ− φ cosφ)

�
× sin(θ + φ)

=

�
φ− sinφ cosφ

sin θ(sinφ− φ cos θ)

�
sin2(θ + φ)

=

�
2φ− sin 2φ

2 sin θ cosφ(tanφ− φ))

�
sin2(θ + φ) (16)

To obtain the extreme value of p,
dp

dθ
= 0. By equation (15), θ + φ =

π

2
.

As 2φ > sin 2φ and tanφ > φ for 0 < θ, φ <
π

2
, by equation (16),

d2p

dθ2

����
θ+φ=π

2

> 0.

Therefore, the minimum cut must be an orthogonal general circular arc. . . . . (17)

Sub φ =
π

2
− θ into (11) and (13)

A(θ) = θ − 1

2
sin 2θ +

�π
2
− θ
�

sin2 θ

sin2
�π

2
− θ
� − sin2 θ cos

�π
2
− θ
�

sin
�π

2
− θ
�

= θ − 1

2
sin 2θ +

�π
2
− θ
�

sin2 θ

cos2 θ
− sin3 θ

cos θ

p(θ) = 2
�π

2
− θ
� sin θ

sin
�π

2
− θ
�

= (π − 2θ) tan θ
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We can solve the problem for A =
π

2
by plotting the graph with the software

WINPLOT.

From Fig 3.5, θ =
π

2
, d2 = p

�π
2

�
= 2 which is the length of a diameter.

Therefore, the minimum cut is the radius method and the length of cut is 2.

Solving the problem for n = 2 and unequal division

To prove that the minimum cut is the orthogonal generalized circular
arc

If we use the method of Case 2 in Fig 3.2 on page 10 to divide a circle into 2 unequal
areas, by applying Lemmas 7 (c), the shortest curve l satisfies

1. l is a generalized circular arc;
2. The region enclosed by l and a non-major arc must be convex.

By replacing
π

2
to any constant in equations (8) and (11), we can still get the

conclusion (17).

That is, the minimum cut of this method must be an orthogonal generalized circu-
lar arc.
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If we use the method of Case 1 in Fig 3.1 on page 10 to divide a circle into 2 unequal
areas, by the isoperimetric inequality (1.1b), a circle has the shortest perimeter.

That is, the minimum cut of this method must be a circle.

Next, we need to compare which one is better? An orthogonal generalized circular
arc? A circle?

In Fig 4.1, we are sure that purple curve is over green curve. Therefore, we have
the following:

Orthogonal generalized circular arc is the solution of the problem for n = 2 and
unequal division. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (18)



180 CHUNG YIN CHAN, RENNIE LEE

In Fig 4.2, we can see that at the black dots, the red curves is approximately
tangent to a blue curves. So, with the restriction of moving on the same red curves,
values of p reach their minimum at the black dots. Equivalently, the necessary and
sufficient condition for the problem is θ + φ = 90◦.

To find the minimum length of a curve ending on S to enclose an area

of
π

2
,
π

3
and

π

4
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By reading the values in WINPLOT, we have

θ p(θ) A(θ) Remark

π

2
≈ 1.57079632679490 2

π

2
This case can be proven
geometrically

1.17383106252199 1.89382525073059
π

3

0.96620602437632 1.75016083782380
π

4

Using Method of Bisection in Excel to check the answer, we get

n θ A(θ)− π

n
p(θ)

3 1.173 -0.001071732 1.893375

3 1.174 0.00021788 1.893917

4 0.966 -0.000252734 1.749986

4 0.967 0.000974139 1.750833

4 0.9661 -0.000130064 1.750071

Therefore, d2 = 2, 1.893 ≤ d3 ≤ 1.894 and 1.750 ≤ d4 ≤ 1.751 . . . . . . . . . . . . . . . . (19)

Solving the problem for n = 3 and equal division

To divide a circle to 3 equal areas, there are five possible cases:

Case 1: Two separated closed curves inside the circle (Fig 5.1)

Case 2: Two closed curves nested together (Fig 5.2)

Case 3: A closed curve and a curve ending on the circle (Fig 5.3)

Case 4: Two curves ending on the circle (Fig 5.4)

Case 5: A “Y-shaped” curve (Fig 5.5)
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The radius method

Fig 5.6 shows the simplest method to divide a circle into 3 equal parts is the radius
method, cutting 3 radii from center. Therefore, the length of curve is 3. Now, we
compare the minimum length of the five cases with 3, to find out whether the cases
consist of the best solution.

Case 1: Two separated closed curves inside the circle

According to the isoperimetric inequality (1.1b), with fixed area, circle has the
shortest perimeter. For the minimum length of cut, the two curves are circles.

π

3
= πr2 =⇒ r =

1√
3

=⇒ l(two such circles) ≥ 2

�
2π · 1√

3

�
> 7.255

> 3

As 4r > 2, we cannot put two such circles inside S. However, we still have

l(curve) > 3.

Therefore, Case 1 must not be our solution.
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Case 2: Two closed curves nested together

According to the isoperimetric inequality (1.1b), with fixed area, circle has the
shortest perimeter. For the minimum length of cut, the two curves are circles.

l(two such circles) ≥ 2π

�
1√
3

+

r
2

3

�
> 8.757 > 3

Therefore, Case 2 must not be our solution.

Case 3: A closed curve and a curve ending on the circle

According to the isoperimetric inequality (1.1b) and Theorem (18), with fixed areas,
a circle and an orthogonal circular arc has the shortest total length.

l(such circles) ≥ 2π√
3

+ d3 > 5.520 > 3

Therefore, Case 3 must not be our solution.

Case 4: Two curves ending on the circle
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According to the Theorem (18), with fixed areas, orthogonal circular arcs give the
shortest total length.

l(the curve) ≥ 2d3 > 3.786 > 3

Therefore, Case 4 must not be our solution.

Case 5: A “Y-shaped” curve

Symbols used

First, we define the three segments (which are
coloured in Fig. 5.14) to be α, β, γ such that
l(α) ≤ l(β) ≤ l(γ). By necessary reflection,
α, β, γ are named in anticlockwise direction.

Second, we define Γ to be the “Y-shaped” curve
that consists of all the three segments. Equiva-
lently, Γ = α ∪ β ∪ γ.

Third, the region enclosed by α and β means the

region enclosed by α, β and the arc ÷AB which is

directed in anticlockwise direction. ÷AB may be
a major or minor arc but the region must not
contain γ.

With reference to the Fig. 5.14, some points are
named.

As we are going to compare the minimum length
of Γ with that of the radius method, we name the
configuration of radius method as show in Fig.
5.15.

It is noted that A0 = (1, 0).

X(θ) stands for the result of rotating X by θ
anticlockwise through O. Fig. 5.16 shows the
result of rotating Fig. 5.15 by θ anticlockwise
through O.

We called Γ cuts Γ0(θ) if and only if α cuts α0(θ)
and β cuts β0(θ) and γ cuts γ0(θ).

We called Γ is minimum if and only if l(Γ) ≤ l(Γ′)
for all Y-shaped Γ′ dividing S as required.
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To prove that

if D 6= O and there exists φ such that Γ cuts Γ0(φ), then l(Γ) > l(Γ0) . . . . . . . (20)

In Fig. 5.17, Γ and Γ0(φ) are shown in solid and
dotted curves respectively.

It is noted that D 6= O.

Let P,Q,R be points of intersection between α
and α0(φ), β and β0(φ), γ and γ0(φ) respectively.

In Fig. 5.18, α, β, γ are shown in dotted curve.

α′ is the curve walking from D to P along α and
from P to A0(φ) along α0(φ).

β′ and γ′ are obtained in similar way.

By Lemma (4),

l(α′) + l(β′) + l(γ′) ≤ l(α) + l(β) + l(γ)

In Fig. 5.19, α′, β′, γ′ are shown in dotted curve.

α′′ is the solid line joining D and A0(φ).

β′′ and γ′′ are obtained in similar way.

By Theorem (3),

l(α′′) + l(β′′) + l(γ′′) ≤ l(α′) + l(β′) + l(γ′)

In Fig. 5.20, α′′, β′′, γ′′ are shown in dotted line.
Three radii joining from O to A0(φ), B0(φ), C0(φ)
are shown in solid line.

By theorem about Fermat point (2), as D 6= O,

l(α′′) + l(β′′) + l(γ′′) > 3

Therefore,

l(Γ) ≥ l(α′) + l(β′) + l(γ′)

≥ l(α′′) + l(β′′) + l(γ′′)

> 3 = l(Γ0)
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To prove that if Γ is minimum, then

(a) α, β, γ are genearlized circular arcs,
(b) l(Γ) ≤ 3
(c) l(α) ≤ 1
(d) 0.786 < 2d3 − 3 ≤ l(α), l(β), l(γ) ≤ 3− d3 < 1.107

Proof of (a). For the curve α,

Step 1) color A and D red

Step 2) color the segments which are not generalized circular arcs blue (including
end-points)

Step 3) color the intersections of two different generalized circular arcs blue

Step 4) color the remaining uncolored segments red (which are generalized circular
arcs)

Then,

Case 1) if α does not consist of blue points, then α is a generalized circular arc.

Case 2) if α consists of blue points, then we are going to prove that we can draw
a very small circle centred at a blue point so that (i) α divides the circle with one
segment, (ii) β and γ does not intersect the circle, and (iii) the segment inside the
circle is not a generalized circular arc.

Proof of (i) and (ii): Let P be a blue point. With reference to the Fig. 5.22 on
next page,

Step 5) take 0 < r1 < PD,

Step 6) take r2 such that r2 ≤ r1 and 0 < r2 < min({PQ : Q lies on β or γ}),

Step 7) take r3 such that r3 ≤ r2 and 0 < r3 < min({PQ : Q lies on S}).
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Let S1 be the circle with centre P and radius r3.

Step 8a) if α divides S1 with one segment, take r4 = r3,

Step 8b) otherwise, if more than one segment lies inside S1, color the segment
containing P green and others brown.

Take r4 such that r4 ≤ r3 and 0 < r4 < min({PQ : Q lies on brown segments})

Now, let S2 be the circle with centre P and radius r4. By the above method, S2

satisfies (i) and (ii).

Proof of (iii). If the circle can be drawn with condition (i), by the coloring method,
(iii) holds.
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It is noted that the part of α inside S2 has the properties (i) and (iii). Apply
Lemma 7 (b) inside S2, we can replace that part of α by a generalized circular arc
so that l(α) is less than before.

Case 2 (α consists of blue points) contradicts with that Γ is minimum.

Hence, α is of Case 1 and a generalized circular arc.

By similar argument for β and γ, we proved that (a) α, β, γ are genearlized circular
arcs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (21)

Proof of (b). Γ is minimum =⇒ l(Γ) ≤ l(Γ0) = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . (22)

Proof of (c). If l(α) > 1, then 1 < l(β) ≤ l(γ), l(α) + l(β) + l(γ) > 3, which
contradicts with (b)

By contradiction, l(α) ≤ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (23)

Proof of (d).

By (22), l(α) + l(β) + l(γ) ≤ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (i)

By (18), l(α) + l(β) ≥ d3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (ii)

l(β) + l(γ) ≥ d3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (iii)

l(γ) + l(α) ≥ d3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (iv)

By (19), d3 > 1.893. (i) - (ii) gives l(γ) ≤ 3− d3 < 1.107,

(iii) + (iv) - (i) gives l(γ) ≥ 2d3 − 3 > 0.786.

By similar argument for β and γ,

(d) 0.786 < 2d3 − 3 ≤ l(α), l(β), l(γ) ≤ 3− d3 < 1.107 . . . . . . . . . . . . . . . . . . . . . . . (24)

To prove that if Γ is minimum, then α is inscribed in a sector of S with angle θ
less than 90◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (25)
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Let P,Q be the points of intersection of the radii and α such that P and Q are near
A and D respectively.

Name the sector OMN such that OPM and OQN are straight lines.

Let x = ÷AP and y = ÷PQ.

As PQ
(3)

≤ y ≤ l(α)−x
(23)

≤ 1−x
(4)

≤ 1−PM = OP , by Lemma (5), ∠POQ ≤ ∠PQO.

So, if we call θ = ∠POQ, θ is not the largest angle in 4QOP . Therefore, (25) is
proved.

To prove that if Γ is minimum, then, with θ defined by (25), β must cut the
sector OB0B0(θ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (26)

Assume, on the contrary, that β does not cut the sector OB0B0(θ).

It is noted that this assumption implies D 6= O. We had seven cases:

Case 1) β does not cut OA0.

Case 2a) β cuts OA0 once and cuts OA0(θ) none.

Case 3) β cuts OA0 once and cuts OA0(θ) twice.

Case 2b) β cuts OA0 twice and does not cut OA0(θ).

Case 4a) β cuts OA0 twice, cuts OA0(θ) and cuts OA0(90◦) none.

Case 5) β cuts OA0 twice, cuts OA0(θ) and cuts OA0(90◦) once.

Case 4b) β cuts OA0 twice, cuts OA0(θ) and cuts OA0(90◦) twice.
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We are going to prove that all the above cases are impossible. Then, by contradic-
tion, (26) holds.

Case 1) β does not cut OA0 (Fig. 5.24).

The region enclosed by α and β is inside the
sector OA0B0.

The area enclosed by α and β <
π

3
.

It is impossible for this case.

Case 2a) β cuts OA0 once and cuts OA0(θ) none (Fig. 5.25); and

Case 2b) β cuts OA0 twice and cuts OA0(θ) none (Fig. 5.26).

The sector OA0(θ)B0(θ) is inside the region enclosed by α and β.

The area enclosed by α and β >
π

3
.

It is impossible for this case.

Case 3) β cuts OA0 once and cuts OA0(θ) twice (Fig. 5.27).

The shaded semi-circle is inside the region en-
closed by α and β.

The area enclosed by α and β >
π

2
.

It is impossible for this case.
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Case 4a) β cuts OA0 twice, cuts OA0(θ) and cuts OA0(90◦) none; and

Case 4b) β cuts OA0 twice, cuts OA0(θ) and cuts OA0(90◦) twice (Fig.
5.28).

Firstly, in Fig. 5.29, we have the area of red shaded part ≤ π

4
.

In Fig. 5.30, let øMN and ÷FG be l1 and l2 respectively. (Denote l1 = 0 for Case
4a)

Denote the area enclosed by l1 with øMN and l2 with÷FG be A1 and A2, respectively.

(Remark: we denote l1 = A1 = 0 for Case 4a). By (24),

l1 + l2 ≤ l(β) < 1.107

The area of green shaded part = A1 +A2

≤ π

2

�
l1
π

�2
+
π

2

�
l2
π

�2
(1.2b)

≤ 1

2π
(l1 + l2)2

< 0.196

<
π

12

The area enclosed by α and β = the area of red and green shaded parts

<
π

4
+

π

12
=
π

3

It is impossible for this case.
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Case 5) β cuts OA0 twice, cuts OA0(θ) and cuts OA0(90◦) once (Fig. 5.31).

In Fig. 5.32, let S′ be the circle containing β. Draw a line L which passes through
the centres of S and S′. Under reflection about L, S and S′ will not change but
A0, M , N are reflected to A′,M ′, N ′ respectively.

In Fig. 5.32 and 5.33, let the angle between A0 and A′ be θ1, and the angle between
A′ and B0 be θ2.

Firstly, in Fig. 5.32, we have the area of red shaded part ≤ 1

2
θ1.

In Fig. 5.33, let øMN and ùM ′N ′ be l1 and l2 respectively.

Denote the area enclosed by l1 with øMN and l2 with ùM ′N ′ be A1 and A2, respec-
tively.

Consider the sector A′OB0 (Fig. 5.34 or 5.35)

l3
(3)

≤ l2 = l1 ≤ l(β)−øBN (24)
< 1.107−øBN (6)

≤ 1.107− 1 = 0.107
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A2 ≤ green area in Fig. 5.36 ≤ green area in Fig. 5.37

=
1

2
θ2(1− (1− l3)2) <

1

2
θ2(1− (0.893)2) <

1

4
θ2

The area enclosed by α and β = the area of red and green shaded parts

<
1

2
θ1 + 2× 1

4
θ2 =

1

2
(θ1 + θ2) =

π

3

It is impossible for this case.

To prove that if Γ is minimum and D 6= O, then there exists φ such that Γ cuts
Γ0(φ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (27)

Let φ be the angle defined in (25) on page 24.

Case 1) β cuts β0 first and γ cuts γ0 first.
Then Γ cuts Γ0(0).

Case 2) β cuts β0(θ) first and γ cuts γ0(θ) first.
Then Γ cuts Γ0(θ).

Case 3) β cuts β0(θ) first and γ cuts γ0 first.
This case is impossible.
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Case 4) β cuts β0 first and γ cuts γ0(θ) first.

Let θ′ be the largest angle satisfying that
0 ≤ θ′ ≤ θ and β cuts β0(θ′).

It is impossible that γ does not cut γ0(θ′).
Otherwise, as D 6= O, the area enclosed by β and

γ > the area of sector OB0(θ′)C0(θ′) =
π

3
.

Therefore, Γ cuts Γ0(θ′).

To prove that if D = O, then l(Γ) ≥ l(Γ0) and equality holds iff Γ differs Γ0 by
a rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (28)

By Theorem (3), l(α) ≥ l(DA) = l(α0) and equality holds iff α is a radius. By
similar argument on β and γ, we have l(Γ) ≥ l(Γ0) and equality holds iff Γ differs
Γ0 by a rotation.

To prove that the minimum cut is the radius method . . . . . . . . . . . . . . . .(29)

Recall some statements proven before,

(20): If D 6= O and there exists φ such that Γ cuts Γ0(φ), then l(Γ) > l(Γ0).

(27): If Γ is minimum and D 6= O, then there exists φ such that Γ cuts Γ0(φ).

(28): if D = O, then l(Γ) ≥ l(Γ0) and equality holds iff Γ differs Γ0 by a

rotation.

Suppose that Γ is minimum.

D 6= O

=⇒ D 6= O and there exists φ such that Γ cuts Γ0(φ) by Statement (27)

=⇒ l(Γ) > l(Γ0) by Statement (20)

=⇒ Γ is not minimum, which causes a contradiction.

By contradiction, Γ is minimum =⇒ D = O.
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By Statement (28), Γ is minimum and D = O =⇒ Γ differs Γ0 by a rotation.

Therefore, the minimum cut is the radius method.

A necessary condition of the problem for n = 3 and unequal division by
a “Y-shaped” curve

Statement: If Γ is minimum, then

(a) α1, α2, α3 are genearlized circular arcs,

(b) l(Γ) ≤ 3,

(c) l(min(α1, α2, α3)) ≤ 1,

(d) p(A1) + p(A2)− 3 ≤ l(α1) ≤ 3− p(A1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (30)

By similar argument of (21), (22), (23) on pages 22 - 24, statements (a), (b), (c)
hold.

Proof. Proof of (d):
By (22),

l(αi) + l(αj) + l(αk) ≤ 3 . . . . . . . (i)

By (18), (ii),
l(αi) + l(αj) ≤ p(Ak) . . . . . . . . . . (ii)

l(αj) + l(αk) ≤ p(Ai) . . . . . . . . . (iii)

l(αk) + l(αi) ≤ p(Aj) . . . . . . . . . (iv)

(i) - (iii) gives
l(αi) ≤ 3− p(Ai),

(ii) + (iv) - (i) gives
l(αi) ≥ p(Aj) + p(Ak)− 3.

Therefore we proved (d):
p(Aj)+p(Ak)−3 ≤ l(αi) ≤ 3−p(Ai)

for distinct i, j, k.

Disproving the radius method is a solution of the problem for n = 4 and
equal division

By [9], the Euclidean Steiner tree problem is about how to connect points together
with the shortest length. According to the Euclidean Steiner tree, if the connection
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has some “Y-shape”, the angle between any segments in a Y-shape is 120◦. We use
this idea to form our disproving statement.

1. We draw 2 segments with 60◦ to horizontal. (Fig 6.1)

2. Move the 2 segments to left until the shaded area equals to
π

4
. (Fig. 6.2)

3. Add a line from the centre of the circle to the corner point of the V-Shape.
(Fig. 6.3)

4. Reflect the Y-shape by the vertical y-axis.

By Fermat point (2), in Fig. 6.5,

OQ+AQ+BQ < OA+OB.

Hence,

AQ+BQ+CQ+DQ+PQ < OA+OB+OC+OD = 4.

[See reviewer’s comment (7)]

Therefore, the radius method is not a solution of
the problem for n = 4 and equal division. . . (31)

Calculate the length of cut

a = cos θ − sin θ√
3

and b =
sin θ

sin 120◦

1

2
θ − 1

2
a sin θ =

π

8
1

2
θ − 1

2

�
cos θ − sin θ√

3

�
sin θ =

π

8

θ −
�

cos θ − sin θ√
3

�
sin θ =

π

4
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From Fig. 6.7, θ = 0.9100448.

Therefore,

length of cut of this method ≈ 4

�
sin θ

sin 120◦

�
+ 2

�
cos θ − sin θ√

3

�
≈ 3.9624372.

Conclusion

When we are cutting a cake or other circular things with the requirement of reducing
the cut, we may think that radius method is the best. However, it may not be true.

After we were finishing the project, we discovered that when we divided a circle
into 2 or 3 equal parts, the radius method gave the shortest cut. But for the case of
4 equal parts, radius method is not the best. We used the idea of Euclidean Steiner
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tree to find another method which gave a shorter cut than the radius method.
When we divided a circle into 2 unequal parts, the only solution is the orthogonal
circular arc. But for the case of 3 unequal parts, we could only found some necessary
conditions for the shape and length of cut.

Due to the limitation of time, we could only finish some cases on this problem. We
hoped that we could finish the whole problem in the future.
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Reviewer’s Comments

The reviewer has some comments about the organization and presentation of this
paper, as well as several grammatical mistakes and typos.

1. The reviewer has comments on the wordings, which have been amended in
this paper.

2. In the title, it may be better to replace ”least” by ”shortest”, for consistency
in this paper.

3. In Abstract, the reviewer suggests moving the motivation of this paper: the
story of cake dividing, to the introduction, and stating clearly the two direc-
tions of the problem: equal and unequal divisions, the definition of n: number
of divisions, and roughly describing the main results.

4. In Introduction,
(a) more precisely, ”unequal division” should be ”unequal division with given

areas”, otherwise this case is trivial and confusing.
(b) the discussion for the problem n = 3 may be placed in the part ”Solving

the problem for n = 3 and equal division”, and the main results for
n = 2, 3, 4 should be all discussed here. Moreover, it is better to mention
and emphasize the isoperimetric inequality, which is the most useful tool
throughout the proof.

5. In Symbols used, definitions of A(θ), p(θ) are not so clear, especially for θ >
π

2
.

It may be better to label them in Fig 1.1. and specify the domain for θ.
6. In Literature Review and Lemmas,

(a) the first three subsections should be written as three lemmas, just like
Lemma (4),

(b) “theorem (3)” should be “Lemma (3)”, ”shorter than or” should be
“shorter than”;

(c) “O lies inside C1 ⇒ C1 and C2 touch each other internally” is actually
equivalent to the original problem. The reviewer would suggest using
“triangle inequality” to prove it directly;

(d) conclusion 2 is very hard to understand, the reviewer suggests firstly
defining the segment associated with the divided region, and then stating
the conclusion.

7. The inequality should be

AQ+BQ+ CP +DP + PQ < OA+OB +OC +OD = 4.

8. There are lots of pictures in the paper, and it may be more readable if the
symbols for points, curves, regions are marked in the pictures.


