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Abstract. We study the Iterated Circumcentres Conjecture proposed by

Goddyn in 2007: Let P1, P2, P3, . . . be a sequence of points in Rd such that

for every i ≥ d + 2 the points Pi−1, Pi−2, . . . , Pi−d−1 are distinct, lie on a
unique sphere, and further, Pi is the center of this sphere. If this sequence

is periodic, then its period must be 2d + 4. We focus on cases of d = 2 and

d = 3 and obtain partial results on the conjecture. We also study the sequence
and prove its geometrical properties. Furthermore, we propose and look into

several variants of the conjecture, namely the Skipped Iterated Circumcentres

Conjecture and the Spherical Iterated Circumcentres conjecture.

1. Introduction

The problem we are going to investigate is based on a conjecture on iterated cir-
cumcentres from Open Problem Garden, proposed by Prof. Luis Goddyn.

Definition 1. Let P1, P2, P3, . . . be a sequence of points in Rd. The sequence is
called Iterated Circumcentres Sequence(ICS) if it fulfils the following: for every
i ≥ d+ 2, the points Pi−1, Pi−2, . . . , Pi−d−1 lie on a unique sphere, and further, Pi
is the center of this sphere.
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Figure 1. An example of ICS {Pi} for i = 1, 2, . . . , 24 and d = 2.

Conjecture 2. If the ICS is periodic, its period must be 2d+ 4.

Figure 2. An example of a periodic ICS with period 8 and d = 2.

At the first glance, the conjecture seems to be quite simple. Yet, the problem
has remained unsolved for years. Driven by curiosity, we started to investigate
this problem. Other than periodicity, we discovered that when the sequence is
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not periodic, there are some very interesting phenomena, for example some points
happen to be collinear, as shown in Figure 1. As we went deeper, we found that the
sequence demonstrates some special geometrical patterns which remain unchanged
even after we slightly alter the sequence. Finding this conjecture worth looking
into, we decided to work on it.

In our study, we will focus on cases of d = 2 and d = 3. In Section 2, we focus on
plane geometry. We study a Canadian Mathematical Olympiad (CMO) question
set up by Prof. Goddyn, who proposed the conjecture, and further investigate the
periodicity and geometrical properties of the sequence. We also propose and study
some other variants, namely the 2D 1-skipped Iterated Circumcentres Sequence and
2D 2-skipped Iterated Circumcentres Sequence. As for Section 3 and Section 4, we
focus on solid geometry and spherical geometry respectively, studying the original
sequence and its variants in 3D. In this report, we mainly prove our lemmas and
theorems by mathematical means, sometimes with the aid of Maple. [See reviewer’s
comment (2)]

2. Plane Geometry

2.1. 2D Iterated Circumcentres Sequence

We will first focus on the simplest case, which is d = 2. Here, we would like to find
out when the sequence is periodic, and when it is periodic, whether its period is
2 · 2 + 4 = 8, as mentioned in the conjecture of Prof. Goddyn [2].

We define the 2D Iterated Circumcentres Sequence.

Definition 3. Let P1, P2, P3, . . . be a sequence of points in R2. The sequence is
called the 2D Iterated Circumcentres Sequence(2D ICS) if Pi is the circumcentre of
∆Pi−1Pi−2Pi−3 for every i ≥ 4.

Figure 3. Pi is the circumcentre of ∆Pi−1Pi−2Pi−3.
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By the above definition of 2D ICS, we found that the sequence may not be well-
defined, as shown in Example 4 and Example 5 below:

Example 4. When P1, P2, P3 are collinear, P4 is not well-defined.

Figure 4. P1, P2, P3 are collinear and the perpendicular bisectors
of P1P3 and P2P3 are shown.

Referring to Figure 4, we can see that the point P4 will not be well-defined. The
circumcentre of a triangle is the point where the perpendicular bisectors of the
triangle meet, but the perpendicular bisectors in this example are parallel. In other
words, they do not intersect each other.

Therefore, when P1, P2, P3 are collinear, P4 is not well-defined.

Example 5. When ∠P2P1P3 = 90◦, P5 is not well-defined.

Figure 5. ∠P2P1P3 = 90◦ and P4 is the circumcentre of ∆P1P2P3

As shown in Figure 5, the points P2, P3, P4 are collinear, which leads to the per-
pendicular bisectors of these three points not intersecting each other.
The situation above is similar to that in Example 4, which means that when
P1, P2, P3 are collinear, P5 is not well-defined.
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As we found that in some cases the 2D ICS is not well-defined, before moving on
to the studies of 2D ICS, we would like to first find out the condition such that the
2D ICS must be well-defined.

Theorem 6. The 2D ICS {Pi} is well-defined if P1, P2 and P3 are not collinear
and ∠P2P1P3 6= 90◦.

Proof. Let Pi, Pi+1, Pi+2 be some points such that

(i) Pi, Pi+1, Pi+2 are not collinear;
(ii) ∠Pi+1PiPi+2 6= 90◦.

Suppose that Pi+1, Pi+2, Pi+3 are collinear.
As Pi+3 is the perpendicular bisector of Pi+1Pi+2, the only possible position of
Pi+3 is the mid-point of Pi+1Pi+2. In other words, Pi+1Pi+3Pi+2 is a diameter of
a circle. However, by ∠s is the same segment, ∠Pi+1PiPi+2 = 90◦, which causes
contradiction.
∴ Pi+1, Pi2 , Pi+3 are not collinear. [See reviewer’s comment (3)]

Suppose that ∠Pi+2Pi+1Pi+3 = 90◦.
As Pi+3Pi+2 and Pi+3Pi+1 are radii of the same circle, ∆Pi+1Pi+2Pi+3 is an isosceles
triangle. Therefore,

∠Pi+1Pi+2Pi+3 = ∠Pi+2Pi+1Pi+3 = 90◦ (base ∠s, isos. ∆)

∠Pi+1Pi+2Pi+3 + ∠Pi+2Pi+1Pi+3 + ∠Pi+1Pi+3Pi+2 = 180◦ (∠ sum of ∆)

By solving the above equations, we have ∠Pi+1Pi+3Pi+2 = 0◦, which means that
Pi+1, Pi+2, Pi+3 are collinear, thus causing contradiction.
∴ ∠Pi+2Pi+1Pi+3 6= 90◦. [See reviewer’s comment (3)]

By the principle of mathematical induction, if P1, P2, P3 are not collinear and
∠P3P1P2 6= 90◦, for any positive integers i, Pi, Pi+1, Pi+2 are not collinear.
As for any positive integers i, if Pi, Pi+1, Pi+2 are not collinear, there exists an
unique circumcentre, which is also the position of Pi+3.
As a result, if P1, P2, P3 are not collinear and ∠P3P1P2 6= 90◦, the 2D ICS {Pi} is
well-defined.

In all the studies from now on, we assume that the 2D ICS is well-defined with the
conditions stated in Theorem 6 satisfied.

2.1.1. Proof by Prof. Luis Goddyn

We found a similar problem in Canadian Mathematical Olympiad(CMO) 2001 [1],
which is actually also set up by Prof. Goddyn. The question and the solution below
has been converted into one-based for readers’ convenience.

Question 7 (2001Q5a). Prove that the points P2, P6, P10, P14, . . . are collinear.
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Solution 8.

Figure 6. An example of 2D ICS {Pi} for i = 1, 2, . . . , 6 with
∠P2P4P3 = 2α

Let ∠P2P4P3 = 2α. As ∆P2P3P4 is isosceles, we have that

P2P3 = 2 sinα.

The line P4P5 is the perpendicular bisector of P2P3. Since ∆P3P4P5 is isosceles,
we can calculate its length,

P4P5 =
P3P4/2

cosα
=

1

2 cosα
.

As P6 is the circumcentre of ∆P3P4P5, we have ∠P4P6P5 = 2∠P4P3P5 = 2∠P3P4P5

= 2α. The isosceles triangle ∆P4P5P6 is therefore similar to ∆P2P3P4. As
P4P5 ⊥ P2P3, we have ∠P2P4P6 = 90◦. Furthermore, the ratio P4P6 : P2P4 equals
r where

r =
P4P5

P2P3
=

1

(2 sinα)(2 cosα)
=

1

2 sin(2α)

By the same argument, we see that each ∠PiPi+2Pi+4 is a right angle with
Pi+2Pi+4 : PiPi+2 = r. Thus the points P2, P4, P6, . . . lie on a logarithmatic spiral
of ratio r and period 4. It follows that P2, P6, P10, . . . are collinear. [See reviewer’
comment (4)]

In the following studies of 2D ICS, ∠P2P4P3 = 2α and r = 1
2 sin 2α .

Also, by ∠ at centre twice ∠ at �ce, ∠P2P1P3 = α.
Based on the above solution, we proposed the following lemmas:

Lemma 9. ∠PiPi+2Pi+1 = ∠Pi+2Pi+4Pi+3 for i ≥ 2

and ∠PiPi+2Pi+1 =

{
2α, if i = 2, 4, 6 . . .
180◦ − 2α, if i = 3, 5, 7 . . .

.
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Proof.

Let ∠PiPi+2Pi+1 = 2θ, where i ≥ 2.
As Pi+2Pi+3 is the perpendicular bisector of PiPi+1, we have that

∠Pi+1Pi+2Pi+3 = θ

∵ PiPi+2 = Pi+2Pi+1

∴ ∠Pi+2Pi+1Pi+3 = θ and ∠Pi+1Pi+3Pi+2 = 180◦ − 2θ

As Pi+3Pi+4 is the perpendicular bisector of Pi+1Pi+2, we have that

∠Pi+2Pi+3Pi+4 = 90◦ − θ
∵ Pi+1Pi+3 = Pi+3Pi+2

∴ ∠Pi+3Pi+2Pi+4 = 90◦ − θ and ∠Pi+2Pi+4Pi+3 = 2θ

As a result, ∠PiPi+2Pi+1 = ∠Pi+2Pi+4Pi+3 = 2θ for integers i ≥ 2.
By the principle of mathematical induction and substituting 2θ = ∠P2P4P3 = 2α,
we have that PiPi+2Pi = 2α for even integers i ≥ 2.

Similarly, by the principle of mathematical induction and substituting
2θ = ∠P3P5P4 = 180◦− 2α, we have that PiPi+2Pi+1 = 180◦− 2α for odd integers
i ≥ 3.

∴ ∠PiPi+2Pi+1 =

{
2α, if i = 2, 4, 6 . . .
180◦ − 2α, if i = 3, 5, 7 . . .

.

Lemma 10. ∆PiPi+1Pi+2 ∼ ∆Pi+2Pi+3Pi+4 for i ≥ 2.

Proof. For i ≥ 2, by Lemma 9, we have that ∠PiPi+2Pi+1 = ∠Pi+2Pi+4Pi+3

∵ PiPi+2 = Pi+2Pi+1 and Pi+2Pi+4 = Pi+4Pi+3

∴ ∆PiPi+1Pi+2 ∼ ∆Pi+2Pi+3Pi+4
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Lemma 11. {P2k} and {P2k+1} lie on two spirals, where ∠PiPi+2Pi+4 = 90◦.

Remark 12. Note that P1 may not lie on any of the two spirals.

Lemma 13. Pi, Pi+4.Pi+8, . . . are collinear for i ≥ 2.

2.1.2. Periodicity of the 2D ICS

In Lemma 11, we have found out that Pi, Pi+2, Pi+4, . . . lie on a logarithmatic spiral.
By studying the properties of this spiral, we want to find out when the sequence
will be periodic, and what the period of the sequence is.

Lemma 14. PiPi+4 is perpendicular to Pi+2Pi+6. [See reviewer’s comment (5)]

Proof.

Figure 7. Pi, Pi+2, Pi+4, . . . , Pi+18 form a square logarithmatic spiral.

slope of P2P6 =
1

r
, slope of P2P10 =

1− r2
r − r3 =

1

r
, . . .

slope of P4P8 = slope of P4P12 = . . . = −r

Therefore, the following is true for all positive even numbers i:

slope of PiPi+4 × slope of Pi+2Pi+6 = −1
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Similarly, we have

slope of P3P7 = slope of P3P11 = . . .

slope of P5P9 = slope of P5P13 = . . .

Therefore, the following is true for any positive integers i ≥ 2:

slope of PiPi+4 × slope of Pi+2Pi+6 = −1

Since the two lines are perpendicular to each other, the spiral will become a square
if and only if the ratio r equals to 1 or -1. When the spiral becomes a square, the
sequence will be periodic with period 8.

Theorem 15. P1, P2, P3, . . . is periodic if and only if ∠P2P1P3 = 15◦ or 75◦ or
105◦ or 165◦

Proof. The sequence is periodic if and only if the spiral becomes a square, and the
spiral becomes a square if and only if r = 1 or −1.

Recalling that ∠P2P1P3 = α and r =
1

2 sin 2α
,

r =
1

2 sin 2α
= 1 or − 1

∴ ∠P2P1P3 = α = 15◦ or 75◦ or 105◦ or 165◦

2.1.3. Point of Convergence

In the previous section, we have studied the cases of r = 1 or -1. Here, we focus only
on cases of r < 1, where the two spirals are converging. [See reviewer’s comment
(6)]

We want to prove what Prof. Goddyn has omitted, but we found not that trivial -
that the two spirals have the same point of convergence, which is the point where
the four diagonal lines are concurrent.
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Figure 8. The two spirals P2, P4, P6, . . . and P3, P5, P7, . . . with
first six points each and the four lines: P2P6P10 . . ., P3P7P11 . . .,
P4P8P12 . . ., P5P9P13 . . ..

After plotting the points on a coordinate plane, we observed the patterns as shown
in Figure 8. We therefore suspected the following:

(i) The four lines P2P6, P3P7, P4P8 and P5P9 are concurrent at a point.

(ii) The two spirals P2, P4, P6, . . . and P3, P5, P7, . . . are converging to the point
where the four lines are concurrent.

We want to prove that the two statements above are true. Before moving on to the
proofs, we would like to first define the points Podd and Peven:

Definition 16. Peven is the point of intersection of lines P2P6P10 . . . and
P4P8P12 . . ..

Definition 17. Podd is the point of intersection of lines P3P7P11 . . . and
P5P9P13 . . ..

Lemma 18. ∆PPiPi+2 is similar to ∆PPi+2Pi+4,

where i ≥ 2 and P =

{
Peven, if i = 2, 4, 6 . . .
Podd, if i = 3, 5, 7 . . .

.
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Proof.

Let ∠PPiPi+2 = β.
By Lemma 14, PiPPi+2 = ∠Pi+2PPi+4 = 90◦

∠PiPi+2P = 90◦ − β
By Lemma 11, ∠PiPi+2Pi+4 = 90◦

∠Pi+4Pi+2P = β

∠Pi+2Pi+4P = 90◦ − β
∠PiPi+2P = ∠Pi+2Pi+4P = 90◦ − β

∠PPiPi+2 = ∠PPi+2Pi+4 = β

∴ ∆PPiPi+2 ∼ ∆PPi+2Pi+4 (AAA)

Lemma 19. If Pi, Pi+2, Pi+4, . . . lie on the vertices of a square logarithmic spiral,

they will converge to P , where i ≥ 2 and P =

{
Peven, if i = 2, 4, 6 . . .
Podd, if i = 3, 5, 7 . . .

.

Proof. By Lemma 18, we have

Pi+2P

PiP
=
Pi+2Pi+4

PiPi+2
= r and Pi+2nP = rn · PiP

∵ lim
n→∞

rn = 0 and r < 1

∴ lim
n→∞

Pi+2nP = 0
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Lemma 20. ∆P4P5Podd is similar to ∆P8P9Podd.

Proof. By Lemma 10, ∆P3P4P5 is similar to ∆P5P6P7 and ∆P7P8P9.
Therefore, ∠P3P5P4 = ∠P5P7P6 = ∠P7P9P8.
By Lemma 18, ∆PoddP3P5 is similar to PoddP7P9.

∠P3P5Podd = ∠P7P9Podd (corr. ∠s, ∼ ∆s)

∠P3P5Podd − ∠P3P5P4 = ∠P7P9Podd − ∠P7P9P8

∠P4P5Podd = ∠P8P9Podd

P3P5 = P4P5 (radii)

P7P9 = P8P9 (radii)

PP5

PP9
=
P3P5

P7P9
=
P4P5

P8P9
(corr. sides, ∼ ∆s)

∆P4P5Podd ∼ ∆P8P9Podd (ratio of 2 sides, inc. ∠)

∴ ∆P4P5Podd ∼ ∆P8P9Podd

Lemma 21. P4, Podd and P8 are collinear.

Proof. By Lemma 20, ∆P4P5Podd is similar to ∆P8P9Podd.

∠P4PoddP5 = ∠P8PoddP9 (corr. ∠s, ∼ ∆s)

Considering line P5PoddP9,

∠P4PoddP5 + ∠P4PoddP9 = 180◦

∠P4PoddP9 + ∠P4PoddP9 = 180◦

∴ P4PoddP8 is a straight line. (Converse of adj.∠s on st.line)

Theorem 22. The two spirals Pi, Pi+2, Pi+4, . . . and Pi+1, Pi+3, Pi+5, . . . have the
same point of convergence, which is the point where the four diagonal lines P2P6,
P3P7, P4P8 and P5P9 are concurrent.

Proof. By Lemma 21, P4P8 is concurrent with P3P7 and P5P9 at Podd. Similarly,
P6P10 is also concurrent with P3P7 and P5P9 at Podd.
By Lemma 13, Pi, Pi+4, Pi+8 are collinear for i ≥ 2.
Therefore, PiPi+4, Pi+1Pi+5, Pi+2Pi+6 and Pi+3Pi+7 are concurrent at Podd.
By definition of Peven and Podd, we have Peven = Podd. From now on, we use P to
denote the point of intersection of the four diagonal lines.
By Lemma 19, the two spirals both converge to P .
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2.1.4. Divergence

Finally, we will focus on cases of r > 1, where the two spirals are diverging. [See
reviewer’s comment (7)]

Figure 9. The two spirals P2, P4, P6, . . . and P3, P5, P7, . . . are diverging.

2.1.5. Illustrative Example

To better present what we have proved, we will give an illustrative example.
In the example, we have P1(−1, 0), P1(1, 0) and P1(0.375, 0.5).
By definition of α. we have

α = ∠P2P1P3 ≈ 19.98311◦

r =
1

2 sin 2α
=

1

2 sin(2 · 19.98311◦)
≈ 0.77840

As r ≈ 0.77840 < 1, it is expected that the two spirals will converge to the point
P , where P is the point of intersection of the four diagonal lines P2P6, P3P7, P4P8

and P5P9. The figure below also matches our expectation.
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Figure 10. The example of the 2D ICS, with P1(−1, 0), P1(1, 0)
and P1(0.375, 0.5)

2.2. 2D 1-skipped Iterated Circumcentres Sequence

After studying the 2D ICS, we try to make some changes to the original sequence
while maintaining its interesting geometrical properties. We came up with the 2D
1-skipped Iterated Circumcentres Sequence.

Definition 23. Let P1, P2, P3, . . . be a sequence of points in R2. The sequence is
called the 2D 1-skipped Iterated Circumcentres Sequence (2D 1-skipped ICS) if Pi
is the circumcentre of ∆Pi−2Pi−3Pi−4 for every i ≥ 5.

Figure 11. Pi is the circumcentre of ∆Pi−2Pi−3Pi−4
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We suspected that the 2D 1-skipped ICS may have similar properties with the 2D
ICS which we have studied in the previous section. Therefore, we would like to
start with investigating the periodicity of this sequence and find out whether they
are really similar

Inspired by Prof. Goddyn [3], we found that it may be easier for us to study the
properties of 2D 1-skipped ICS if we start with a special case.

Definition 24. Let P1, P2, P3, . . . be a sequence of points in R2. The sequence is
called the Special Case of 2D 1-skipped ICS if P4 lies on the perpendicular bisector
of P1P2 and Pi is the circumcentre of ∆Pi−2Pi−3Pi−4 for every i ≥ 5.

Figure 12. An example of the Special Case of 2D 1-skipped ICS.

[See reviewer’s comment (8)]
Note that except at the very beginning of the sequence, the special case is actually
the same as the general case.

Theorem 25. The Special Case of 2D 1-skipped ICS {Pi} is well-defined if the
following conditions are satisfied:

(a) P1, P2, P3, P4 are not concyclic;
(b) P1, P2, P3 are not collinear;
(c) P1, P2, P4 are not collinear;
(d) P2, P3, P4 are not collinear;
(e) P3 does not lie on the perpendicular bisector of P1P2;
(f) P4 is not the circumcenter of ∆P1, P2, P3.

Proof. Let Pi, Pi+1, Pi+2, Pi+3 be some points such that

(i) Pi, Pi+1, Pi+2, Pi+3 are no concyclic;
(ii) Pi, Pi+2, Pi+3 are not collinear;
(iii) Pi, Pi+1, Pi+2 are not collinear;
(iv) Pi+1, Pi+2, Pi+3 are not collinear;
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(v) Pi+2 does not lie on the perpendicular bisector of PiPi+1;
(vi) Pi+3 is not the circumcenter of ∆Pi, Pi+1, Pi+2.

Let Q be the point of intersection of PiPi+2 and the perpendicular bisector of
PiPi+1.
Let ∠Pi+2Pi+4Pi+1 = 2α.

∠Pi+2PiPi+1 = α (∠ at center twice ∠ at �ce)

∠Pi+3PiPi+1 = ∠Pi+3Pi+1Pi (base ∠s, isos. ∆)

∠Pi+2QPi+1 = 2α (ext. ∠ of ∆)

= ∠Pi+2Pi+4Pi+1

∴ Pi+1, Pi+2, Q, Pi+4 are concyclic. (∠s is the same segment)

Pi+3 and Pi+4 lie on the perpendicular bisector of PiPi+1, and a line intersects a
circle at at most 2 points. Therefore, Pi+1, Pi+2, Pi+3, Pi+4 are only concyclic if
Pi+3 is at the position of Pi+4 or Q.

However, by (vi), Pi+3 is not the circumcenter of ∆Pi, Pi+1, Pi+2. In other words,
it is not coincident with Pi+4. Also, by (iii), Pi+3 does not lie on PiPi+2, which
means it is not coincident with Q as well.
∴ Pi+1, Pi+2, Pi+3, Pi+4 are not concyclic.
Pi+3 and Pi+4 lie on the perpendicular bisector of PiPi+1, therefore, Pi+1, Pi+3, Pi+4

are only collinear if Pi+3 and Pi+4 are coincident, which contradicts (vi).
∴ Pi+1, Pi+3, Pi+4 are not collinear.
By (iv), we have that Pi+1, Pi+2, Pi+3 are not collinear.
∴ Pi+1, Pi+2, Pi+3 are not collinear.
Pi+3 and Pi+4 lie on the perpendicular bisector of PiPi+1, and by (v), Pi+2 does
not lie on the perpendicular bisector of PiPi+1.
∴ Pi+2, Pi+3, Pi+4 are not collinear.
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Pi+3 and Pi+4 lie on the perpendicular bisector of PiPi+1, and Pi+4 also lies on the
perpendicular bisector of Pi+1Pi+2.
The perpendicular bisector of PiPi+1 only intersects the perpendicular bisector of
Pi+1Pi+2 at 1 point, and the point is Pi+4. In other words, Pi+3 only lies on the
perpendicular bisector of Pi+1Pi+2 if it is at the position of Pi+4.
However, by (vi), Pi+3 is not coincident with Pi+4.
∴ Pi+3 does not lie on the perpendicular bisector of Pi+1Pi+2.
Pi+4 is the circumcenter of ∆PiPi+1Pi+2, and by (i), Pi, Pi+1, Pi+2, Pi+3 are not
concyclic.
∴ Pi+4 is not the circumcenter of ∆Pi+1, Pi+2, Pi+3.

By the principle of mathematical induction, if initial conditions (a) to (f) are sat-
isfied, then Pi, Pi+1, Pi+2, Pi+3 are not concyclic, Pi, Pi+1, Pi+2 are not collinear,
Pi, Pi+2, Pi+3 are not collinear, Pi+1, Pi+2, Pi+3 are not collinear, Pi+2 does not
lie on the perpendicular bisector of PiPi+1 and Pi+3 is not the circumcenter of
∆Pi, Pi+1, Pi+2

As for any position integers i, if Pi, Pi+1, Pi+2 are not collinear, there exists an
unique circumcentre, which is also the position of Pi+4.

As a result, if the initial conditions of (a) to (f) are satisfied, the Special Case of
2D 1-skipped ICS {Pi} is well-defined.

In all the studies from now on, we assume that the Special Case of 2D 1-skipped
ICS is well-defined with the conditions stated in Theorem 25.

For general case of 2D 1-skipped ICS, the situation is similar, except that P3, P4, P5

must not be collinear as well.

i.e. 2D 1-skipped ICS {Pi} is well-defined if P1, P2, P3, P4 are not concyclic, P1,P2,P3

are not collinear, P1,P2,P4 are not collinear, P2,P3,P4 are not collinear, P3,P4,P5

are not collinear, P3 does not lie on the perpendicular bisector of P1P2 and P4 is
not the circumcenter of ∆P1, P2, P3.

In all the studies from now on, we assume that the 2D 1-skipped ICS is well-defined
with the conditions stated in Theorem 25 satisfied and P3, P4, P5 are not collinear.

2.2.1. Periodicity of the 2D 1-skipped ICS

By rotation, translation and scaling, we let the initial conditions be

P1(−1, 0), P2(1, 0), P3(a, b), P4(0, c)

By Maple, we could find the coordinates of Pi in terms of a, b, c.1

As shown in Figure 13, we observe that Pi, Pi+6, Pi+12, . . . are collinear. This

1The code of the program can be found in the appendix.
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resembles the spirals we have come across in the 2D ICS. Therefore, we suspected
that the 2D 1-skipped ICS is periodic with period 12.

Figure 13. Pi, Pi+6, Pi+12, . . . are seemingly collinear.

We tried to fix the coordinates of P1, P2 and P3, then translate P4 along the per-
pendicular bisector of line P1P2. By setting the equation P1 = P13, we could find
out the condition which the sequence has to satisfy such that it is periodic with
period 12.
From the result of Maple, we obtained Theorem 26:

Theorem 26. Given initial condition: P1(−1, 0), P2(1, 0), P3(a, b), P4(0, c), the se-
quence is periodic if and only if the following equation is satisfied:

c =
b3+5a2b−6ab+b±

√
7a2b4+22a4b2−44a3b2+22a2b2−a6+4a5−6a4+4a3−a2

a2+2a+1+b2

When we are studying 2D ICS, we found out that when P1 and P2 are fixed, there
must exsist some P3 such that the sequence is periodic. However, according to the
equation above, we found that c may have no real roots. In other words, for some
fixed positions of P3, there may not exist any possible positions of P4 such that the
sequence is periodic with period 12.

Let ∆ = 7a2b4 + 22a4b2 − 44a3b2 + 22a2b2 − a6 + 4a5 − 6a4 + 4a3 − a2

When ∆ > 0,
there are 2 possible values for c such that the sequence is periodic.
When ∆ = 0,
there is 1 possible value for c such that the sequence is periodic.



ON THE ITERATED CIRCUMCENTRES CONJECTURE AND ITS VARIANTS 41

When ∆ < 0,
there are no possible values for c such that the sequence is periodic.
By completing the square and solving quadratic equation, we found that

∆ > 0 when −

√
8
√

2− 11

7
<

b

a− 1
<

√
8
√

2− 11

7
;

∆ = 0 when
b

a− 1
= ±

√
8
√

2− 11

7
.

Lemma 27. If ∠P1P2P3 = tan−1(−
√

8
√
2−11
7 ) ≈ 168◦ or tan−1

√
8
√
2−11
7 ≈ 11.9◦,

there is only 1 possible value for c such that the sequence is periodic.

Proof. By rearranging b
a−1 = ±

√
8
√
2−11
7 , we have

b = ±

√
8
√

2− 11

7
(a+ 1)∓ 2

√
8
√

2− 11

7

Since P1P2 is parallel to the x-axis, ∠P1P2P3 = tan−1(±
√

8
√
2−11
7 )

As previously mentioned, the general case is actually as same as the special case
except at the very beginning of the sequence.
i.e. P5 lies on the perpendicular bisector of line P2P3.
In other words, all the lemmas and theorems obtained above can be applied to the
general case by simply increasing the index i by 1.

2.2.2. Transformation of the Points

After studying the periodicity of the sequence, we moved on to its geometrical
properties. Note that we also started with the special case.

By plotting the sequence on a coordinate plane and translating the first four points,
we obtained the graphs below.
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Figure 14. All the points seem to converge to a point.

We observed that the points are sometimes converging. In the previous section, the
2D ICS has a point of convergence, so we are curious about whether the points in
the 2D 1-skipped ICS will also converge to a point.

Furthermore, we observed that the shapes formed by connecting some 6 points are
similar, as indicated by the coloured lines in the following graph.
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Figure 15. An illustration to our observation that the shapes
formed by connecting some 6 points are similar.

Please note that the definition of P is different from the last subsection. Here, we
define P as follow:

Definition 28. P is the point of intersection of P1P7 and P2P8.
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Figure 16. An illustration of P is the point of intersection of
P1P7 and P2P8.

Lemma 29. PiPi+6 are concurrent at P for 1 ≤ i ≤ 6.

Proof. With the help of Maple, we have PPi + PPi+6 = PiPi+6

In other words, P lies on segment PiPi+6.
Therefore, the six lines PiPi+6 are concurrent for 1 ≤ i ≤ 6.

Lemma 30. PiPi+1 is perpendicular to Pi+3Pi+4.

Proof. Pi+3 is the circumcentre of Pi−1, Pi and Pi+1, therefore Pi+3 lies on the
perpendicular bisector of PiPi+1. Similarly, Pi+4 is the circumcentre of Pi, Pi+1

and Pi+2, therefore Pi+4 also lies on the perpendicular bisector of PiPi+1.
∴ PiPi+1 ⊥ Pi+3Pi+4.

Lemma 31. PiPi+1 is parallel to Pi+6Pi+7

Proof. By Lemma 30, PiPi+1 ⊥ Pi+3Pi+4, and Pi+3Pi+4 ⊥ Pi+6Pi+7.
∴ PiPi+1//Pi+6Pi+7 (int.∠s supp.)

Let r be
P1P

P7P
.

Lemma 32. There is a constant r such that
PiP

Pi+6P
= r for 1 ≤ i ≤ 6.
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Proof. By Lemma 31, PiPi+1//Pi+6Pi+7,

∆PPiPi+1 ∼ ∆PPi+6Pi+7 (AAA)

∆PP1P2 ∼ ∆PP7P8 (AAA)

P1P

P7P
=
P2P

P8P
= r

∆PP2P3 ∼ ∆PP8P9 (AAA)

P2P

P8P
=
P3P

P9P
= r

Similarly,
P1P

P7P
=
P2P

P8P
=
P3P

P9P
=

P4P

P10P
=

P5P

P11P
=

P6P

P12P
= r

To simplify the problem, we translated the graph to make P the origin.

Let f(P1, . . . , P6) = −r(P1, . . . , P6).

Lemma 33. P7, . . . , P12 can be transformed from P1, . . . , P6 by rotation by 180◦

and scaling by r.

Proof.

f(P1, . . . , P6) = −r(P1, . . . , P6) = (−rP1, . . . ,−rP6)

By Lemma 32, (−rP1, . . . ,−rP6) = (P7, . . . , P12)

Therefore, f(P1, . . . , P6) = (P7, . . . , P12)

Let P ′1, P
′
2, P

′
3, . . . be a sequence of points. Define P ′i to be a point transformed

from Pi by scaling by 1
r and rotation about P by 180◦.

Lemma 34. Pi and P ′i+6 are coincident.

Proof.

By definition, (P ′1, P
′
2, P

′
3, . . .) = −r(P1, P2, P3, . . .)

By Lemma 33, P7, . . . , P12 can be transformed from P1, . . . , P6 by rotation about
P by 180◦ and scaling by r.

In other words, (P7, . . . , P12) = −r(P1, . . . , P6)

Therefore, (P1, . . . , P6) = (P ′7, . . . , P
′
12)

By definition, P1, P2, P3, . . . is an 2D 1-skipped ICS. Since P ′1, P
′
2, P

′
3, . . . are trans-

formed from P1, P2, P3, . . . by only scaling and rotation, P ′1, P
′
2, P

′
3, . . . is also an 2D

1-skipped ICS.
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By Theorem 25, 2D 1-skipped ICS is well-defined, therefore

(P1, P2, P3, . . .) = (P ′7, P
′
8, P

′
9, . . .)

Theorem 35. P6i+1, . . . , P6i+6 can be transformed from P1, . . . , P6 by rotation
about P by (180◦ × i) and scaling by ri.

Proof. Let S(i) : (P6i+1, . . . , P6i+6) = (−r)i · (P1, . . . , P6).
By Lemma 33, S(1) is true.
Assume S(k) is true for some positive integer k.

i.e. (P6k+1, . . . , P6k+6) = (−r)k · (P1, . . . , P6). (*)

By definition, (P6k+7, . . . , P6k+12) = −r(P ′6k+7, . . . , P
′
6k+12)

= −r(P6k+1, . . . , P6k+6) (By Lemma 34)

= (−r)k+1 · (P1, . . . , P6) (By (*))

∴ S(k + 1) is also true.
∴ By the principle of mathematical induction, S(i) is true for all positive integers
i.

By Theorem 35, Lemma 32 is true for 6k + 1 ≤ i ≤ 6k + 6, where k is any non-
negative integers.
Furthermore, we obtain the following properties of 2D 1-skipped ICS:

Corollary 36. Pi, Pi+6, Pi+12, . . . are collinear.

Proof. By Theorem 35, during the transformation of Pi to Pi+6, Pi+6 is rotated by
180◦. Similarly, Pi+12, Pi+18, . . . are also rotated by 180◦.
By converse of adj. ∠s on st. line, Pi, Pi+6, Pi+12, . . . are collinear.

Corollary 37. P1, P2, P3, . . . converge to P .

Proof. By Theorem 35, P6i+k = Pkr
i for any positive integers k where 1 ≤ k ≤ 6.

lim
i→∞

ri = 0

Corollary 38. P6n+iP6n+j is parallel to P6n+i+6P6n+j+6 and P6n+i+6P6n+j is
parallel to P6n+i+12P6n+j+6, where 1 ≤ i, j ≤ 6 and n is any non-negative integers.
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Proof. By Theorem 35, P6+iP = r · PiP and P6+jP = r · PjP .

∠PiPPj = ∠P6+iPP6+j (vert.opp. ∠s)

∴ ∆PPiPj ∼ ∆PP6+iP6+j (ratio of 2 sides, inc ∠)

∠PPiPj = ∠PP6+iP6+j

∴ PiPj//P6+iP6+j

Similarly, P6+iPj//P12+iP6j

Corollary 39. Pi, Pj , P6+i, P6+j , P12+i, P12+j , . . . form a parallelogram-like spiral
with opposite side ratio r, where 1 ≤ i, j ≤ 6.

Proof. By Corollary 38, the opposite lines of the spiral are parallel. By Lemma 32,
the points undergo scaling by r for each 6 points.

Figure 17. The two sprials formed by P1, P6, P7, P12, . . . and P2, P3, P8, P9, . . .

Similar to the previous section, all the corollaries, lemmas and theorems above can
be applied to the general case by increasing the indices by 1.
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3. Solid Geometry

3.1. 3D Iterated Circumcentres Sequence

Definition 40. Let P1, P2, P3, . . . be a sequence of points in R3. The sequence
is called the 3D Iterated Circumcentres Sequence(3D ICS) if Pi is the spherical
circumcentre of Pi−1, Pi−2, Pi−3, Pi−4 for every i ≥ 5.

Figure 18. Pi is the circumcentre of Pi−1, Pi−2, Pi−3, Pi−4

Similar to 2D 1-skipped ICS, we will start with a special case.

Definition 41. Let P1, P2, P3, . . . be a sequence of points in R3. The sequence is
called the Special Case of 3D ICS if P3 lies on the plane perpendicularly bisecting
P1P2, P4 lies on the line equidistant to P1, P2, P3, and Pi is the spherical circum-
centre of Pi−1, Pi−2, Pi−3, Pi−4 for every i ≥ 5.

Theorem 42. The 3D ICS {Pi} is well-defined if the following conditions are
satisfied:

(a) P1, P2, P3, P4 are not coplanar;
(b) P2, P3, P4, P5 are not coplanar;
(c) Let C be the circumcenter of ∆P2P3P4 such that P1C 6= P2C;
(d) Let D be the circumcenter of ∆P3P4P5. ∠P3P5P4 6= 90◦ if P2D = P3D.

Proof. Let Pi, Pi+1, Pi+2, Pi+3, Pi+4 be points such that

(i) Pi, Pi+1, Pi+2, Pi+3 are not coplanar.
(ii) Pi+1, Pi+2, Pi+3, Pi+4 are not coplanar.
(iii) Let C be the circumcentre of ∆Pi+1Pi+2Pi+3 such that PiC 6= Pi+1C
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(iv) Let D be the circumcentre of ∆Pi+2Pi+3Pi+4. ∠Pi+2Pi+4Pi+3 6= 90◦ if
Pi+1D = Pi+2D

By (ii), Pi+1, Pi+2, Pi+3, Pi+4 are not coplanar.

Suppose Pi+2, Pi+3, Pi+4, Pi+5 are coplanar.
Since Pi+3, Pi+4, Pi+5 lie on the plane perpendicular bisecting Pi+1Pi+2, we have
Pi+5 = Pi+3 or Pi+5 = Pi+4, both of which cause contradiction.
∴ Pi+2, Pi+3, Pi+4, Pi+5 are not coplanar.

Suppose that C is the circumcentre of ∆Pi+2Pi+3Pi+4 such that Pi+1C = Pi+2C.
Then, C = Pi+5, which makes Pi+2, Pi+3, Pi+4, Pi+5 coplanar, which causes con-
tradiction.
∴ Pi+1C 6= Pi+2C.

Suppose that D is the circumcentre of ∆Pi+3Pi+4Pi+5 such that ∠Pi+3Pi+5Pi+4 =
90◦ and Pi+2D = Pi+3D.
Since Pi+2D = Pi+3D, we have D = Pi+5. So, Pi+3, Pi+5, Pi+4 are collinear, which
makes Pi+2, Pi+3, Pi+4, Pi+5 coplanar, which causes contradiction.
∴ ∠Pi+3Pi+5Pi+4 6= 90◦ if Pi+2D = Pi+3D.
By the principle of mathematical induction, if initial conditions (a) to (d) are
satisfied, Pi, Pi+1, Pi+2, Pi+3 are not coplanar for all positive integers i.

For any positive integers i, if Pi, Pi+1, Pi+2, Pi+3 are not coplanar, there exists a
unique circumcentre which is the position of Pi+4

As a result, if the initial conditions (a) to (d) are satisfied, the 3D ICS {Pi} is
well-defined.

In all the studies from now on, we assume that the 3D ICS and the Special Case
of 3D ICS are well-defined with the conditions stated in Theorem 42 satisfied.

3.1.1. Transformation of the Points

We observe that in this case, Pi, Pi+5 and Pi+10 are collinear for i ≥ 1. In or-
der to prove our observation, we would like to find out some points or segments
which can help us figure out the transformation of Pi, Pi+1, Pi+2, Pi+3, Pi+4 to
Pi+5, Pi+6, Pi+7, Pi+8, Pi+9 and onwards. We also observe that the transformation
involves rotation by 180◦ and scaling by r.

Let P be the intersection of P1P6 and P2P7, and let r be
P1P

P6P
.

Lemma 43. PiPi+5 are concurrent for 1 ≤ i ≤ 5.
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Proof. With the help of Maple, we found that PPi + PPi+5 = PiPi+5

In other words, P lies on segment PiPi+5.
Therefore, the five lines PiPi+5 are concurrent for 1 ≤ i ≤ 5.

Lemma 44. PiPi+1 is parallel to Pi+5Pi+6.

Proof. Pi+2, Pi+3 and Pi+4 lies on the perpendicular bisector of PiPi+1.
Also, PiPi+1 and Pi+5Pi+6 are perpendicular to the plane Pi+2Pi+3Pi+4.
By int. ∠s supp., PiPi+1//Pi+5Pi+6.

Lemma 45. There is a constant r such that
PiP

Pi+5P
= r for 1 ≤ i ≤ 5.

Proof. By Lemma 44, PiPi+1 // Pi+6Pi+7,
∆PPiPi+1 ∼ ∆PPi+5Pi+6 (AAA)
∆PP1P2 ∼ ∆PP6P7 with side ratio r,
Similar to Lemma 13, Lemma 45 is proved.

To simplify the problem, we translated the graph to make P the origin.

Let f(P1, . . . , P5) = −r(P1, . . . , P5).

Lemma 46. f(P1, . . . , P5) = (P6, . . . , P10)

Proof.

f(P1, . . . , P5) = −r(P1, . . . , P5) = (−rP1, . . . ,−rP5)

By Lemma 45, (−rP1, . . . ,−rP5) = (P6, . . . , P10)

Therefore,f(P1, . . . , P5) = (P6, . . . , P10)

Let P ′1, P
′
2, P

′
3, . . . be a sequence of points. Define P ′i to be a point transformed

from Pi by scaling by 1
r and rotation about P by 180◦.

Lemma 47. (P1, P2, P3, . . .) = (P ′6, P
′
7, P

′
8, . . .)

Proof.
By definition, (P ′1, P

′
2, P

′
3, . . .) = −r(P1, P2, P3, . . .)

By Lemma 45 and Lemma 46, P6, . . . , P10 can be transformed from P1, . . . , P5 by
rotation about P by 180◦ and scaling by r.

In other word, (P6, . . . , P10) = −r(P1, . . . , P5)

Therefore, (P1, . . . , P5) = (P ′6, . . . , P
′
10)

By definition, P1, P2, P3, . . . is an 3D ICS. Since P ′1, P
′
2, P

′
3, . . . are transformed from

P1, P2, P3, . . . by only scaling and rotation, P ′1, P
′
2, P

′
3, . . . is also an 3D ICS.
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By Theorem 42, 3D ICS is well-defined, so we have

(P1, P2, P3, . . .) = (P ′6, P
′
7, P

′
8, . . .)

Theorem 48. P5i+1, . . . , P5i+5 can be transformed from P1, . . . , P5 by rotation
about P by (180◦ × i) and scaling by ri.

Proof. Let S(i) : (P5i+1, . . . , P5i+5) = (−r)i · (P1, . . . , P5).
By Lemma 45 and Lemma 46, S(1) is true.
Assume S(k) is true for some positive integer k.

i.e. (P5k+1, . . . , P5k+10) = (−r)k · (P1, . . . , P5). (*)

By definition, (P5k+6, . . . , P5k+10) = −r(P ′5k+6, . . . , P
′
5k+10)

= −r(P5k+1, . . . , P5k+5) (By Lemma 34)

= (−r)k+1 · (P1, . . . , P5) (By (*))

∴ S(k + 1) is also true.
∴ By the principle of mathematical induction, S(i) is true for all positive integers
i.

By Theorem 48, we obtain the following properties of 3D ICS:

Corollary 49. The points Pi, Pi+5, Pi+10, . . . are collinear.

Proof. By Theorem 48, during the transformation of Pi to Pi+5, Pi+5 is rotated by
180◦. Similarly, Pi+10, Pi+15, . . . are also rotated by 180◦.
By converse of adj. ∠s on st. line, Pi, Pi+5, Pi+10, . . . are collinear.

Corollary 50. P is the point of convergence.

Proof. By Theorem 48, P5i+k = Pk · ri for any positive integers k where 1 ≤ k ≤ 5.

lim
i→∞

ri = 0

4. Further Experiments and Conjectures

In this section, we are going introduce some other variants of the ICS in which we
failed to obtain significant result. We have done some numerical experiments so as
to study their geometrical patterns.
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4.1. 2D 2-skipped Iterated Circumcentres Sequence

4.1.1. Numerical Experiments

After studying the 2D 1-skipped ICS, we would continue with 2D 2-skipped Iterated
Circumcentres Sequence.

Definition 51. Let P1, P2, P3, . . . be a sequence of points in R2. The sequence is
called the 2D 2-skipped Iterated Circumcentres Sequence (2D 1-skipped ICS) if Pi
is the circumcentre of ∆Pi−3Pi−4Pi−5 for every i ≥ 6.

From the result we obtained from 2D ICS and 2D 1-skipped ICS, we thought that
there will be points that are collinear in 2D 2-skipped ICS, and there will be a
point of convergence, which is the intersection of the concurrent lines. However,
after doing some numerical experiments, we found out our conjecture is not true.
The points seem to be collinear for each 16 points, but by drawing straight lines,
we found that the 16 points do not lie on the same straight line. In other words,
they are not collinear.

Figure 19. 2D 2-skipped ICS where points seem to be collinear.

By connecting each 16 points together in the figure, we see that points with larger
indices are closer to being collinear, while points with smaller indices are more
messy and do not seem collinear.

Other than points being seemingly collinear, we observed some other interesting
patterns
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Figure 20. 2D 2-skipped ICS where points seems to be in a spiral.

We connected each 16 points together in the figure, and it seems that they are in
a spiral. However, the angles of every consecutive 16 points are not the same.

There are also some figures which show a combination of the two properties stated
above, but the figures turn out to be quite messy.

Figure 21. 2D 2-skipped ICS when points first seem to be
collinear, then turned into a spiral.
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Figure 22. An enlarged version of Figure 21

The first figure is an enlarged figure of the second one. We observe that at first,
the points seem to be collinear, and then they turned into a spiral.

Despite having discovered this interesting phenomenon, we are unable to prove why
the points behave like that.

4.2. 3D 1-skipped Iterated Circumcentres Sequence

We also try to make some changes to the 3D ICS, and come up with the 3D 1-
skipped Iterated Circumcentres Sequence.

Definition 52. Let P1, P2, P3, . . . be a sequence of points in R3. The sequence is
called the 3D 1-skipped Iterated Circumcentres Sequence(3D 1-skipped ICS) if Pi is
the spherical circumcentre of Pi−2, Pi−3, Pi−4, Pi−5 for every i ≥ 6.

4.2.1. Geometrical Patterns

By numerical experiment, we found that 3D 1-skipped ICS has lost the collinear
property. We also observe a strange phenomenon - the points are behaving differ-
ently with different periods.
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Figure 23. 3D 1-skipped ICS with period 28.

Above is an example that each 28 points seem to form a curve.

Figure 24. 3D 1-skipped ICS with period 42.

Above is an example that each 42 points seem to form a curve.
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Figure 25. 3D 1-skipped ICS with unknown period.

Above is an example that points in the same sequence seem to have formed 7
different eclipses. By painting the points with different colours, We found out that
the indices of the points with the same colour always differ by 7n, where n is any
positive integers. e.g. P1, P8, P15, . . . forms the red eclipse, P2, P9, P16, . . . forms
the blue eclipse, and onwards.

We are astonished by this miraculous pattern. Unfortunately, we failed to account
for the behaviour of the points, and was unable to investigate deeper.

4.3. 3D Spherical Iterated Circumcentres Sequence

Definition 53. Let P1, P2, P3, . . . , be a sequence of points in R3. The sequence
is called the 3D Spherical Iterated Circumcentres Sequence (3D Spherical ICS) if
P1, P2, P3, . . . lie on the same sphere and Pi is the circumcentre of Pi−1, Pi−2, Pi−3
on the minor cap for every i ≥ 4.

Figure 26. Pi is the circumcentre of Pi−1, Pi−2, Pi−3 on the minor cap.
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4.3.1. Numerical Experiments

We observe that P3, P4, P7, P8, P11, P12, . . . are sometimes collinear, and when these
points are collinear, the other points also happen to be collinear and are perpen-
dicular to the line formed by linking P3, P4, P7, P8, P11, P12, . . .

We try to use the way in 2D plane to solve this problem.

Lemma 54. The theorem base ∠s, isos.∆ is applicable in spherical geometry while
theorem ∠ at centre twice ∠ at �ce is not.

Proof. Theorem ∠ sum of ∆ is not applicable in spherical geometry. Therefore,
theorem ∠ at centre twice ∠ at �ce is not applicable as well.

This lemma hints that the points may not be collinear.

We would like to investigate whether there are specific points that fulfill ∠ at centre
twice ∠ at �ce. However, we failed to find those points.

Figure 27. The points seems to be collinear.

5. Conclusion

We studied the Iterated Circumcentres Sequence in plane geometry and solid geom-
etry. We also proposed a total of four variants, namely the 2D 1-skipped Iterated
Circumcentres Sequence(2D 1-skipped ICS), 2D 2-skipped Iterated Circumcentres
Sequence(2D 2-skipped ICS), 3D 1-skipped Iterated Circumcentres Sequence(3D
1-skipped ICS) and 3D Spherical Iterated Circumcentres Sequence(3D Spherical
ICS).

For the 2D ICS,we have studied the its periodicity and proven Goddyn’s conjecture.
We also studied the properties of the sequence when it is converging or diverging.
For the 2D 1-skipped ICS, we have studied its periodicity as well. Other than that,
we have proven the relationship between each six points. For the 3D ICS, we have
proven the relationship between each five points.
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For the remained variants, we have done some numerical experiments and found
out some interesting geometrical patterns. However, we are unable to account for
the behaviours of the points.
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Appendix A.

Figure 28. Program used to find Pi in terms of a, b, c.

Figure 29. Result of the program.
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Figure 30. By solving equation of P1P7 and P2P8, we find the
coordinates of P .

an, bn, cn are the square of the length of PnP, Pn+6P, PnPn+6 respectively. We
have to prove that

√
an +

√
bn =

√
cn. By rearranging terms, we have (an + bn −

cn)2 = 4anbn. With the aid of Maple, we prove that the above equation is true for
1 ≤ n ≤ 6.

For 3D cases, similar code is used.
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Reviewer’s Comments

The reviewer has some comments about the presentation of this paper, as well as
the notations and typos.

1. The reviewer has comments on the wordings, which have been amended in
this paper.

2. Note that 2D 2-skipped Iterated Circumcentres Sequence is studied in Section
4, NOT in Section 2.

3. It is better to abandon the symbols ∵ and ∴ in the formal mathematical
writing. Please replace them by the corresponding words.

4. It seems that “logarithmatic spiral” should be “logarithmic spiral”. This also
works in the remainder of the paper.

5. Lemma 14: Here i should be greater than or equals 2.
6. Here “r < 1” should be “|r| < 1” because α can greater than 90◦ in Theorem

15.
7. Here “r > 1” should be “|r| > 1”.
8. Figure 12: Note that P4 lies on the perpendicular bisector of P1P2 by the

definition of Special Case of 2D 1-skipped ICS. Hence Figure 12 is wrong.
Please modify it.

9. Since P1 has more freedom in the definition of 2D 1-skipped ICS (a similar
phenomenon is the Remark on Page 30), it seems that the main results in-
volving P1 in Section 2.2.2 just work for the Special Case of 2D 1-skipped
ICS. The same logic also works for Section 3.1.1.




