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Abstract. The aim of our project is to investigate the 3n� 1 conjec-
ture. It is very hard to give a general path for each natural number to
arrive at 1. So we investigate its negation i.e. there exists a natural
number k with no path to 1. There are two possibilities: either k takes
a path which becomes a cycle to after n steps, or its path is increasing
indefinitely. These two possibilities lead us to study pre-numbers of any
odd natural number and the number of peaks of paths. In the project,
several interesting results were obtained by studying backward paths,
number of peaks and cycles or forward paths.

Firstly, we tried our best to trace back the path by studying all
the pre-numbers of any natural number. We successfully showed that
every odd number not divisible by 3 has infinitely many pre-numbers
by finding them explicitly, and hence obtained a beautiful known result:
the odd numbers A and 4A � 1 fall into the same number. Moreover,
we also found that two third of these pre-numbers has infinitely many
pre-numbers. Continuing in this way, we constructed a decreasing path
of any length to arrive at any given number. This leads to a beautiful
corollary: there are infinitely many distinct decreasing paths of different
lengths to 1.

Secondly, we studied the peaks of the path of any number and ob-
tained a theorem that for any T-number k and natural number r, there
exists a path to k of length 2r with exactly r peaks.

Thirdly, we assumed, on the contrary, that there is a path with the
same beginning and ending, and obtained a constraint on both the length
and the sum of powers of 2.

Fourthly, we found infinitely many pairs which meet before 1 and fall
into the same path afterward.

Finally, after investigating the possibilities of general pa, b, cq-Conjectures,
we concluded that the only possible conjectures are 3n� b Conjectures.

1This work is done under the supervision of the author’s teacher, Mr. Chi-Keung Lai
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1. Introduction

In this essay, all unknowns are natural numbers unless otherwise specified.
An odd number which is not divisible by 3 is called a T-number.

Define a function f : NÑ N by

fpxq �

"
x
2 if x is even,
3x� 1 if x is odd.

Let f p1qpxq � fpxq, f p2qpxq � pf � fqpxq and f pnqpxq � pf � � � � � floooomoooon
n times

qpxq, for

any natural number n.

The 3n� 1 Conjecture (or Collatz Conjecture)

For any natural number k, there exists a natural number n such that
f pnqpkq � 1. In other words, every natural number k will eventually be-
come 1 under a finite number of operations of f , or 1 is the black hole
attracting all natural numbers to it under f . Since all even numbers can be
reduced to odd number by f , thus the conjecture is true if it is true for all
odd natural numbers. So we focused on studying all odd natural numbers.

For example, fp3q � 10, fpfp3qq � 5, fpfpfp3qqq � 16, fpfpfpfp3qq � 8, f p5qp3q �

4, f p6qp3q � 2, f p7qp3q � 1. For simplicity, the process can be represented by
the path 3 Ñ 10 Ñ 5 Ñ 16 Ñ 8 Ñ 4 Ñ 2 Ñ 1. Actually, putting any
even number into the function f repeatedly until an odd number is ob-
tained is equivalent to removing all factors of 2 of the even number. It
is very clumsy to write 5 Ñ 16 Ñ 8 Ñ 4 Ñ 2 Ñ 1. In this essay, only
odd numbers in the path will be shown for simplicity e.g. 3 Ñ 5 Ñ 1.
The number 3 takes two steps instead of five steps to 1 while the number
7 p7 Ñ 11 Ñ 17 Ñ 13 Ñ 5 Ñ 1q takes 5 steps. For convenience, a new
function h : D Ñ D, where D is the set of all odd natural numbers, is intro-
duced and defined as hpxq � 3x�1

2r , where r is the natural number making
3x�1
2r an odd natural number e.g. hp5q � 3�5�1

24
� 1.

If 3n� 1 Conjecture is not correct, then there are two possibilities:

1. There exists an odd natural number r other than 1 such that hpnqprq �
r for some n.
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2. There exists a natural number q such that hpnqpqq will never be 1 no
matter how large n is. In other words, the path starting from q must
have a rising trend as a whole, because there are only finite integers
below q.

The aim of this essay is to study how a number itself affects its own path,
and whether the effect can be generalized to help prove the conjecture.

2. Pre-numbers

By trying some small odd numbers, they all fall into one eventually.

3 Ñ 5 Ñ 1

9 Ñ 7 Ñ 11 Ñ 17 Ñ 13 Ñ 5 Ñ 1

23 Ñ 35 Ñ 53 Ñ 5 Ñ 1

If we call an odd number x a pre-number of an odd number y if and only if
hpxq � y, then 3, 13 and 53 are pre-numbers of 5. Therefore it is very natu-
ral to investigate the relationship between the number and its pre-numbers.
We obtained the following lemmas and theorem.

Lemma 1. If p is odd, then 3p has no pre-numbers.

Proof. Assume, on the contrary, that 3p has a pre-number n i.e. hpnq � 3p.
Then 3p � 3n�1

2n for some b. 3p� 2b � 3n� 1 leads to a contradiction that
0 � 1 pmod 3q. Thus 3p has no pre-numbers.

Corollary 2. Every path contains at most one multiple of three as its be-
ginning.

Lemma 3. Every odd number k � 3p� 1 has infinitely many pre-numbers
in the form

an �
k � 4n � 1

3
, where n ¥ 1.

Proof. If k � 3p� 1, then k � 4n � 1 � 1 � 1n � 1 � 0 ( mod 3). Since k�4n�1
3

is an odd number, therefore k�4n�1
3 Ñ 3

�
k�4n�1

3

�
� 1 � k � 4n Ñ k. Hence

h
�
k�4n�1

3

�
� k and k�4n�1

3 are pre-numbers of k for all n.
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On the other hand, if m is a pre-number of k, then hpmq � k i.e. k � 3m�1
2b

for some b. So k2b � 3m � 1 ñ p�1qb � 1p mod 3q ñ b � 2n for some
n. Therefore m � k�4n�1

3 and the lemma is proved.

Lemma 4. Every odd number k � 3p� 2 has infinitely many pre-numbers
in the form

bn �
2k � 4n � 1

3
, where n ¥ 0.

Proof. If k � 3p � 2, then 2k � 4n � 1 � 2 � 2 � 1n � 1 � 0 pmod 3q. Since
2k�4n�1

3 is an odd integer, therefore 2k�4n�1
3 Ñ 3

�
2k�4n�1

3

�
� 1 � 2k � 4n Ñ k.

So h
�
2k�4n�1

3

�
� k and hence 2k�4n�1

3 are pre-numbers of k for all n.

On the other hand, if m is a pre-number of k, then hpmq � k i.e. k � 3m�1
2b

for some b. So k2b � 3m�1 ñ 2p�1qb � 1 pmod 3q ñ b � 2n�1 for some

n ¥ 0. Therefore m � k�22n�1�1
3 � 2k�4n�1

3 and the lemma is proved.

Theorem 5. (cf. Reviewer’s Comment 1) Let k be a T-number other
than 1.

(a) If k � 1 pmod 3q, then k has infinitely many pre-numbers tanu
8
1 sat-

isfying an�1 � 4an � 1 and an ¡ k for any n ¥ 1.
(b) If k � 2 pmod 3q, then k has infinitely many pre-numbers tbnu

8
1 satis-

fying bn� 1 � 4bn � 1, bn ¡ k for any n ¥ 1 and b0   k.

Proof.

(a) By Lemma 3, the odd number k � 3p � 1 has infinitely many pre-
numbers an �

k�4n�1
3 , thus

4an � 1 � 4

�
k � 4n � 1

3



� 1 �

k � 4n�1 � 1

3
� an�1.

For n ¥ 1, an ¥ a1 �
4k � 1

3
¡ k.

(b) By Lemma 4, the odd number k � 3p � 2 has infinitely many pre-
numbers bn �

2k�4n�1
3 , thus

4bn � 1 � 4

�
2k � 4n � 1

3



� 1 �

2k � 4n�1 � 1

3
� bn�1.
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For n ¥ 1, bn ¥ b1 �
8k � 1

3
¡ k. b0 �

2k � 1

3
� 2p� 1   k.

Corollary 6. The odd numbers A and 4A� 1 fall into the same path.

Proof. A is a pre-number of hpAq. By Theorem 5, 4A�1 is also a pre-number
of hpAq and therefore A and 4A� 1 fall into the same path as hpAq.

Theorem 7. When three consecutive pre-numbers x, y and z of a T-number
k are divided by 3, their remainders form the set t0, 1, 2u.

Proof. By Theorem 5, z � y � 1 � x � 2pmod 3q and hence the set of the
remainders is t0, 1, 2u.

Corollary 8. Exactly two of the pre-numbers as, as�1 and as�2 of any T-
number k have also infinitely many pre-numbers.

Proof. A path a1 Ñ a2 Ñ a3 Ñ � � � Ñ an is said to be strictly monotone in-
creasing (decreasing) iff a1   a2   a3   � � �   an (a1 ¡ a2 ¡ a3 ¡ � � � ¡ an).
By Corollary 8, two third of the pre-numbers of any T-number has also
infinitely many pre-numbers. By the above lemmas and theorems, we can
construct a decreasing path with any length to any given T-number in The-
orem 9.

Theorem 9. For any given T-number k and natural number n, there exists
a strictly monotone decreasing path of length n to k.

Proof. We construct a backward path starting with k by first choosing the
pre-number am (or bm, where m ¥ 1) of k which is a T-number again so
that am (or bm) also has pre-numbers by Corollary 8. By Theorem 5, am (or
bm) ¡ k. Repeating the process again and again until totally n pre-numbers
are chosen in this way, a strictly monotone decreasing path of length n to k
will be obtained.
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By Theorem 9, we obtained Corollary 10 which is closer to 3n�1 Conjecture.

Corollary 10. There are infinitely many distinct decreasing paths of differ-
ent lengths to 1.

3. Number of peaks

If 3n � 1 Conjecture is incorrect, then there exists a path which either has
no upper bounds or is a cycle. Therefore we tried to investigate paths with
increasing trend. We studied the path of 2n � 1 and obtained the following
Lemma 11.

Lemma 11. The path starting from p2n� 1q of length n� 1, (where n ¡ 1)
is

p2n � 1q Ñ p3 � 2n�1 � 1q Ñ p32 � 2n�2 � 1q Ñ � � � Ñ p3n�1 � 2� 1q

which is strictly monotone increasing.

Proof. For any k � 1, 2, 3, . . . , pn� 1q, p2k � 1q is odd, therefore

fp3r � 2k � 1q � 3 � p3r � 2k � 1q � 1 � 3r�1 � 2k � 2 � 2p3r�1 � 2k�1 � 1q

and hence p3r � 2k � 1q Ñ p3r�1 � 2k�1 � 1q
Inductively p2n�1q Ñ p3 �2n�1�1q Ñ p32 �2n�2�1q Ñ � � � Ñ p3n�1 �2�1q.

Since 3r�2k

3r�12k�1 �
2
3   1, therefore 3r � 2k � 1   3r�1 � 2k�1 � 1 and the path

is strictly monotone increasing.

However, the story is quite different if we carry one more step, then

fp3n�1 � 2� 1q � 3 � p3n�1 � 2� 1q � 1 � 3n � 2� 2 � 2p3n � 1q.

In particular, if n is even and positive, then p3n � 1q is divisible by 4. But
p3n�1 � 2� 1q Ñ 3n�1

2b
for some b ¥ 2.

3n�1 � 2� 1�
3n � 1

4
�

5 � 3n�1 � 3

4
¡ 0

ñ3n�1 � 2� 1 ¡
3n � 1

4
¥

3n � 1

2b
.
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Fortunately, the path is decreasing in the nth step and a peak p3n�1 � 2� 1q
is said to be formed. There is only one peak in the path with length n for
2n� 1. Along a path, there can be very few peaks compared with its length
and the ‘peak-density’ can be very low as n is large. Although it is quite
difficult to prove that every path starting from an odd number can only has
finite number of peaks, we are happy to see that it turns downward at least
once after increasing for the first n steps when n is even. We further studied
the number of peaks of the path to a given T-number.

By Theorem 5, every T-number in the form 3p � 1 has only pre-numbers
larger than itself and that in form 3p � 2 has one pre-number b0 less than
itself in addition. We then studied whether b0 is still a T-number.

Lemma 12. If k be a T-number satisfying k � 3p � 2, then k has a pre-
number br above k such that br has a pre-number br,0 below br and br,0 is
still a T-number.

Proof. Consider the nine consecutive pre-numbers b1, b2, . . . , b9 of k. By
Theorem 5, bi’s are above k and b1 � b4 � b7 (mod 3), b2 � b5 � b8 (mod 3)
and b3 � b6 � b9 (mod 3) and b3 � b2� 1 � b1� 2 (mod 3). Therefore there
exists s P t1, 2, 3u such that bs � bs�3 � bs�6 (mod 3). Let bs � 3q� 2, then
bs,0 � 2q � 1   bs.

bs�3 � 64bs � 21 � 64p3q � 2q � 21 � 3p64q � 49q � 2 and

bs�3,0 � 128q � 99   bs�3.

bs�6 � 64bs�3 � 21 � 64p3p64q � 49q � 2q � 21 � 3p642q � 3185q � 2 and

bs�6,0 � 2p642qq � 6371   bs�6.

So bs,0 � �q � 1 (mod 3), bs�3,0 � �q (mod 3) and bs�6,0 � �q � 2 (mod
3).
Therefore at least one, say br,0, of bs,0, bs�3,0, bs�6,0 is not 0 (mod 3) and br,0 is
still a T-number. k   br,0 and br,0   br. (cf. Reviewer’s Comment 2)

By Lemma 12, a peak br is formed before k in two steps in the path. In-
ductively, we can form infinitely many paths of length 2r to any T-number
with r peaks.

Theorem 13. For any T-number k and natural number r, there exists a
path to k of length 2r with exactly r peaks.
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4. Existence of a cycle

In section 3, we had studied the number of peaks to see whether there are
any upper bounds. Now we are going to study what happens if some paths
form cycles other than 1 Ñ 1 Ñ 1. But up to now, no cycle has been found.
If such cycle exists, there is a constraint on both the length and the sum of
powers of 2.

Theorem 14. If a path of length n forms a cycle x1 Ñ x2 Ñ x3 Ñ � � � Ñ
xn Ñ x1 satisfying

x2 �
3x1 � 1

2y1
, x3 �

3x2 � 1

2y2
, . . . , xn �

3xn�1 � 1

2yn�1
and x1 �

3xn � 1

2yn
,

then
m

n
¡

log 3

log 2
, where m � y1 � y2 � � � � � yn.

Proof. Assume that there is a path of length n forming a cycle x1 Ñ x2 Ñ
x3 Ñ � � � Ñ xn Ñ x1, i.e. There exists n odd numbers x1, x2, x3, . . . , xn, x1
and natural numbers y1, y2, y3, . . . , yn, y1 such that

x2 �
3x1 � 1

2y1
¡

3x1
2y1

, x3 �
3x2 � 1

2y2
¡

3x2
2y2

, . . . ,

xn �
3xn�1 � 1

2yn�1
¡

3xn�1

2yn�1
, and x1 �

3xn � 1

2yn
¡

3xn
2yn

6 x2x3 � � �xnx1 ¡
3nx1x2 � � �xn
2y1�y2�����yn

.

So 2m ¡ 3n, where m � y1� y2� � � � � yn. m log 2 ¡ n log 3 ñ
m

n
¡

log 3

log 2
.

As stated in Wikipedia, a number smaller than 10 � 258 will not be in a
cycle and the cycle, if exists, contains no fewer than 35400 numbers (includ-
ing even terms). Although 2m ¡ 3n, but we believed that 2m is very close
to 3n as xi’s are at least 10 � 258. If 2m � 3n � 1, it will lead to another
well-known conjecture stating that ab�cd � 1 has no integral solution other
than 32 � 23 � 1.
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5. Numbers which will fall into the same path before reaching 1

In the section 2, we concerned the pre-numbers of a T-number and only
the relationship between the pre-numbers of the same number is concerned.
However, numbers falling into the same path are not necessarily pre-numbers
of the same number. For example, consider paths

9 Ñ 7 Ñ 11 Ñ 17 Ñ 13 Ñ 5 Ñ 1 and 15 Ñ 23 Ñ 35 Ñ 53 Ñ 5 Ñ 1,

9 and 15 meet at 5 before falling into 1.
Although we couldn’t obtain a necessary condition for numbers to fall into
the same number (hence the same path), we wanted to find some concrete
examples. After investigating and comparing a lot of paths for different num-
bers, (using http://www.numbertheory.org/php/collatz.html) , we study
pairs of odd numbers in approximate ratio of 2 : 1 such as 22np4B � 1q � 1
and 22n�1p4B�1q�1. We found that their paths meet before 1 in Theorem
15.

Theorem 15. (cf. Reviewer’s Comment 3) For any natural numbers n
and non-negative integer B,

(a) The paths from 22np4B�1q�1 and 22n�1p4B�1q�1 meet at 32np4B�1q�1
2

before 1.

(b) The paths from 22np4B�1q�1 and 22n�1p4B�1q�1 meet at 32np4B�1q�1
2

before 1.
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Proof.

(a) Since 2a�13bp4B � 1q � 1 Ñ 3p2a�13bp4B�1q�1q�1
2 � 2a3b�1p4B � 1q � 1,

therefore

22n�1p4B � 1q � 1 Ñ 22n�23p4B � 1q � 1 Ñ 22n�332p4B � 1q � 1

Ñ � � � Ñ
32n�1p4B � 1q � 1

2
.

As 32n�1p4B�1q�1
2 is odd, thus

32n�1p4B � 1q � 1

2
Ñ 3

�
32n�1p4B � 1q � 1

2



� 1 �

32np4B � 1q � 1

2
.

On the other hand,

22np4B � 1q � 1 Ñ 22n�13p4B � 1q � 1 Ñ 22n�232p4B � 1q � 1

Ñ � � � Ñ
32np4B � 1q � 1

2
¡ 1.

So the paths meet at 32np4B�1q�1
2 before 1.

(b) can be proved similarly.

Corollary 16. 22n � 1 and 22n�1 � 1 meet at 32n�1
2 and then fall into the

same path. (cf. Reviewer’s Comment 4)

Theorem 15 suggests that each pair of 22np4B�1q�1 and 22n�1p4B�1q�1
fall into the same path after a finite number of steps. We believed that odd
numbers in approximate ratio of 2 : 1 can be further studied.

In studying numbers in form of 2n� 1, we surprisingly found many of them
fall into the same path early in their paths such as all the paths starting
from 243 � 1, 245 � 1, 247 � 1, 249 � 1, 251 � 1 and 255 � 1 contain the same
number 3133507921263587 and fall into the same path afterward. So we
believed that Theorem 15 can be extended to find some consecutive odd
integers which meet each other and fall into the same path afterward.

6. Why 3n� 1?

In this section, we studied whether there are similar conjectures other than
3n� 1 Conjecture which is also named as Collatz Conjecture.
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Let a, b, c be relatively prime to each other and define a function g : NÑ N
by

gpnq �

"
n
c iff n is divisible by c,
an� b iff n is not divisible by c.

pa, b, cq-Conjecture states that for any natural number n, there exists a nat-

ural number m such that gpmqpnq � 1. For simplicity, we named 3n � 1
conjecture as p3, 1, 2q-Conjecture. Why did Collatz choose a function with
a � 3, but not other odd numbers? Firstly, p1, 1, 2q-Conjecture is obviously
true as an odd input always gives a smaller output after being divided by
2 and reaches 1 after finite number of steps. For p1, b, 2q-Conjecture, where
b ¡ 1, 3bÑ bÑ b implies that all odd multiples of b will end with multiples
of b rather than one. (cf. Reviewer’s Comment 5)

Back to 3n � 1 Conjecture, among all the even numbers, half of them are
divisible by 2 but not 4, one fourth of them are divisible by 4 but not 8,
one eighth of them are divisible by 8 but not 16, one sixteenth of them are
divisible by 16 but not 8 and so on.... The expected value of the powers of 2
of all even numbers can be expressed as S � 1

2 �1�
1
4 �2�

1
8 �3�

1
16 �4�� � � � 2.

Hence we can say that an even number has a factor of 4 on average. In other
words, when an odd number takes once the function fpxq, it will, on average,
be expected to become a little bit over three quarters of its original value,
which is generally smaller than itself. So 3n� 1 conjecture is possibly true.
(Note that if so many positive numbers are considered, adding one to 3n
does not sufficiently affect the ratio of inputs and outputs as a whole result.)
When several steps are taken into consideration, we consider all T-numbers
and the expected trend is still decreasing.

How about pa, b, 2q-Conjecture when a is odd and greater than 3? On av-
erage, we expect that an odd number undergoing the function hpxq once
will become a

4 of its original value, which is larger than itself. Thus the
overall trend is increasing and we would not expect all numbers to reach
one eventually. So a must be 3. How about when c is not equal to 2?

For gpxq to make the numbers up and down, it is necessary to find a common
factor c of all the numbers in form of ax � b satisfying that a, b and c are
relatively prime. Assume that there exists a common factor c (c is relatively
prime to a and b) for all numbers in the form of ax� b. Since apc� 1q � b
and apc � 1q � b are all divisible by c, therefore their difference 2a is also
divisible by c. And their sum 2rac�bs is also divisible by c, so 2b is divisible
by c. c divides both 2a and 2b. However a and b are relatively prime, so
c � 2. By the above results, we obtained the last theorem in this paper.
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Theorem 17. Among pa, b, cq-Conjecture, the only possible conjecture is
3n� 1 Conjecture.
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Reviewer’s Comments

1. Theorem 5 should be changed to:

Theorem 5 Let k be a T-number.
(a) If k � 1 pmod 3q, then the pre-numbers of k are an, n ¥ 1 given

by an�1 � 4an � 1, a1 �
4k�1
3 . If k ¡ 1, we have an ¡ k for any

n ¥ 1. If k � 1, we have a1 � k and an ¡ k for all n ¥ 2.
(b) If k � 2 pmod 3q, then the pre-numbers of k are bn, n ¥ 0, given

by bn�1 � 4bn� 1, b0 �
2k�1
3 . We have: bn ¡ k for any n ¥ 1 and

b0   k.

2. We need to add the following paragraph in the proof to prepare for
Theorem 13:

Secondly, suppose k � 1 pmod 3q is an odd number. Then we consider
the nine consecutive pre-numbers a2, a3, . . . , a10 of k. We apply the
same argument as above, and obtain the desired conclusion.

3. For n � 1, B � 0 or B � 14,

h

�
32n�1p4B � 1q � 1

2



� 1;

so is the case for n � 2, B � 414252. The use of f instead of h is
therefore suggested. For part (b), note that with n � 2, B � 1,

32np4B � 1q � 1

2
� 121

does not appear in the sequence (path) from 22n�1p4B � 1q � 1 � 23
at all. Therefore, part (b) in Theorem 15 should be deleted.

4. A passing remark should be added after Corollary 16:

We note in passing that h
�
32n�1�1

2

	
¡ 1 unless n � 1. Then 22n�1 Ñ

hp22n � 1q Ñ h � hp22n � 1q Ñ � � � and 22n�1 � 1 Ñ hp22n�1 � 1q Ñ

h � hp22n�1� 1q Ñ � � � meet at h
�
32n�1�1

2

	
¡ 1, and then fall into the

same path (using h throughout).

5. There is the 3n � 371 conjecture, due to Keith Matthews. Moreover,
the author’s argument does not say much about b.


