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Abstract. In this project, we give an explicit construction of positive defi-

nite quadratic forms of arbitrary dimension by using a family of real analytic

functions whose coefficients in their Taylor expansions are strictly positive.
We also prove a variant result that allows the construction if the number of

positive coefficients has a positive upper density.

1. Acknowledgement

In this project, there are several people giving assistance to my work. Without
their contributions and efforts, this project will never be completed so successfully.
Now I would like to express my sincere gratitude to them:

Firstly, my teacher advisor, Mr. Yan Ching Chan, plays an important role in the
whole project. Not only did he encourage me to participate in this biannual event,
he also held several meetings with me to discuss the content and directions of the
project. At the meetings, I usually presented my work to him and he asked me
some questions in order to strengthen our understandings to the content as well as
giving me some useful feedback.

In addition to Mr.Chan’s contributions, what is equally noteworthy is the assistance
from Mr. Kwok Wing Tsoi. He gave me an inspiring initial problem and edited the
project in latex so that it looks more decent and clear. What’s more, he spotted two
mathematical errors in the project when proofreading it. Also, his mathematical
expertise is of great help to me when I faced with difficulties.

145



146 CHAK HIM AU

Moreover, Mr. Hok Kan Yu, also lent me a helping hand in the project. He was the
one who taught me how to use latex. Without his patience and clear illustration,
I can never master latex within such a short period of time.

2. Introduction and Main Results

2.1. Motivations: Quadratic Functions in One Variable

Let us first recall some elementary theory of quadratic functions. Suppose we are
given a function f : R→ R defined by

f(x) = ax2 + bx+ c

for some fixed real numbers a, b, c with a > 0. It is known that f(x) always non-
negative (indeed almost always positive) if its discriminant ∆(f) = b2 − 4ac < 0.
The underlying principle of discriminant is the trick of completing-the-square.
i.e. we can rewrite

f(x) = a
(
x− b

2

)2

+
(
− ∆(f)

4a

)
.

[See reviewer’s comment (2)]
If we put x = X1/X2 and define F : R2 → R by

F (X1, X2) = X2
2f(x) = aX2

1 + bX1X2 + cX2
2 ,

then the theory of quadratic functions immediately tells us that

Lemma 1. If a > 0 and ∆(f) = b2 − 4ac < 0, then

1 F (X1, X2) ≥ 0 for all X1, X2 ∈ R
2 F (X1, X2) = 0 if and only if X1 = X2 = 0.

For functions that satisfy the above properties in the above lemma, they are called
positive-definite. In other words, the theory of quadratic functions provides us an
easy criterion to choose a, b, c ∈ R such that the associated function F (X1, X2) =
aX2

1 + bX1X2 + cX2
2 is positive-definite.

The analysis above can be regarded as a two-dimensional story of quadratic forms.
In general, if we fix a positive integer n and consider a quadratic form (the termi-
nology will be made precise in the following chapters) Q : Rn → R defined by

Q(x1, x2, . . . , xn)
∑

1≤i≤n

∑

1≤j≤n
aijXiXj

[See reviewer’s comment (3)]
for some fixed aij ∈ R, basic linear algebra allows us to generalise the trick of
completing square and determine whether Q is positive-definite, as in the two-
dimensional case. In other words, once we have fixed some aij , it is known how
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to determine whether Q is positive-definite. However, one may ask if there is a
converse construction. More explicitly,

Is there a systematic way to choose the coefficients aij such that Q is
positive-definite?

In this project, we are going to discuss the above question and ultimately provide
a concrete construction of a family of such quadratic forms. We will also see that
such construction allows us to prove a family of non-trivial inequalities.

2.2. Main Results

In this section, we record the main results of this project.

Theorem 2. Fix any positive integer n. Let K(x) =
∑∞

k=0 akx
k be a real analytic

function with all ai > 0 and radius of convergence R. If α1, α2, . . . , αn are pairwise
distinct real numbers in the range (−

√
R,
√
R), then the quadratic form QK : Rn →

R [See reviewer’s comment (4)]

QK(X1, X2, . . . , Xn) =
∑

1≤i≤n

∑

1≤j≤n
K(αiαj)XiXj

is positive-definite; in other words, we have

QK(X1, X2, . . . , Xn) > 0

unless X1 = X2 = . . . = Xn = 0.

Example 3. Consider the function K : (−1, 1)→ R given by

K(x) =
1

1− x =
∞∑

k=0

xk.

This has radius of convergence 1. Then Theorem 2 asserts that for any fixed positive
integer n and α1, α2, . . . , αn ∈ (−1, 1) which are pairwise distinct, we have

∑

1≤i≤n

∑

1≤j≤n

1

1− αiαj
XiXj > 0

for any X1, X2, . . . , Xn ∈ R unless X1 = X2 = . . . = Xn = 0.

Example 4. Consider the exponential function exp : R → R whose radius of
convergence is ∞. Recall that

exp(x) =

∞∑

k=0

1

k!
xk.

Then Theorem 2 asserts that for any fixed positive integer n and α1, α2, . . . , αn ∈ R
which are pairwise distinct, we have

∑

1≤i≤n

∑

1≤j≤n
exp(αiαj)XiXj > 0
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for any X1, X2, . . . , Xn ∈ R unless X1 = X2 = . . . = Xn = 0.

In addition to Theorem 2, we also prove the following variant version of it in Chapter
5 which allows construction of positive definite quadratic forms via a wider family
of analytic functions with humble additional hypothesis on the choice of αi’s.

Theorem 5. Fix any positive integer n. Let K(x) =
∑∞

k=0 akx
k be a real analytic

function with ak ≥ 0 for all k and radius of convergence R. Define the set

HK = {k ∈ N ∪ {0} : ak > 0}.
If HK has positive upper density, then for any α1, α2, . . . , αn ∈ (−

√
R,
√
R) such

that

1 αi 6= 0 for all i = 1, 2, . . . , n and

2 |αi| 6= |αj | for any i 6= j,

then the quadratic form QK : Rn → R given by

QK(X1, X2, . . . , Xn) =
∑

1≤i≤n

∑

1≤j≤n
K(αiαj)XiXj

is positive definite.

We will explain the terminology of Theorem 5 in Chapter 5 of this report. Roughly
speaking, it says that if there are ”sufficiently many” non-zero coefficients in the
Taylor expansion of K(x), then one can build a positive definite quadratic form in
almost the same spirit of Theorem 2.

2.3. Outline of the Report

In this chapter, we have recorded the main results of the project. In order to make
this report self-contained, we, in Chapter 3, are going to review the classical results
from linear algebra and analysis that are essential in the proof of our main results.
In particular, we will cite all the necessary results from quadratic forms and Hilbert
spaces. After reviewing all the necessary background results, we are going to prove
our main result (Theorem 2) in Chapter 4. In Chapter 5, we discuss a possible
variant of our main result (Theorem 5) and give a proof of it using some classical
results from additive combinatorics.

3. Background in Algebra and Analysis

In this chapter, we are going to give all the necessary background from algebra and
analysis. We will state most of these standard results without proofs but illustrate
them with explicit examples. The proofs of these results can be found in [1] or [3].
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3.1. Quadratic Forms and Symmetric Matrices

Definition 6. Let n ≥ 1 be an integer. A quadratic form of dimension n is a
function Q : Rn → R of the form

Q(X1, X2, . . . , Xn) =
n∑

i=1

n∑

j=1

aijXiXj

for some real numbers aij. In other words, it is a homogeneous polynomial of degree
2 in n variables.

Example 7. Q1(x) = 5x2 is a unary quadratic form whereas Q2(x, y) = 6x2 +
4xy − y2 is a binary quadratic form.

Definition 8. Let Q : Rn → R be a quadratic form.

1. Q is called positive semi-definite if Q(X1, X2, . . . , Xn) ≥ 0 for any X1,X2,. . .,
Xn ∈ R.

2. Q is called positive definite if it is positive semi-definite and
Q(X1, X2, . . . , Xn) = 0 if and only if X1 = X2 = . . . = Xn = 0.

Example 9. The binary quadratic form Q1(x, y) = x2 + y2 is clearly positive
definite. However, the quadratic form Q2(x, y) = x2 is positive semi-definite but
not positive definite; for example, we have Q2(0, 1) = 0.

Recall that a square matrix A is called symmetric if AT = A where AT is the
transpose of A. For any quadratic form Q : Rn → R, we can associate a symmetric
matrix with it as follows;

Q(X1, X2, . . . , Xn) =
n∑

i=1

n∑

j=1

aijXiXj 7−→ AQ = (αij)1≤i,j≤n,

where αij =
aij+aji

2 for all 1 ≤ i, j ≤ n. Conversely, given a n-by-n symmetric
matrix A, we can obtain a quadratic form QA of dimension n by defining

QA(X1, X2, . . . , Xn) = xTAx,

where xT = (X1, X2, . . . , Xn).

Example 10. For A =

(
2 1
1 2

)
, its associated quadratic form is QA(x, y) = 2x2 +

2xy + 2y2. On the other hand, the symmetric matrix associated with the quadratic

form Q(x, y) = x2 + 4xy + 2y2 is

(
1 2
2 2

)
.

We say that a symmetric matrix A positive (semi)-definite if its associated quadratic

form is also positive (semi)-definite. For example, the identity matrix I2 =

(
1 0
0 1

)

is positive-definite whereas

(
1 0
0 0

)
is only positive semi-definite.
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Let A be a n-by-n square matrix. Recall that λ ∈ C is called an eigenvalue of A if
there exists a non-zero v ∈ Cn such that Av = λv. Rearranging the equation gives
(A − λIn)v = 0. Since v 6= 0, we observe that λ ∈ C is an eigenvalue of A if and
only if λ satisfies det(A− λIn) = 0.

Example 11. Let A =

(
2 1
1 2

)
. Since det(A−xI2) = x2−4x+3 = (x−1)(x−3).

The eigenvalues of A are 1 and 3.

We record here a central result about real symmetric matrices.

Theorem 12. Let A be a symmetric matrix whose entries are real numbers. Then

1. All eigenvalues of A are real.
2. There exists a real invertible matrix P such that P−1AP is a diagonal matrix

whose diagonal entries consist of all the eigenvalues of A.

Proof. See [1].

Example 13. Let P =

(
1 1
1 −1

)
. Since its determinant is -2, it is invertible and

P−1AP = 1
−2

(
−1 −1
−1 1

)(
2 1
1 2

)(
1 1
1 −1

)
=

(
3 0
0 1

)
, which is a diagonal matrix

whose diagonal entries consist of all the eigenvalues of A.

Indeed, the second part of Theorem 12 can be regarded as a generalisation of the
trick of completing-the-square for binary quadratic forms. One immediate corollary
is that one can determine the definiteness of a quadratic form completely from the
signs of the eigenvalues of its associated symmetric matrix.

Corollary 14. Let A be a real symmetric matrix. Then

1. A is positive semi-definite if and only if all its eigenvalues are non-negative.
2. A is positive definite if and only if all its eigenvalues are positive.

Example 15. Let A =

(
2 1
1 2

)
. Since the eigenvalues of A are 1 and 3 which are

both positive, the associated quadratic form QA(x, y) = 2x2 + 2xy + 2y2 is positive
definite.

Since eigenvalues of a matrix A are roots of the polynomial fA(x) = det(A − xI),
the product of all eigenvalues is given by the constant term of this polynomial
fA(0) = det(A). Therefore, combining Corollary 14 with this observation, we
have the following.

Corollary 16. Let A be a real symmetric matrix. Then A is positive definite if
and only if A is positive semi-definite and invertible.
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3.2. Inner Products and Hilbert Spaces

In this section, we let V be a real vector space.

Definition 17. An inner product on the vector space V is a function 〈·, ·〉 : V ×V →
R such that for any x, y, z ∈ V , we have

1. 〈x, y〉 = 〈y, x〉,
2. 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉,
3. 〈x, x〉 ≥ 0. Moreover, 〈x, x〉 = 0 if and only if x = 0.

Example 18. On the Euclidean space Rn, an inner product is given by the standard
scalar product, namely

〈(x1, x2, · · · , xn), (y1, y2, · · · , yn)〉 = x1y1 + x2y2 + · · ·+ xnyn.

Example 19 (l2-space). Define the space of square-summable sequences

l2(R) =

{
(ai)

∞
i=0 : ai ∈ R and

∞∑

i=1

a2
i converges

}
.

This is a real vector space with an inner product given by

〈(ai)∞i=0, (bi)
∞
i=0〉 =

∞∑

i=0

aibi

for any (ai)
∞
i=0, (bi)

∞
i=0 ∈ l2(R). Note that the infinite summation on the right

hand side converges because the AM-GM inequality says aibi ≤
a2
i + b2i

2
for all

i = 0, 1, 2, . . . and the sequences (ai)
∞
i=0, (bi)

∞
i=0 ∈ l2(R). [See reviewer’s comment

(5)]

For a real vector space V with an inner product 〈·, ·〉, one can associate a distance
function with it by defining

d(x, y) =
√
〈x− y, x− y〉.

For example, on the Euclidean space Rn with the standard scalar product, the
associated distance function is the usual Euclidean distance given by

((x1, x2, · · · , xn), (y1, y2, · · · , yn)) =

√√√√
n∑

i=0

(xi − yi)2.

[See reviewer’s comment (6)] A so-called real Hilbert space is a real vector space
with an inner product which satisfies a strong analytic property with respect to
its associated distance function: any Cauchy sequence converges in the space with
respect to the associated distance function. The slogan is

A Hilbert Space is an inner product space in which all sequences that should
converge indeed converge.
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We are not going to give a precise definition of a Hilbert space but we should record
the following standard fact from real analysis.

Theorem 20. Both the Euclidean n-space Rn and l2(R) are real Hilbert spaces.

Proof. See [3]

Since in the rest of this report, any Hilbert space would either refers to the Euclidean
space Rn or the sequence space l2(R), it is safe to bear no more than these two
examples in mind to read the rest of this report. We end this section with a main
theorem that is useful to us concerning Hilbert spaces.

Definition 21. Fix any n and X ⊂ Rn be closed. A function K : X ×X → R is
called a Hilbert function if there exists a function φ : X → W where W is a real
Hilbert space such that

K(x1, x2) = 〈φ(x1), φ(x2)〉W ,
where 〈·, ·〉W is the inner product endowed by W.

Example 22. Let W = R2 with the standard inner product. The function K :
R2 → R

K((x1, x2), (y1, y2)) = x1y1 + x2y2 = 〈(x1, y1), (x2, y2)〉W
is a Hilbert function by taking φ : R2 →W to be the identity map.

Theorem 23 (Mercer). Fix any n and X ⊂ Rn be closed. A function K : X×X →
R is a Hilbert function if and only if for any positive integer m and arbitrary real
numbers α1, α2, . . . , αm, the matrix




K(α1, α1) K(α1, α2) · · · K(α1, αm)
K(α2, α1) K(α2, α2) · · · K(α2, αm)

...
...

. . .
...

K(αm, α1) K(αm, α2) · · · K(αm, αm)




is positive semi-definite.

3.3. Special Matrices and Properties

In this last section, we cite two results from linear algebra concerning matrices of
special forms.

Theorem 24 (Vandermonde). Let a1, a2, . . . , an be complex numbers. Then we
have

det




1 a1 a2
1 · · · an−1

1

1 a2 a2
2 · · · an−1

2
...

...
. . .

...
1 an a2

n · · · an−1
n


 =

∏

1≤i<j≤n
(xj − xi).
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[See reviewer’s comment (7)]

Proof. See [1]

Theorem 25. Let V be a real vector space with an inner product 〈·, ·〉. For any
fixed n and v1, v2, . . . , vn ∈ V , the matrix




〈v1, v1〉 〈v1, v2〉 · · · 〈v1, vn〉
〈v2, v1〉 〈v2, v2〉 . . . 〈v1, v1〉

...
...

. . .
...

〈vn, v1〉 〈vn, v2〉 · · · 〈vn, vn〉




is invertible if and only if v1, v2, . . . , vn are linearly independent in V .

[See reviewer’s comment (8)]

4. Proof of the Main Result

We recall the main theorem of this report.

Theorem 26 ((Theorem 2)). Fix any positive integer n. Let K(x) =
∑∞

k=0 akx
k

be a real analytic function with all ak > 0 and radius of convergence R. If α1,
α2,. . .,αn are pairwisely distinct real numbers in the range (−

√
R,
√
R), then the

quadratic form QK : Rn → R

QK(X1, X2, . . . , Xn) =
∑

1≤i≤n

∑

1≤j≤n
K(αiαj)XiXj

is positive-definite; in other words, we have

QK(X1, X2, . . . , Xn) > 0

unless X1 = X2 = . . . = Xn = 0.

The proof occupies the rest of this chapter.

4.1. Proof of Theorem 2

Let K(x) =
∑∞

k=0 akx
k be a real analytic function with all ak > 0 whose ra-

dius of convergence equals to R (possibly infinite). Fix a positive integer n and

α1, α2, . . . , αn be distinct real numbers in (−
√
R,
√
R).

First we observe that since by hypothesis ak > 0 for all k = 0, 1, 2, . . . , for any
1 ≤ i, j ≤ n, we can rewrite

K(αiαj) =
∞∑

k=0

ak(αiαj)
k =

∞∑

k=0

(
√
akαi)

k(
√
akαj)

k. (1)
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[See reviewer’s comment (9)]
We also note that for any 1 ≤ i ≤ n, the infinite sum

∞∑

k=0

((
√
akαi)

k)2 =
∞∑

k=0

ak(α2
i )k = K(α2

i ) (2)

[See reviewer’s comment (10)]
converges because α2

i ∈ (−R,R) and the radius of convergence of K(x) equals to
R. Write

W = l2(R) =

{
(ai)

∞
i=0 : ai ∈ R and

∞∑

i=1

a2
i converges

}
.

be the Hilbert space of square-summable sequences (See Example 19). Define ε > 0
to be any positive real numbers small enough such that all αi’s are contained in the
closed interval [−

√
R+ε,

√
R−ε]. Now we define a function φ : [−

√
R+ε,

√
R−ε]→

l2(R) by

x 7−→ (
√
a0,
√
a1x,
√
a2x

2, . . . ,
√
akx

k, . . .)

This function is well-defined (i.e. the image is indeed square-summable) by the
convergence analysis in (2) above. As a result, combining with (1), we can rewrite

K(αiαj) =
∞∑

k=0

ak(αiαj)
k = 〈φ(αi), φ(αj)〉W (3)

for any 1 ≤ i, j ≤ n. Now we consider the quadratic form

QK(X1, X2, . . . , Xn) =
∑

1≤i≤n

∑

1≤j≤n
K(αiαj)XiXj .

The symmetric matrix associated with the quadratic form is

AK =




K(α2
1) K(α1α2) · · · K(α1αn)

K(α2α1) K(α2
2) · · · K(α2αn)

...
...

. . .
...

K(αnα1) K(αnα2) · · · K(α2
n)




Now, using (3), we can rewrite this matrix as

AK =




〈φ(α1), φ(α1)〉W 〈φ(α1), φ(α2)〉W · · · 〈φ(α1), φ(αn)〉W
〈φ(α2), φ(α1)〉W 〈φ(α2), φ(α2)〉W · · · 〈φ(α2), φ(αn)〉W

...
...

. . .
...

〈φ(αn), φ(α1)〉W 〈φ(αn), φ(α2)〉W · · · 〈φ(αn), φ(αn)〉W


 . (4)

Therefore, by Mercer’s Theorem (Theorem 23), we deduce that the matrix AK is
positive semi-definite. Last but not least, we are going to prove the following.

Claim 27. The matrix AK is invertible.

Proof of Claim. By using (4) and Theorem 25, the claim is equivalent to proving
that φ(α1), φ(α2), . . . , φ(αn) are linearly independent in the space l2(R).
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Suppose λ1, λ2, . . . , λn are real numbers such that

λ1φ(α1) + λ2φ(α2) + . . .+ λnφ(αn) = 0 (5)

where 0 ∈ l2(R) denotes the zero sequence (0, 0, 0, . . .). Recall that the function φ
is given by

x 7−→ (
√
a0,
√
a1x,
√
a2x

2, . . . ,
√
akx

k, . . .)

If we expand the left hand side of (5),we have
(√

a0

n∑

i=1

λi,
√
a1

n∑

i=1

λiαi, . . . ,
√
ak

n∑

i=1

λiα
k
i , . . .

)
= 0. (6)

By equating the first n terms of (6), we have

√
a0

n∑

i=1

λi =
√
a1

n∑

i=1

λiαi = . . . =
√
an−1

n∑

i=1

λiα
n−1
i = 0.

Since, by hypothesis, we have a0, a1, . . . , an−1 are all positive. This reduces to a
system of linear equations in λi’s as follow

n∑

i=1

λi =
n∑

i=1

λiαi = . . . =
n∑

i=1

λiα
n−1
i = 0.

We can rewrite this system of equations in the matrix form as follows.



1 1 1 · · · 1
α1 α2 α3 · · · αn

α2
1 α2

2 α2
3 · · · α2

n
...

...
...

. . .
...

αn−1
1 αn−1

2 αn−1
3 · · · αn−1

n




=




λ1

λ2

λ3

...
λn




=




0
0
0
...
0




(7)

By Theorem 24 (Vandermonde), the square matrix in the left hand side of (7) had
determinant

∆ =
∏

1≤i<j≤n
(αj − αi).

In particular, by hypothesis, the αi’s are chosen to be pairwise distinct. As a result,
the determinant ∆ is non-zero. Hence, the homogeneous system (7) has only trivial
solution, namely,

λ1 = λ2 = λ3 = . . . = λn = 0.

This proves that φ(α1), φ(α2), . . . , φ(αn) are linearly independent in l2(R) and hence
the result follows by Theorem 25.

Since the matrix AK is

• positive semi-definite by Mercer’s Theorem (Theorem 23) and
• invertible (by Claim),

we conclude that AK is positive definite by Corollary 16. This finishes the proof of
Theorem 2.
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5. Variants of the Main Result

In this last chapter, we are going for possible generalisations of our main result. Our
main result (Theorem 2) requires the Taylor series K(x) to satisfy a rather strong
hypothesis: we require all the coefficients in the Taylor expansion of K(x) to be
positive. For example, our main result is not applicable to the function K : R→ R
given by

K(x) = x exp(x) =
∞∑

k=1

1

(k − 1)!
xk.

However, we shall see that for any fixed positive integer n, if we choose any non-
zero pairwise distinct real numbers α1, α2, . . . , αn, the quadratic form

QK(X1, X2, . . . , Xn) =
∑

1≤i≤n

∑

1≤j≤n
K(αiαj)XiXj

is indeed positive definite. More generally, we shall see that by imposing very mild
hypothesis on the αi’s, we can construct positive definite quadratic form from a
more general family of real analytic functions K(x).

5.1. A Variant Version of Theorem 2

Let us look at the proof of Theorem 2 (See Section 4.1) again. While we were
trying to establish the linear independence of the elements φ(α1), φ(α2), . . . , φ(αn),
we show this by manually chosen to equate the first n-terms of (6). Therefore, it
is rather natural to ask whether we can instead choose any other n terms to equate
to recover the linear independence. It turns out that we can achieve it by sacrificing
some freedom in choosing the terms αi’s.

In particular, we shall prove the following variant of our main result.

Theorem 28 (Theorem 5). Fix any positive integer n. Let K(x) =
∑∞

k=0 akx
k be

a real analytic function with ak ≥ 0 for all k and radius of convergence R. Define
the set

HK = {k ∈ N ∪ {0} : ak > 0}.
If HK has positive upper density, then for any α1, α2, . . . , αn ∈ (−

√
R,
√
R) such

that

1. αi 6= 0 for all i = 1, 2, . . . , n and
2. |αi| 6= |αj | for any i 6= j,

then the quadratic form QK : Rn → R given by

QK(X1, X2, . . . , Xn) =
∑

1≤i≤n

∑

1≤j≤n
K(αiαj)XiXj

is positive definite.



ON HILBERT FUNCTIONS AND POSITIVE-DEFINITE QUADRATIC FORMS 157

We will explain the terminology of this theorem in the following sections.

5.2. Results from Additive Combinatorics

To prove Theorem 28, we need to employ some classical results from additive com-
binatorics. First we shall introduce the notion of density in natural numbers.

Definition 29. Let A be a subset of N ∪ {0}. The upper density of A is given by

d(A) = lim sup
n→∞

|A ∩ {0, 1, 2, 3, . . . , n}|
n

Example 30. Any finite subset of N ∪ {0} has upper density zero.

Example 31. By the Prime Number Theorem, the set of prime numbers also has
upper density zero.

Example 32. Fix a pair of positive integers a and k. Consider the set

A = {k + na : n ∈ N ∪ {0}}
Then it is easy to show that

d(A) =
1

a
> 0

so A has a positive upper density.

The following is a classical result in additive combinatorics regarding behaviour of
positively dense subsets of natural numbers.

Theorem 33 (Szemerédi). Let A be a subset of N∪ {0}. If A has a positive upper
density, then A contains an arithmetic progression of arbitrary length.

Roughly speaking, Szemerédi’s Theorem says that if a subset of natural numbers is
”large enough”, it should contain an arithmetic progression of any specified length.
(indeed, Szemerédi’s Theorem says that such subset would contain infinitely many
arithmetic progressions of any specified length)

5.3. Proof of Theorem 5

Fix a positive integer n. Let K(x) =
∑∞

k=0 akx
k and α1, α2, . . . , αn be as claimed

in the hypothesis of Theorem 28. Following the proof of Theorem 2, if we put
W = l2(R) and define φ as in (3), we can rewrite the matrix associated with the
quadratic form QK as follows.

Ak =




〈φ(α1), φ(α1)〉W 〈φ(α1), φ(α2)〉W · · · 〈φ(α1), φ(αn)〉W
〈φ(α2), φ(α1)〉W 〈φ(α2), φ(α2)〉W · · · 〈φ(α2), φ(αn)〉W

...
...

. . .
...

〈φ(αn), φ(α1)〉W 〈φ(αn), φ(α2)〉W · · · 〈φ(αn), φ(αn)〉W


 . (8)
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Therefore, Mercer’s Theorem (Theorem 23) says that AK is positive semi-definite
and by Corollary 16, it is now sufficient to prove that AK is invertible. In addition,
by Theorem 25, it is equivalent to prove that φ(α1), φ(α2), . . . , φ(αn) are linearly
independent in l2(R).

Suppose λ1, λ2, . . . , λn are real numbers such that

λ1φ(α1) + λ2φ(α2) + . . .+ λnφ(αn) = 0.

Equivalently, it says
(√

a0

n∑

i=1

λi,
√
a1

n∑

i=1

λiαi, . . . ,
√
ak

n∑

i=1

λiα
k
i , . . .

)
= 0. (9)

By hypothesis, the set

HK = {k ∈ N ∪ {0} : ak > 0}.
has positive upper density. Therefore, using Szemerédi’s Theorem (Theorem 33),
HK contains an arithmetic progression of length n. We write

A = {aN + k : N = 0, 1, 2, . . . , n− 1} ⊆ HK

to be such arithmetic progression. By equating the l-th terms of the equation (10)
for all l ∈ A, we obtain a system of linear equations in λi’s as follows.

n∑

i=1

λiα
l
i for all l ∈ A

We can rewrite this system of linear equations in matrix form.



αk
1 αk

2 αk
3 · · · αk

n

αk+a
1 αk+a

2 αk+a
3 · · · αk+a

n

αk+2a
1 αk+2a

2 αk+2a
3 · · · αk+2a

n
...

...
...

. . .
...

α
k+(n−1)a
1 α

k+(n−1)a
2 α

k+(n−1)a
3 · · · α

k+(n−1)a
n







λ1

λ2

λ3

...
λn




=




0
0
0
...
0




(10)

Write MK to be the square matrix that appears on the left of (10). Then by using
Theorem 24 (Vandermonde), we have

det(MK) =
n∏

i=1

αk
i

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1
αa

1 αa
2 αa

3 · · · αa
n

α2a
1 α2a

2 α2a
3 · · · α2a

n
...

...
...

. . .
...

α
(n−1)a
1 α

(n−1)a
2 α

(n−1)a
3 · · · α

(n−1)a
n

∣∣∣∣∣∣∣∣∣∣∣

=
n∏

i=1

(αi)
k

∏

1≤i<j≤n
(αa

j − αa
i )

Now we consider two cases.
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• If a is odd, then we rewrite

det(MK) =
n∏

i=1

αk
i

∏

1≤i<j≤n
αn
i

((
αj

αi

)a

− 1

)
. (11)

Recall that the polynomial xa − 1 has a distinct roots

{exp(2πim/a) : m = 0, 1, 2, . . . , a− 1}.
It is clear that when a is odd, its only real root is 1. Hence the second product
on the right hand side of (11) is non-zero. Moreover, by hypothesis, none of
the αi’s are zeroes. We can conclude that det(MK) 6= 0 and thus the matrix
MK is invertible in this case.
• If a is even, then we can rewrite

det(MK) =
n∏

i=1

αk
i

∏

1≤i<j≤n
(α2

j − α2
i )(αa−2

j + αa−4
j α2

i + · · ·+ αa−2
i ).

Since a is even and none of the αi’s are zero, for any fixed 1 ≤ i < j ≤ n, the
factor

αa−2
j + αa−4

j α2
i + · · ·+ αa−2

i

is always positive. In addition, we also have, by hypothesis, that |αi| 6= |αj |
for any i 6= j. This asserts that det(MK) 6= 0 and thus the matrix MK is
invertible in this case.

In either case, the matrix MK is invertible and thus the only solution to the homo-
geneous system (10) is the trivial one. i.e.

λ1 = λ2 = . . . = λn = 0.

Hence, we have established the linear independence of φ(α1), φ(α2), . . . , φ(αn) and
we are done.
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Reviewer’s Comments

Grammatical mistakes and typos

1 The reviewer has comments on the wordings, which have been amended in
this paper.

2 f(x) = a
(
x+ b

2a

)2
+
(
−∆(f)

4a

)

3 Left hand side should be Q(X1, X2, . . . , Xn)
4 radius of convergence R (possibly +∞)
5 aibi → |aibi|
6 Left hand side should be d((x1, x2, . . . , xn), (y1, y2, . . . , yn))

7 Right hand side should be
∏

1≤i<j≤n
(aj − ai)

8 The last entry on the second row of the matrix should be 〈v2, vn〉.

9 Right hand side should be

∞∑

k=0

(
√
akα

k
i )(
√
akα

k
j ).

10 Left hand side should be
∞∑

k=0

(
√
akα

k
i )2.

Comments

The paper is about constructing positive-definite quadratic forms using real analytic
functions with positive coefficients. The method in the paper is interesting. The
author made use of such a real analytic function to construct an embedding of an
Euclidean space Rn into the Hilbert space l2. The quadratic form is then given by
the pullback of the inner product on l2 under that embedding. The author also
proved a variant result on a wider class of analytic functions using results from
additive combinatorics.

The paper is well-organized with a summary of results, background materials, ex-
amples and proofs of theorems. The last part of the proof of Theorem 5 can be
simplified. It is pretty clear that det(MK) is non-zero from the expression of it
obtained from Theorem 24. There is no need to consider the cases whether a is
even or odd separately.




