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Abstract. In this paper, we study the existence of non-torsion solutions of
a homogeneous linear system over a commutative ring. More precisely, we
determine the minimal positive integer n such that any homogeneous systems
of m equations with n variables over a given ring R gives a non-torsion solution,
i.e. a solution x = (x1, x2, . . . , xn) such that at least one coordinate xi is not a
zero-divisor. We proved that over Noetherian rings, a non-trivial lower bound
to the minimal number can be guaranteed via the use of primary decomposition.
We also consider the number of generators of ideals in R and the localisations
of R. For some classes of Noetherian rings, such as principal ideal rings and
reduced rings, we show that such minimal number exists.
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1. Introduction

The study of homogeneous systems of linear equations has long been established
for its rich applications. A standard problem is to consider how many variables are
needed to guarantee that any homogeneous system of m equations gives a non-trivial
solution. For instance, consider the case that the system is viewed over a field, i.e.
the coefficients and the variables all belong to a given field K. By linear algebra, any
homogeneous system of m linear equations has non-trivial solutions if the number
of variables is greater than m.

Now, instead of considering linear systems over fields, we would investigate on homo-
geneous systems of linear equations over a commutative ring R, or more generally an
R-module M (readers might refer to Section 2 for definitions needed in this paper).
Consider a homogeneous system of linear equations

a11x1 + a12x2 + · · · + a1nxn = 0
a21x1 + a22x2 + · · · + a2nxn = 0

...
...

...
...

am1x1 + am2x2 + · · · + amnxn = 0

with coefficients aij ∈ R and variables xj ∈ M . Equivalently, the above system can
be written as the matrix form

Lx = 0,

where L = (aij) is the matrix representing the system, and x = (x1, x2, . . . , xn)
T is

the vector representing the solution. One would naturally wonder under a fixed m,
when an arbitrary system guarantees a non-trivial solution, i.e. x ∕= 0.

In Section 1.1, we provide an answer to the above question. Indeed, following [1],
it turns out that the requirement for systems over commutative rings is the same as
fields. That is, any homogeneous system of m linear equations over a commutative
ring has non-trivial solutions if the number of variables is greater than m.

Related problems also appeared in Mathematical Olympiads. In particular, a
problem in the 36th China Mathematical Olympiad concerns on a system of two
linear equations modulo k. It asks the minimum number of variables needed to
guarantee not only a non-trivial solution, but also a solution x = (x1, x2, . . . , xn)

T

that contains a coordinate xi which is coprime to k. This new condition is equivalent
to xi + kZ not being a zero-divisor in Z/kZ. This would be covered in Section 1.2
briefly as it gives a simple example to guide our paths.
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Upon further investigation, the additional requirement appears to be a more gen-
eral notion from abstract algebra − the solution must contain a coordinate which is
not a zero-divisor (torsion element) on a ring (resp. module). This is referred in this
paper as a non-torsion solution. We would then focus on the minimum number
of variables needed such that any homogeneous system of m equations guarantees a
non-torsion solution. This is the main problem of the paper, and is elaborated in a
more detailed manner in Section 1.3.

We would focus on the case that the system is viewed over a ring. As it is
intuitively difficult to find the minimum number of variables, we divide the problem
into two parts. In Section 3, we tried to construct a system with n variables such that
only torsion solutions exist. This shows that the minimum number of variables must
be greater than n. In Section 4, we showed that for certain numbers of variables, any
homogeneous system would guarantee a non-torsion solution. This gives an upper
bound to the minimum number of variables.

In Section 5, we propose possible directions for further investigation. We also
discuss the problem over modules.

1.1. Non-trivial solutions over commutative rings. Before seeking non-torsion
solutions, we would focus on non-trivial solutions first. The following section com-
pletely answers when a homogeneous system over a commutative ring R provides
non-trivial solutions. The following content is based on [1].

We quote a well-known result on commutative rings.

Proposition 1.1. Let R ∕= 0 be a commutative ring and f : Rn → Rm be a module
homomorphism.

• If f is injective, then n ≤ m.
• If f is surjective, then n ≥ m.

The existence of non-trivial solutions in commutative rings turns out to be similar
to fields, as given by the following theorem.

Theorem 1.2. Let R ∕= 0 be a commutative ring and n > m be positive integers.
Then any homogeneous system of m linear equations with n variables over R has a
nontrivial solution.

Proof. Let L be the matrix representation of the system. Define the module homo-
morphism f : Rn → Rm by x '→ Lx. By Proposition 1.1, f is not injective because
n > m. Thus we can pick non-zero x0 ∈ ker f , i.e. there is a non-trivial solution x0

to the system. □

From now on, we assume all rings to be commutative, non-zero and with
unity. This would guarantee the existence of non-trivial solutions for any homoge-
neous system of linear equations with more variables than the number of equations.

1.2. A problem from CMO. We then move on to seeking non-torsion solutions.
From the 36th China Mathematical Olympiad (CMO) 2021, problem 2 particularly
sparks our interest. It states,
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Question 1.3 (CMO 2021/2). Let k > 1 be an integer. Find the smallest positive
integer n such that for any integers a1, a2, . . . , an; b1, b2, . . . , bn, there exists integers
x1, x2, . . . , xn satisfying the following two conditions:

(i) There exists i ∈ {1, 2, . . . , n} such that xi and k are coprime.

(ii)

n!

i=1

aixi ≡
n!

i=1

bixi ≡ 0 (mod k).

Notice that (ii) means that (x1, x2, . . . , xn) is a solution to a homogeneous system
of two linear equations modulo k. Intuitively, Question 1.3 asks the least number of
variables needed so that any homogeneous system guarantees a solution x such that
gcd(xi, k) = 1 for some index i.

A solution to Question 1.3 can be found in [9], which is included in Appen-
dix A. The solution firstly considers breaking k into its prime factorisation k =
pα1
1 pα2

2 . . . p
αω(k)

ω(k) where ω(k) is the number of distinct prime factors of k. The rest

of the proof then relies on the main claim that considering the problem modulo pα

is equivalent to considering it in modulo p. The author proves the claim by listing
out cases based on the rank of the matrix representing the system after modulo p.
Finally, he uses rank-nullity theorem and combines the results of individual primes
using the Chinese Remainder Theorem. The answer to the problem is shown to be

2ω(k) + 1 .

1.3. The main problem. If we view Question 1.3 as a starting point, then the
problem itself can be generalised in diverse aspects. It is natural to consider a system
of m equations instead of two. In addition, since modules completely inherits the
notion of scalar multiplications, we would expect a similar problem in the language
of modules.

Definition 1.4. Let R be a non-zero, commutative ring with unity, M be an R-
module and L be the matrix representation of a system of m equations with n vari-
ables. A solution x = (x1, x2, . . . , xn) with xi ∈ M to the system is said to be
non-torsion if there exists 1 ≤ i ≤ n such that for all r ∈ R, rxi = 0 implies r = 0.

A solution x is said to be torsion if it is not non-torsion.

Remark 1.5. The term “torsion” comes from the notion of torsion elements in a
module.

Definition 1.6. Let R be a ring, M be an R-module and m be a positive integer.
Define a positive integer n to be a non-torsion number if any homogeneous system
of m equations with n variables guarantees a non-torsion solution. The set of non-
torsion numbers is denoted by NonTorR(M,m).

If the base ring R is of no ambiguity, we might omit the subscript and denote the
set by NonTor(M,m).

We can now rigorously state the main problem of the paper.

Question 1.7. Let R be a ring, M be an R-module and m a positive integer. Find
NonTorR(M,m).
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As illustrated below, the special case M = R already has fruitful mathematical
insights. Thus our major focus is on the special case M = R. We are confident
that some similar results might be carried over to modules, and is briefly covered in
Section 5.2.

Finally, notice that NonTorR(M,m) ∕= N since clearly 1 ∕∈ NonTorR(M,m). This
can be seen by choosing a system where all coefficients are 1. The only solution to
this system is the trivial solution (0, 0, . . . , 0), which is torsion.

The following proposition characterises how elements in NonTorR(M,m) behave.

Proposition 1.8. If n0 ∈ NonTor(M,m), then n ∈ NonTor(M,m) for any positive
integer n ≥ n0.

Proof. Let L be a matrix representation of a system of m equations with n variables.
We take the truncated matrix of size m × n0 formed by the first n0 columns. This
gives a non-torsion solution x′ = (x1, . . . , xn0

) of this system by assumption, and
by taking x = (x1, . . . , xn0 , 0, . . . , 0) with n − n0 zeroes we obtain a non-torsion
solution. □

Thus if NonTor(M,m) ∕= ∅, it must take the form

NonTor(M,m) = {n ∈ N : n ≥ n0}
where n0 is a positive integer. In this case, n0 is defined to be the minimal non-
torsion number.

In particular, the original CMO problem is equivalent to determining the set
NonTorZ/kZ(Z/kZ, 2), which is

{n ∈ N : n ≥ 2ω(k) + 1}
Remark 1.9. It is worth mentioning that the minimal element need not exist. In-
deed, consider Z/kZ as a Z-module. Then all elements in the module is annihilated
by k, and thus all solutions must be torsion, i.e.

NonTorZ(Z/kZ,m) = ∅ for all positive integers m.

A simple result can be obtained as a starting point of the investigation by applying
Theorem 1.2.

Proposition 1.10. If R is an integral domain, NonTorR(R,m) = {n ∈ N : n ≥
m+ 1}.
Proof. There are no non-zero zero-divisors in R, thus all non-trivial solutions are
non-torsion. □
1.3.1. Failure of extension of the original proof. One might expect that the solution
from [9] for Question 1.3 can be extended easily to the case of modules. This is
unfortunately not true, based on two reasons.

• The proof uses many special properties of the ring Z. In particular, all
elements in Z have a unique prime factorisation. This also forbids the use
of rank-nullity theorem, since we cannot decompose a module into fields or
even integral domains.

• Generalising to m equations, the main claim of the solution requires splitting
into m+ 1 cases, which is intuitively difficult and not systematic.
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Hence, we need more advanced algebra tools to tackle the problem. The next
section would be devoted to some preliminaries of commutative algebra.

2. Notations and Preliminaries

Throughout this paper, a field is denoted by K. Inclusion of sets is denoted by
the sign ⊆. We reserve the sign ⊂ for strict inclusion, i.e. A ⊂ B means that A is
contained in B and is not equal to B.

We will now go through ring and module preliminaries. This is solely for the
paper to be self-contained, so the definitions and results below are not in any way
exhaustive and complete. Readers may skip this section unless needed and are
advised to refer to [2] for a more detailed discussion in commutative algebra.

Definition 2.1. A ring R is a set with two binary operations (addition + and
multiplication ·) such that

(i) (R,+) is an abelian group.
(ii) Multiplication is associative and distributive over addition.

We only consider rings which are commutative:

(iii) xy = yx for all x, y ∈ R,

and have an identity element, denoted by 1, which is different from 0:

(iv) x · 1 = 1 · x = x for all x ∈ R.

An ideal a of a ring R is an additive subgroup of R such that ra ∈ a for all r ∈ R
and a ∈ a.

The elements of the quotient ring R/a are the cosets of a in R, which has a
natural ring structure.

Some classes of elements of a ring are defined below.

Definition 2.2. An element x ∈ R is a zero-divisor if there exists y ∕= 0 in R such
that xy = 0. A ring with no non-zero zero-divisors is called an integral domain.

An element x ∈ R is nilpotent if xn = 0 for some positive integer n. The set of
all nilpotent elements is denoted by NR, the nilradical of R.

For example, Z and K[x1, . . . , xn] are integral domains. Some classes of ideals
are also defined.

Definition 2.3. An ideal is principal if it is generated by a single element x ∈ R,
denoted by (x).

An ideal p ∕= (1) is prime if xy ∈ p ⇒ x ∈ p or y ∈ p.
An ideal m ∕= (1) is maximal if there is no ideal a such that m ⊂ a ⊂ (1) (strict

inclusions).

Equivalently:

p is prime ⇔ R/p is an integral domain;

m is maximal ⇔ R/m is a field.

Hence a maximal ideal is prime but not conversely, in general. The following
proposition is frequently used in this paper.
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Lemma 2.4. (Prime avoidance lemma)

(i) Let p1, p2, . . . , pn be prime ideals and let a be an ideal contained in
"n

i=1 pi·
Then a ⊆ pi for some i.

(ii) Let a1, a2, . . . , an be ideals and let p be a prime ideal containing
#n

i=1 ai.
Then p ⊇ ai for some i.

Definition 2.5. Let a be an ideal of a ring R.

• The annihilator of a, denoted by Ann(a), is the set of all elements x ∈ R
such that xa = 0 for all a ∈ a.

• The radical of a, denoted by r(a), is the set of all elements x ∈ R such that
xn ∈ a for some n > 0.

Proposition 2.6. Let R be a ring and a, b be ideals in R. Then

(i) if a ⊆ b, then r(a) ⊆ r(b).
(ii) if p is a prime ideal, then r(p) = p.
(iii) r(a ∩ b) = r(a) ∩ r(b).

We now introduce concepts related to modules.

Definition 2.7. Let R be a ring. An R-module is an abelian group (M,+) on which
“scalar multiplications” from R acts linearly, i.e. for all r, s ∈ R and x, y ∈ M ,

r(x+ y) = rx+ ry,

(r + s)x = rx+ sx,

(rs)x = r(sx),

1x = x.

Let M,N be R-modules. A mapping f : M → N is an R-module homomor-
phism if

f(x+ y) = f(x) + f(y)

f(rx) = r · f(x)
for all r ∈ R and x, y ∈ M . The set of all R-module homomorphisms is denoted
HomR(M,N), or Hom(M,N) if there is no ambiguity about the ring R.

A submodule M ′ of M is a subgroup of M which is closed under multiplication
by elements of R. The elements of the quotient M/M ′ are the cosets of M ′ in M ,
which has a natural R-module structure.

For example, Rn is an R-module. In particular R itself is an R-module with
ideals as its submodules. On the other hand, if R is a field, then all R-modules are
R-vector spaces.

Definition 2.8. Let R be a ring and M be an R-module. M is said to be generated
by x1, x2, . . . , xn ∈ M if all elements m of M can be written as a linear combination
m =

$n
i=1 rixi where ri ∈ R. In this case, the elements x1, x2, . . . , xn are said to be

the generators of M and we write M = Rx1 +Rx2 + · · ·+Rxn. If M has a finite
set of generators, then M is said to be finitely generated.

We now state an important concept in our paper.
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Definition 2.9. An R-module M is said to be Noetherian if it satisfies one of the
following equivalent conditions:

(i) Every increasing sequence of submodules M0 ⊆ M1 ⊆ M2 ⊆ · · · is station-
ary, i.e. there exists positive integer n such that Mn = Mn+1 = · · · .

(ii) Every submodule of M is finitely generated.

In particular, a ring R is said to be Noetherian if every increasing sequence of
ideals is stationary, or equivalently if every ideal of R is finitely generated.

There is one major fact that requires special attention.

Proposition 2.10. Let R be a Noetherian ring. If M is a finitely generated R-
module, then M is Noetherian.

This concludes the required commutative algebra preliminaries.

3. Elements not in NonTor(R,m)

The main goal is to identify elements which are in and out of NonTorR(R,m).
Obviously, this task can be divided into two parts: identifying elements not in
NonTorR(R,m) and elements in NonTorR(R,m). In this section, we focus on the
former sub-task.

Question 3.1 (Objective of this section). Let R be a ring and m be a positive
integer. Find elements which are not in NonTor(R,m).

In other words, we would try to construct a system ofm equations with n variables
which gives only torsion solutions, so that n ∕∈ NonTor(R,m).

Our intuition comes from the solution [9] of the CMO problem.

Example 3.2. Let R = Z/kZ and m = 2. Write k = pα1
1 pα2

2 · · · pαω(k)

ω(k) and consider

the system represented by

L =

%&
i ∕=1 pi 0

&
i ∕=2 pi 0 · · ·

&
i ∕=ω(k) pi 0

0
&

i ∕=1 pi 0
&

i ∕=2 pi · · · 0
&

i ∕=ω(k) pi

'
.

Suppose x = (x1, x2, . . . , x2ω(k)) is a solution. Note that pi must divide x2i−1 and
x2i. Thus all solutions are torsion and 2ω(k) ∕∈ NonTor(Z/kZ, 2).

For a general ring R, we would expect the choice of L to have a similar form. This
motivates the following proposition, which gives a sufficient condition of an element
not belonging to NonTor(R,m).

Proposition 3.3. Let R be a ring and m be an integer. Suppose there exist n
elements d1, d2, . . . , dn ∈ R satisfying

(i)

n(

i=1

di = 0,

(ii)
(

i ∕=j

d2i ∕= 0 for all 1 ≤ j ≤ n.

Then mn ∕∈ NonTor(R,m).
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Proof. The idea is to construct a system of m equations with mn variables, repre-
sented by the matrix L such that all solutions are torsion. We claim that

L =

!

"""#

$
k ∕=1 dk 0 · · · 0 · · ·

$
k ∕=n dk 0 · · · 0

0
$

k ∕=1 dk · · · 0 0
$

k ∕=n dk · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · ·

$
k ∕=1 dk · · · 0 0 · · ·

$
k ∕=n dk

%

&&&'

is such a choice. Suppose x = (x1, x2, . . . , xmn)
T is a solution to Lx = 0. Then for

each 1 ≤ i ≤ m, we have

(1)
) (

k ∕=1

dk

*
xi +

) (

k ∕=2

dk

*
xm+i + · · ·+

) (

k ∕=n

dk

*
xm(n−1)+i = 0.

Fix 1 ≤ j ≤ n. Note that all but the j-th term in the sum above belongs to the
principal ideal (dj). By making the j-th term as subject in (1), we see that the j-th
term also belongs to (dj), i.e.

)(

k ∕=j

dk

*
xm(j−1)+i = dj · y

for some y ∈ R. Multiplying
&

k ∕=j dk to both sides, we have

)(

k ∕=j

dk

*2

xm(j−1)+i =
) n(

k=1

dk

*
· y = 0.

Hence xm(j−1)+i is a zero-divisor. Since i, j are arbitrary, x1, x2, . . . , xmn are
zero-divisors. Thus x is torsion. □

Let us demonstrate how to utilise Proposition 3.3. The following two examples
showcase the fact that some rings might have no non-torsion numbers.

Example 3.4 (Rings with no non-torsion number). We provide two examples where
NonTor(R,m) = ∅:

• Let R = F2 × F2 × F2 × · · · . For any positive integer k, we define

di = (1, . . . , 1, 0, 1, . . . , 1, 0, 0, . . .) for 1 ≤ i ≤ k.

Here, the first k coordinates are 1’s except the i-th position, which is zero.
All the other coordinates are zeroes. This produces k elements that clearly
satisfy the two conditions in Proposition 3.3. Thus mk ∕∈ NonTor(R,m) for
all k. Together with Proposition 1.8, NonTor(R,m) = ∅.

• Let R = K[x1, x2, . . .]/(x1, x2x3, x4x5x6x7, . . .). Then for each positive in-
teger k, we define

di = x2k+(i−1) for 1 ≤ i ≤ 2k.

Using the same argument, m · 2k ∕∈ NonTor(R,m) for all k. Thus

NonTor(R,m) = ∅.
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However, it is difficult to find suitable di’s satisfying the conditions in Proposition
3.3 for a general ring R. Indeed, putting di = pi as in Example 3.2, their product
is not zero and hence Proposition 3.3 cannot be applied. To resolve this issue, we
should choose di = pαi

i .

Example 3.5. Let R = Z/kZ, m = 2 and write k = pα1
1 pα2

2 . . . p
αω(k)

ω(k) . Define

di = pαi
i for 1 ≤ i ≤ ω(k). We claim that the two conditions are satisfied:

(i)

ω(k)(

i=1

di =

ω(k)(

i=1

pαi
i = k = 0 in Z/kZ,

(ii)
(

i ∕=j

d2i =
(

i ∕=j

p2αi
i ∕= 0 in Z/kZ for all 1 ≤ j ≤ ω(k), since it is not a multiple

of pj.

Hence, Proposition 3.3 can be applied to show that 2ω(k) ∕∈ NonTor(Z/kZ, 2).

3.1. Primary decomposition. From Example 3.5, we should choose di’s to be
prime powers instead of primes. Surprisingly, this fits perfectly with the notion of
primary ideals in abstract algebra.

The aim of this section is to provide some definitions and results related to primary
ideals.

Definition 3.6. An ideal q ∕= (1) in a ring R is primary if

xy ∈ q ⇒ x ∈ q or yn ∈ q for some positive integer n.

Notice that the radical r(q) (Definition 2.5) of a primary ideal must be prime. In
particular, if p is a prime number, (pα) is a primary ideal in Z/kZ with r((pα)) = (p),
which fits into our motivation. We will now introduce a powerful tool to aid us with
choosing suitable elements.

Definition 3.7. A minimal primary decomposition of an ideal a in R is an
expression of a as a finite intersection of primary ideals q1, q2, . . . , qN , that is,

a =

N+

i=1

qi,

such that the r(qi)’s are distinct and qi ∕⊇
#

j ∕=i qj for all 1 ≤ i ≤ N .

In general, such a primary decomposition need not exist. Yet, this is true if we
assume the ring to be Noetherian.

Theorem 3.8. (Lasker-Noether theorem)
Every ideal in a Noetherian ring has a minimal primary decomposition.

In particular, (0) has a minimal primary decomposition in a Noetherian ring. This
allows us to have further definitions based on a minimal primary decomposition of
(0).

Definition 3.9. Let R be a Noetherian ring. Consider a minimal primary decom-

position of (0) =

N+

i=1

qi.
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Define Ass(R)1 = {r(qi) : 1 ≤ i ≤ N} to be the set of associated primes of R.
An associated prime p ∈ Ass(R) is said to be

• minimal if p′ ∈ Ass(R) and p′ ⊆ p implies p = p′.
• maximal if p′ ∈ Ass(R) and p′ ⊇ p implies p = p′.
• embedded if it is not minimal.

Denote Ass#(R) and Ass$(R) to be the set of minimal and maximal associated
primes respectively.

Remark 3.10. The associated primes are independent of the minimal primary de-
compositions. Thus it makes sense to define the associated primes of R. Also, we
would keep away from using the term maximal to avoid confusion with the notation
of maximal ideals.

Example 3.11.

(i) Let R = Z/kZ. Take the minimal primary decomposition

(0) = (pα1
1 ) ∩ (pα2

2 ) ∩ . . . ∩ (p
αω(k)

ω(k) ),

with Ass(R) = {(p1), (p2), . . . , (pω(k))} by taking radicals. As all of the
(pi)’s are maximal ideals, there are no embedded associated primes. Hence,

Ass#(R) = Ass$(R) = Ass(R).
(ii) Let R = K[x, y]/(x2y, xy2). Take the minimal primary decomposition

(0) = (x) ∩ (y) ∩ (x2, y2),

with Ass(R) = {(x), (y), (x, y)}. Since (x) ⊂ (x, y) and (y) ⊂ (x, y),

Ass#(R) = {(x), (y)} (thus (x, y) is embedded) and Ass$(R) = {(x, y)}.

3.2. Application of primary decomposition to the problem. Recall from
Proposition 3.3 that we want to choose elements d1, d2, . . . , dn satisfying

(i)

n(

i=1

di = 0,

(ii)
(

i ∕=j

d2i ∕= 0 for all 1 ≤ j ≤ n.

Example 3.5 suggests that di should be chosen from primary ideals. In this
example, the minimal primary decomposition of (0) is given by

(0) =

ω(k)+

i=1

qi,

with qi = (pαi
i ) and pi = r(qi) = (pi) for 1 ≤ i ≤ ω(k).

To ensure that (i) is satisfied, each di should be chosen from qi so that their
product belongs to the intersection of the qi’s, which is (0). On the other hand, each
di should not belong to

"
j ∕=i pj , ensuring that (ii) is satisfied. For if

&
i ∕=j d

2
i = 0 ∈

pj , then di ∈ pj for some i ∕= j by the definition of prime ideal. This contradicts to
the choice of di. Intuitively, it suggests that each di should be chosen from qi\

"
j ∕=i pj

for general rings.

1Although this is somewhat “regrettable” [7, p.3], but yes, this is the standard notation.
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Tragically, the example below illustrates that qi \
"

j ∕=i pj may be empty in some
cases.

Example 3.12. Consider R = K[x, y]/(x2y, xy2) and the minimal primary decom-
position of (0) as in Example 3.11(ii). Denote q1 = (x), q2 = (y) and q3 = (x2, y2)
as the primary ideals and p1 = (x), p2 = (y) and p3 = (x, y) as the associated
primes.

Then q1 \ (p2 ∪ p3) = ∅ because q1 ⊆ p3.

It turns out that the set qi\
"

j ∕=i pj is empty precisely when embedded primes are

present. Luckily, we can still pick d1 = x2 and d2 = y2 that satisfy the conditions.
This accounts to the fact that d1 ∈ q1 ∩ q3 \ p2 and d2 ∈ q2 ∩ q3 \ p1. Thus the
product d1d2 ∈ q1 ∩ q2 ∩ q3 = (0) and the squares d21 ∕∈ p2 and d22 ∕∈ p1.

Taking this into consideration, we have a more refined strategy to choose suitable
di’s in Noetherian rings.

Theorem 3.13. Let R be a Noetherian ring. Then m|Ass#(R)| ∕∈ NonTor(R,m).

Proof. Fix a minimal primary decomposition (0) =
#N

k=1 qk. Write Ass#(R) =
{p1, . . . , pn} where the pi’s are distinct. For each 1 ≤ i ≤ n, define Ii = {1 ≤ k ≤
N : pi ⊆ r(qk)}. We claim that we can choose

di ∈
+

k∈Ii

qk
,-

j ∕=i

pj

by showing that the set is non-empty.
Suppose on a contrary that

#
k∈Ii

qk ⊆
"

j ∕=i pj . Apply prime avoidance lemma

(Proposition 2.4(i)) once, we have
#

k∈Ii
qk ⊆ pj for some j ∕= i. Apply prime

avoidance lemma (Proposition 2.4(ii)) again, we have qk ⊆ pj for some k ∈ Ii, and
thus r(qk) ⊆ r(pj) = pj by Proposition 2.6. Since k ∈ Ii, pi ⊆ r(qk), and hence
pi ⊆ pj . Minimality of pj gives pi = pj but they have to be distinct. Contradiction
arises and the claim follows.

It remains to check that conditions (i) and (ii) in Proposition 3.3 are satisfied by
the choice of such di’s.

For (i), we show that
&

di ∈ qk for all 1 ≤ k ≤ N . Note that the associated
prime r(qk) must contain some minimal associated prime, so r(qk) ⊇ pi for some
1 ≤ i ≤ n. In particular, k ∈ Ii and hence

di ∈
+

j∈Ii

qj ⊆ qk.

For (ii), suppose on a contrary that
&

i ∕=j d
2
i = 0 ∈ pj for some 1 ≤ j ≤ n. By the

definition of prime ideals we have di ∈ pj for some i ∕= j, which contradicts to the
choice of di.

Hence mn ∕∈ NonTor(R,m) by Proposition 3.3. □

This implies that for a large class of rings we might find elements out of
NonTor(R,m). More precisely, if we know the number of minimal associated primes
of a ring, we immediately obtain a lower bound of the minimal non-torsion number.
We illustrate the application of Theorem 3.13 with the following two examples.
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Example 3.14. Consider the same rings as in Example 3.11.

(i) If R = Z/kZ, then |Ass#(R)| = ω(k). Thus mω(k) ∕∈ NonTor(R,m) for all
positive integers m.

(ii) If R = K[x, y]/(x2y, xy2), then |Ass#(R)| = 2. Thus 2m ∕∈ NonTor(R,m)
for all positive integers m.

4. Elements in NonTor(R,m)

The results in Section 3 is not enough to identify all numbers which are in
NonTor(R,m); they only implies that some numbers are not in the set. In this
section, we try to find elements that belong to NonTor(R,m). However, as we will
see in the following section, showing the non-emptiness of NonTor(R,m) is already
a very difficult task. Let us restate the problem with the focus in this section:

Question 4.1 (Objective of this section). Let R be a ring and m be a positive
integer. Find elements which are in NonTor(R,m).

In other words, we need to show that every homogeneous system of m equations
with n variables guarantees a non-torsion solution x = (x1, . . . , xn) so that n ∈
NonTor(R,m). Notice that a solution x is non-torsion if and only if xi is not a
zero-divisor of R for some 1 ≤ i ≤ n.

As mentioned in Section 1.3.1, the solution from [9] of the CMO problem cannot be
easily generalised. We cannot obtain any intuition from the solution. Consequently,
alternative approaches applicable to general rings are developed in the following
subsections.

4.1. Reducing the problem. In this subsection, a sufficient condition for n ∈
NonTor(R,m) is given. To achieve this, we deduce equivalent formulations of the
problem. Observe that homogeneous systems of m equations with n variables have
a one-to-one correspondence to R-module homomorphisms from Rn to Rm. This
gives the following result.

Proposition 4.2. Let R be a ring with D as the set of zero-divisors and m,n
be positive integers. Then n ∈ NonTor(R,m) if and only if kerφ ∕⊆ Dn for all
φ ∈ HomR(R

n, Rm).

Proof. (⇒) Let φ ∈ Hom(Rn, Rm) be given. For 1 ≤ i ≤ n, let

ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn

with 1 at the i-th position. Consider the system of m equations with n variables
represented by

L =

.

/
| | |

φ(e1) φ(e2) · · · φ(en)
| | |

0

1 .

Since n ∈ NonTor(R,m), there is a non-torsion solution x = (x1, x2, . . . , xn).
Notice that x ∈ kerφ because

0 = Lx =

n!

i=1

xiφ(ei) = φ

2
n!

i=1

xiei

3
= φ(x).
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Yet x ∕∈ Dn as xi ∕∈ D for some 1 ≤ i ≤ n.
(⇐) Let L be the matrix representing a system of m equations with n variables.

Consider the module homomorphism φ ∈ Hom(Rn, Rm) defined by x '→ Lx. By
assumption, there is an element in x = (x1, x2, . . . , xn) ∈ kerφ which is not in Dn,
i.e. there is a coordinate xi ∕∈ D. This implies x is non-torsion. □

The set of zero-divisors D may not be an ideal. Its lack of structure forbids us to
discuss whether the solution set is a subset of Dn. However, in light of the use of
primary decomposition in the previous section, we recall a result from commutative
algebra:

Proposition 4.3. Let R be a Noetherian ring with D as the set of zero-divisors.
Then

D =
-

p∈Ass"(R)

p.

We introduce the following notation for simplicity.

Definition 4.4. Let R be a ring and a1, a2, . . . , an be ideals in R. Denote

a1 × a2 × · · ·× an = {(a1, a2, . . . , an) ∈ Rn : ai ∈ ai, 1 ≤ i ≤ n}

as a submodule of Rn. In particular, a× a× · · ·× a with n a’s is denoted by a(n).

With the aid of Proposition 4.3, the formulation in Proposition 4.2 can be further
simplified.

Theorem 4.5. Let R be a Noetherian ring and m,n be positive integers. Then n ∈
NonTor(R,m) if and only if for all φ ∈ Hom(Rn, Rm) and p1, p2, . . . , pn ∈ Ass$(R),
kerφ ∕⊆ p1 × p2 × · · ·× pn.

Remark 4.6. Note that the pi’s need not be distinct.

Proof. Denote D as the set of zero-divisior of R.
(⇒) Let φ ∈ Hom(Rn, Rm). By Proposition 4.2, kerφ ∕⊆ Dn. Proposition 4.3

implies that p1 × p2 × · · ·× pn ⊆ Dn. Hence kerφ ∕⊆ p1 × p2 × · · ·× pn.
(⇐) In view of Proposition 4.2, it suffices to show that kerφ ∕⊆ Dn for all φ ∈

Hom(Rn, Rm). Suppose on a contrary that kerφ ⊆ Dn for some φ ∈ Hom(Rn, Rm).
For each 1 ≤ i ≤ n, consider the projection map πi : Rn → R defined by

(x1, x2, . . . , xn) '→ xi. Note that πi(kerφ) is an ideal in R. Since kerφ ⊆ Dn, we
have πi(kerφ) ⊆ D. By Proposition 4.3 and prime avoidance lemma (Proposition

2.4(i)), we have πi(kerφ) ⊆ pi for some pi ∈ Ass$(R). Hence

kerφ ⊆ π1(kerφ)× π2(kerφ)× · · ·× πn(kerφ) ⊆ p1 × p2 × · · ·× pn.

This contradicts to the assumption. □

Theorem 4.5 tells us that if n /∈ NonTor(R,m), then there exist a module homo-

morphism φ ∈ Hom(Rn, Rm) and p1, . . . , pn ∈ Ass$(R) such that kerφ ⊆ p1×· · ·×pn.
We wonder when would such a homomorphism φ exists if the pi’s are fixed. The fol-
lowing theorem characterises the existence of φ by a condition related to submodules
of Rm.
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Theorem 4.7. Let p1, p2, . . . , pn be ideals in a ring R and m be a positive integer.
The followings are equivalent:

(i) There exists φ ∈ Hom(Rn, Rm) such that kerφ ⊆ p1 × p2 × · · ·× pn.
(ii) There exists a surjective module homomorphism from a submodule M of Rm

to (R/p1)× · · ·× (R/pn).

Proof. ((i) ⇒ (ii)) Let M be the image of φ. We claim that ψ : M → (R/p1)× · · ·×
(R/pn) given by

ψ(φ(x1, x2, . . . , xn)) = (x1 + p1, x2 + p2, . . . , xn + pn)

is the required surjective module homomorphism. Notice that surjectivity of ψ is
immediate. To see that it is well-defined, let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn)
and φ(x) = φ(y). Then x−y ∈ kerφ ⊆ p1×p2× · · ·×pn. It follows that xi−yi ∈ pi
for all 1 ≤ i ≤ n.

((ii) ⇒ (i)) Let ψ : M → (R/p1)× · · ·× (R/pn) be the surjective homomorphism.
For each 1 ≤ i ≤ n, surjectivity implies that there exist mi ∈ Rm such that ψ(mi) =
(p1, . . . , pi−1, 1 + pi, pi+1, . . . , pn).

Define the module homomorphism φ : Rn → Rm by

φ(x1, x2, . . . , xn) =

n!

i=1

ximi.

If x = (x1, x2, . . . , xn) ∈ kerφ, then
$

ximi = 0. Taking ψ on both sides,

0 = ψ(0) = ψ

2
n!

i=1

ximi

3
=

n!

i=1

xiψ(mi) = (x1 + p1, x2 + p2, . . . , xn + pn).

Hence xi ∈ pi for all 1 ≤ i ≤ n and so x ∈ p1 × p2 × · · ·× pn. □

It would be nice if we can consider the associated primes in Ass$(R) individually.
By letting p1 = p2 = · · · = pn = p in Theorem 4.7, we introduce the following
definition.

Definition 4.8. Let p be an ideal in R and m be a positive integer. Define
NonTorp(R,m) to be the set of positive integers n such that one of the following
equivalent conditions is satisfied:

(i) kerφ ∕⊆ p(n) for all φ ∈ Hom(Rn, Rm).
(ii) for any submodule M of Rm, there are no surjective homomorphism from

M to (R/p)n.

Remark 4.9. Similar to Proposition 1.8, if n0 ∈ NonTorp(R,m), then
n ∈ NonTorp(R,m) for any integer n ≥ n0.

The following theorem is the main theorem of this subsection. It gives a sufficient
condition for the existence of a non-torsion number.

Theorem 4.10. Let R be a Noetherian ring. For each p ∈ Ass$(R), suppose
np ∈ NonTorp(R,m). Then

n := 1 +
!

p∈Ass"(R)

(np − 1) ∈ NonTor(R,m).
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Proof. We prove the theorem by contradiction. Suppose not, then by Theorem 4.5
and Theorem 4.7, there exist p1, . . . , pn ∈ Ass$(R), a submodule M of Rm, and a
sujective module homomorphism

ψ : M ↠ (R/p1)× · · ·× (R/pn).

For each p ∈ Ass$(R), define Ip = {1 ≤ i ≤ n : pi = p}. Notice that a surjective
homomorphism

(R/p1)× · · ·× (R/pn) ↠ (R/p)|Ip|

can be constructed by projecting the i-th component if i ∈ Ip. Composing with ψ,
we have

M ↠ (R/p1)× · · ·× (R/pn) ↠ (R/p)|Ip|.

Since np ∈ NonTorp(R,m), we must have |Ip| ≤ np − 1. Notice that Ip partitions
{1, 2, . . . , n}. It follows that

n = 1 +
!

p∈Ass"(R)

(np − 1) ≥ 1 +
!

p∈Ass"(R)

|Ip| = 1 + n.

This is absurd. □

4.2. Elements in NonTorp(R,m). Theorem 4.10 tells us that NonTor(R,m) is non-

empty if NonTorp(R,m) is non-empty for all p ∈ Ass$(R). The problem becomes

finding elements in NonTorp(R,m) for each p ∈ Ass$(R).
In this subsection, we adopt two approaches to show the existence of elements

in NonTorp(R,m) for classes of Noetherian rings R. One concerns the number of
generators (Definition 2.8) of submodules in Rm and one concerns localisation of
rings.

4.2.1. Number of generators. Notice that if an R-module M is generated by k el-
ements x1, . . . , xk ∈ M , a surjective module homomorphism from Rk to M via
(r1, . . . , rk) '→ r1x1+ · · ·+rkxk can be constructed. Together with Definition 4.8(ii),
we come up with the following observation:

Theorem 4.11. Let R be a ring and m be a positive integer. If any submodule of
Rm can be generated by k elements, then k + 1 ∈ NonTorp(R,m) for any ideal p.

Proof. We prove the theorem by contradiction. Suppose there exists an ideal p in
R, a submodule M of Rm and a surjective module homomorphism

M ↠ (R/p)k+1.

Let x1, . . . , xk generate M and consider the surjective module homomorphism
(r1, . . . , rk) '→

$
rixi. Composing the two homomorphisms give the surjective mod-

ule homomorphism ϕ : Rk ↠ (R/p)k+1.
We claim that p(k) ⊆ kerϕ. To see this, suppose (p1, p2, . . . , pk) ∈ p(k) and write

ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rk where the 1 is in the i-th position for 1 ≤ i ≤ k.
Then

ϕ(p1, p2, . . . , pk) = ϕ

2
k!

i=1

piei

3
=

k!

i=1

piϕ(ei) = 0.
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The claim follows. By first isomorphism theorem, we have a surjection

(R/p)k ∼= Rk/p(k) ↠ Rk/ kerϕ ∼= im ϕ = (R/p)k+1.

Since p ⊆ Ann((R/p)k), we can regard ([2, p.19]) the above R-module homomor-
phism as an R/p-module homomorphism. Applying Proposition 1.1 to the commu-
tative ring R/p implies that k ≥ k + 1, which is absurd. □

Conditions on the ring R should be imposed so that the assumption of Theorem
4.11 is satisfied. The following lemma is inspired by [3].

Lemma 4.12. Let R be a ring and M be an R-module. Suppose all ideals in R can
be generated by g elements. Then if M is generated by m elements, any submodule
of M can be generated by mg elements.

Proof (Altered from [3]). We prove by induction on m. For m = 1, M = Rx for
some x ∈ M . Let N be a submodule of M and note that N = ax where a = {a ∈
R : ax ∈ N} is an ideal of R. By assumption, a is generated by g element and so is
N .

For the inductive step, let M = Rx1 + Rx2 + · · · + Rxm+1 for some
x1, x2, . . . , xm+1 ∈ M . Consider the submodule M1 = Rx2 + · · · + Rxm+1 of
M . Suppose N is a submodule of M and define the submodule N1 = N ∩ M1

of M1. By the inductive hypothesis, N1 can be generated by mg elements. Write
y1, y2, . . . , ymg ∈ N1 be the generators of N1.

By second isomorphism theorem, N/N1 is isomorphic to (N+M1)/M1, which is a
submodule of M/M1. Note that M/M1 is generated the element x1+M1. From the
result for m = 1, N/N1 can be generated by g elements, say z1+N1, z2+N1, . . . , zg+
N1 where z1, z2, . . . , zg ∈ N . We claim that y1, y2, . . . , ymg, z1, . . . , zg ∈ N generate
N . Indeed, if x ∈ N , then x ∈ x + N1 =

$
rizi + N1 for some choice of ri’s since

zi +N1 generates N/N1. Thus x =
$

rizi +
$

sjyj since yj generates N1. Hence,
N is generated by mg + g = (m+ 1)g elements. □

Combining Theorem 4.11 and Lemma 4.12, a simplified condition on Noetherian
rings R with non-empty NonTor(R,m) is found.

Corollary 4.13. Let R be a Noetherian ring and m be a positive integer. Suppose all
ideals in R can be generated by g elements. Then mg|Ass$(R)|+1 ∈ NonTor(R,m).

Proof. Notice that Rm can be generated by m elements. Applying Lemma 4.12 with
M = Rm, all submodules of Rm can be generated by mg elements. By Theorem
4.11, mg + 1 ∈ NonTorp(R,m) for any p ∈ Ass$(R). Theorem 4.10 then implies the
desired result. □

Note that if R is a principal ideal ring (i.e. a ring where all ideals are principal),
then g = 1 in Corollary 4.13. This gives the following special case:

Example 4.14. Let R be a principal ideal ring and m be an integer. By Corollary
4.13, m|Ass$(R)| + 1 ∈ NonTor(R,m). In other words, combining the result with
Theorem 3.13,

m|Ass#(R)| < minNonTor(R,m) ≤ m|Ass$(R)|+ 1.
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In particular, this completely solves the CMO problem, generalised to m equations.
Since R = Z/kZ is a principal ideal ring, we have mω(k) + 1 ∈ NonTor(R,m). On
the other hand, we have mω(k) /∈ NonTor(R,m) by Example 3.14(i). Thus

NonTor(Z/kZ,m) = {n ∈ N : n ≥ mω(k) + 1}.

Remark 4.15. We note here that Corollary 4.13 actually implies a non-trivial result
as a by-product. Namely, it implies that if ideals in R can be generated by g elements,
then

g ≥ |Ass#(R)|
|Ass$(R)|

.

4.2.2. Localisation. From Definition 4.8(i), n ∈ NonTorp(R,m) if and only if any
system of m equations with n variables has a solution x such that one of the coor-
dinates is out of p. As a naive guess, one might be tempted to consider projecting
the system to the integral domain R/p.

This is unfortunately not applicable since we cannot guarantee a solution after
lifting back to R. The issue is explained by the following example.

Example 4.16. Let R = Z/9Z and m = 2. Consider the associated prime p = (3)

and the system represented by L =

%
2 6 3
4 1 2

'
. By projecting the entries onto the

ring R/p ∼= Z/3Z, we obtain a new system represented by

L′ =

%
2 0 0
1 1 2

'
.

It has a non-trivial solution x′ = (0, 1, 1). Yet by directly pulling x′ back to x in
R, we see that

Lx =

%
2 6 3
4 1 2

'.

/
0
1
1

0

1 =

%
0
3

'
∕= 0

As a result, x is no longer a solution to the original system.

In fact, any pull back of a solution x′ from R/p to x in R can only guarantee that
Lx ∈ p(m). It turns out that we have to consider the localisation of R at p instead.

Definition 4.17. Let p be a prime ideal in a ring R. Define the localisation of R
at p, denoted by Rp, to be the ring consisting of equivalence classes a/s where a ∈ R
and s ∈ R \ p with respect to the relation

a/s ≡ b/t ⇔ (at− bs)u = 0 for some u ∈ R \ p.
Addition and multiplication in Rp are given by a/s + b/t = (at + bs)/st and

a/s · b/t = ab/st. In this case, Rp is a local ring with a unique maximal ideal
denoted by pRp = {a/s : a ∈ p, s ∈ R \ p}.

Remark 4.18. Notice that the ring operations in Rp is similar to the usual opera-
tions done on fractions.

The problem on determining NonTorp(R,m) turns out to be equivalent to that
after taking localisation.
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Theorem 4.19. Let p be a prime ideal in the ring R and m be a positive integer.
Then NonTorp(R,m) = NonTorpRp(Rp,m).

Proof. By Definition 4.8(i), it suffices to show that there exists φ ∈ HomR(R
n, Rm)

such that kerφ ⊆ p(n) if and only if there exists φp ∈ HomRp
(Rn

p , R
m
p ) such that

kerφp ⊆ pR
(n)
p .

(⇒) Suppose that φ ∈ HomR(R
n, Rm) is represented by (aij) where aij ∈ R. i.e.,

φ(x1, . . . , xn) =
)!

a1jxj , . . . ,
!

amjxj

*
.

Take φp ∈ HomRp
(Rn

p , R
m
p ) be represented by (aij/1). Suppose

φp(x1/s1, . . . , xn/sn) = 0,

then for all 1 ≤ i ≤ m,

n!

j=1

aij
1

xj

sj
= 0 =⇒ u

n!

j=1

aij

)(

k ∕=j

sk

*
xj = 0, for some u ∕∈ p.

Therefore (us2s3 · · · snx1, us1s3 · · · snx2, . . . , us1s2 · · · sn−1xn) ∈ kerφ ⊆ p(n). As
si /∈ p and u /∈ p, we have xi ∈ p. Hence xi/si ∈ pRp for all 1 ≤ i ≤ n.

(⇐) Suppose that φp ∈ HomRp
(Rn

p , R
m
p ) is represented by (aij/sij). Take φ ∈

HomR(R
n, Rm) be represented by (aij ·

&
k ∕=j sik). Suppose φ(x1, . . . , xn) = 0, then

for all 1 ≤ i ≤ m,

n!

j=1

aij

)(

k ∕=j

sik

*
xj = 0 =⇒

n!

j=1

aij
sij

xj

1
= 0.

Therefore (x1/1, . . . , xn/1) ∈ kerφp ⊆ pR
(n)
p . Hence xi ∈ p for all 1 ≤ i ≤ n. □

From the previous subsection, it is suggested that NonTorpRp(Rp,m) is highly
correlated to the number of generators of ideals in Rp. It turns out that generators
of ideals in local rings have been studied frequently. The following captures some of
the related results.

Definition 4.20. Let R be a ring. Define the length of a chain of prime ideals
p0 ⊂ p1 ⊂ · · · ⊂ pn as the number of strict inclusions, n.

The Krull dimension of R, denoted by dim(R), is defined as the supremum of
the lengths over all chains of prime ideals in R.

For a prime ideal p in R, the height of p, denoted by ht(p), is defined as the
supremum of the lengths over all chains of prime ideals taking the form p0 ⊂ p1 ⊂
· · · ⊂ pn = p.

We quote a well-known result concerning generators of ideals in local rings.

Theorem 4.21. Let R be a local ring with dimR ≤ 1. Then there is a positive
integer g such that all ideals in R can be generated by g elements.

Note that dim(Rp) = ht(p) ([5, p.30]). Utilising this fact and Theorem 4.21, we
can impose a condition on Noetherian rings so that non-torsion numbers exist.
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Theorem 4.22. Let R be a Noetherian ring and m be a positive integer. If ht(p) ≤ 1

for all p ∈ Ass$(R), then NonTor(R,m) is non-empty.

Proof. Since ht(p) = dimRp, by Theorem 4.21 we know there is a non-negative
integer g such that all ideals in Rp can be generated by g elements. Hence by
Lemma 4.12 any submodules of (Rp)

m can be generated by mg elements. Now

notice that Rp is Noetherian. Thus by Theorem 4.11, mg + 1 ∈ NonTorpRp(Rp,m).
This implies that mg+1 ∈ NonTorp(R,m) by Theorem 4.19. The result is followed
by Theorem 4.10. □

As a corollary, we have the following result.

Corollary 4.23. Let R be a Noetherian ring with no embedded associated primes.
Then NonTor(R,m) is non-empty.

Proof. By [2, Proposition 4.6], the minimal associated primes will not contain any
other prime ideals in R. Hence their heights must be 0. Since there are no embedded

primes, Ass$(R) = Ass#(R) and ht(p) = 0 for all p ∈ Ass$(R). Thus NonTor(R,m)
is non-empty by Theorem 4.22. □

However, Theorem 4.22 is more powerful, in the sense that even if the ring has
embedded primes, we can still guarantee a non-torsion number in some cases. Exam-
ple 4.25 illustrates this intuition. Yet it relies on the following well-known theorem,
which is quite useful in computation.

Theorem 4.24 ([8], Krull’s principal ideal theorem). Let R be a Noetherian ring
and (x) be a principal ideal in R. Then the minimal primes of (x) have height at
most 1, i.e. if (x) ⊆ p and no other prime q satisfy (x) ⊆ q ⊂ p, then ht(p) ≤ 1.

As promised, we now give the following familiar example in which Theorem 4.22
can be applied to rings that were not solved before.

Example 4.25. Consider R = K[x, y]/(x2y, xy2) as in Example 3.11 with Ass$(R) =
{(x, y)}. We show that ht((x, y)) = 1, so that NonTor(R,m) is non-empty for any
positive integer m.

Claim. r((x+ y)) = (x, y).

Proof. If p ∈ r((x + y)), then pn ∈ (x + y) for some positive integer n. If p has a
constant term then so does pn, which violates pn ∈ (x+ y). Thus p has no constant
and must be in (x, y).

Conversely, let p ∈ (x, y), which has no constant term. Notice that for integer
n ≥ 3,

x(x+ y)n−1 = xn + (n− 1)xn−1y +
(n− 1)(n− 2)

2
xn−2y2 + · · ·+ xyn−1

which is equal to xn after modulo (x2y, xy2). Since x(x+y)n−1 ∈ (x+y), xn ∈ (x+y)
and yn ∈ (x + y) by symmetry. Thus by taking p3, all terms must have degree at
least 3, so every term must be a multiple of x3, x2y, xy2 or y3. Thus p3 ∈ (x + y)
which implies p ∈ r((x+ y)). □
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Now suppose (x+ y) ⊆ q ⊂ (x, y) for some prime q. By Proposition 2.6, (x, y) ⊆
q ⊂ (x, y) since (x, y) is prime. Contradiction and so (x, y) is a minimal element of
all prime ideals which contain (x + y). Hence Theorem 4.24 applies and (x, y) has
height at most 1, as required.

4.3. A special case: reduced Noetherian rings. The rest of this section is
dedicated to a special class of rings which we have not covered above.

Definition 4.26. A ring R is said to be reduced if it has no non-zero nilpotent
elements.

In this section, we will focus on the class of reduced Noetherian rings.

Proposition 4.27. Let R be a reduced Noetherian ring. Then R has no embedded
associated prime.

Proof. By the reduced condition, the only nilpotent element is 0, i.e. (0) = r(0).
Let (0) =

#
qi be a minimal primary decomposition. Notice that the number of

associated primes n is fixed. Yet by Proposition 2.6,

(0) =
+

qi =
+

r(qi) =
+

pi

gives another primary decomposition of (0) by taking radicals. If there are embedded
associated primes, say p2 ⊂ p1, then there is a primary decomposition with n − 1
components. Contradiction to the minimality of n. □

We now focus on the elements which are in NonTor(R,m), where R is a reduced
Noetherian ring. To proceed, we rely on a characterisation for the localisation to be
a field.

Proposition 4.28. Let R be a reduced Noetherian ring. Then Rp is a field for all
p ∈ Ass(R).

Proof. By Proposition 4.27, p ∈ Ass#(R). Suppose q′ is a prime ideal in Rp. By [2,
Proposition 3.11], the prime ideals in Rp are in one-to-one correspondence with the
prime ideals of R in p. This implies that q′ corresponds to a prime ideal q ⊆ p in R.
Yet by the minimality of p, we have q = p. Thus there is only one prime ideal p in
Rp.

Now, consider the nilradical of Rp, which is just p by [2, Proposition 1.8] as there
is only one prime ideal. However, since R has no nilpotent elements, NRp

= (0) by
[2, Corollary 3.12], i.e. (0) is the only prime ideal in Rp. Thus the maximal ideal in
Rp is (0), and so Rp is a field. □

This solves the entire problem for the class of reduced Noetherian rings:

Corollary 4.29. Let R be a reduced Noetherian ring and m be a positive integer.
Then

NonTor(R,m) = {n ∈ N : n ≥ m|Ass(R)|+ 1}.

Proof. We already know m|Ass(R)| ∕∈ NonTor(R,m) by Proposition 4.27 and Theo-
rem 3.13. Now by Proposition 4.28, Rp is a field, and thus m+1 ∈ NonTor(Rp,m) =
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NonTorpRp(Rp,m) for all p ∈ Ass(R). By Theorem 4.19, m + 1 ∈ NonTorp(R,m).
Thus

|Ass(R)|!

i=1

(m+ 1− 1) + 1 = m|Ass(R)|+ 1

is a non-torsion number by Theorem 4.10, which implies the result. □

5. Further Investigation

The potential of the problem is not limited to rings. Even in the case of Noetherian
rings, we have not fully found NonTor(R,m). Some possible further investigation
on this problem is suggested in this section.

5.1. Conjectures on NonTor(R,m). Of all results we achieved, the focus is solely
on Noetherian rings. Based on the intuition from Section 4, we propose the following
conjecture.

Conjecture 5.1. Let R be a Noetherian ring with finite Krull dimension and m be
a positive integer. Then NonTor(R,m) is non-empty.

Remark 5.2. We specify R to be finite-dimensional since we believe there are rings
which are Noetherian with infinite Krull dimension such that NonTor(R,m) = ∅. For
instance, take R = K[x1, x2, . . .] and prime ideals pi = (x2i−1 , x2i−1+1, . . . , x2i−1) for
positive integers i. Let S be the multiplicative subset

S =

∞+

i=1

R \ pi.

Consider the ring A = S−1R, which is Noetherian by [11]. We suggest that
A/(x1/1, x2x3/1, x4x5x6x7/1, . . .) or similar quotients might be an infinite dimen-
sional Noetherian ring with NonTor(R,m) = ∅. We do not know how to verify this
due to the complicated structure of this ring, so we leave this for further investiga-
tions.

On the other hand, we hope to discuss the case of non-Noetherian rings. By
Example 3.4, there are non-Noetherian rings R with NonTor(R,m) = ∅. However,
we do not expect all non-Noetherian rings to have empty NonTor(R,m). It is hence
natural to characterise what rings R would have empty NonTor(R,m).

Question 5.3. Let R be a ring and m be a positive integer. What does
NonTor(R,m) = ∅ tell about the ring R?

5.2. NonTorR(M,m) for R-module M . We believe that our investigation in Sec-
tion 3 and 4 can be carried to modules. Recall that a solution in a module being
non-torsion means that one of its coordinates is not a torsion element of the module.

Definition 5.4. Let R be a ring and M be an R-module. An element x ∈ M is
called a torsion element of M if there exists non-zero r ∈ R such that rx = 0.
The set of all torsion elements is denoted by T (M).
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Similar to the case of the set of zero-divisors in a ring, T (M) is not a submodule
of M . Yet in the case that R is an integral domain, T (M) forms a submodule of M ,
called the torsion submodule of M .

Unlike the case of rings, it is possible that T (M) = M (in this case M is called
a torsion module). It turns out that in the two extreme cases T (M) = M and
T (M) = 0, we can find their respective minimal non-torsion number quite easily.

Proposition 5.5. Let M be an R-module and m be a positive integer. If T (M) = M ,
then NonTorR(M,m) = ∅.

Proof. All elements are torsion in M , and thus no non-torsion solution exists for any
system. □

Proposition 5.6. Let M be a Noetherian R-module and m be a positive integer. If
T (M) = 0, then NonTorR(M,m) = {n ∈ N : n ≥ m+ 1}.

Proof. Firstly, note thatm ∕∈ NonTorR(M,m) by considering the system represented
by the identity matrix. To show m + 1 ∈ NonTorR(M,m), it suffices to prove that
for all φ ∈ HomR(M

m+1,Mm), kerφ ∕⊆ T (M)n, i.e. kerφ ∕= 0.
Suppose kerφ = 0. By first isomorphism theorem, we have the injective map

Mm+1 ∼= Mm+1/ kerφ ∼= im φ ↩→ Mm,

which is impossible by [1, Lemma 1.36] since Mm is Noetherian. □

Some properties of the set of zero-divisors can be carried over to T (M). For
example, we have the following analogy to Proposition 4.3.

Proposition 5.7. Let M be an R-module with T (M) ∕= M . Then T (M) is a union
of prime submodules.

Here, a submodule P ofM is called a prime submodule if for r ∈ R andm ∈ M ,
rm ∈ P implies m ∈ P or r ∈ {x ∈ R : xM ⊆ P}.

We suspect that analogical results to, for instance Theorem 3.13 and Theorem
4.22 can be deduced. In addition, special cases such as M being a free R-module,
as well as M being a finitely generated module over a PID can be investigated.

6. Conclusion

In this paper, we proposed the problem of finding the minimum integer n such
that every homogeneous system of m equations with n variables over a given ring
has a non-torsion solution. The results are summarised as follows.

As shown in the introductory section, the case of integral domains is immediate
with the help of [1]. By Proposition 1.10, the set of non-torsion numbers is given by
NonTor(R,m) = {x ∈ N : x ≥ m+ 1}. Then, the problem from CMO asked for the
non-torsion numbers in Z/kZ when m = 2. We have NonTor(Z/kZ, 2) = {x ∈ N :
x ≥ 2ω(k) + 1} as given in the solution by [9].

We then moved on to the generalised problem over rings. We divided the problem
into two sub-tasks; one concerns the elements not in NonTor(R,m) and the other
one concerns those that are in NonTor(R,m). They are covered in Section 3 and 4
respectively.
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In Section 3, we made use of the notion of primary decomposition to show that

m|Ass#(R)| ∕∈ NonTor(R,m) for Noetherian rings R. This is proved by giving a
construction and the use of prime avoidance lemma in Theorem 3.13.

In Section 4, we gave equivalent formulations of the problem, which allowed us
to consider individual associated primes instead of the whole set of zero-divisors at
once by Theorem 4.10. This motivated the definition of NonTorp(R,m). We then
approached the sub-problem of finding elements in NonTorp(R,m) by considering
the number of generators of ideals and the localisation of R at p. They gave rich
results on the non-emptiness of NonTorp(R,m) and hence NonTor(R,m).

Combining the results in the two sections, Corollary 4.13 showed that if all ideals
in R can be generated by g elements, then mg|Ass$(R)| + 1 ∈ NonTor(R,m). In
particular, we solved the CMO problem with m equations. We also showed in
Theorem 4.22 that if R is a Noetherian ring such that the heights of all associated
primes are at most one, then NonTor(R,m) is non-empty. At last, for the case
where R is a reduced Noetherian ring, we gave a complete solution to the problem:
NonTor(R,m) = {x ∈ N : x ≥ m|Ass(R)|+ 1}.

Appendix A. Proof of the CMO Problem

The following solution to Question 1.3 is adopted from [9]. Note that since the
solution is posted on a forum, it might contains unclear explanations, gaps and
informal wordings within the proof. We choose not to fix these details to maintain
as much original ideas from the author as possible. The only amendments are of its
format.

The problem is restated here.

Question A.1 (CMO 2021/2). [1.3] Let m > 1 be an integer. Find the smallest
positive integer n, such that for any integers a1, a2, . . . , an; b1, b2, . . . , bn there exists
integers x1, x2, . . . , xn satisfying the following two conditions:

(i) There exists i ∈ {1, 2, . . . , n} such that xi and m are coprime.

(ii)

n!

i=1

aixi ≡
n!

i=1

bixi ≡ 0 (mod m).

Solution to Question 1.3. The answer is 2ω(m) + 1, where ω(m) is the number of
distinct primes dividing m. We say that the integer n is m-friendly if it satisfies the
conditions.

Construction for 2ω(m)

Write m = pk1
1 pk2

2 . . . pkt
t and ω(m) = t. For every s = 1, . . . , t, let ps divide all of

the ai and bi’s except for a2s−1 and b2s. Then x2s−1 and x2s must both be divisible
by ps, so none of the xi’s are coprime to m.

Proof for 2ω(m) + 1
We first prove the following claim:

Claim A.2. For a prime p and a positive integer k, n is p-friendly iff n is pk-
friendly.
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Proof. The reverse implication is obviously true, so we will prove the forward direc-
tion. We want to show that n is pk-friendly, so say that we are given c1, . . . , cn and
d1, . . . , dn.
Induct on k, and we split into four cases:
Case 1: The vectors c = (c1, . . . , cn) and d = (d1, . . . , dn) are linearly independent
in Fn

p . By inductive hypothesis, we assume that

!

i

cixi ≡ apk−1 (mod pk),
!

i

dixi ≡ bpk−1 (mod pk).

Because of our assumption, the matrix
4
c1 c2 . . . cn
d1 d2 . . . dn

5

has rank 2, and the vectors (ci, di) span the space F2
p. Thus, we can also find

y1, . . . , yn with
$

i aiyi ≡ a (mod p) and
$

i biyi ≡ b (mod p). We can then just
take x′

i = xi − yip
k−1, and

!

i

cix
′
i ≡ apk−1−apk−1 = 0 (mod pk),

!

i

dix
′
i ≡ bpk−1− bpk−1 = 0 (mod pk).

Case 2: The vectors c and d are both zero mod p. Notice that we can just divide
all ci and di by p to reduce to the inductive hypothesis.

Case 3: c is the zero vector, and d is not all zero. Suppose that entry d1 is not zero
mod p, then by inductive hypothesis, there exist xi such that

!

i

(ci/p)xi ≡
!

i

dixi ≡ 0 (mod pk−1).

We can then just modify x1 by a suitable multiple of pk−1.

Case 4: c and d are both nonzero, and d = λc for some nonzero element λ ∈ Fp. In
this case, suppose di = λci + pℓi. We know that there exist xi (not all divisible by
p) such that

!

i

cixi ≡
!

i

ℓixi ≡ 0 (mod pk−1)

Also, let
$

i cixi ≡ apk−1 (mod pk), and we choose yi such that
$

i ciyi ≡ a
(mod p) (this is possible since there exists a nonzero ci). Let x

′
i = xi−yip

k−1. Then
!

i

cix
′
i ≡ 0 (mod pk)

and
!

i

dix
′
i =

!

i

(λci + pℓi)x
′
i = λ

!

i

cix
′
i + p

!

i

ℓix
′
i ≡ 0 (mod pk).

Having listed all cases, the claim has been proven. □
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Back to the original problem. We take the equations mod pk for each pk || m,
and by the claim above this is equivalent to just taking mod p. The matrix

M =

%
a1 a2 . . . an
b1 b2 . . . bn

'

is a linear map from F2t+1
p to F2

p, so its kernel has dimension at least 2t− 1, which
implies that at most 2 entries have to be zero. Because there are t = ω(m) primes
dividing m, at most 2t entries don’t work, so there exists an entry that could be
coprime to m (we used CRT here). □

Acknowledgements

I hereby show my sincere gratitude to Mr. Mark Lau Tin Wai and Mr. Ernest
Fan Yan Lam for continuous advice and collaborations; without their help, this
paper would not be even close to how it is now. I am also especially thankful to my
supervising teacher, Mr. Lee Ho Fung for supporting me when writing this paper.

References

[1] T. Y. Lam (1999). ‘Lectures on Rings and Modules’ Springer, pp. 9-16.
[2] M. F. Atiyah, I. G. MacDonald (1969). ‘Introduction to Commutative Algebra’ CRC Press.
[3] O. Zariski, P. Samuel (1958). ‘Commutative Algebra’ D. Van Nostrand Company, pp. 246-

247.
[4] J. D. Sally (1978). ‘Numbers of generators of ideals in local rings’ Marcel Dekker, Inc., p. 51.
[5] H. Matsumura (1980). ‘Commutative Ring Theory’ Cambridge University Press, pp. 30-31.
[6] D. D. Anderson, Sangmin Chun (2014). ‘The Set of Torsion Elements of a Module’ Com-

munications in Algebra, 42:4, 1835-1843
[7] R. B. Ash ‘A Course in Commutative Algebra’ unpublished, Ch. 1

https://faculty.math.illinois.edu/~r-ash/ComAlg/ComAlg1.pdf

[8] M. Hochster ‘Dimension theory and systems of parameters’ unpublished, p. 1.
http://www.math.lsa.umich.edu/~hochster/615W10/supDim.pdf

[9] Idio-logy (Nov 25 2020). ‘m divides linear sum of sequences’ Art of Problem Solving.
https://artofproblemsolving.com/community/c6h2353705p19100643

[10] Mec, Alex Becker (May 28 2012). ‘When the localization of a ring is a field’ Mathematics
StackExchange. https://math.stackexchange.com/questions/150892/when-the-localization-of-a-ring-is-a-field

[11] Stack Project. ‘A Noetherian ring of infinite dimension’ Section 108.15.
https://stacks.math.columbia.edu/tag/02JC



REVIEWERS’ COMMENTS

This paper was reviewed by three experts on representation theory and alge-
braic geometry. All three reviewers were highly impressed by the quality and depth
of this paper, and by the fact that the author was just a high school student. The
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