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1. Introduction

One of the very first problems in variational calculus is the Brachistochrone problem
posed by Johann Bernoulli in 1696: Suppose there are two non-identical points, A
and B, in a vertical plane with A at a height no shorter than B. Along which path
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does an object released from rest at A travel to B in the shortest possible time if
the object is subject to gravitational and normal reaction forces only? It is now well
known that the Brachistochrone Curve, the solution to the Brachistochrone prob-
lem, is (part of) a cycloid.

In this research report we will provide our own derivation of the classical Brachis-
tochrone Curve by using an approach that has striking similarities with the Snell’s
Law in physics governing the refraction of light. This does not come as a surprise,
however, since by Fermat’s Principle Snell’s Law in fact describes the path in which
light travels fastest.

In the subsequent sections, we will find the Brachistochrone Curves under physical
conditions different than that of the original Brachistochrone problem. In order to
solve these variations, we will apply the Euler-Lagrange differential equation multi-
ple times, a common technique used in variational calculus.

The first variation to be studied is the case where there are two constant gravita-
tional forces of equal magnitude in mutually perpendicular directions. This slightly
complicates the magnitude of velocity, giving a more complicated result. The ap-
proach is similar to most of the modern solutions to the original Brachistochrone
problem – finding the magnitude of the velocity using the law of conservation of
energy, and applying the Euler-Lagrange equation directly.

After that, we will study the Brachistochrone Curve under a single constant down-
ward gravitational force with friction. We will first do a simpler approximation of the
frictional force by ignoring the curvature, followed by a more complex computation
of a more physically-accurate frictional force, obtaining two Brachistochrone curves
(that look extremely similar). The first approach considers the free-body diagram
of the object, and finds the net force on the object by the assumption that the net
force points in the direction of motion. The second approach, having to consider
the curvature, uses an approach with vectors similar to that of the derivation of the
equations of circular motion in physics. In both approaches, the net force and hence
the velocity is obtained, and subsequently the Euler-Lagrange equations are applied.

Afterwards, as there have been recent improvements to Newtonian mechanics in
the past century, we attempt to model Brachistochrone curves in non-Newtonian
situations, including using some concepts from special relativity and considering the
case where an object free falls in hyperbolic motion.

2. Deriving the Brachistochrone Curve

We first show the an optimal path to travel between two points in two different
zones separated by a horizontal boundary. Let the zones have height h1 and h2,
with horizontal distance travelled l and speeds v1 and v2. Assume that the change
of speed when crossing the boundary happens instantaneously and the paths are
straight lines in their respective regions.
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total travel time ttt =
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+
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=
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√
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=
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v2(h2
2 + (l − x)2)

=
h2
1

v1(h2
1 + x2)

3
2

+
h2
2

v2(h2
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> 0

Solving dttt
dx

= 0, we get cos θ1
v1

=
cos θ2
v2

, which is a condition to minimize the total
time of travel. Note that this equation is extremely similar to Snell’s Law in physics.

Hence, to minimize the total time of travel, cos θ
v

,where tan θ =
dy

dx
,−π

2
< θ <

π

2
,

should be constant at each point on the optimal path.

Suppose that A, the point at which the object is released from rest, has y-coordinate
0. By conservation of energy, the magnitude of the velocity of the object at (x, y) is
given by

√
−2gy.

Alternatively, one can consider the component of gravitational force that contributes
to motion, which is given by g sin θ = g(

dy

ds
). Then
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d2s

dt2
= g(

dy

ds
)

ds

dt
d(

ds

dt
) = (g)dy

Integrating, v2

2
= gy +K for some constant K.

As v|y=0 = 0,K = 0; and as y < 0, speed of object is again given by
√
−2gy.

Therefore,
√
−y

cos θ = k1 for some real constant k1 on the desired path.

√
−y = k1

√
1

1 + ( dydx )
2

dy

dx
=

√
k2 + y

−y
where k2 = k21∫ √

−y

k2 + y
dy =

∫
dx

Substituting y =
k2
2
(cosϕ− 1), dy =

−k2
2

sinϕdϕ,

∫
−k2
2

sinϕ

√
1− cosϕ
1 + cosϕ dϕ = x

−k2

∫
sin2 ϕ

2
dϕ = x

k2
2
(sinϕ− ϕ) = x+ C1

where C1 is the constant of integration.

Parameterized,

{
x = k(sinϕ− ϕ) + C

y = k(cosϕ− 1)

where k and C are constants chosen to fit the starting and ending points.

3. Vertical and horizontal gravity

In the classic Brachistochrone problem it is assumed that the gravitational accel-
eration is constant with magnitude g in the negative y-direction. As an extension
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of the problem, what would be the path of minimal travel time if there were grav-
itational acceleration of magnitude g in both the positive x and negative y-direction?

Proceeding as before, the new velocity is now given by
√

2g(x− y), and as we seek
to optimise the total time tt, we have:

tt =

∫ B

A

ds

v

=

∫ B

A

√
dx2 + dy2√
2g(x− y)

=
1√
2g

∫ xB

xA

√
1 + (y′)2√
x− y

dx

Setting F (x, y, y′) as the integrand, where tt(y) is a functional in x, y, y′, we apply
the Euler-Lagrange equation:

δF

δy
=

d

dx

(
δF

δy′

)
√
1 + y′2

2(x− y)
3
2

=
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2(x− y)
3
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3
2

(1 + y′2)2 = 2(x− y)y′′ + y′(y′ − 1)((y′)2 + 1)

(y′ + 1)(1 + (y′)2)

2y′′
= x− y

Let y′ = dy
dx = − tan θ

2
, x′ =

dx

dθ
, x′′ =

d2x

dθ2
,−π

2
< θ <

π

2
,

(− tan θ
2 + 1)(1 + tan2 θ

2 )

2 d
dx (− tan θ

2 )
= x− y

(tan θ
2 − 1)(sec2 θ

2 )

sec2 θ
2
dθ
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= x− y

x′
(

tan θ

2
− 1

)
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Differentiating by θ,
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Solving using integrating factor I.F.,
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=
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2 tan2 θ
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2
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=

∫
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2
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2
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2
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dx

dθ
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(
cos θ

2

)(
sin θ

2
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2
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= y′x′ = k

(
sin θ

2

)(
sin θ

2
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2

)
Let ϕ = 2π − θ,

dx

dϕ
= −k

(
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2

)(
sin ϕ

2
+ cos ϕ

2
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)(
sin ϕ

2
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2

)

Integrating and parameterizing,

x = −k

2
((ϕ+ sinϕ)− (1 + cosϕ)) + k1

y = −k

2
((ϕ− sinϕ)− (1 + cosϕ)) + k2
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4. Deriving Brachistochrone with friction (approximation)

In this section we will consider first the friction due to normal reaction caused by the
weight only. It is assumed that the object does not roll or experience rolling friction.

Suppose A, the starting point, has coordinates (0, 0) and B, the end point, has co-
ordinates (x0, y0), where x0 > 0, y0 < 0.

Since we consider the normal reaction caused only by the weight and ignore the
normal reaction needed to take travel on a path with curvature, we can determine
the forces acting on the object at each point by taking the net force to be in the
tangential direction.

In other words, if the slope at any given point is tanθ, where −π
2 < θ ≤ π

2 then the
forces acting on the object would be equal to that if the object were sliding to the
right on an inclined plane of slope tan θ.

tanθ =
dy

dx

ds =
√
dx2 + dy2

So, we have

cos θ =
dx

ds

sin θ =
dy

ds

Now, we consider the components of the forces parallel to the surface of the inclined
plane, since we assumed that the net force would be parallel to the surface of the
inclined plane
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Taking the rightward direction as positive, it is easy to see that Fweight, the compo-
nent of the weight parallel to the inclined surface is mg sin(−θ). On the other hand,
the component of the weight perpendicular to the inclined surface has magnitude
mg cos θ, so the normal reaction will also have magnitude mg cos θ. Taking µ to be
the coefficient of friction, Ffriction is equal to −µmg cos θ. The object is moving
rightward so the velocity will always point leftward, hence the negative sign.

Let Ftot be the net force parallel to the surface of the inclined plane.

Ftot = Fweight + Ffriction

m
dv

dt
= −mg

dy

ds
− µmg

dx

ds
dv

dt
= −g

(
dy

ds
+ µ

dx

ds

)
dv

dt
=

ds

dt

dv

ds

= v
dv

ds

=
1

2

d

ds
(v2)

d

ds

(
v2

2

)
=

d

ds
(−g(y + µx))

Since v = 0 at (x, y) = (0, 0),

v2 = −2g(y + µx)

v =
√

−2g(y + µx)

The time taken is hence represented by the integral:

t =

∫ x0

0

√
1 + (y′)2

−2g(y + µx)
dx

We let F (x, y, y′) =

√
1 + (y′)2

−2g(y + µx)
.



ON THE VARIATIONS OF THE BRACHISTOCHRONE CURVE 97

∂F

∂y
= − 1

2(y + µx)

√
1 + y′2

−2g(y + µx)

∂F

∂y′
=

y′√
−2g(y + µx)(1 + y′2)

d

dx
(
∂F

∂y′
) =

2y”(y + µx)(1 + y′2)− y′(y′ + µ)(1 + y′2)− 2y′2y”(y + µx)

2(y + µx)(1 + y′2)
√
−2g(y + µx)(1 + y′2)

Applying the Euler-Lagrange equation:

1

2(y + µx)

√
1 + y′2

−2g(y + µx)

=
2y”(y + µx)(1 + y′2)− y′(y′ + µ)(1 + y′2)− 2y′2y”(y + µx)

2(y + µx)(1 + y′2)
√
−2g(y + µx)(1 + y′2)

=⇒ −
√
1 + y′2

=
2y”(y + µx)(1 + y′2)− y′(y′ + µ)(1 + y′2)− 2y′2y”(y + µx)

(1 + y′2)
√
(1 + y′2)

=⇒ −(1 + y′2)2 = 2y”(y + µx)− y′2 − y′4 − µy′ − µy′3

=⇒ 0 = 2y”(y + µx) + 1 + y′2 − µy′ − µy′3

=⇒ 0 = 2y”(y + µx) + (1 + y′2)(1− µy′)

Rearranging the terms,

(1 + y′2)(y′ + µ)(1− µy′) = −2y”(y + µx)(y′ + µ)

=⇒ (1 + y′2)(y′ + µ)(1− µy′) = −2y”(y + µx)[µ(1 + y′2) + y′(1− µy′)]

=⇒ 2y′y”(y + µx)(1− µy)−2 + (1 + y′2)(y′ + µ)(1− µy′)−2

= 2(1− µy′)−3(−µy”)(1 + y′2)(y + µx)

=⇒ d

dx

(1 + y′2)(y + µx)

(1− µy′)2
= 0

Let (1 + y′2)(y + µx)

(1− µy′)2
= −C, where C is a real constant.

1 + y′2

(1− µy′)2
= − C

y + µx

Let y′ =
dy

dx
= − cot ϕ

2
,−π

2
< ϕ <

π

2
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1 + cot2 ϕ
2

(1 + µ cot ϕ
2 )

2
= − C

y + µx(
csc ϕ

2

1 + µ cot ϕ
2

)2

= − C

y + µx

y + µx = −C(sin ϕ

2
+ µ cos ϕ

2
)2

Differentiating by ϕ,

− cot ϕ
2

dx

dϕ
− µ

dx

dϕ
= −C(sin ϕ

2
+ µ cos ϕ

2
)(cos ϕ

2
− µ sin ϕ

2
)

dx = C(sin ϕ

2
+ µ cos ϕ

2
)

(
cos ϕ

2 − µ sin ϕ
2

cot ϕ
2 − µ

)
dϕ

dx = C sin ϕ

2
(sin ϕ

2
+ µ cos ϕ

2
)dϕ

Integrating,

∫
dx =

∫
C sin ϕ

2
(sin ϕ

2
+ µ cos ϕ

2
)dϕ

x =
C

2
(ϕ− sinϕ+ µ(kx + cosϕ))

Similarly,

dy

dϕ
− µ tan ϕ

2

dy

dϕ
= −C(sin ϕ

2
+ µ cos ϕ

2
)(cos ϕ

2
− µ sin ϕ

2
)

dy = −C(sin ϕ

2
+ µ cos ϕ

2
)

(
cos ϕ

2 − µ sin ϕ
2

1− µ tan ϕ
2

)
dϕ

dy = −C(cos ϕ
2
)(sin ϕ

2
+ µ cos ϕ

2
)dϕ∫

dy = −
∫

C(cos ϕ
2
)(sin ϕ

2
+ µ cos ϕ

2
)dϕ

y = −C

2
(ky − cosϕ+ µ(ϕ+ sinϕ))

Substituting above results into y + µx = −C

(
sin ϕ

2
+ µ cos ϕ

2

)2

,
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−C

2
(ky − µ2kx + (µ2 − 1) cosϕ+ 2µ sinϕ) = −C(sin2 ϕ

2
+ µ sinϕ+ µ2 cos2 ϕ

2
)

ky − µ2kx + (µ2 − 1) cosϕ = 2 sin2 ϕ

2
+ 2µ2 cos2 ϕ

2

Comparing coefficients,


ky − cosϕ = 2 sin2 ϕ

2

µ2(cosϕ− kx) = µ2

(
2 cos2 ϕ

2

)
∴ kx = −1, ky = 1

Therefore,


x =

C

2
(ϕ− sinϕ− µ(cosϕ− 1))

y =
C

2
(cosϕ− 1− µ(ϕ+ sinϕ))

5. Deriving the Brachistochrone Curve with friction (complete)

In the previous section, we have used an approximation of the frictional force by
neglecting the effects of the curvature of the path. In this section, we shall take into
consideration the curvature of the path and derive the Brachistochrone Curve with
a more physically-accurate frictional force. It is assumed that the object does not
roll or experience rolling friction.

We first consider the free body diagram of the moving object, which is to start from
the origin and arrive at (x0, y0). Neglecting air resistance, the force diagram is as
shown in the figure above, where R, f, w represent normal reaction due to the path,
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Coulomb friction with coefficient of friction µ and weight of the object respectively.
Define T̂ as the tangent vector, parameterized by T̂ = (cos θ)̂i+(sin θ)ĵ, which is the
unit vector in direction of the velocity v̂, and N̂ as the normal vector, parameterized
by N̂ = −(sin θ)̂i+ (cos θ)ĵ. Then, R⃗ =

∥∥∥R⃗∥∥∥ N̂ , f⃗ = −
∥∥∥f⃗∥∥∥ T̂ , W⃗ = −mgĵ.

˙⃗v =
d

dt
v⃗

=
d

dt

(
∥v⃗∥ T̂

)
=

d∥v⃗∥
dt

T̂ +
dT̂

dt
∥v⃗∥

=
d∥v⃗∥
dt

T̂ +
dT̂

dθ

dθ

dt
∥v⃗∥

= v̇T̂ + vθ̇N̂

Resolving ĵ into tangential and normal directions,

ĵ = (ĵ · T̂ )T̂ + (ĵ · N̂)N̂

= sin θT̂ + cos θN̂

By Newton’s Second Law,

m ˙⃗v =
∥∥∥R⃗∥∥∥ N̂ −

∥∥∥f⃗∥∥∥ T̂ −mgĵ

m(v̇T̂ + vθ̇N̂) =
∥∥∥R⃗∥∥∥ N̂ −

∥∥∥R⃗∥∥∥µT̂ −mgĵ

m(v̇T̂ + vθ̇N̂) = (−mg cos θ +
∥∥∥R⃗∥∥∥)N̂ − (mg sin θ + µ

∥∥∥R⃗∥∥∥)T̂
Comparing coefficients of T̂ and N̂ ,

v̇ = −g sin θ − µr

vθ̇ = −g cos θ − r where r =

∥∥∥R⃗∥∥∥
m

Cancelling |R⃗|,

v̇ + µvθ̇ + g(sin θ + µ cos θ) = 0

And as ẋ = v cos θ
vv′ + µv2θ′ + g(tan θ + µ) = 0 where v′ =

dv

dx
and θ′ =

dθ

dx
Which is a constraint on an object rolling down a path.

Another constraint is:
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dy

dx
= tan θ∫ y0

0

dy =

∫ x0

0

tan θ dx∫ x0

0

(tan θ) dx− y0 = 0∫ x0

0

(
tan θ − y0

x0

)
dx = 0

The functional to be optimized is

T (v, θ) =

∫
dt =

∫ sec θ
v

dx

Using the method of Lagrange multiplers with the above two constraints,

we create a new functional which is to be optimized: I(v, θ) =
∫ x0

0

F (v, v′, θ, θ′, x) dx

=

∫ x0

0

sec θ
v

+ λ
(
vv′ + µv2θ′ + g(tan θ + µ)

)
+ k

(
tan θ − y0

x0

)
dx

where λ and k are Lagrange multipliers.

As λ is a non-holonomic constraint while k is an isoperimetric constraint, λ is a
function of x while k is a constant.

By a constrained and multivariable version of the Euler-Lagrange Equation on the
dependent variables v, θ, λ:


− sec θ

v2
+ λ(v′ + 2µvθ′) = (λv)′

sec θ tan θ

v2
+ (gλ+ k)(sec2 θ) = (µλv2)′

vv′ + µv2θ′ + g(tan θ + µ) = 0

Note the repeated occurrence of tan θ+µ, substitute tan θ+µ = h and h′

(h− µ)2 + 1
=

θ′:



−
√
(h− µ)2 + 1

v2
+ λ(v′ + 2µ

vh′

(h− µ)2 + 1
) = (λv)′

(h− µ)
√
(h− µ)2 + 1

v2
+ (gλ+ k)((h− µ)2 − 1) = (µλv2)′

vv′ + µ
v2h′

(h− µ)2 + 1
+ gh = 0
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Writing in matrix form,
0 2µλv

(h−µ)2+1 −v
2µλv

(h−µ)2+1 0 µv2

(h−µ)2+1

v µv2

(h−µ)2+1 0


v′h′

λ′

 =


√

(h−µ)2+1

v2

h−µ

v
√

(h−µ)2+1
+ gλ+ k

−gh

⃝v
⃝h
⃝λ

−µv ⃝v +2µλ⃝λ : 2µλvv′ + µv2λ′ = −µ

v
(
√
(h− µ)2 + 1) + 2gλhv

Compared with ((h− µ)2 + 1)⃝h and solving for v,

v = −
h
√
(h− µ)2 + 1

gλ(h2 + µ2 + 1) + k((h− µ)2 + 1)
⃝∗

gv2h⃝v +
√

(h− µ)2 + 1⃝λ
= v′

√
(h− µ)2 + 1 + µv

(h−µ)2+1 (2gλhv +
√
(h− µ)2 + 1)h′ − gv2hλ′ = 0 ⃝+

⃝∗ ′ : v′ =

hgλ′(h−µ−1)(h−µ+1)(h2+µ2+1)

−h′

(
gλ
(
h
(
h(µh+µ2+3)−3(µ3+µ)

)
+µ4−1

)
+k(−h+µ−1)(−h+µ+1)(−µh+µ2−1)

)
√

−2µh+h2+µ2−1(gλ(h2+µ2+1)+k(−2µh+h2+µ2−1))
2

Substituting ⃝∗ and ⃝∗ ′ into ⃝+ ,(
µ2 + 1

) (
−2µh2 + µ2 + 1

) (
ghλ′ − h′(gλ+ k)

)(
h2(gλ+ k) + (µ2 + 1) (gλ+ k)− 2kµh

)2 = 0

Simplifying, gλ′

gλ+ k
=

h′

h

Integrating, ln |gλ+ k| = ln |h|+ C1 for some constant C, and

λ = C1h− k

g
for some constant C1.

Substituting above expression into ⃝∗ and letting A = gC1 and B = A(µ2+1)−2kµ,
after some simplifications, we get:

v2 =
(h− µ)2 + 1

(Ah2 +B)2
⃝6

Differentiating by x,

vv′ = − (h(Ah(h− 3µ) + 2(µ2 + 1)A−B) + µB)

(Ah2 +B)3
h′ ⃝6 ′

Substituting ⃝6 and ⃝6 ′ into ⃝λ ,

g dx =
Ah(h− 4µ) + 2(µ2 + 1)A−B

(Ah2 +B)3
dh

and as dy = tan θdx
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dy = (h− µ)dx

g dy =
(h− µ)(Ah(h− 4µ) + 2(µ2 + 1)A−B)

(Ah2 +B)3
dh

Integrating both sides, we have a parametrised solution:

gx =
(3A(µ2+1)−B) arctan(

√
A
B h)

4
√
AB

5
2

+ A(3A(µ2+1)−B)h3+B(5A(µ2+1)−3B)h+4B2µ
4B2(Ah2+B)2 + C2

gy =
µ(3A(µ2+1)+B) arctan(

√
A
B h)

4
√
AB

5
2

+ Aµ(3A(µ2+1)+B)h3+5Bµ(A(µ2+1)−B)h+2B2(h2+1)+6B2µ2

4B2(Ah2+B)2 + C3

where the constants C2 and C3 can fix the Brachistochrone curve onto the required
starting point of the origin and ending point (x0, y0).

6. Comparison of Brachistochrone curves obtained

In this section we plot the curves obtained on the x-y coordinate plane, with µ = 0.34.
Observe that even when more and more concise calculations are made, the difference
in the shape of the path is negligible, although the difficulty of solving for a solution
increased greatly.

7. Approximation of the Brachistochrone curve under gravity with
equations from special relativity

We have attempted to solve the Brachistochrone problem through concepts from
Newtonian mechanics such as conservation of energy. However, it has been proven
that Newtonian mechanics does not always hold true. In the following sections, we
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attempt to combine Newtonian mechanics and concepts from special relativity to
find a more accurate solution to the Brachistochrone.

In special relativity, the relativistic momentum of an object is given by p = m0v√
1− v2

c2

,

rather than p = mv in classical Newtonian mechanics. In this section we shall take
this equation and derive the Brachistochrone Curve for motion under this equation.

In this section we shall make several assumptions that are obscure in special rela-
tivity. First off, we will ignore the differences between ”rest mass” and ”relativistic
mass”, so that mg = dp

dt , where p = mv√
1− v2

c2

and c is the speed of light in a vacuum.

In addition, we shall assume that one’s velocity does not dilate time. Again, we shall
start from A(0, 0) and end at B(x0, y0), where y0 < 0.

To begin, consider an object under free fall constrained by the above equation,

d

dt

v√
1− v2

c2

= g

v√
1− v2

c2

= gt+ C

Since the velocity is 0 at time t = 0,

v√
1− v2

c2

= gt

v2

1− v2

c2

= g2t2

v =
cgt√

g2t2 + c2

−dy

dt
=

cgt√
g2t2 + c2

y =
c2

g
− c

g

√
g2t2 + c2

t =

√
g2y2 − 2c2gy

cg

v =
c
√
g2y2 − 2c2gy

c2 − gy

Since we are neglecting resistive forces like air resistance and friction, the normal
force provided by the path does no work on the object. Hence, we can extend the



ON THE VARIATIONS OF THE BRACHISTOCHRONE CURVE 105

above argument and therefore the velocity of the object is dependent on y and in-
dependent of x.

The time taken to travel from A to B is given by the integral:

t =

∫ B

A

ds

v

=

∫ x0

0

c2 − gy

c

√
1 + y′2

g2y2 − 2c2gy
dx

Letting F (x, y, y′) = c2−gy
c

√
1+y′2

g2y2−2c2gy , we apply once again the Euler-Lagrange

equation. Since the expression does not contain x, i.e., ∂F

∂x
= 0, we can make use of

the Beltrami Identity where for some constant R:

F − y′
∂F

∂y′
=

R

c

(
c2 − gy

c
√
g2y2 − 2c2gy

)(
√
1 + y′2 − y′

∂

∂y′

√
1 + y′2) =

R

c

1√
1 + y′2

=
R
√
g2y2 − 2c2gy

c2 − gy

1 + y′2 =
(c2 − gy)2

R2(g2y2 − 2c2gy)

seperating variables and integrating,

x =

√
c4+2c2g(R2−1)y−g2(R2−1)y2

c4R2 E

sin−1

√
g2(R2−1)

c4R2 (gy−c2)
g

∣∣∣∣ ( R2

R2−1

)
√

g2(R2−1)
c4R2

√
gy(2c2−gy)

c4

√
c4+2c2g(R2−1)y−g2(R2−1)y2

gR2y(gy−2c2)

+ C

where E(f |m) is the elliptic integral of the second kind with parameter m = k2 and
C is the constant of integration. C and R can then be solved to fit the end points
(0, 0) and (x0, y0).

8. The Brachistochrone Curve under hyperbolic motion

In special relativity, an oft seen concept is that objects cannot move faster than
light. However, in Newtonian mechanics, if one does not consider resistive forces,
an object can accelerate indefinitely. Hence it is vital to have a kind of motion that
models ”free fall” better, which is the hyperbolic motion, with its proper acceler-
ation given by α=γ3a, where γ is the Lorentz factor. In this section, we attempt
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to model a Brachistochrone curve under the assumption that the object experiences
proper normal acceleration rather than acceleration, and ”free fall” objects undergo
hyperbolic motion.

Again we take the object to start from (0, 0) and ending at (x0, y0).

Our motivation is using conservation of energy in special relativity where there is no
gravitational potential energy and we try to approximate this by hyperbolic motion
and a variant of newtons second law to derive the velocity of the ball.

As all motion in this section is on a 2D-plane, the change in x3, or the z-spacial
coordinate, will always be 0, and will be omitted in this section.

We first consider a general relation between force and velocity in special relativity
with some constraints.

Proposition. (A variant of Newton’s second law) An object moving under a three-

force in special relativity follows the relation given by ⃗fnet = m0γ(
vγ2a

c2
v⃗+ a⃗), where

⃗fnet, v⃗ and a⃗ are the three-force, three-velocity and three-acceleration respectively,
provided that the rest mass remains invariant.

Proof: In Newtonian mechanics, the force F⃗ is given by F⃗net =
˙⃗
P , where P⃗ is the

momentum mV⃗ , where V⃗ is the velocity. A corresponding three-momentum p⃗ in
special relativity is given by p⃗ = γm0v⃗, where v⃗ is the relativistic three-velocity,

m0 is the rest mass and γ = γ(v) = (1 − v2

c2
)−0.5 is the Lorentz factor. Then by a

variant of Newton’s Second Law, f⃗net = ˙⃗p, where the dot represents a derivative to
coordinate time and not proper time, we have:

f⃗net =
dp⃗

dt

=
d

dt
(γm0v⃗)

= m0(γ
dv⃗

dt
+

dγ

dt
(v⃗))

= m0γ(
vγ2a

c2
v⃗ + a⃗)

and we are done.

As this section mainly concerns hyperbolic motion as aforementioned, and noting
that when an object moves under vertical hyperbolic motion, the direction of v⃗ and
a⃗ are the same, while the rest mass remains constant. So Proposition 8.1 can be
simplified to
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F⃗net = m0(
v2γ2

c2
+ 1)γ2a⃗

In this case, we take the direction of acceleration to be −ĵ.

We consider the total energy of the object, which is the x0 entry of the four-
momentum vector. As we expect the object to fall downwards naturally, we assume
that there should exist a downwards four-force which can provide potential energy
for the object free falling.

Then the potential function U(v) is given by:

∫
f ds =

∫
m0a(

v2γ2

c2
+ 1)γ ds

= m0

∫
(
v2γ2

c2
+ 1)γ d

(
v2

2

)

= −m0c
2

√
1− v2

c2
+ C = −m0c

2

γ
+ C

, where C is a constant. As the potential function must be used as a difference, C
will always cancel out and we can take it as zero.

To find v in terms of y under hyperbolic motion, we use the equation of motion for
hyperbolic motion which is given by

(y+
c2

α
)2− c2t2 =

c4

α2
, where y is the magnitude of displacement and t is coordinate

time.

Solving as y < 0,

t =

√
−y(2c2 − yα)

c
√
α

Differentiating and simplifying, v2 = −c2αy(2c2 − αy)

(αy − c2)2
and γ = 1− αy

c2

Therefore, substituting back, U(v(y)) = U(y) =
m0c

4

c2 − αy

Note that similar to gravitational potential energy, this form of potential energy is
only dependent on the height of the object, and as height(y) decreases, U(y) de-
creases.
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Proposition. (Conservation of energy) In special relativity conservation of energy
can be modelled, provided one considers the mass-energy equivalence.

By Proposition 7.2, considering the object at points (0, 0) and (x, y), the equation
for conservation of energy is given by:

KEinitial + PEinitial = KEfinal + PEfinal

and as v = 0 at the origin, which is the starting point, it can be simplified to

U(y)|y=0 =
1

2
γm0v

2 + U(y)

Solving for v2,

v2 = − 2αc2y

(c2 − αy)2
(
√
(c2 − αy)2 + α2y2 + αy)

Then we optimise
∫
dτ=

∫ dt

γ
, which is the total proper time, and we rewrite it as

I(y) =
∫
F (x, y, y′)dx =

∫ √ 1 + y′2

1
v2 − 1

c2

dx

The functional is to be optimised by the Euler-Lagrange equation. Since the func-
tional to be integrated is independent of x, we apply the Beltrami identity and
simplify to get:

1 + y′2 = k2q(y)

where q = q(y) =
−y(

√
(c2 − αy)2 + α2y2 − αy)

(c2 − αy)2
, and we have q > 0 for all y < 0,

and k is a constant.

Then we have a quadrature solution where

∫
dy√

k2q − 1
= x

∫ (
1

k
√
q

)(
1− 1

k2q

)−0.5

= x
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To approximate this integral, we expand the series around 0 up to the fifth term:

1

k
√
q
=

kc
√
p
+

ka2p3/2

4c3
− ka3p5/2

4c5
+

5ka4p7/2

32c7
+O(p9/2)(

1− 1

k2q

)−0.5

=
35c8

128k8p4
+

5c6

16k6p3
+

c4
(
35a2 + 24k4

)
64k8p2

+

c2
(
−35a3 + 30a2k2 + 32k6

)
64k8p

+

(
3a2

(
35a2 − 20ak2 + 16k4

)
128k8

+ 1

)
+O(p)

where p = −y.

Then multiplying the series together, we have x =

∫
dy√

k2q − 1

≈ − 5c9

64k8
p−

7
2 − c7

8k6
p−

5
2 −

(
105a2c5

256k8
+

c5

4k4

)
p−

3
2 +

(
315a3c3

256k8
− 35a2c3

32k6
− c3

k2

)
p−

1
2

+
√
p

(
4095a4c

2048k8
− 35a3c

32k6
+

15a2c

16k4
+ 2c

)

+p3/2

(
− 35a5

192ck8
+

85a4

768ck6
− a3

16ck4
+

a2

12ck2

)

+p5/2

(
175a6

1024c3k8
− 3a5

32c3k6
+

39a4

640c3k4
− a3

20c3k2
+

a2

10c3

)

+p7/2

(
− 85a7

1024c5k8
+

195a6

3584c5k6
− 3a5

112c5k4
+

5a4

224c5k2
− a3

14c5

)

+p9/2

(
175a8

6144c7k8
− 25a7

1536c7k6
+

5a6

384c7k4
+

5a4

144c7

)
+ C, where C and k are con-

stants to be chosen to match the endpoints required.
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REVIEWERS’ COMMENTS

Reviewers of this paper think that the choice of the topic is ambitious for a group
of high school students. The problem about the Brachistochrone curve equation is
classical. It is the particular curve joining two prescribed points in the plane mini-
mizing the total travel time of a particle freely sliding due the influence of gravity.
The authors derived the curve using the method of Calculus of Variations, and also
investigated several more complicated variants which allow additional gravitational
forces, relativistic forces, and friction forces. Reviewers also suggested some expos-
itory improvement of the paper, particularly on the use of numbering on equations
and figures.
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