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Abstract. The Basel problem is about finding the sum of the reciprocals of
all perfect squares. This problem is first posed by Pietro Mengoli in 1650 and
was solved by Leonhard Euler in 1734. Euler proved that the sum of the series

is
π2

6
. In this report, inspired by an idea suggested by the YouTube channel

3blue1brown in 2018, we attempt to give a new proof to the Basel problem.
After that, we discuss some possible generalizations of the Basel problem, by
finding the sum of reciprocals of squares and cubes of the form an+ b. Further-
more, we discuss how the sum of reciprocals of integral powers of an+ b can be
computed, and the relation between ζ(3) and the results we have achieved.
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1. Introduction and Main Results

The Basel problem is about finding the sum of the infinite series

∞!

k=1

1

k2
=

1

12
+

1

22
+

1

32
+ . . .

This problem is first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler

in 1734. Euler proved that the sum of the series is
π2

6
.

In this report, inspired by an idea suggested by the YouTube channel 3blue1brown
in 2018, we attempt to give a new proof to the Basel problem and discuss the
generalizations of the Basel problem. With the idea in my new proof, we manage to
prove the following results:

Theorem 1.1. (The Basel problem)

∞!

k=1

1

k2
=

1

12
+

1

22
+

1

32
+ · · · = π2

6

Theorem 1.2. (ζ(4))

∞!

k=1

1

k4
=

1

14
+

1

24
+

1

34
+ · · · = π4

90

Theorem 1.3. For positive real numbers a > b,

!

n∈Z

1

(an+ b)2
=

π2

a2 sin2
"
b
aπ

#

Theorem 1.4. For positive real numbers a > b,

!

n∈Z

1

(an+ b)3
=

π3 cos
"
b
aπ

#

a3 sin3
"
b
aπ

#

Before proceeding to the main results, we provide an overview of the results that
are used in this report. As these results are well known, proofs are omitted.

Proposition 1.5. (Triangle inequality) For any complex numbers c1, c2, . . . , cn,

|c1|+ |c2|+ · · ·+ |cn| ≥ |c1 + c2 + · · ·+ cn|

Proposition 1.6. (Binomial theorem) For any nonnegative integer n, the polyno-
mial (x+ y)n can be expressed as

(x+y)n =

$
n

0

%
xny0+

$
n

1

%
xn−1y1+

$
n

2

%
xn−2y2+ · · ·+

$
n

n− 1

%
x1yn−1+

$
n

n

%
x0yn

Proposition 1.7. (Vieta’s formulas) For any polynomial

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0
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with roots r1, r2, . . . , rn, we have&
'''''''(

''''''')

r1 + r2 + · · ·+ rn−1 + rn = −an−1

an
(r1r2 + r1r3 + · · ·+ r1rn) + (r2r3 + r2r4 + · · ·+ r2rn) + · · ·+ rn−1rn =

an−2

an
...

r1r2 . . . rn = (−1)n
a0
an

Definition 1.8. (Maclaurin Series) The Maclaurin series of a real or complex-
valued function f(x) that is infinitely differentiable at 0 is the power series

f(x) =

∞!

n=0

f (n)(0)

n!
xn = f(0) +

f ′(0)

1!
x+

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + . . .

where f (n)(x) is the nth derivative of f .

Proposition 1.9. (Cauchy–Schwarz inequality) For real numbers a1, a2, . . . , an,
b1, b2, . . . , bn,

"
a21 + a22 + · · ·+ a2n

# "
b21 + b22 + · · ·+ b2n

#
≥ (a1b1 + a2b2 + · · ·+ anbn)

2

2. A Solution to the Basel Problem

Denote the sum of the infinite series
1

12
+

1

22
+

1

32
+ · · · = C

Definition 2.1. For any set S of several (can be infinitely many) nonzero complex
numbers, define

s2(S) =
!

c∈S

1

c2

if it can be calculated.

In particular, if A is the set of nonzero integers, then

s2(A) = 2

$
1

12
+

1

22
+

1

32
+ . . .

%
= 2C

Therefore, to find C, we just need to find s2(A). Now, how to find s2(A)? A video
of 3blue1brown uses the concept of the brightness of lighthouses placed uniformly
on a circle, which matches our definition of s2 by the Inverse Square Law. By using
the inverse Pythagors theorem, Grant Sanderson, the creator of this video, finds a

family of sets such that the s2 value of them are all equal to
π2

4
, and the sets tends

to the set of odd integers as the size of circle tends to infinity. Inspired by the video,

we will consider a similar family of sets such that the s2 value of them tends to
π2

6
,

and the sets tends to A as the size of circle tends to infinity. To be precise, we define

Definition 2.2. For any positive integer k ≥ 2, in the complex plane, let Ck be the

circle centred at
ik

2π
and passes through 0.
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Definition 2.3. For any positive integer k ≥ 2, consider the k-gon inscribed in Ck

with vertices arranged counterclockwisely as α0,α1, . . . ,αk−1 where the indices are
considered mod k and α0 = 0. Then let Ak = {α1,α2, . . . ,αk−1}.

Now we aim to show that as k tends to infinity, s2(Ak) tends to s2(A). But before
that, we will establish the following results:

Lemma 2.4. For 1 ≤ j ≤ k − 1,

sin(arg(αj)) =
|αj |π
k

Proof. Note that the antipode of point O = 0 with respect to Ck is P =
πi

k
so the

point Aj = αj satisfies

∠OAjP = 90◦

As Ck is tangent to the real axis, we have

sin(arg(αj)) = sin∠AjPO =
AjO

OP
=

|αj |π
k

□

Lemma 2.5. For k ∈ N,
k!

j=1

1

j2
< 2

Proof. We have

k!

j=1

1

j2
≤ 1 +

k!

j=2

1

j(j − 1)
= 1 +

k!

j=2

$
1

j − 1
− 1

j

%
= 2− 1

k
< 2

□

Lemma 2.6. For 0 < x ≤ π

2
,

1

sin2 x
− 1

x2
≤ 1− π2

4

Proof. Let f(x) =
1

sin2 x
− 1

x2
then f

*π
2

+
= 1− 4

π2
and

f ′(x) =
2

x3
− 2 cosx

sinx
=

2

x3 tanx

"
tanx− x3

#

If f is monotonically increasing then we are done. To prove this, it suffices to prove

that for 0 ≤ x ≤ π

2
,

tanx− x3 ≥ 0

Recall that the Maclaurin Series of tanx is

tanx = x+
1

3
x3 +

2

15
x5 + terms involving higher powers

So as all coefficients in the series are positive, when 0 ≤ x ≤ π

2
,
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tanx− x3 > x+
1

3
x3 +

2

15
x5 − x3

= x− 2

3
x3 +

2

15
x5

=
2x

15

,$
x2 − 5

2

%2

+
5

4

-

≥ 0

as x ≥ 0. So we are done.
□

Lemma 2.7. For positive integers m,n and positive real number ε such that m <
n

2

and n ≥ 576π2

ε2
,
6π2 − 24

ε
, we have

!

−m≤j≤m,j ∕=0

.....
1

α2
j

− 1

j2

..... <
ε

3

Proof. The statement is equivalent to

!

1≤j≤m

.....
1

α2
j

− 1

j2

..... <
ε

6

For any such j, by Cosine Rule and Lemma 2.4 we have

.....
1

α2
j

− 1

j2

.....

2

=

.....
1

α2
j

.....

2

+
1

j4
− 2

.....
1

α2
j

.....
1

j2
cos (2 argαj)

=
1

|αj |4
+

1

j4
− 2

1

|αj |2
1

j2
"
1− 2 sin2 (argαj)

#

=

$
1

|αj |2
− 1

j2

%2

+ 4
1

|αj |2
1

j2

$
|αj |π
n

%2

=

$
1

|αj |2
− 1

j2

%2

+
4π2

n2
· 1

j2
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So by the Cauchy-Schwarz Inequality and Lemma 2.5,

1

n

/

0
!

1≤j≤m

.....
1

α2
j

− 1

j2

.....

1

2
2

<
1

m

/

0
!

1≤j≤m

.....
1

α2
j

− 1

j2

.....

1

2
2

≤
!

1≤j≤m

.....
1

α2
j

− 1

j2

.....

2

=
!

1≤j≤m

$
1

|αj |2
− 1

j2

%2

+
4π2

n2

!

1≤j≤m

1

j2

<
!

1≤j≤m

$
1

|αj |2
− 1

j2

%2

+
8π2

n2

Now it suffices to have

!

1≤j≤m

$
1

|αj |2
− 1

j2

%2

+
8π2

n2
≤ ε2

36n

As n ≥ 576π2

ε2
, i.e.

8π2

n2
≤ ε2

72n

it suffices to have

!

1≤j≤m

$
1

|αj |2
− 1

j2

%2

≤ ε2

72n

As m <
n

2
, it suffices to have for all 1 ≤ j ≤ m,

$
1

|αj |2
− 1

j2

%2

≤ ε2

36n2

i.e. for all 1 ≤ j <
n

2
,

1

j2
− 1

|αj |2
≤ ε

6n

Note that j is equal to the length of the arc from 0 to αj along Cn, so zoom Cn back
to an unit circle it suffices to have

1

sin2 x
− 1

x2
≤ ε

6π2
n

for 0 < x ≤ π

2
where x = arg(αj). But note that 1− 4

π2
≤ ε

6π2
·n so by Lemma 2.6

we are done. □
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Lemma 2.8. For positive integers m,n and positive real number ε such that m <
n

2

and m ≥ π

2

3
3n

ε
, we have

......

!

m<j<n−m

1

α2
j

......
<

ε

3

Proof. First we claim that
x

sinx
≤ π

2
for 0 < x <

π

2
. If f(x) =

x

sinx
, then

f ′(x) =
tanx− x

sin2 x cosx

If f is strictly increasing then we are done. To prove this, it suffices to prove that

for 0 < x <
π

2
,

tanx > x

Indeed, note that tan 0 = 0 and

d tan(x)

dx
= sec2 x > 1 =

dx

dx

for 0 < x <
π

2
so tanx > x for 0 < x <

π

2
as desired. This implies that

|αm| = m

arg(αm)

sin(arg(αm))

≥ 2m

π

Back to the lemma, we have
......

!

m<j<n−m

1

α2
j

......
≤ n

....
1

α2
m

.... <
π2n

4m2
≤ ε

3

□

Lemma 2.9. For positive integers m,n and positive real number ε such that m <
n

2

and m ≥ 6

ε
, we have

!

j∈Z,|j|>m

1

j2
<

ε

3

Proof. It is equivalent to
∞!

j=m+1

1

j2
<

ε

6

and we have
∞!

j=m+1

1

j2
<

∞!

j=m+1

1

j(j − 1)
=

∞!

j=m+1

$
1

j − 1
− 1

j

%
=

1

m
≤ ε

6

□

Lemma 2.10. When k tends to positive infinity, the number s2(Ak) tends to s2(A).
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Proof. Consider any ε > 0. It suffices to prove that there exists N such that for
n ≥ N ,

|s2(An)− s2(A)| < ε

By Lemma 2.7, 2.8, 2.9, when N = max

$
576π2

ε2
,
12π2

ε
, 4

%
, for any n ≥ N there

exists m <
n

2
which satisfies

(i)
!

−m≤j≤m,j ∕=0

.....
1

α2
j

− 1

j2

..... <
ε

3
;

(ii)

......

!

m<j<n−m

1

α2
j

......
<

ε

3
;

(iii)
!

j∈Z,|j|>m

1

j2
<

ε

3
;

Then by triangle inequality we have

|s2(An)− s2(A)| ≤
!

−m≤j≤m,j ∕=0

.....
1

α2
j

− 1

j2

.....+

......

!

m<j<n−m

1

α2
j

......
+

!

j∈Z,|j|>m

1

j2

<
ε

3
+

ε

3
+

ε

3
= ε

□

Remark 2.11. For N = max

$
576π2

ε2
,
6π2 − 24

ε
,
12π2

ε
,
24

ε
, 4

%
, the conditions of

Lemma 2.7 is satisfied. Then take m to be any integer such that
n

4
≤ m <

n

2
which

exists as n ≥ 4. The conditions of Lemma 2.8, 2.9 are satisfied as
n

4
≥ π

2

3
3n

ε
,
6

ε
.

Lemma 2.12. For k ≥ 2,

s2(Ak) =
π2(k − 1)(k − 5)

3k2

Proof. For any c ∈ Ak ∪ {0}, the number

i(c− ik
2π )

k
2π

=
2πi

k
c+ 1

is a kth root of unity. So Ak is the set of all roots of the polynomial

Pk(x) =

"
2πi
k x+ 1

#k − 1

x
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Note that Pk(x) have degree k − 1, so let

Pk(x) = ak−1x
k−1 + ak−2x

k−2 + · · ·+ a1x+ a0

Let’s find an expression to the coefficients of Pk(x). By Binomial theorem, we have

at =

$
k

t+ 1

%$
2πi

k

%t+1

for 0 ≤ t ≤ k − 1. In particular, we have

a0 = 2πi

a1 =
−2π2(k − 1)

k

a2 =
−4π3i(k − 1)(k − 2)

3k2

Now the roots r1, r2, . . . , rk−1 of

Qk(x) = a0x
k−1 + a1x

k−2 + · · ·+ ak−2x+ ak−1

are the reciprocals of the roots of Pk(x), therefore

s2(Ak) = r21 + r22 + · · ·+ r2k−1

The last step is to calculate this expression, which we can use the Vieta’s formulas.
We have

!

1≤t≤k−1

rt = −a1
a0

= −−2π2(k − 1)

2πki

=
−πi(k − 1)

k
!

1≤t<u≤k−1

rtru =
a2
a0

=
−4π3i(k − 1)(k − 2)

6k2πi

=
−2π2(k − 1)(k − 2)

3k2

So

s2(Ak) =

,
k−1!

t=1

rt

-2

− 2
!

1≤t<u≤k−1

rtru

=

$
−πi(k − 1)

k

%2

− 2

$
−2π2(k − 1)(k − 2)

3k2

%

=
−π2(k − 1)2

k2
+

4π2(k − 1)(k − 2)

3k2

=
π2(k − 1)

3k2
(−3(k − 1) + 4(k − 2))

=
π2(k − 1)(k − 5)

3k2

□
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Finally we will prove Theorem 1.1. By Lemma 2.10 and 2.11,

s2(A) = lim
k→∞

s2(Ak) = lim
k→∞

π2(k − 1)(k − 5)

3k2
= lim

k→∞

π2

3

$
1− 1

k

%$
1− 5

k

%
=

π2

3

Therefore we have

C =
π2

6
which completes our proof of Theorem 1.1.

3. Extending to ζ(4) and Beyond

The Riemann zeta function ζ is defined as following: For any positive integer n,

ζ(n) =

∞!

k=1

1

kn
=

1

1n
+

1

2n
+

1

3n
+ . . .

Then the Basel problem is equivalent to finding ζ(2). We have proved that ζ(2) =
π2

6
in section 2, and in this section we will discuss other values of the Riemann zeta
function.

By using the same method of finding ζ(2), we can find ζ(4). We will use the
notations in Definition 2.2, 2.3. Similar to section 2, we define

Definition 3.1. For any set S of several (can be infinitely many) nonzero complex
numbers, define

s4(S) =
!

c∈S

1

c4

if it can be calculated.

In particular, if A is the set of nonzero integers, then

s4(A) = 2

$
1

14
+

1

24
+

1

34
+ . . .

%
= 2ζ(4)

Therefore, to find ζ(4), we just need to find s4(A).

Remark 3.2. This method doesn’t work for finding odd values of ζ because sk(A) = 0
if k is odd.

Then using an argument similar to that in Lemma 2.4 to 2.10, we can deduce
that

s4(Ak) → s4(A) as k → +∞

Lemma 3.3. For k ≥ 2,

s4(Ak) =
π4(k − 1)(k3 + k2 − 109k + 251)

45k4

Proof. Using the same argument and notations in Lemma 2.12,

s4(Ak) = r41 + r42 + · · ·+ r4k−1
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So we calculate a0, a1, a2, a3, a4. Indeed, we have

a0 = 2πi

a1 =
−2π2(k − 1)

k

a2 =
−4π3i(k − 1)(k − 2)

3k2

a3 =
2π4(k − 1)(k − 2)(k − 3)

3k3

a4 =
4π5i(k − 1)(k − 2)(k − 3)(k − 4)

15k4

The last step is to calculate this expression, which can be done with the Vieta’s
formulas. We have

!

1≤t≤k−1

rt = −a1
a0

=
−πi(k − 1)

k

!

1≤t<u≤k−1

rtru =
a2
a0

=
−2π2(k − 1)(k − 2)

3k2

!

1≤t<u<v≤k−1

rtrurv = −a3
a0

= −2π4(k − 1)(k − 2)(k − 3)

6k3πi

=
π3i(k − 1)(k − 2)(k − 3)

3k3
!

1≤t<u<v<w≤k−1

rtrurvrw =
a4
a0

=
4π5i(k − 1)(k − 2)(k − 3)(k − 4)

30k4πi

=
2π4(k − 1)(k − 2)(k − 3)(k − 4)

15k4
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So

s4(Ak) =

,
k−1!

t=1

rt

-4

− 4

,
k−1!

t=1

rt

-2
/

0
!

1≤t<u≤k−1

rtru

1

2

+ 4

,
k−1!

t=1

rt

-/

0
!

1≤t<u<v≤k−1

rtrurv

1

2+ 2

/

0
!

1≤t<u≤k−1

rtru

1

2
2

− 4
!

1≤t<u<v<w≤k−1

rtrurvrw

=

$
−πi(k − 1)

k

%4

− 4

$
−πi(k − 1)

k

%2 $−2π2(k − 1)(k − 2)

3k2

%

+ 4

$
−πi(k − 1)

k

%$
π3i(k − 1)(k − 2)(k − 3)

3k3

%

+ 2

$
−2π2(k − 1)(k − 2)

3k2

%2

− 4

$
2π4(k − 1)(k − 2)(k − 3)(k − 4)

15k4

%

=
π4(k − 1)4

k4
− 8π4(k − 1)3(k − 2)

3k4
+

4π4(k − 1)2(k − 2)(k − 3)

3k4

+
8π4(k − 1)2(k − 2)2

9k4
− 8π4(k − 1)(k − 2)(k − 3)(k − 4)

15k4

=
π4(k − 1)

45k4
[45(k − 1)3 − 120(k − 1)2(k − 2) + 60(k − 1)(k − 2)(k − 3)

+ 40(k − 1)(k − 2)2 − 24(k − 2)(k − 3)(k − 4)]

=
π4(k − 1)(k3 + k2 − 109k + 251)

45k4

□

Finally we will prove Theorem 1.2. By Lemma 3.2,

s4(A) = lim
k→∞

s4(Ak) = lim
k→∞

π4(k − 1)(k3 + k2 − 109k + 251)

45k4

= lim
k→∞

π4

45

$
1− 1

k

%$
1 +

1

k
− 109

k2
+

251

k3

%
=

π4

45

Therefore we have

ζ(4) =
π4

90

which completes our proof of Theorem 1.2.
Using the Vieta’s Formulas, we can compute elementary symmetric polynomials

of the roots in terms of coefficients of Qk(x). Since we can express

k−1!

i=1

r2ni in terms

of those elementary symmetric polynomials, we can actually use the similar analysis
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argument to compute ζ(2n) for any n ∈ N. However, the complexity of such com-
putation is extremely high, so we skipped this part and move on to other types of
power series.

4. More Power Series

In section 2, we actually found the value of

!

n∈Z\{0}

1

n2
=

π2

3

and in section 3, we discussed what will happen when the power changes. Now we
see what will happen when the base changes. In this section, we will discuss how to
determine

!

n∈Z

1

(an+ b)m

in closed form, for any m ∈ N, and any positive real numbers a > b. To begin, we
first consider the sum

!

n∈Z

1

(an+ b)2

Denote B = aZ+ b. We can compute this value in the same method of section 2, as
shown below. We will use the same notation as Definition 2.1.

Definition 4.1. For any positive integer k, in the complex plane, let Dk be the circle

centred at
iak

2π
and passes through 0.

Definition 4.2. For any positive integer k, consider the regular k-gon inscribed in
Dk with vertices arranged counterclockwisely as β0,β1, . . . ,βk−1 where the indices are

considered mod k and β0 =
ak

2πi

$
exp

$
2πib

ak

%%
. Then let Bk = {β0,β1, . . . ,βk−1}.

Then using an argument similar to that in Lemma 2.4 to 2.10, we can deduce
that

s2(Bk) → s2(B) as k → +∞

Lemma 4.3. For any k,

s2(Bk) =
4π2

a2

$
1

1− z

k − 1

k
− 1

(1− z)2

%

where z = exp

$
2πib

a

%
.

Proof. For any c ∈ Bk, the number

i(c− iak
2π )

ak
2π

=
2πi

ak
c+ 1
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has its kth power equal to z = exp

$
2πib

a

%
. So Bk is the set of all roots of the

complex polynomial

Rk(x) =

$
2πi

ak
x+ 1

%k

− z

Note that Rk(x) have degree k, so let

Rk(x) = akx
k + ak−1x

k−1 + · · ·+ a1x+ a0

Let’s find an expression to the coefficients of Rk(x). By Binomial Theorem, we have

at =

$
k

t

%$
2πi

ak

%t

for 1 ≤ t ≤ k − 1 and a0 = 1− z. In particular, we have

a0 = 1− z

a1 =
2πi

a

a2 =
−2π2(k − 1)

a2k

Now the roots r1, r2, . . . , rk of

Sk(x) = a0x
k + a1x

k−1 + · · ·+ ak−1x+ ak

are the reciprocals of the roots of Pk(x), therefore

s2(Bk) = r21 + r22 + · · ·+ r2k

The last step is to calculate this expression, which we can use the Vieta’s formulas.
We have

!

1≤t≤k

rt = −a1
a0

=
2πi

a(1− z)

!

1≤t<u≤k

rtru =
a2
a0

=
−2π2(k − 1)

a2k(1− z)

So

s2(Bk) =

,
k!

t=1

rt

-2

− 2
!

1≤t<u≤k

rtru

=

$
2πi

a(1− z)

%2

− 2

$
−2π2(k − 1)

a2k(1− z)

%

=
4π2

a2

$
1

1− z

k − 1

k
− 1

(1− z)2

%

□
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Finally we will prove Theorem 1.3. By Lemma 4.3,

s2(B) = lim
k→∞

s2(Bk) = lim
k→∞

4π2

a2

$
1

1− z

k − 1

k
− 1

(1− z)2

%

=
4π2

a2

$
1

1− z
− 1

(1− z)2

%

=
4π2

a2
z

(1− z)2

To further rewrite s2(B) in terms of a and b, notice that as s2(B) is a positive real
number, and |z| = 1, we have

s2(B) =

....
4π2

a2
z

(1− z)2

.... =
4π2

a2
1

|1− z|2

=
4π2

a2
1

4 sin2
"
1
2 arg(z)

#

=
π2

a2 sin2
"
b
aπ

#

which completes our proof of Theorem 1.3.
After settling the case of squares, we turn to compute

!

n∈Z

1

(an+ b)3

for positive real numbers a > b. First, define s3 similarly. We will use the same
notation as Definition 4.1, 4.2. Then using an argument similar to that in Lemma
2.4 to 2.10, we can deduce that

s3(Bk) → s3(B) as k → +∞

Lemma 4.4. For any k,

s3(Bk) =
4π3i

a3

$
2

(1− z)3
− 3

(1− z)2
k − 1

k
+

1

1− z

(k − 1)(k − 2)

k2

%

where z = exp

$
2πib

a

%
.

Proof. For any c ∈ Bk, the number

i(c− iak
2π )

ak
2π

=
2πi

ak
c+ 1

has its kth power equal to z = exp

$
2πib

a

%
. So Bk is the set of all roots of the

complex polynomial

Rk(x) =

$
2πi

ak
x+ 1

%k

− z

Note that Rk(x) have degree k, so let

Rk(x) = akx
k + ak−1x

k−1 + · · ·+ a1x+ a0
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Let’s find an expression to the coefficients of Rk(x). By Binomial theorem, we have

at =

$
k

t

%$
2πi

ak

%t

for 1 ≤ t ≤ k − 1 and a0 = 1− z. In particular, we have

a0 = 1− z

a1 =
2πi

a

a2 =
−2π2(k − 1)

a2k

a3 =
−4π3(k − 1)(k − 2)i

3a3k2

Now the roots r1, r2, . . . , rk of

Sk(x) = a0x
k + a1x

k−1 + · · ·+ ak−1x+ ak

are the reciprocals of the roots of Pk(x), therefore

s3(Bk) = r31 + r32 + · · ·+ r3k

The last step is to calculate this expression, which we can use the Vieta’s formulas.
We have

!

1≤t≤k

rt = −a1
a0

=
−2πi

a(1− z)

!

1≤t<u≤k

rtru =
a2
a0

=
−2π2(k − 1)

a2k(1− z)

!

1≤t<u<v≤k−1

rtrurv = −a3
a0

=
4π3(k − 1)(k − 2)i

3a3k2(1− z)

So

s3(Bk) =

,
k−1!

t=1

rt

-3

− 3

,
k−1!

t=1

rt

-/

0
!

1≤t<u≤k−1

rtru

1

2+ 3
!

1≤t<u<v≤k−1

rtrurv

=

$
−2πi

a(1− z)

%3

− 3

$
−2πi

a(1− z)

%$
−2π2(k − 1)

a2k(1− z)

%
+ 3

$
4π3(k − 1)(k − 2)i

3a3k2(1− z)

%

=
4π3i

a3

$
2

(1− z)3
− 3

(1− z)2
k − 1

k
+

1

1− z

(k − 1)(k − 2)

k2

%

□
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Finally we will prove Theorem 1.4. By Lemma 4.4,

s3(B) = lim
k→∞

s3(Bk)

= lim
k→∞

4π3i

a3

$
2

(1− z)3
− 3

(1− z)2
k − 1

k
+

1

1− z

(k − 1)(k − 2)

k2

%

=
4π3i

a3

$
2

(1− z)3
− 3

(1− z)2
+

1

1− z

%

=
4π3i

a3
z(z + 1)

(1− z)3

To further rewrite s3(B) in terms of a and b, notice that as s3(B) is a positive real
number, and |z| = 1, we have

s3(B) =
4π3i

a3
z(z + 1)

(1− z)3

=

....
4π3i

a3
z(z + 1)

(1− z)3

....

=
4π3

a3
· |z + 1|
|1− z|3

=
4π3

a3
·
2 cos

"
1
2 arg(z)

#

8 sin3
"
1
2 arg(z)

#

=
π3 cos

"
b
aπ

#

a3 sin3
"
b
aπ

#

which completes our proof of Theorem 1.4.

Using the Vieta’s Formulas, we can compute elementary symmetric polynomials

of the roots in terms of coefficients of Sk(x). Since we can express

k−1!

i=1

rmi in terms

of those elementary symmetric polynomials, we can actually use the similar analysis

argument to compute
!

n∈Z

1

(an+ b)m
for any m ∈ N. Different from the result

in section 3, we can actually determine the sum in closed form for all powers m,
rather than just even powers. This is because under our construction, there is no
symmetry about the point 0, so the sum on odd powers will still be valid. However,
the complexity of such computation is again extremely high, so this part is omitted
as well. Nevertheless, we know such sums are computable with such method.

5. Discussion

In this section we are going to discuss about ζ(3). The value of ζ(3) is still
unknown, only being proved to be irrational by Roger Apery in 1978. In fact, the
result we have achieved towards the end of section 4 has a strong relation with ζ(3).
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For example, if we take a = 3, b = 1 in Theorem 1.4, we have

1

13
− 1

23
+

1

43
− 1

53
+

1

73
− . . . =

!

n∈Z

1

(3n+ 1)3

=
π3 cos

"
π
3

#

33 sin3
"
π
3

#

=
4
√
3π3

243
Let’s call this sum S. Then we have

1

23
− 1

43
+

1

83
− 1

103
+

1

143
− · · · = S

8
Summing up these 2 series we have

1

13
− 1

53
+

1

73
− 1

113
+

1

133
− · · · = 9S

8
which can also be computed by taking a = 6, b = 1 in Theorem 1.4. So summing up
the second and the third series we have

1

13
+

1

23
− 1

43
− 1

53
+

1

73
+ · · · = 5S

4
Also, note that

1

13
+

1

23
+

1

43
+

1

53
+

1

73
+ . . .

=

$
1

13
+

1

23
+

1

33
+

1

43
+

1

53

%
−
$

1

33
+

1

63
+

1

93
+

1

123
+

1

153

%

= ζ(3)− 1

27
ζ(3)

=
26

27
ζ(3)

Then
1

13
+

1

23
+

1

73
+

1

83
+

1

133
+ · · · = 1

2

$
5S

4
+

26

27
ζ(3)

%

so actually if we can find the value of
1

13
+

1

23
+

1

73
+

1

83
+

1

133
+ . . . then we can

find ζ(3).

However, the current mechanism only allows us to compute reciprocal of cubes with
alternating signs (either repetitions of ++−−, +−+−, or their reverse), and does
not allow us to compute such sums with all terms having positive signs. Another
mechanism is required.
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REVIEWERS’ COMMENTS

This paper studies the exact sums of infinite series of the form
!

n∈A

1

(an+ b)m

for various choices of the set A (such as N), integer m ≥ 2, and real numbers a and b.
The author was able to discover a geometric interpretation of the above infinite sum
(motivated by a YouTube video), namely replacing it by the sum of equidistributed
points over a large circle centered at ik/(2π) for some large k ≥ 1. The author
was able to recover classical results such as the case A = N, a = 1, b = 0 and m
is even. Reviewers also suggested more proper acknowledgements is needed when
citing references.
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