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Abstract. In the report, we want to answer the following question:
How to deform a curve such that the rate of change of perimeter is
minimum while the area and the total kinetic energy are fixed? This
means that the perimeter shrinks fastest when dP

dt
¡ 0, increases most

slowly when dP
dt
¡ 0 First we work on isosceles triangle as a trial. Then

we study smooth simple closed curve and obtain the following results:
1. The radial velocity of each point of the curve in polar coordinates.

(3.1.6)
2. The magnitude of the velocity at each point of the curve along the

normal direction is equal to standard score of the curvature at that
point (3.2.2).

3. Application of the results on Isoperimetric inequality (3.3).
4. The velocity for the dual isoperimetric problem (4).

1. Introduction

Deformation is a change of an object in its size or shape. Only from this
word, you may not know what our project is really about. Apparently, you
may think that it is a study of Isoperimetric inequality [2]. But actually, we
are doing a research about a similar problem which is totally a new idea.
As we have searched for any problem similar to our project in the internet,
by Yahoo and even Google. However, maybe our searching skill is bad, we
found nothing like this!

Before starting to study this project, we loved to play war type computer
games and were interested by the army array. We thought that the best

1This work is done under the supervision of the authors’ teacher, Mr. Wing-Kay Chang
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strategy is to increase the perimeter so the army can have a higher chance
attacking the enemy. The first idea exists in our mind is to find out how the
army should respond so as to increase the contact surface with the enemy.
It is obvious that there will not be a final state for the army array. However,
how can we modify such a vague thinking to a precise mathematic problem?

On one raining day, we were shocked by a slug near the window. To expel
the slug, we were inspired by its reaction. It tried to turn its body to a
ball shape to minimize its surface area. We then abandoned maximizing its
perimeter, trying the opposite direction. Finally, we linked up our thinking
with what we were seeing, creating the present research!

In nature, there are many cases that related to minimizing the perimeter or
surface area in the fast rate, for instance, animals want to protect themselves
by shrinking its body or plants want to prevent loss of water by reducing its
surface area. So, it is meaningful for us to study it.

Isoperimetric inequality states that among all closed curves, circle has the
minimum perimeter with an enclosed fixed area. We do not pursue to prove
or doubt it, but were attracted by its variable process of deformation. If a
curve wants to change to this final state as fast as possible, what process
will it choose? In other words, how can it minimize its perimeter at the
fastest rate? That’s our project’s aim.

Beside Isoperimetric inequality, we also got the idea from another classic
problem that is Brachistochrone problem. We are also going to find the least
time for a shape to minimize its perimeter with fixed area. (cf. Reviewer’s
Comments 1) The difference between our problem and the Brachistochrone
problem is that Brachistochrone curve describes the process of a point to
another point; our problem is to describe the deformation process of a curve.

In chapter 1, we study isosceles triangle as it is the simplest polygon. Us-
ing simple algebra and calculus, we calculate how the triangle should be
deformed so that the rate of change of perimeter is maximum. We also find
the locus of the vertices by solving a suitable differential equation.

In chapter 2, we use two methods, Euler Lagrange equation[3] and inner
product[5], to find the velocity of the points of a smooth simple closed
curve under isoareal deformation so that the rate of change of perimeter
is maximum. Then we relate the velocity at each point along the normal
direction with the curvature at that point. We show that the velocity is
equal to the standard score of the curvature. Then we derive the analog
formulae for isoperimetric deformation.
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2. Triangle

In this part, we are going to study the deformation process of triangle. Since
triangle is the simplest polygon, it allows us to have a taste of how to study
our project. In the following parts, we are

Minimizing the rate of change of perimeter with the area of the triangle
fixed.

2.1. Isosceles Triangle

We start the study by considering isosceles triangle as its symmetric property
helps us simplify the calculation. We need to think of one side of the triangle
only. It is because the movement of the two bottom vertices should be the
same (cf. Reviewer’s Comments 2), otherwise if we turn over the isosceles
triangle, the movement will be different in spite of the same isosceles triangle.

Consider a symmetric triangle where the three points are Ap0, aq, Bpb, 0q,
Cp�b, 0q.

Figure 1

Let
A be the area of the triangle at time t.
P be the perimeter of the triangle at time t.
θ be the angle made between the horizontal and the instantaneous direction
of the movement of the bottom vertices where θ P r0, 2πs.
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Figure 2

We assume that the vertices move with constant velocity 1 unit/second.

At time t � 0, the area A0 � 1

2
ap2bq � ab.

At time t � 0, the perimeter P0 � 2b� 2
a
a2 � b2.

Because of the symmetry property of isosceles triangle, the top vertex Ap0, aq
is also forced to move either up or down, so we study the problem in two
cases.

Case 1: The point Ap0, aq moves upwards

After time interval ∆t, the area

A∆t � 1

2
pa� ∆t� ∆t sin θqr2pb� ∆t cos θqs

Hence

lim
∆tÑ0

∆A

∆t
� lim

∆tÑ0

A∆t �A0

∆t

� lim
∆tÑ0

pa� ∆t� ∆t sin θqpb� ∆t cos θq � ab

∆t
� bp1 � sin θq � a cos θ
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As the area of the triangle is fixed,

lim
∆tÑ0

∆A

∆t
� 0

a

b
� sin θ � 1

cos θ
� sin θ

2 � cos θ2
sin θ

2 � cos θ2
(1)

a

b
� tan

�a
2
� π

4

	
(2)

Refer to 1. If a ¡ ?
3b, then

tan

�
θ

2
� π

4



¡
?

3 � tan
π

3

7π

6
  θ   3π

2

If a   ?
3b, then

tan

�
θ

2
� π

4



 
?

3 � tan
π

3

π

2
  θ   7π

6

The above results mean that the two bottom vertices, B and C, will move
differently, depending on what the original triangle is.

If it is thinner than an equilateral triangle, i.e. a ¡ ?
3b

7π

6
  θ   3π

2

If it is fatter than an equilateral triangle, i.e. a   ?
3b

π

2
  θ   7π

6

Also, from (2), we can see that the vertices B and C has only one way to
move for particular values of a and b.

Our objective is to minimize the change of perimeter under constant area.
Therefore, we should also consider the rate of change of perimeter.

After time interval ∆t, the perimeter

P∆t � 2pb� ∆t cos θq � 2
a
pa� ∆t� ∆t sin θq2 � pb� ∆t cos θq2
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Hence

lim
∆tÑ0

∆P

∆t
� lim

∆tÑ0

P∆t � P0

∆t

� lim
∆tÑ0

2pb� ∆t cos θq
�2
a
pa� ∆t� ∆t sin θq2 � pb� ∆t cos θq2

�2b� 2
?
a2 � b2

∆t

� 2

�
cos θ � ap1 � sin θq � b cos θ?

a2 � b2




Substitute (1) in it,

lim
∆tÑ0

∆P

∆t
� 2 cos θ

�
1 � b2 � a2

b
?
a2 � b2



(3)

If the triangle is thinner than an equilateral triangle, i.e. a ¡ ?
3b,

1 � b2 � a2

b
?
a2 � b2

  0

7π

6
  θ   3π

2

�
?

3

2
  cos θ   0

Refer to (3),

lim
∆tÑ0

∆P

∆t
¡ 0

If the triangle is fatter than an equilateral triangle, i.e. a   ?
3b,

1 � b2 � a2

b
?
a2 � b2

¡ 0

π

2
  θ   7π

6

�
?

3

2
  cos θ   0

Refer to (3),

lim
∆tÑ0

∆P

∆t
  0
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Figure 3

Above we find that if the vertex A moves upwards, the rate of change of
perimeter will be positive for triangle thinner than an equilateral triangle
but negative for triangle fatter than an equilateral triangle.

Case 2: The case of the point Ap0, aq moves downwards

After time interval ∆t, the area

A∆t � pa� ∆t� ∆t sin θqpb� ∆t cos θq

Hence

lim
∆tÑ0

∆A

∆t
� lim

∆tÑ0

pa� ∆t� ∆t sin θqpb� ∆t cos θq � ab

∆t
� a cos θ � bp1 � sin θq

As the area of the triangle is fixed,

lim
∆tÑ0

∆A

∆t
� 0

a

b
� sin θ � 1

cos θ
� cos θ2 � sin θ

2

cos θ2 � sin θ
2

(4)

a

b
� tan

�
θ

2
� π

4



(5)
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Refer to (5). If a ¡ ?
3b, then

tan

�
θ

2
� π

4



¡
?

3 � tan
π

3

π

6
  θ   π

2

If a   ?
3b, then

tan

�
θ

2
� π

4



 
?

3 � tan
π

3

�π
2
  θ   π

6

The above results mean that the two bottom vertices, B and C, will move
differently, depending on what the original triangle is.

Similarly, from (5), we can see that the vertices B and C has only one way
to move for particular values of a and b.

If it is thinner than an equilateral triangle, i.e. a ¡ ?
3b

π

6
  θ   π

2

If it is fatter than an equilateral triangle, i.e. a   ?
3b

�π
2
  θ   π

6

Our objective is to minimize the change of perimeter under constant area.
Therefore, we should also consider the rate of change of perimeter.

After time interval ∆t, the perimeter

P∆t � 2pb� t cos θq � 2
a
pa� t� t sin θq2 � pb� t cos θq2

Hence

lim
∆tÑ0

∆P

∆t
� lim

∆tÑ0

P∆t � P0

∆t

� lim
∆tÑ0

2pb� ∆t cos θq
�2
a
pa� ∆t� ∆t sin θq2 � pb� ∆t cos θq2

�2b� 2
?
a2 � b2

∆t

� 2

�
cos θ � �ap1 � sin θq � b cos θ?

a2 � b2
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Substitute (4) in it,

lim
∆tÑ0

∆P

∆t
� 2 cos θ

�
1 � b2 � a2

b
?
a2 � b2



(6)

If it is thinner than an equilateral triangle, i.e. a ¡ ?
3b

1 � b2 � a2

b
?
a2 � b2

  0

π

6
  θ   π

2
ñ 0   cos θ  

?
3

2

Refer to (6),

lim
∆tÑ0

∆P

∆t
  0

If it is fatter than an equilateral triangle, i.e. a   ?
3b

1 � b2 � a2

b
?
a2 � b2

¡ 0

�π
2
  θ   π

6
ñ 0   cos θ  

?
3

2

Refer to (6),

lim
∆tÑ0

∆P

∆t
¡ 0

Above we find that if the vertex A moves downwards, the rate of change of
perimeter will be positive for triangle fatter than an equilateral triangle but
negative for triangle thinner than an equilateral triangle.

Our aim is to find out how to minimize the rate of change of the perimeter of
an isosceles triangle and in above part, we have obtained all the information
we needed and below is a short summary:

Triangle thinner than Triangle fatter than
an equilateral triangle an equilateral triangle

The point Ap0, aq
moves upwards

lim
∆tÑ0

∆P

∆t
¡ 0 lim

∆tÑ0

∆P

∆t
  0

The point Ap0, aq
moves downwards

lim
∆tÑ0

∆P

∆t
  0 lim

∆tÑ0

∆P

∆t
¡ 0
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Also, the direction of the movement of the vertices B and C is unique for
certain values of a and b.

That means for each type of triangle, i.e. thinner or fatter than an isosceles
triangle, it has only two ways to change its shape if it has to keep its area
fixed. One way makes the rate of change of the perimeter positive and
another makes it negative. Therefore, if we choose the way making the rate
of change of the perimeter negative, we have already minimized it.

So, to minimize the rate of change of the perimeter,

Triangle thinner than
an equilateral triangle

The point Ap0, aq
moves downwards

a

b
� tan

�
θ

2
� π

4



Triangle fatter than
an equilateral triangle

The point Ap0, aq
moves upwards

a

b
� tan

�
θ

2
� π

4




where the meaning of θ is shown on Figure 1.

In the previous part, we just consider the change of the triangle simulta-
neously. How about the deformation process? We will now explore the
process.

As the vertex A only moves up or down, we are more interested in the path
of the bottom vertex. Besides, the paths of vertices B and C should be the
same and just symmetric to the y-axis, so below we only consider the path
of B.

Suppose the point pb, 0q moves to the point px, yq along a path.

Case 1: The point Ap0, aq moves upwards
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By definition,
dy

dx
� tan θ

By (1),

height

half of base
� sin θ � 1

cos θ
ab
x

x
� sin θ � 1

cos θ
From which we obtain

ab

x2
� tan θ � sec θ

ab

x2
� dy

dx
�
d�

dy

dx


2

� 1

dy

dx
� ab

2x2
� x2

2ab
Hence

y � ab

2

»
dx

x2
� 1

2ab

»
x2 dx

� � ab
2x

� x3

6ab
� C.

When x � b, y � 0,

0 � �ab
2b

� b3

6ab
� C

C � a

2
� b2

6a

The required path is

y � � ab
2x

� x3

6ab
� a

2
� b2

6a
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Case 2: If the point p0, aq moves downwards

$'&
'%

dy

dx
� tan θ

ab
x

x
� sin θ � 1

cos θ

From which we obtain
ab

x2
� tan θ � sec θ

ab

x2
� dy

dx
�
d�

dy

dx


2

� 1

dy

dx
� ab

2x2
� x2

2ab
Hence

y � ab

2

»
dx

x2
� 1

2ab

»
x2 dx

� � ab
2x

� x3

6ab
� C.

When x � b, y � 0,

0 � �ab
2b

� b3

6ab
� C

C � a

2
� b2

6a

The required path is

y � � ab
2x

� x3

6ab
� a

2
� b2

6a

We can see that the two paths are of the same equation:

y � � ab
2x

� x3

6ab
� a

2
� b2

6a
(7)

That means the triangle has only one path to change its shape if its area
is kept fixed. To achieve the minimization of the rate of change of the
perimeter, different portions of the path will be adopted.

Let’s consider the following examples to explain the deformation process.
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2.1.1. Example

Consider a triangle with height 2 and base 2 (thinner than an equilateral
triangle).

Hence a � 2, b � 1. By (7), the path of the vertex B is given by

y � �1

x
� x3

12
� 13

12

Figure 4

Since we are considering the right bottom vertex B, x will not be negative,
we need to consider the right hand side of the graph only.

If we want to minimize

lim
∆tÑ0

∆P

∆t
the point Ap0, aq moves downwards. As shown in Figure 4, the arrow shows
the direction of the path of B because

π

6
  θ   π

2
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Note that while the deformation process, the triangle crosses the equilibrium
state: an equilateral triangle, because equilateral triangle is the triangle with
the minimum perimeter among all triangles with the same area. So, when
we are minimizing the rate of change of the perimeter, the perimeter is
decreasing in the fastest way and the triangle must cross the equilibrium
state.

2.1.2. Example

Consider a triangle with height 1 and base 2 (fatter than an equilateral
triangle).

Hence a � 1, b � 1. By (7), the path of the vertex B is given by

y � � 1

2x
� x3

12
� 2

3

Figure 5

Since we are considering the right bottom vertex B, x will not be negative,
we need to consider the right hand side of the graph only.
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If we want to minimize

lim
∆tÑ0

∆P

∆t

the point Ap0, aq moves upwards. As shown in Figure 5, the arrow shows
the direction of the path of B because

π

2
  θ   7π

6

Similarly in the deformation process, the triangle crosses the equilibrium
state: an equilateral triangle, when we are minimizing the rate of change of
the perimeter, the perimeter is decreasing in the fastest way and the triangle
must cross the equilibrium state.

2.2. Irregular Triangle

After we have solved the case of isosceles triangles, we proceed to solve a
more difficult case: irregular triangle.

We consider an irregular triangle where the three vertices are px1, y1q, px2, y2q,
px3, y3q.

Let
A be the area of the triangle at time t.
P be the perimeter of the triangle at time t.
θ1, θ2, θ3 be the angles made between the horizontal and the instantaneous
direction of the movement of the three vertices where θ1, θ2, θ3 P r0, 2πs.

We assume that the vertices move with constant velocity 1 unit/second.
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At time t � 0, the area A0 � 1

2

������
x1 y1 1
x2 y2 1
x3 y3 1

������.
After time interval ∆t, the area

A∆t � 1

2

������
x1 � ∆t cos θ1 y1 � ∆t sin θ1 1
x2 � ∆t cos θ2 y2 � ∆t sin θ2 1
x3 � ∆t cos θ3 y3 � ∆t sin θ3 1

������
� 1

2

������
x1 y1 1
x2 y2 1
x3 y3 1

�������
∆t

2

������
x1 sin θ1 1
x2 sin θ2 1
x3 sin θ3 1

�������
∆t

2

������
cos θ1 y1 1
cos θ2 y2 1
cos θ3 y3 1

������
� ∆t2

2

������
cos θ1 sin θ1 1
cos θ2 sin θ2 1
cos θ3 sin θ3 1

������

As the area of the triangle is fixed,

lim
∆tÑ0

∆A

∆t
� 0

1

2

������
x1 sin θ1 1
x2 sin θ2 1
x3 sin θ3 1

�������
1

2

������
cos θ1 y1 1
cos θ2 y2 1
cos θ3 y3 1

������ � 0

At time t � 0, the perimeter

P0 �
a
px1 � x2q2 � py1 � y2q2 �

a
px2 � x3q2 � py2 � y3q2

�
a
px3 � x1q2 � py3 � y1q2

After time interval ∆t, the perimeter

P∆t�
a
px1 � ∆t cos θ1 � x2 � ∆t cos θ2q2 � py1 � ∆t sin θ1 � y2 � ∆t sin θ2q2

�
a
px2 � ∆t cos θ2 � x3 � ∆t cos θ3q2 � py2 � ∆t sin θ2 � y3 � ∆t sin θ3q2

�
a
px3 � ∆t cos θ3 � x1 � ∆t cos θ1q2 � py3 � ∆t sin θ3 � y1 � ∆t sin θ1q2
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Hence

lim
∆tÑ0

∆P

∆t
� pcos θ1 � cos θ2qpx1 � x2q � psin θ1 � sin θ2qpy1 � y2qa

px1 � x2q2 � py1 � y2q2

� pcos θ2 � cos θ3qpx2 � x3q � psin θ2 � sin θ3qpy2 � y3qa
px2 � x3q2 � py2 � y3q2

� pcos θ3 � cos θ1qpx3 � x1q � psin θ3 � sin θ1qpy3 � y1qa
px3 � x1q2 � py3 � y1q2

By Lagrange Multiplier [4], we construct

Hpθ1, θ2, θ3q � fpθ1, θ2, θ3q � λgpθ1, θ2, θ3q
where

fpθ1, θ2, θ3q � pcos θ1 � cos θ2qpx1 � x2q � psin θ1 � sin θ2qpy1 � y2qa
px1 � x2q2 � py1 � y2q2

� pcos θ2 � cos θ3qpx2 � x3q � psin θ2 � sin θ3qpy2 � y3qa
px2 � x3q2 � py2 � y3q2

� pcos θ3 � cos θ1qpx3 � x1q � psin θ3 � sin θ1qpy3 � y1qa
px3 � x1q2 � py3 � y1q2

gpθ1, θ2, θ3q �
������
x1 sin θ1 1
x2 sin θ2 1
x3 sin θ3 1

�������
������

cos θ1 y1 1
cos θ2 y2 1
cos θ3 y3 1

������
and set BH

Bθ1
� BH
Bθ2

� BH
Bθ3

� BH
Bλ � 0

However, we failed to solve such complicated equation explicitly, even by
computer program (Mathematica 6.0 ).

We have also tried the symmetric quadrilateral by the similar method. How-
ever, as it is too complicated to solve, we have put it in the appendix.

3. Closed Curve

Now, we come to the core part of our report, which is closed curve. As our
aim is to investigate the fastest change of some shapes, so we shall consider
curves in polar coordinates system. Here the curves we studied are smooth.

Our objective here is
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Minimizing the rate of change of perimeter
with the area of the triangle fixed.

3.1. Optimization of the rate of change of perimeter of a curve
with fixed area

Let the equation of the dashed curve be

r � rpθq
and that of the solid curve be

R � Rpθq � rpθq � vpθqt
where vpθq is the radial velocity of each point of the curve at time t.

Let
A be the area bounded by the curve at time t
L be the length of the curve at time t.

Hence

∆A � 1

2

» 2π

0
pR2 � r2q dθ

� 1

2

» 2π

0
p2rv∆t� v2∆t2q dθ

lim
∆tÑ0

∆A

∆t
� lim

∆tÑ0

1
2

³2π
0 p2rv∆t� v2∆t2q dθ

∆t

�
» 2π

0
rv dθ
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∆L �
» 2π

0
p
a
R2 �R12 �

a
r2 � r12qdθ

�
» 2π

0
p
a
pr � v∆tq2 � pr1 � v1∆tq2 �

a
r2 � r12qdθ

�
» 2π

0

2rv∆t� v2∆t2 � 2r1v1∆t� v12∆t2a
pr � v∆tq2 � pr1 � v1∆tq2 �?

r2 � r12
dθ

lim
∆tÑ0

∆L

∆t
� lim

∆tÑ0

³2π
0

2rv∆t�v2∆t2�2r1v1∆t�v12∆t2?
pr�v∆tq2�pr1�v1∆tq2�?r2�r12 dθ

∆t

� lim
∆tÑ0

» 2π

0

2rv � v2∆t� 2r1v1 � v12∆ta
pr � v∆tq2 � pr1 � v1∆tq2 �?

r2 � r12
dθ

�
» 2π

0

rv � r1v1?
r2 � r12

dθ

As the area is fixed,

lim
∆tÑ0

∆A

∆t
� 0» 2π

0
rv dθ � 0 (8)

(9)

and we are going to minimize

lim
∆tÑ0

∆L

∆t
�

» 2π

0

rv � r1v1?
r2 � r12

dθ (10)

and we achieve the optimization by two methods:

Method 1: Euler Lagrange Equation

Euler Lagrange equation is an important formula of the calculus of vari-
ations [1, 3]. It provides a way to solve for functions which extremize a
given functional. Therefore, it first comes to our mind when we handle this
problem.
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Set

Jrvpθqs �
» 2π

0

�
rv � r1v1?
r2 � r12

� λrv



dθ �

» 2π

0
F dθ

where

F � F pθ, v, v1q � rv � r1v1?
r2 � r12

� λrv

To optimize Jrvpθqs, vpθq should satisfy the Euler Lagrange equation,

Fv � d

dθ
Fv1 � 0

r?
r2 � r12

� λr � d

dθ

r1?
r2 � r12

� 0

The above equation is independent of v. (cf. Reviewer’s Comments 3)
It is because the question cannot define the function v well. If the question
is set like this, v can oscillate with high frequency such that after it is added
to the original curve, the area is still fixed but the rate of change of the
length of the curve can be as large as possible. So we have to introduce the
total kinetic energy of the curve as another constraint here.

We cannot use v (cf. Reviewer’s Comments 3) directly to describe the
kinetic energy, otherwise the density of the curve will not be changed uni-
formly and makes the question become more complicated.

On the other hand, we can consider the actual velocity u of the string at
each point which is perpendicular to the string so that the density of the
string will remain uniform.

Here
v � |v| is the speed of the string along the radial direction,
u � |u| is the speed of the string perpendicular to the string.

Since u is a component of v,

|u| � |v| cosα
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Note that

cosα � r
dθ

ds
so

|u| � |v| cosα � |v|
�
r
dθ

ds



(11)

Together with ds
dθ �

?
r2 � r12, the kinetic energy of the string should be» 2π

0
ρ|u|2 ds �

» 2π

0
ρ

�
r
dθ

ds


2

v2 ds �
» 2π

0
ρ

r2

?
r2 � r12

v2 dθ

where

density ρ � mass

length
� M³2π

0

?
r2 � r12 dθ

.

Therefore

1

2

» 2π

0
ρ

r2

?
r2 � r12

v2 dθ � C

M³2π
0

?
r2 � r12 dθ

» 2π

0

r2

?
r2 � r12

v2 dθ � 2C

M

» 2π

0

r2

?
r2 � r12

v2 dθ � 2C

» 2π

0

a
r2 � r12 dθ

For simplicity, we choose M � 2C � 1,» 2π

0

�
r2

?
r2 � r12

v2 �
a
r2 � r12



dθ � 0 (12)

Again set

Jrvpθqs �
» 2π

0

�
rv � r1v1?
r2 � r12

� λrv � λ1
�

r2

?
r2 � r12

v2 �
a
r2 � r12


�
dθ

�
» 2π

0
F dθ

where

F � F pθ, v, v1q � rv � r1v1?
r2 � r12

� λrv � λ1
�

r2

?
r2 � r12

v2 �
a
r2 � r12
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By the Euler Lagrange Equation,

Fv � d

dθ
Fv1 � 0

r?
r2 � r12

� λr � 2λ1
r2

?
r2 � r12

v � d

dθ

r1?
r2 � r12

� 0

r?
r2 � r12

� λr � 2λ1
r2

?
r2 � r12

v � r2r2 � rr12

pr2 � r12q3{2 � 0 (13)

Hence

v � 1

2λ1 r2?
r2�r12

�
r2r2 � rr12

pr2 � r12q3{2 �
r?

r2 � r12
� λr

�

v � 1

2λ1

�
r2r2 � rr12

rpr2 � r12q �
1

r
� λ

?
r2 � r12

r

�
(14)

Multiply (13) both sides by
?
r2�r12
r ,

1 � λ
a
r2 � r12 � 2λ1rv � rr2 � r12

r2 � r12
� 0

Integrate both sides with respect to θ,» 2π

0

�
1 � λ

a
r2 � r12 � 2λ1rv � rr2 � r12

r2 � r12

�
dθ � 0

λ

» 2π

0

a
r2 � r12 dθ �

» 2π

0

�
rr2 � r12

r2 � r12
� 1

�
dθ � 0

λ �
³2π
0

�
rr2�r12
r2�r12 � 1

�
dθ³2π

0

?
r2 � r12 dθ

(15)

Besides, from the constraint of total KE (12),» 2π

0

�
r2

?
r2 � r12

v2 �
a
r2 � r12

�
dθ � 0.

We find that

λ1 �

gfffe³2π
0

1
4

�
rr2�r12
rpr2�r12q � λ

?
r2�r12
r

�2
r2?
r2�r12 dθ³2π

0

?
r2 � r12 dθ

(16)

We can see that by Euler Lagrange Equation, we can find the function v
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such that it optimizes the rate of change of the perimeter with the area
bounded by the curve is still fixed.

In order to show our result more clearly, below is an example illustrate how
the function v works on the curve.

3.1.1. Example

The following is the equation of an ellipse

r �
?

2a
2 sin2 θ � cos2 θ

By using computer program (Mathematica 6.0 ), we calculate the function
v.

λ �
³2π
0

�
rr2�r12
r2�r12 � 1

	
dθ³2π

0

?
r2 � r12dθ

� �0.822364

λ1 �

gfffe³2π
0

1
4M

�
rr2�r12
rpr2�r12q � 1

r � λ
?
r2�r12
r

	2
r2?
r2�r12dθ³2π

0 C
?
r2 � r12dθ

� 0.154052

where

v � 3.245671196522956

�
�
a

cos2 θ � 2 sin2 θ?
2

� 0.5814990719760088
a

cos2 θ � 2 sin2 θ

�
d

2 cos2 θ sin2 θ

pcos2 θ � 2 sin2 θq3 �
2

cos2 θ � 2 sin2 θ

�
a

cos2 θ � 2 sin2 θ
?

2
�

2 cos2 θ sin2 θ
pcos2 θ�2 sin2 θq3 � 2

cos2 θ�2 sin2 θ

	

�
�
� � 2 cos2 θ sin2 θ

pcos2 θ � 2 sin2 θq3

�
2
�

3 cos2 θ sin2 θ
pcos2 θ�2 sin2 θq5{2 � cos2 θ

pcos2 θ�2 sin2 θq3{2 � sin2 θ
pcos2 θ�2 sin2 θq3{2

	
a

cos2 θ � 2 sin2 θ

�


�
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Here is the curve of v:

and here are the curves r � rpdashed oneq and R � r � p0.05qvpsolid oneq:

After we have found the function v, it is natural to ask: is the solution a
maximum or a minimum?

In calculus of variation, to check whether the solution is a maximum or
a minimum, it is necessary to check whether then solution satisfies Jacobi
Condition and Legendre Condition [1] or not. However it is difficult and
tedious to do so. We try another approach instead: inner product.

Method 2: Inner Product

The reason why we use inner product to solve the problem is that the result
we obtained by the method of calculus of variation is too complicated to
check whether it is a maximum or a minimum by ordinary method. So we
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think of using inner product as integrals involved can be converted into inner
products.

Inner product has the following properties:

1. xu,uy ¥ 0 and xu,uy � 0 if and only if u � 0
2. xu,vy � xv,uy
3. xau1 � bu2,vy � axu1,vy � bxu2,vy

From (2), the rate of change of the length of the curve is

lim
∆tÑ0

∆L

∆t
�
» 2π

0

rv � r1v1?
r2 � r12

dθ

�
» 2π

0

rv?
r2 � r12

dθ �
�

r1v?
r2 � r12

�2π

0

�
» 2π

0
v

�
r1?

r2 � r12


1
dθ

Since r is a simple closed curve and smooth on r0, 2πs, rp0q � rp2πq, r1p0q �
r1p2πq, vp0q � vp2πq

�
r1v?
r2 � r12

�2π

0

� 0

lim
∆tÑ0

∆L

∆t
�
» 2π

0

rv?
r2 � r12

dθ �
» 2π

0
v

�
r1?

r2 � r12


1
dθ

Our aim is to minimize the above integral under the conditions (8) and (12):

1.

» 2π

0
rv dθ � 0

2.

» 2π

0

�
r2

?
r2 � r12

v2 �
a
r2 � r12



dθ � 0» 2π

0
v2

�
r2

?
r2 � r12



dθ �

» 2π

0

a
r2 � r12 dθ � L.

We define

xa, by �
» 2π

0
ab

�
r2

?
r2 � r12



dθ

LetR1 �
�

r?
r2 � r12

�
�

r1?
r2 � r12


1��?r2 � r12

r2

�
andR2 � r

�?
r2 � r12

r2

�
.
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Hence

xv,R1y �
» 2π

0
v

�
r?

r2 � r12
�
�

r1?
r2 � r12


1��?r2 � r12

r2

��
r2

?
r2 � r12



dθ

�
» 2π

0
v

�
r?

r2 � r12
�
�

r1?
r2 � r12


1�
dθ

xv,R2y �
» 2π

0
vr

�?
r2 � r12

r2

��
r2

?
r2 � r12



dθ

�
» 2π

0
rv dθ � 0

xv, vy �
» 2π

0
v2

�
r2

?
r2 � r12



dθ � L

Since xv,R2y �
³2π
0 rv dx � 0, v can be any vector lying on the plane π1

which is perpendicular to R2.

Suppose V lies on the plane π1, and R1 is another vector represented by
the arrow in the second quadrant, and v � nV.

To minimize

» 2π

0

rv � r1v1?
r2 � r12

dθ �
» 2π

0
v

�
r?

r2 � r12
�
�

r1?
r2 � r12


1�
dθ � xv,R1y,

we first maximize this by choosing the projection of R1 on the plane π1 ,
i.e. the bottom arrow,



ISOAREAL AND ISOPERIMETRIC DEFORMATION OF CURVES 27

Since V � R1 �w and w is parallel to R2, we have

w � |w | R2

|R2 | � p |R1 | sin θ q R2

|R2 |
� |R1 ||R2 | cosϕ

|R2 |2 R2 � xR1,R2y
xR2,R2yR2

So

V � R1 �w

V � R1 � xR1,R2y
xR2,R2yR2

To find v such that x v,R1y is minimized and xv, vy � L, we must have
v � �kV where k is a positive constant.

v � �k
#�

r?
r2 � r12

�
�

r?
r2 � r12


1��?r2 � r12

r2

�

�

³2π
0

�
r?

r2�r12 �
�

r1?
r2�r12

	1��?
r2�r12
r2

	
r
�?

r2�r12
r2

	�
r2?
r2�r12

	
dθ

³2π
0 r2

�?
r2�r12
r2

	2 �
r2?
r2�r12

	
dθ

r

�?
r2 � r12

r2

�+

� k

�
� rr2 � r12

rpr2 � r12q �
³2π
0

�
r2r2�rr12
rpr2�r12q � 1

�
dθ³2π

0

?
r2 � r12 dθ

�?
r2 � r12

r

���
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Since

xv, vy � L» 2π

0
v2

�
r2

?
r2 � r12



dθ � L

» 2π

0
k2

�
� rr2 � r12

rpr2 � r12q

�
³2π
0

�
r2r2�rr12
rpr2�r12q � 1

�
dθ³2π

0

?
r2 � r12 dθ

�?
r2 � r12

r

���
2

�
r2

?
r2 � r12



dθ �

» 2π

0

a
r2 � r12 dθ

we can solve that

k �
gfffffe

³2π
0

?
r2 � r12 dθ

³2π
0

�
rr2�r12
rpr2�r12q �

³2π
0

�
r2r2�rr12

rpr2�r12q
�1

�
dθ

³2π
0

?
r2�r12 dθ

�?
r2�r12
r

	�2 �
r2?
r2�r12

	
dθ

When we compare this with (14), (15) and (16),

v � 1

2λ1

�
rr2 � r12

rpr2 � r12q �
λ
?
r2 � r12

r

�

where

λ �
³2π
0

�
rr2�r12
r2�r12 � 1

�
dθ³2π

0

?
r2 � r12 dθ

λ1 �

gfffe³2π
0

1
4

�
rr2�r12
rpr2�r12q � λ

?
r2�r12
r

�2
r2?
r2�r12 dθ³2π

0

?
r2 � r12 dθ

we can see that

1

2λ1
�
gfffe

³2π
0

?
r2 � r12 dθ³2π

0

�
rr2�r12
rpr2�r12q � λ

?
r2�r12
r

�2
r2?
r2�r12 dθ

� k
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Hence

v � k

�
� rr2 � r12

rpr2 � r12q �
³2π
0

�
rr2�r12
r2�r12 � 1

�
dθ³2π

0

?
r2 � r12 dθ

�?
r2 � r12

r

���

� 1

2λ1

�
rr2 � r12

rpr2 � r12q �
λ
?
r2 � r12

r

�

The two different approaches give the same result. Since the function v
solved by inner product method minimizes

xv,R1y �
» 2π

0
v

�
r?

r2 � r12
�
�

r1?
r2 � r12


1�
dθ

i.e.

lim
∆tÑ0

∆L

∆t
�
» 2π

0

rv � r1v1?
r2 � r12

dθ �
» 2π

0
v

�
r?

r2 � r12
�
�

r1?
r2 � r12


1�
dθ

is minimized by the function v.

3.2. Curvature

We can see that the expressions in (14), (15) and (16) are so tedious for us
to derive the deformation of the curve. Is it possible for us to predict how
the curve deforms without complicated calculation?

We think that the solution should be coordinates free, that is no matter how
the coordinates are put, the curve should have the same change such that
the rate of change of the perimeter is the minimum while its area is kept
fixed. The change should be the same in spite of the presentation of the
curve.

So we think of some coordinates independent quantities, one of them is the
curvature of the curve. Since curvature depends on the shape of the curve,
not the position of the curve, i.e. the equation of the curve, it may be
possible for us to express the deformation in terms of it. We also believe
that the change of the curve will depend on the other quantities which
are independent of the coordinates, e.g. the length of the curve, the area
bounded by the curve, etc. Also, the function v in (14) depends on the
coordinates system as it defines the radial velocity of each point. If the
curve is put in different direction, v will change.
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So we use u, which is the velocity of each point along the normal direction
to the curve and is independent of the coordinates system.

The curvature of closed curve is defined as

κ � r2 � 2r12 � rr2

pr2 � r12q3{2

The length of the closed curve is defined as

L �
» 2π

0

a
r2 � r12 dθ

From (11) together with (14), the function u is

u � v

�
r
dθ

ds




� 1

2λ1

�
rr2 � r12

rpr2 � r12q �
λ
?
r2 � r12

r

��
r?

r2 � r12




� 1

2λ1

�
rr2 � r12

pr2 � r12q3{2 �
1?

r2 � r12
� λ

�

� 1

2λ1

�
�r

2 � 2r12 � rr2

pr2 � r12q3{2 � λ

�

Hence u � 1

2λ1
p�κ� λq.

From (15) and (16)

λ �
³2π
0

�
rr2�r12
r2�r12 � 1

�
dθ³2π

0

?
r2 � r12 dθ

�
³2π
0

�
� r2�2r12�rr2

pr2�r12q3{2
�?

r2 � r12 dθ³2π
0

?
r2 � r12 dθ

� �
³L
0 κ ds

L
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λ1 �

gfffe³2π
0

1
4

�
rr2�r12
rpr2�r12q � λ

?
r2�r12
r

�2
r2?
r2�r12 dθ³2π

0

?
r2 � r12 dθ

�

gfffe³2π
0

1
4

�
rr2�r12

pr2�r12q3{2 � 1?
r2�r12 � λ

�2 ?
r2 � r12 dθ³2π

0

?
r2 � r12 dθ

�
d³L

0
1
4p�κ� λq2 ds

L

we can also see that the above quantities are independent of the coordinates,
but dependent of the unchanged quantities L and κ.

Therefore,

Closed curve

u
1

2λ1
p�κ� λq

λ

³L
0 �κ ds
L

λ1

d³L
0

1
4p�κ� λq2 ds

L

By referring to Appendix 5.2, the expressions of u, λ and λ1 for open curve
and closed curve are the same. It is reasonable because the above expressions
are independent of the coordinates, as well as the coordinates system.

In fact, they have a deeper meaning, note that

�λ �
³L
0 κ ds

L
� 2π

L

which can be interpreted as the average curvature of the curve.

So,

u � 1

2λ1
p�κ� λq � 1

2λ1
p�κ� κ̄q (17)

where κ̄ � �λ defines the average curvature.
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Also,

λ1 �
d³L

0
1
4p�κ� λq2 ds

L
�
d

1
4

³L
0 pκ2 � 2λκλ2q ds

L

�

gffe 1
4

�³L
0 κ

2 ds� 8π2

L � 4π2

L

	
L

� 1

2

d³L
0 κ

2 ds

L
�
�

2π

L


2

� 1

2
σ

where σ is the standard deviation of curvature. Therefore, the maximum
decreasing rate of perimeter is obtained when the velocity along the normal
direction,

u � �κ� κ̄

σ
(18)

where the right hand side is simply the standard score of �κ.

We can deduce how the curve changes by the above expressions. The fol-
lowing example illustrates how we can predict the deformation process of
the curve.

3.2.1. Example

Figure 6

Figure 6 shows a smooth simple closed curve where the arrows show the
normal to the curve at some points.

The right-boxed portion of the curve has a larger curvature than its average
curvature as the normal of the curve changes sharply.
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From (17),

u � 1

2λ1
p�κ� κ̄q   0

so the portion will move like this:

The left-boxed portion of the curve has a smaller curvature than the average
curvature because the normal turns clock-wisely.

From (17),

u � 1

2λ1
p�κ� κ̄q ¡ 0

so the portion will move like this:

3.3. Isoperimetric Inequality

The isoperimetric problem can be stated as follows: Among all closed curves
in the plane of fixed perimeter, which curve maximizes the area of its en-
closed region? This question can be shown to be equivalent to the following
problem: Among all closed curves in the plane enclosing a fixed area, which
curve minimizes the perimeter? Circle has been proved to be the answer to
the question, that means circle has the minimum perimeter among all closed
curves enclosing a fixed area.

How about in our deforming process, what will be the curve if it continuously
minimizes its rate of change of perimeter? We guess the shape will finally
deform to a circle as fast as possible, that is when it reaches a circle, it will
have no further change.

From our result, the function u can minimize the perimeter of a given closed
curve as fast as possible at every moment. But the curve must be continu-
ously changing because the KE of the particles is constant. But we believe
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the curve will pass through an equilibrium state in the process and then the
perimeter increases again. So what is the equilibrium state? When the curve
reaches the equilibrium state, its perimeter cannot be minimized anymore
and has no change at that particular moment.

From (17),

u � 1

2λ1
p�κ� κ̄q

When u � 0,

1

2λ1
p�κ� κ̄q � 0

κ � κ̄ �
³L
0 κ ds

L
� 2π

L

The curvature equals a constant if and only if the curve is a circle.

Therefore we have proved that the equilibrium state of the curve is a circle
under this process but it does not imply that the curve will reach an equi-
librium state. Hence if there exists a shape with minimum perimeter, then
it must be a circle.

4. Dual Problem - Isoperimetric Deformation

By similar technique, we can solve the dual problem, that is maximizing the
rate of change of the area with the perimeter and the total kinetic energy
keeping fixed. It is the same as what we do before - minimizing the rate of
change of the perimeter with the area and the total kinetic energy keeping
fixed. As we believe that it will be easier for us to find the deformation
process from the results obtained, we do this problem too. (cf. Reviewer’s
Comments 4)

We find that

u � 1

2λ1
pλκ� 1q

where

λ � � 2π³L
0 κ

2 ds

λ1 �
d³L

0
1
4pλκ� 1q2 ds

L
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5. Appendix

5.1. Symmetric Quadrilateral

Since we cannot solve the irregular triangle, we want to have a breakthrough
if we can consider the case of a regular quadrilateral.

We consider a symmetric quadrilateral where the four vertices are Apa, 0q,
Bpb, cq, Cp�b, cq, Dp�a, 0q.

Let
A be the area of the quadrilateral at time t.
P be the perimeter of the quadrilateral at time t.
θ be the angle made between the horizontal and the instantaneous direction
of the movement of the bottom vertices where θ P r0, 2πs.

We assume that the vertices move with constant velocity 1 unit/second.

At time t � 0, the area A0 � pa� bqc.

After time interval ∆t, the area

A∆t � pa� ∆t cos θ1 � b� ∆t cos θ2qpc� ∆t sin θ2 � ∆t sin θ1q

As the area of the quadrilateral is fixed,

lim
∆tÑ0

∆A

∆t
� 0

cpcos θ1 � cos θ2q � pa� bqpsin θ2 � sin θ1q � 0
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At time t � 0, the perimeter P0 � 2a� 2b� 2
a
pb� aq2 � c2.

After time interval ∆t, the perimeter

P∆t � 2pa� ∆t cos θ1q � 2pb� ∆t cos θ2q
� 2

a
pb� ∆t cos θ2 � a� ∆t cos θ1q2 � pc� ∆t sin θ2 � ∆t sin θ1q2

Hence

lim
∆tÑ0

∆P

∆t
� 2pcos θ1 � cos θ2q � 2rpb� aqpcos θ2 � cos θ1q � cpsin θ2 � sin θ1qsa

pb� aq2 � c2

By Lagrange Multiplier, we construct

Hpθ1, θ2q � 2pcos θ1 � cos θ2q � 2rpb� aqpcos θ2 � cos θ1q � cpsin θ2 � sin θ1qsa
pb� aq2 � c2

� λrcpcos θ1 � cos θ2q � pa� bqpsin θ2 � sin θ1qs
and set

BH
Bθ1

� �2 sin θ1 � 2

�
pb� aq sin θ1 � cp� cos θ1qa

pb� aq2 � c2

�

� λrpa� bqp� cos θ1q � cp1 � sin θ1qs
BH
Bθ2

� �λrpa� bq cos θ2 � c sin θ2s

� 2

�
cos θ2 � r�a� b�

a
pa� bq2 � c2s sin θ2a

pa� bq2 � c2

�

BH
Bλ � �c cos θ1 � c cos θ2 � pa� bqpsin θ1 � sin θ2q

Here is the same situation like irregular triangle. Although, it seems to be
easier than the case of irregular triangle, the equations are still too
complicated to be solved.

5.2. Open Curve

Before we try the closed curve, we have tried the open curve as a trial. Let
the equation of the dashed curve be

y � fpxq
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and that of the solid curve be

y � fpxq � vpxqt
where vpxq is the vertical velocity of each point of the curve at time t.

Let
A be the area bounded by the curve and the x-axis at time t
L be the length of the curve at time t.

At time t � 0, the area bounded by the curve and the x-axis

A0 �
» 1

0
f dx

At time t � 0, the length of the curve

L0 �
» 1

0

a
1 � f 12 dx

After time interval ∆t, the area bounded by the curve and x-axis

A∆t �
» 1

0
pf � v∆tq dx

After time interval ∆t, the length of the curve

L∆t �
» 1

0

a
1 � pf 1 � v1∆tq2 dx
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Hence

∆A � A∆t �A0 �
» 1

0
pf � v∆tq dx�

» 1

0
f dx � ∆t

» 1

0
v dx

lim
∆tÑ0

∆A

∆t
� lim

∆tÑ0

∆t
³1
0 v dx

∆t
�
» 1

0
v dx

∆L � L∆t � L0

�
» 1

0

a
1 � pf 1 � v1∆tq2 dx�

» 1

0

a
1 � f 12 dx

�
» 1

0
p
a

1 � pf 1 � v1∆tq2 �
a

1 � f 12q dx

lim
∆tÑ0

∆L

∆t
� lim

∆tÑ0

³1
0p
a

1 � pf 1 � v1∆tq2 �
a

1 � f 12q dx
∆t

� lim
∆tÑ0

» 1

0

1 � pf 1 � v1∆tq2 � 1 � f 12

∆tp
a

1 � pf 1 � v1∆tq2 �
a

1 � f 12q dx

�
» 1

0

f 1v1a
1 � f 12

dx

As the area is fixed,

lim
∆tÑ0

∆A

∆t
� 0» 1

0
v dx � 0 (19)

and we are going to minimize

lim
∆tÑ0

∆L

∆t
�
» 1

0

f 1v1a
1 � f 12

dx (20)

Similarly, we achieve the optimization by two methods:

Method 1: Euler-Lagrange Equation
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Set

Jrvpxqs �
» 1

0

�
f 1v1a
1 � f 12

� λv

�
dx �

» 1

0
F dx

where

F � F px, v, v1q � f 1v1a
1 � f 12

� λv.

Again by the Euler-Lagrange Equation,

Fv � d

dx
Fv1 � 0

λ� d

dx

f 1a
1 � f 12

� 0

which is independent of v.

Like what we have done in section 3, we add the total kinetic energy of all
element on the curve as the constraint.

Since u is a component of v,

|u| � |v| cosα

Note that

cosα � dx

ds
so

|u| � |v| cosα � |v|
�
dx

ds



(21)
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Together the kinetic energy of the string should be

» 1

0
ρ|u|2 ds �

» 1

0
ρ

�
dx

ds


2

v2 ds �
» 1

0
ρ

1a
1 � f 12

v2 dx

Let ρ be the density of the curve, hence

ρ � mass

length
� M³1

0

a
1 � f 12 dx

.

If the total kinetic energy is constant, we have

1

2

» 1

0
ρ

1a
1 � f 12

v2 dx � C

M³1
0

a
1 � f 12 dx

» 1

0

1a
1 � f 12

v2 dx � 2C

M

» 1

0

1a
1 � f 12

v2 dx � 2C

» 1

0

a
1 � f 12 dx

For simplicity, we choose M � 2C � 1,

» 1

0

�
1a

1 � f 12
v2 �

a
1 � f 12

�
dx � 0 (22)

Set

Jrvpxqs �
» 1

0

�
f 1v1a
1 � f 12

� λv � λ1
�

1a
1 � f 12

v2 �
a

1 � f 12
��

dx

�
» 1

0
F dx

where

F � F px, v, v1q � f 1v1a
1 � f 12

� λv � λ1
�

1a
1 � f 12

v2 �
a

1 � f 12
�
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By the Euler Lagrange Equation,

Fv � d

dx
Fv1 � 0

λ� 2λ1
1a

1 � f 12
v � d

dx

f 1a
1 � f 12

� 0

λ� 2λ1
1a

1 � f 12
v � f2

p1 � f 12q3{2 � 0 (23)

Hence

v � 1

2λ1 1?
1�f 12

�
f2

p1 � f 12q3{2 � λ

�

v � 1

2λ1

�
f2

1 � f 12
� λ

a
1 � f 12



(24)

Multiply (23) both sides by
a

1 � f 12 and integrate both sides with respect
to x, we have» 1

0

�
λ
a

1 � f 12 � 2λ1v � f2

1 � f 12

�
dx � 0

λ

» 1

0

a
1 � f 12 dx�

» 1

0

f2

1 � f 12
dx � 0

λ �
³1
0

f2

1�f 12 dx³1
0

a
1 � f 12 dx

(25)

Besides, from the constraint of total KE (22),» 1

0

�
1a

1 � f 12
v2 �

a
1 � f 12

�
dx � 0.

We find that

λ1 �

gfffe
³1
0

1
4

�
f2

1�f 12 � λ
a

1 � f 12
	2

1?
1�f 12 dx³1

0

a
1 � f 12 dx

(26)

Method 2: Inner Product
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From (20), the rate of change of the length of the curve is

lim
∆tÑ0

∆L

∆t
�
» 1

0

f 1v1a
1 � f 12

dx � �
» 1

0
v

�
r1a

1 � f 12

�1
dx

Our aim is to minimize the above integral under the conditions (19) and
(22):

1.

» 1

0
v dx � 0

2.

» 1

0

�
1a

1 � f 12
v2 �

a
1 � f 12

�
dx � 0

» 1

0
v2

�
1a

1 � f 12

�
dx �

» 1

0

a
1 � f 12 dx � L.

We define

xa, by �
» 1

0
ab

�
1a

1 � f 12

�
dx

Let F1 �
�

f 1a
1 � f 12

�1a
1 � f 12 and F2 �

a
1 � f 12.

Hence

xv, F1y �
» 1

0
v

�
f 1a

1 � f 12

�1a
1 � f 12

�
1a

1 � f 12

�
dx

�
» 1

0
v

�
f 1a

1 � f 12

�1
dx

xv, F2y �
» 1

0
v
a

1 � f 12
�

1a
1 � f 12

�
dx

�
» 1

0
v dx � 0

xv, vy �
» 1

0
v2

�
1a

1 � f 12

�
dx � L
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Since xv, F2y �
³1
0 v dx � 0, v can be any vector lying on the plane π2 which

is perpendicular to F2.

Suppose V lies on the plane π2, and F1 is another vector represented by the
arrow in the second quadrant, and v � nV.

To minimize

» 1

0

f 1v1a
1 � f 12

dx � �
» 1

0
v

�
f 1a

1 � f 12

�1
dx, i.e. to maximize

xv, F1y, we choose the projection of F1, i.e. the bottom arrow, to be V.

Since V � F1 �w and w is parallel to F2, we have

w � |w | F2

|F2 | � p |F1 | sin θ q F2

|F2 |
� |F1 ||F2 | cosϕ

|F2 |2 F2 � xF1,F2y
xF2,F2yF2

So

V � F1 �w

V � F1 � xF1,F2y
xF2,F2yF2
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and

v � k

��
f 1a

1 � f 12

�1a
1 � f 12

�

³1
0

�
f 1?

1�f 12


1a
1 � f 12

a
1 � f 12

�
1?

1�f 12



dx

³1
0p1 � f 12q

�
1?

1�f 12



dx

a
1 � f 12

�
����

� k

�
� f2a

1 � f 12
�

³1
0

f2

1�f 12 dx³1
0

a
1 � f 12 dx

a
1 � f 12

�



Since

xv, vy � L» 1

0
v2

�
1a

1 � f 12

�
dx � L

» 1

0
k2

�
� f2a

1 � f 12
�

³1
0

f2

1�f 12 dx³1
0

a
1 � f 12 dx

a
1 � f 12

�



2

�
1a

1 � f 12

�
dx �

» 1

0

a
1 � f 12 dx

we can solve that

k �
gfffffe

³1
0

a
1 � f 12 dx

³1
0

�
f2?
1�f 12 �

³1
0

f2

1�f 12
dx

³1
0

?
1�f 12 dx

a
1 � f 12

�2�
1?

1�f 12



dx

When we compare this with (24), (25) and (26),

v � 1

2λ1

�
f2

1 � f 12
� λ

a
1 � f 12
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where

λ �
³1
0

f2

1�f 12 dx³1
0

a
1 � f 12 dx

λ1 �

gfffe
³1
0

1
4

�
f2

1�f 12 � λ
a

1 � f 12
	2

1?
1�f 12 dx³1

0

a
1 � f 12 dx

.

We can see that

1

2λ1
�
gfffe

³1
0

a
1 � f 12 dx³1

0

�
f2

1�f 12 � λ
a

1 � f 12
	2

1?
1�f 12 dx

� k

Hence

v � k

�
� f2

1 � f 12
�

³1
0

f2

1�f 12dx³1
0

a
1 � f 12 dx

a
1 � f 12

�



� 1

2λ1

�
f2

1 � f 12
� λ

a
1 � f 12




Since the function v solved by inner product method maximizes

xv, F1y �
» 1

0
v

�
f 1a

1 � f 12

�1
dx

i.e.

lim
∆tÑ0

∆L

∆t
�
» 1

0

f 1v1a
1 � f 12

dx � �
» 1

0
v

�
f 1a

1 � f 12

�1
dx

is minimized by the function v.

For curvature, we define the curvature of open curve as

κ � � f2

p1 � f 12q3{2
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The length of the open curve is defined as

L �
» 1

0

a
1 � f 12 dx

The function u is

u � v

�
r
dx

ds




� 1

2λ1

�
f2

1 � f 12
� λ

a
1 � f 12


�
1a

1 � f 12

�

� 1

2λ1

�
f2

p1 � f 12q3{2 � λ




Hence u � 1

2λ1
p�κ� λq.

where

λ �
³1
0

f2

1�f 12 dx³1
0

a
1 � f 12 dx

�
³1
0

�
� f2

p1�f 12q3{2
	a

1 � f 12 dx³1
0

a
1 � f 12 dx

� �
³L
0 κ ds

L

λ1 �

gfffe
³1
0

1
4

�
f2

1�f 12 � λ
a

1 � f 12
	2

1?
1�f 12 dx³1

0

a
1 � f 12 dx

�

gfffe³1
0

1
4

�
f2

p1�f 12q3{2 � λ
	2a

1 � f 12 dx³1
0

a
1 � f 12 dx

�
d³L

0
1
4p�κ� λq2 ds

L

We can see that the above quantities are independent of the coordinates,
but dependent of the unchanged quantities L and κ.

6. Conclusion

Thank you for reading our report! Of course, there are some we have done
and some we can have further study on this topic. To end up our report, we
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will have a brief conclusion and prospect after we have such result of this
topic.

In fact, we didn’t have a wide range of knowledge of mathematics. By read-
ing reference books, searching for the information in the internet, consulting
teachers, we had the researching mind gradually. Because of this project,
we have learnt some we didn’t know before, including Euler Lagrange equa-
tion, Lagrange multiplier and inner product. Here, we want to thank all the
teachers who have helped us in this project.

To summarize, we have the following results in our report. The deformation
and path of the points of an isosceles triangle is the first result we got. Also,
we have found the velocity function of the points in every moment that a
smooth simple closed curve can minimize its rate of change of perimeter with
a fixed area in the fastest rate by 2 different methods. Finally, let’s state
the main result of this report. The maximum rate of change of perimeter
of a smooth simple closed curve under isoareal deformation with normalized
kinetic energy is attained when the magnitude of the velocity at each point
of the curve along the normal direction is equal to the standard score of
the curvature at that point. This result can also be used to prove the
isoperimetric inequality.

We know we have just solved a minor part of this area of mathematics
problem; there are still a lot of areas you and me can explore.

First, we can have study on the change of the momentum of each point on
the curve. The aim is that we can see whether the centre of mass of the
shape moves throughout the process. If it moves, how it moves.

Second, we can find out the rate of change of curvature of the curve. Through-
out the deformation, the shape of the curve is changing, so the curvature
is also changing. By studying how the curvature changes with respect to
time, we may find out the total time for the process as we have the initial
curvature and final curvature.

No matter you love our work or not, we are very delighted to have research
on this mathematical topic. As what we said before, we were not pursue
to prove or doubt the “final state”, but were attracted by the process. We
were enjoyable enough when doing this research. I hope that you will have
any inspiration after reading this report as we also love the thinking process
of tackling the mathematical problems.
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In the near future, we will continue to have research on it as it is only the
end of our report but not the end of our project!

Acknowledgement: Mr. Chung-Wa Ho, Mr. Kwun-Wing Wong.
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Reviewer’s Comments

Main Comment: On first reading of the report, the reviewer was very
confused about whether the paper aimed at maximizing or minimizing dP

dt .

The reviewer then think the aim is to minimize dP
dt while keeping the area

constant. When dP
dt   0, minimizing it means the shape is reducing its

perimeter at the fastest rate. When dP
dt ¡ 0, minimizing it means to increase

its perimeter at the slowest rate. Since the area is kept constant and the
kinetic energy has to be kept constant as well, therefore the shape does not
stop changing even though it may have reached the minimum perimeter
state. In this sense, the problem this report is trying to solve differs from
the usual minimum perimeter problem.

Of the few formulae and calculations that the reviewer has checked, no
error was found. The following suggestions are only meant to improve the
readability of the paper.

1. It was said that “We are also going to find the least time for a shape
to minimize its perimeter with fixed area . . . ” Such a result cannot
be found in the report.

2. Triangle: “It is because the movement of the two bottom vertices
should be the same, . . . ” Reviewer’s comment: In this section the
assumption of symmetry is crucial. More explanation is needed to
convince others that the isosceles triangle has to move in a symmetri-
cal manner.

3. The two paragraphs “The above equation is independent of v . . .” &
“We cannot use v directly . . . ” are not clear. A bit more explanation
may help the readers.

4. Dual Problem. In this section, it looks like a lot of steps were skipped.
More details may help the readers.

Final Words: Congratulations on Supervisor and the authors of this paper.
Good to see mathematics education is moving forward in Hong Kong.


