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Abstract. In this project, we establish the Sudoku graph by studying the

relationship between Sudoku and graphs with the help of NEPS (Non-complete

Extended P -Sum). The approach is to look for the chromatic polynomial of
the Sudoku graph, so that we can find out the total number of possible solved

Sudoku puzzles. Though the chromatic polynomial of the Sudoku graph is not

presented in this research, we have found some properties of the polynomial
that may provide inspirations for further researches.

1. Introduction

Sudoku, originally named Number Place, is a popular game which can be found
in most newspapers. Researchers have been especially keen on finding the number
of possible Sudoku puzzles, which was proved to be approximately 6.671× 1021 by
Felgenhauer and Jarvis [2] by writing a computer program.

We are greatly interested in this topic, and after reading several papers, it was
discovered that the number of possible Sudoku puzzles can be found by another
approach: relating Sudoku to graph theory. Therefore, we decided to work on the
problem of finding the total number of valid Sudoku puzzles through this approach.

In Sanders paper, the relationship between Sudoku and graph was revealed [5],
which we surprisingly found that Sudoku can be expressed as a graph, denoted
by Sud(n). In Chapter 2, we aim to recall the findings of this relationship. [See
reviewer’s comment (2)]

After reading research about chromatic polynomial, which is defined to be the
possible number of different proper colourings on a graph, we discovered that the
chromatic polynomial of Sud(n) in fact refers to the number of possible Sudoku
puzzles. Therefore, the number 6.671× 1021 can be generated using the chromatic
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polynomial of Sud(n), which we intended to determine in Chapter 3, theoretically.
However, due to the limitation of the power of computers, we are not able to
calculate the chromatic polynomial. As a result, we plan to explore the relationship
between larger graphs and smaller graphs, and find out the properties of chromatic
polynomial, wishing to have a step closer.

2. The Relationship between Sudoku and Graph

2.1. Graph Theory

Definition 1. A graph G = (V (G), E(G)) consists of a non-empty finite set V (G)
of elements called vertices, and a finite set E(G) of unordered pairs of elements
of V (G) called edges. We call V (G) the vertex set and E(G) the edge set of G.
An edge {v, w} is said to join the vertices v and w, and is usually abbreviated to
vw. For example, FIGURE 1 represents the graph G whose vertex set V (G) is
{u, v, w, z}, and whose edge set E(G) consists of the edges uv, uw, vw and wz.
The numbers of elements in V (G) and E(G) are denoted by |V (G)| and |E(G)|
respectively

Figure 1

Definition 2. A subgraph of a graph G is a graph, each of whose vertices belongs
to V (G) and each of whose edges belongs to E(G). Thus the graph in FIGURE 2
is a subgraph of the graph in FIGURE 3.

Figure 2
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Figure 3

Definition 3. If G is a graph with vertices labelled {1, 2, , n}, its adjacency matrix
A(G) is the n× n matrix whose ij-th entry is the number of edges joining vertex i
and vertex j. If, in addition, the edges are labelled {1, 2, ,m}, its incidence matrix
M(G) is the n×m matrix whose ij-th entry is 1 if vertex i is connected to edge j;
and 0 otherwise. FIGURE 4 shows a labelled graph G with its adjacency matrix A
and incidence matrix respectively.

Figure 4

Definition 4. A simple graph1 in which each pair of distinct vertices are adjacent2

is a complete graph. We denote the complete graph on n vertices by Kn. K3 and
K4 are shown in FIGURE 5.

K3 K4

Figure 5

1A Simple graph is a graph that has no loops and no multiple edges.
2Adjacent : Two vertices are adjacent if they are connected with one or more edges.
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Definition 5. Two graphs G1 and G2 are isomorphic (written as G1 ' G2) if
there is a one-one correspondence between the vertices of G1 and those of G2 such
that the number of edges joining any two vertices of G1 is equal to the number of
edges joining the corresponding vertices of G2. Let θ : V (G1) → V (G2) be the
isomorphism, then x1x2 ∈ E(G1) if and only if θ(x1)θ(x2) ∈ E(G2).

2.2. Sudoku

The most common type of Sudoku puzzles consists of a 3×3 arrangement of square
blocks, with 9 cells arranged in 3 × 3 in each square block. Each cell may have a
number ranging from 1 to 9 or may be empty (see FIGURE 6). The objective is
to fill all empty cells with numbers 1 to 9 such that each row, column and block
consists of all 9 numbers from 1 to 9 (see FIGURE 7). [See reviewer’s comment
(3)]

Figure 6. A typi-
cal Sudoku puzzle

Figure 7. A solved
Sudoku puzzle

Sudoku is closely related to graph theory as a Sudoku puzzle can be solved by
considering it as a vertex colouring problem [5], which is the assignment of colours
to the vertices of a graph in a way that no two adjacent vertices have the same
colour. Given a Sudoku graph where all cells are empty, a Sudoku graph Sud(n),
where n4 is the number of cells, can be established by one-to-one mapping from
cells to vertices, adding edges between two vertices if they are in the same row,
column or block (see FIGURE 8). Solving a Sudoku puzzle is the same as colouring
the whole graph with only n2 colours, e.g. the 4× 4 Sudoku puzzle has n = 2, and
it can be solved by filling the puzzle with numbers 1 to 4, i.e. colouring the whole
graph with 22 = 4 colours.
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Figure 8. A partly mapped Sud(2) graph

2.3. NEPS

The NEPS (Non-complete Extended P -Sum) of graphs is a graph product opera-
tion, in which the vertex set of the resulting graph is the product of the vertex sets
of starting graphs under a special basis.

Definition 6. Let B ⊆ {0, 1}n \ {0, · · · , 0} be a set of binary n-tuples3. Given
graphs G1, · · · , Gn where Gi = (V (Gi), E(Gi)). The NEPS of these graphs with
respect to the basis B is the graph G with vertex set V (G) = V (G1)× · · · × V (Gn)
in which two vertices, such as (x1, · · · , xn) and (y1, · · · , yn), are adjacent if and
only if there exists an n-tuple (β1, · · · , βn) ∈ B such that when βi = 0, xi = yi and
when βi = 1, xi is adjacent to yi.

For example, let graph G be the NEPS of G1 and G2 with respect to B =
{(0, 1), (1, 0)}, where V (G1) = {a1, b1, c1} and V (G2) = {a2, b2} (see FIGURE
9).

Figure 9

3Tuple is the number of numbers in each entry in the set, e.g. the set {(1, 7, 4), (6, 7, 3)} has 3

tuples.
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Figure 10

Then V (G) = {(a1, a2), (a1, b2), (b1, a2), (b1, b2), (c1, a2), (c1, b2))}. With basis B =
{(0, 1), (1, 0)}, for example, vertex (a1, a2) is adjacent to (a1, b2), (b1, a2), (c1, a2).
Graph G is shown in FIGURE 10.

Definition 7. For n = 2, commonly used products are the direct sum (or the
Cartesian product) G1 +G2 with B = {(0, 1), (1, 0)} and the direct product (or the
tensor product) G1 ×G2 with B = {(1, 1)}.

2.4. Sudoku and NEPS

It is proved that the Sudoku graph Sud(n) can be represented as NEPS. [1]

Lemma 8. Let n ∈ N and G1 = Kn, G2 = Kn, G3 = Kn, G4 = Kn. If G is the
NEPS of these graphs with basis B = {(0, 1, 0, 1), (1, 1, 0, 0), (0, 0, 1, 1), (1, 0, 0, 0),
(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}, then G ' Sud(n).

Proof. Assume that V (G1) = V (G2) = V (G3) = V (G4) = {1, , n}. Construct a
one-to-one mapping between the 4-tupules in V (G) = {1, , n}4 and the cells of the
Sudoku puzzle by the following method. For each vertex v = (p, q, r, s) ∈ V (G),
associate v with the cell Λv, where p, r index the horizontal and vertical block
number respectively and q, s index the horizontal and vertical position in the block,
i.e. the row number is (p1)n+ q and the column number is (r1)n+ s. For example,
let n = 3 and vertex v = (2, 2, 2, 3). v then lies in the 2nd row of the 2nd horizontal
block and the 3rd column of the 2nd vertical block (see FIGURE 11). The row
number is thus 5 and the column number is 6.
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Figure 11

Let B ⊆ {0, 1}n \ {0, · · · , 0}. Fix a vertex v (say, v = (2, 2, 2, 3)) and some b ∈ B.
Now, consider how b selects the neighbours of v in G.
For q = (1, 1, 0, 0), when v = (2, 2, 2, 3), vertices (1, 1, 2, 3), (1, 3, 2, 3), (3, 1, 2, 3)
and (3, 3, 2, 3) are selected, i.e. the cells that do not lie in the same horizontal
block or the same relative horizontal position in the block as Λv but lie in the same
column as Λv are selected (see FUGURE 12).

Figure 12 Figure 13

Similarly, for q = (0, 0, 1, 0), the cells that do not lie in the same vertical block but
lie in the same relative vertical position in the block and the same row as Λv are
selected (see FIGURE 13). It was found that subset S1 = {(0, 0, 1, 1),
(0, 0, 1, 0), (0, 0, 0, 1)} selects the cells that lie in the same row as Λv; subset S2 =
{(1, 1, 0, 0), (1, 0, 0, 0, ), (0, 1, 0, 0)} selects the cells that lie in the same column as
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Figure 14

Λv and subset S3 = {(0, 1, 0, 1)} selects the cells that lie in the same block as Λv,
excluding Λv itself and the cells selected by S1 and S2. It was observed that S1,
S2 and S3 are in fact the adjacencies of Sud(n) (see FIGURE 14). [See reviewer’s
comment (4)]

3. Chromatic Polynomial

3.1. Definition and Example

Definition 9. Proper colouring refers to the vertex colouring of a graph G such that
any two vertices connected by a common edge have different colours (see FIGURE
15) [3]. The chromatic number, denoted by χ(G), is the least number of colours with
which we can achieve a proper colouring on G. For example, the chromatic number
of complete graph Kn is n, i.e. χ(Kn) = n. The chromatic polynomial, denoted
by chr(G, k) where k represents the number of colours given, is a special function
associated with each graph to count the number of possible different colourings on
a graph with a given number of colours.

For example, for complete graph K4, the chromatic number is 4 and the chromatic
polynomial is k46k3 + 11k26k (see FIGURE 15). [See reviewer’s comment (5)]

It was proved in Section 2.4 that Sudoku graphs can be represented as the NEPS
of certain graphs with a particular basis. Thus, it is observed that by finding the
chromatic polynomial of Sud(n) and letting k = n2 (as solving a Sudoku puzzle is
the same as colouring the whole graph with only n2 colours), the total number of
solved Sudoku puzzles can be found.
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Figure 15. chr(K4, k) = k46k3 + 11k26k

3.2. Deletion-contraction Property

The chromatic polynomial of a graph can be determined by the deletion-contraction
property of a graph [4].

Definition 10. For a graph G = (V (G), E(G)), where i, j ∈ V (G) and e = ij ∈
E(G), the action of unifying vertices i and j into one vertex is named contraction,
denoted by G/e; and the action of deleting the edge e = ij from G is named deletion,
denoted by G\e. (see FIGURE 16).

G

G/e G\e

Figure 16
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Theorem 11. Let G = (V (G), E(G)) be a graph and e be one of its edge, we have
chr(G, k) = chr(G\e, k).

Proof. Consider vertices i and j from V (G) with no edge between i and j. The
colours of i and j would either be different or the same. When i and j have different
colours, adding an edge e = ij does not affect the colouring of all vertices. When i
and j have the same colours, unifying i and j into one vertex, i.e. contracting, also
does not change the colouring. [See reviewer’s comment (6)] The following formula
is thus produced:

chr(G, k) = chr(G+ e, k) + chr(G/e, k).

By substituting G with G\e, which means deleting edge e from G, the formula
becomes

chr(G, k) = chr(G\e, k)− chr(G/e, k).

Theorem 12. Let n be a positive integer, we have the following results:

(1) The chromatic polynomial of an empty graph with n vertices (i.e. null graph
Nn): chr(Nn, k) = kn (see FIGURE 17 for N4).

Figure 17. chr(N4, k) = k4

Proof. Each vertex can be independently coloured by any of the k colours,
giving kn possibilities in total.

(2) The chromatic polynomial of complete graph: chr(Kn, k) = k(k − 1)(k −
2) · · · (k − n+ 1) (see FIGURE 18 for K4)

Proof. All vertices must have different colours. When the first vertex is
coloured by any of the k colours, the second vertex is coloured by any of
the remaining k−1 colours, the third vertex is coloured by any of the remain-
ing k − 2 colours, etc., giving k(k − 1)(k − 2) · · · (k − n + 1) possibilities in
total.
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Figure 18. chr(K4, k) = k(k − 1)(k − 2)(k − 3)

After using the deletion-contraction method for several times, any graph can be
descended into null graphs or complete graphs. Thus, with Theorems 11 and 12,
the chromatic polynomial of a graph can be determined.

For example, for the graph G in FIGURE 19, the chromatic polynomial can be
determined by using deletion-contraction method repeatedly (see FIGURE 20).

Figure 19
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Figure 20

Note that → directs to graphs with deletion, while  directs to graphs with
contraction, e.g. FIGURE 22 refers to G\e and FIGURE 23 refers to G/e. By
chr(G, k) = chr(G\e, k)chr(G/e, k), the chromatic polynomial of G equals the dif-
ference between FIGURE 22 and FIGURE 23. After repeating this process, only
null graphs N5, N4, N3, N2, N1 are left. After counting the number of null graphs
occurred and finding their signs, the chromatic polynomial of G can be calculated.
The count of null graphs equals the number of paths G get to the null graph;
and graphs of deletion have +ve sign while graphs of contraction have ve sign (as
chr(G, k) = +chr(G\e, k)chr(G/e, k)).
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G

Figure 22 Figure 23

Therefore, the chromatic polynomial of G is k5 − 8k4 + 24k331k2 + 14k.

3.3. Examples

As the Sudoku graph Sud(n) is too large to start with, the chromatic polynomials
of some smaller graphs are calculated.

(1) G1 = K1 ×K1, with B = {(1, 1)} (refer to Section 2.3 NEPS)

∵ G1 ' N1

∴ chr(G1, k) = k
(2) G2 = K2 ×K2, with B = {(1, 1)}
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K2 G2

By using the deletion-contraction property (Note that → directs to graphs
with deletion, while 99K directs to graphs with contraction):

∴ chr(G2, k) = chr(N4, k)− 2chr(N3, k) + chr(N2, k) = k4 − 2k3 + k2

(3) G3 = K3 ×K3, with B = {(1, 1)}.
Besides using deletion-contraction method, we can also use Sage Virtual Ma-
chine to construct the graph G and calculate the chromatic polynomial of
G.

∴ chr(G3, k) =k9 − 18k8 + 147k7 − 711k6 + 220k5 − 4545k4 + 5878k3 − 4308k2

+ 1336k
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(4) G4 = K4 ×K4, with B = {(1, 1)}.
The Sage program requires extensive power to construct K4 ×K4. Without
computers that are more powerful, K4 × K4 cannot be constructed, not to
mention calculating its chromatic polynomial.

Sudoku graph Sud(n) is a much larger graph than G4 = K4 × K4, thus it is be-
lieved that the chromatic polynomial of0 Sud(n) cannot be calculated by computer.
Therefore, this research will shift focus to exploring the properties of chr(Sud(n), k),
but not determining the chromatic polynomial of Sud(n) itself.

3.4. Determining chromatic polynomial from lower order to higher order

Theorem 13. Let n be a positive integer, then Kn +Kn is a subgraph of Kn+1 +
Kn+1, and Kn ×Kn is a subgraph of Kn+1 ×Kn+1, that is

(1) Kn +Kn ⊆ Kn+1 +Kn+1 and
(2) Kn ×Kn ⊆ Kn+1 ×Kn+1.
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Proof.

(1) Let V (Kn) = {1, 2, · · · , n}, then V (Kn +Kn) = {(1, 1), (1, 2), (1, 3), · · · ,
(n, n)}. The vertices are adjacent to each other under the basis {(1, 0), (0, 1)},
e.g. vertex (1, 2) is adjacent to (2, 2), (3, 2), · · · , (n, 2) , (1, 1), (1, 3), (1, 4),· · ·
, (1, n), forming 2(n1) edges per vertex. By calculation, the total number of
edges is

n

2
2(n− 1) = n(n− 1).

Let V (Kn+1) = {1, 2, · · · , n+1}, then V (Kn+1+Kn+1) = {(1, 1), (1, 2), (1, 3),
· · · , (n + 1, n + 1)}. Consider only the vertices {1, 2, · · · , n} in Kn+1, these
vertices would form vertices {(1, 1), (1, 2), (1, 3), · · · , (n, n)} in Kn+1 +Kn+1

and edges under {(1, 0), (0, 1)}. Thus the n(n1) edges in Kn+Kn also appears
in Kn+1 +Kn+1, showing that V (Kn +Kn) ⊆ V (Kn+1 +Kn+1), and E(Kn +
Kn) ⊆ E(Kn+1 +Kn+1). This proves that Kn +Kn ⊆ Kn+1 +Kn+1.

(2) Let V (Kn) = {1, 2, · · · , n}, then V (Kn ×Kn) = {(1, 1), (1, 2), (1, 3), · · · ,
(n, n)}. The vertices are adjacent to each other under basis {(1, 1)}, e.g.
vertex (1, 2) is adjacent to (2, 1), (2, 3), (2, 4), · · · , (2, n) , (3, 1), (3, 3), (3, 4),
· · · , (3, n), · · · By calculation, the total number of edges is n2C2−n(n−1)−1.
Let V (Kn+1) = {1, 2, · · · , n+1}, then V (Kn+1×Kn+1) = {(1, 1), (1, 2), (1, 3),
· · · , (n + 1, n + 1)}. Consider only the vertices {1, 2, · · · , n} in Kn+1, these
vertices would form vertices {(1, 1), (1, 2), (1, 3), · · · , (n, n)} in Kn+1 ×Kn+1

and edges under {(1, 1)}. Thus the n2C2−n(n−1)−1 edges in Kn×Kn also
appears in Kn+1×Kn+1, showing that V (Kn×Kn) ⊆ V (Kn+1×Kn+1), and
E(Kn×Kn) ⊆ E(Kn+1×Kn+1). This proves that Kn×Kn ⊆ Kn+1×Kn+1.

With Theorem 13, it is deduced that the chromatic polynomials of the direct prod-
uct of large complete graphs can be obtained by finding the chromatic polynomials
of direct sum and direct product of small complete graphs first, then using the
deletion-contraction property.
For example,
To find chr(K3 ×K3, k), chr(K2 ×K2, k) is first calculated. From Section 3.3 (2),
chr(K2 × K2, k) = k42k3 + k2. Then, use the deletion-contraction method until
only K2×K2 and null graphs are left (see FIGURE 30).



THE APPLICATION OF GRAPH THEORY TO SUDOKU 337

Figure 30
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As the total number of graphs is too huge (about 40000) to be drawn by hands, the
result is obtained by computer programming. The process in Fig. 3.4.1 is presented
by a table:

Level Sign No. of
graphs

Min. no.
of vertices

Max. no.
of vertices

Min. no.
of edges

Max. no.
of edges

1 1 1 9 9 18 18

2 -1 1 8 8 16 16

2 1 1 9 9 17 17

3 -1 2 8 8 15 15

3 1 2 7 9 14 16

4 -1 4 6 8 11 15

4 1 4 7 9 13 15

Level refers to the number of deletion and contraction used, where K3 ×K3 is in
Level 1. FIGURE 30 has gone through 3 times of deletion-contraction, i.e. the
graph is split to 23 = 8 daughter graphs, and thus it is in Level 4.
Graphs of deletion have +1 sign while graphs of contraction have 1 sign.

The following is the description of the program:
First, populate vertices and edges to construct the K3 ×K3 graph (see FIGURE
31). The first level is thus formed:

Level Sign No. of
graphs

Min. no.
of vertices

Max. no.
of vertices

Min. no.
of edges

Max. no.
of edges

1 1 1 9 9 18 18

Figure 31

The action of contracting an edge (merging two vertices) is done by

1. removing one vertex, e.g. i, and the first edge, e.g. ij, then
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2. replacing one vertex by another, e.g. replacing i by j, for all edges connected
to i. In FIGURE 32, i is replaced by j, so edges ik, im, in are deleted, and
edges jk, jm, jn are constructed (see FIGURE 32).

Figure 32

The sign of the contracted graph is the opposite of the graph of the previous level.

Level Sign No. of
graphs

Min. no.
of vertices

Max. no.
of vertices

Min. no.
of edges

Max. no.
of edges

1 1 1 9 9 18 18

2 -1 1 8 8 16 16

2 1 1 9 9 17 17

The action of deleting an edge is done by removing the first edge from the graph
of the previous level (see FIGURE 33).

Figure 33

The sign of the deleted graph is the same as the graph of the previous level.
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Level Sign No. of
graphs

Min. no.
of vertices

Max. no.
of vertices

Min. no.
of edges

Max. no.
of edges

1 1 1 9 9 18 18

2 -1 1 8 8 16 16

The program repeats the two actions of contracting and deleting until only K2×K2

and null graphs are left:

Level Sign No. of
graphs

Min. no.
of vertices

Max. no of
vertices

Min. no.
of edges

Max. no.
of edges

1 1 1 9 9 18 18

2 -1 1 8 8 16 16

2 1 1 9 9 17 17

3 -1 2 8 8 15 15

3 1 2 7 9 14 16

4 -1 4 6 8 11 15

4 1 4 7 9 13 15

5 -1 8 6 8 10 14

5 1 8 5 9 8 14

6 -1 16 4 8 5 13

6 1 16 5 9 7 13

7 -1 32 4 8 4 12

7 1 32 3 9 3 12

8 -1 64 2 8 1 11

8 1 64 3 9 2 11

9 -1 128 2 8 0 10

9 1 128 1 9 0 10

10 -1 254 2 8 0 9

10 1 254 1 9 0 9

11 -1 488 2 8 0 8

11 1 488 1 9 0 8

12 -1 894 2 8 0 7
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12 1 894 1 9 0 7

13 -1 1516 2 8 0 7

13 1 1516 1 9 0 6

14 -1 2324 2 8 0 5

14 1 2324 1 9 0 5

15 -1 3148 2 8 0 4

15 1 3148 1 9 0 4

16 -1 3606 2 8 0 3

16 1 3606 1 9 0 3

17 -1 2486 2 8 0 2

17 1 3486 1 9 0 2

18 -1 2455 2 8 0 1

18 1 2455 1 9 0 1

19 -1 734 2 8 0 0

19 1 734 1 9 0 0

The K2 ×K2 graph appears in Level 17, being a graph of contraction.
The total number of null graphs is then counted (the first column refers to N1, N2,
· · · , N9):

Null Graph Sign Count

1 1 1336

2 -1 4307

3 1 5876

4 -1 4544

5 1 2220

6 -1 711

7 1 147

8 -1 18

9 1 1



342 JOSEPHINE YIK CHONG LEUNG, WAI SHAN LUI

The chromatic polynomial of K3 ×K3 is therefore

(k9 − 18k8 + 147k7 − 711k6 + 2220k54544k4 + 5876k3 − 4307k2 + 1336k)

− (k4 − 2k3 + k2)

= k9 − 18k8 + 147k7 − 711k6 + 2220k5 − 4545k4 + 5878k3 − 4308k2 + 1336k.

Thus, it is believed that chr(Kn×Kn) can be deduced from chr(Kn−1×Kn−1) for
any integers n ≥ 1 theoretically. This finding greatly reduces the work of deletion-
contraction method.

3.5. Chromatic Polynomials and Chromatic Numbers of Product Graph

Lemma 14. Let H, which is isomorphic to a complete graph Kn, be a subgraph of
G where n is a positive integer. Then the chromatic polynomial of G is divisible by
the chromatic polynomial of H, i.e. chr(H, k)|chr(G, k).

Proof. Let j be any integer such that 0 ≤ j < n. As each vertex in Kn is adjacent to
n1 vertices, the chromatic number of H is n and thus the chromatic number of G is
not less than n. Therefore, when given only j colours, NO proper colouring on G can
be achieved. Hence, when k = j, chr(G, k) = 0 (as chromatic polynomial refers to
the number of possible different proper colourings on a graph). It shows that j is a
root of chr(G, k) = 0 and thus (k−j) is a factor of chr(G, k). Thus, k, (k−1), (k−2),
· · · , (k−n+1) are factors of chr(G, k). As chr(Kn, k) = k(k−1)(k−2) · · · (k−n+1),
chr(H, k)|chr(G, k).

Theorem 15. Let n be a positive integer, we have the following results:

(1) The chromatic polynomial of Kn×Kn is divisible by the chromatic polynomial
of Kn, i.e. chr(Kn, k)|chr(KN ×Kn, k). We define the quotient polynomial
to be fn(k) such that chr(Kn ×Kn, k) = chr(Kn, k)fn(k).

(2) The chromatic polynomial of Kn+Kn is divisible by the chromatic polynomial
of Kn, i.e. chr(Kn, k)|chr(Kn +Kn, k). We define the quotient polynomial to
be gn(k) such that chr(Kn +Kn, k) = chr(Kn, k)gn(k).

Proof. Let Gn ' Kn and V (G1) = (x1, · · · , xn), G2 ' Kn and
V (G2) = (y1, · · · , yn).

(1) With basis B = {(1, 1)}, vertices (x1, y2), (x2, y3), · · · , (xn, y1) are adjacent
to one another. It is observed that these vertices forms Kn, proving that Kn

is a subgraph of Kn ×Kn. Using Lemma 14, chr(Kn, k)|chr(Kn ×Kn, k) is
proved.

(2) With basis B = {(0, 1), (1, 0)}, vertices (x1, yi), (x2, yi), · · · , (xn, yi) are
adjacent to one another. It is observed that these vertices forms Kn, proving
that Kn is a subgraph of Kn + Kn. Using Lemma 14, chr(Kn, k)|chr(Kn +
Kn, k) is proved.
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Definition 16. A Latin square is an n× n matrix filled with n different numbers,
each occurring exactly once in each row and once in each column, e.g. the Latin
square constructed with 1, 2, 3, 4 is




1 2 3 4

4 1 2 3

3 4 1 2

2 3 4 1




The general form of Latin square with 1, 2, · · · , n can be represented by:




a11 a12 · · · a1n

a21 a2n
...

...

an1 an2 · · · ann




Note that a11 = a22 = a33 = · · · = ann = 1; a12 = a23 = a34 = · · · = a(n−1)n =
an1 = 2; a13 = a24 = a35 = · · · = a(n−1)n = an2 = 3;· · · ; a1n = a21 = a32 = · · · =
a(n−1)(n−2) = an(n−1) = n is one of the valid Latin square:




1 2 3 · · · n

n 1 2 · · · n− 1

n− 1 n 1 · · · n− 2
...

...

2 3 4 · · · 1




Theorem 17. The chromatic number of Kn +Kn and Kn ×Kn are both n where
n is a positive integer, that is

(1) χ(Kn +Kn) = n
(2) χ(Kn ×Kn) = n.

Proof. Let G1 ' Kn and V (G1) = (1, · · · , n), G2 ' Kn and V (G2) = (n +
1, · · · , 2n).
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(1) Construct an n× n Latin square with positive integers n+ 1, n+ 2, · · · , 2n.

A =




a11 a12 · · · a1n

a21 a2n
...

...

an1 an2 · · · ann







n+ 1 n+ 2 n+ 3 · · · 2n

2n n+ 1 n+ 2 · · · 2n− 1

2n− 1 2n n+ 1 · · · 2n− 2
...

...

n+ 2 n+ 3 n+ 4 · · · n+ 1




It is noted all entries represents different integers in each row and each column.
Under basis B = {(1, 0), (0, 1)}, vertex (1, a11) is NOT adjacent to (2, a12),
(3, a13), · · · , (n, a1n).
Similarly, for i = 1, 2, · · · , n, vertices In general, vertices (1, ai1) are not
adjacent to (2, ai2), (3, ai3), · · · , (n, ain).
In general, The 1st group of vertices (1, a11), (2, a12), · · · , (n, a1n) are shaded
with colour C1;
The 2nd group of vertices (1, a21), (2, a22), · · · , (n, a2n) are shaded with colour
C2;

...

The nth group of vertices (1, an1), (2, an2), · · · , (n, ann) are shaded with colour
Cn.
Under this colouring scheme, all vertices are shaded with n colours C1, C2, · · · ,
Cn.

For vertices that are adjacent under basis {(0, 1)}, e.g. (i, a1i), (i, a2i), · · · ,
(i, ani), where i = 1, 2, · · · , n, as (i, a1i) is shaded with colour C1, (i, a2i)
is shaded with colour C2, · · · , (i, ani) is shaded with colour Cn, the scheme
ensures that these vertices must have different colours.
For vertices that are adjacent under basis {(1, 0)}, e.g. (1, a11), (2, a22), · · · ,
(n, ann) (Note that a11 = a22 = ann = n+1), as (1, a11) is shaded with colour
C1, (2, a22) is shaded with colour C2, · · · , (n, ann) is shaded with colour Cn,
the scheme ensures that these vertices must have different colours.
Thus, if given n colours to colour the Kn +Kn graph, a proper colouring can
be achieved, proving χ(Kn +Kn) ≤ n.

Moreover, under the basis {(0, 1)}, the vertices (1, a11), (1, a21), · · · , (1, an1)
are adjacent to one another, forming a Kn graph. As χ(Kn) = n, Kn + Kn

cannot be coloured by less than n colours, this proves that χ(Kn +Kn) ≥ n.
As χ(Kn +Kn) ≤ n and χ(Kn +Kn) ≥ n, it is proved that χ(Kn +Kn) = n.

For example, when n = 4, the Latin square is
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


5 6 7 8

8 5 6 7

7 8 5 6

6 7 8 5




The 1st group of vertices (1, 5), (2, 6), (3, 7), (4, 8) are shaded with colour C1;
The 2nd group of vertices (1, 8), (2, 5), (3, 6), (4, 7) are shaded with colour C2;
The 3rd group of vertices (1, 7), (2, 8), (3, 5), (4, 6) are shaded with colour C3;
The 4th group of vertices (1, 6), (2, 7), (3, 8), (4, 5) are shaded with colour C4.
Thus, all vertices are shaded with 4 colours C1, C2, C3, C4.

For vertices that are adjacent under basis {(0, 1)}, e.g. (1, 5), (1, 8), (1, 7),
(1, 6), as (1, 5) is shaded with colour C1, (1, 8) is shaded with colour C2, (1, 7)
is shaded with colour C3, (1, 6) is shaded with colour C4, the scheme ensures
that these vertices must have different colours.
For vertices that are adjacent under basis {(1, 0)}, e.g. (1, 5), (2, 5), (3, 5),
(4, 5), as (1, 5) is shaded with colour C1, (2, 5) is shaded with colour C2, (3, 5)
is shaded with colour C3, (4, 5) is shaded with colour C4, the scheme ensures
that these vertices must have different colours.
Thus, if given 4 colours to colour the K4 +K4 graph, a proper colouring can
be achieved, proving χ(K4 +K4) ≤ 4.
Moreover, under the basis {(0, 1)}, the vertices (1, 5), (1, 8), (1, 7) and (1, 6)
are adjacent to one another, forming a K4 graph. As χ(K4) = 4, K4 + K4

cannot be coloured by less than 4 colours, this proves that χ(K4 +K4) ≥ 4.
As χ(K4 +K4) ≤ 4 and χ(K4 +K4) ≥ 4, it is proved that χ(K4 +K4) = 4.

(2) Under basis B = {(1, 1)}, vertex (1, n+1) is NOT adjacent to (1, n+2), (1, n+
3), · · · , (1, 2n). Similarly, for i = 1, 2, · · · , n, vertices (i, n+1) are not adjacent
to (i, n+ 2), (i, n+ 3), · · · , (i, 2n).
In general,
The 1st group of vertices (1, n + 1), (1, n + 2), · · · , (1, 2n) are shaded with
colour C1;
The 2nd group of vertices (2, n + 1), (2, n + 2), · · · , (2, 2n) are shaded with
colour C2;

...

The nth group of vertices (n, n + 1), (n, n + 2), · · · , (n, 2n) are shaded with
colour Cn.
Thus, all vertices are shaded with n colours C1, C2, · · · , Cn.

For vertices that are adjacent, e.g. (1, n + i), (2, n + i), · · · , (n, n + i), where
i = 1, 2, , n, as (1, n+i) is shaded with colour C1, (2, n+i) is shaded with colour
C2, · · · , (n, n + i) is shaded with colour Cn, the scheme ensures that these
vertices must have different colours. Thus, if given n colours to colour the
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Kn×Kn graph, a proper colouring can be achieved, proving χ(Kn×Kn) ≤ n.
[See reviewer’s comment (7)]

Moreover, under the basis {(1, 1)}, the vertices (1, n+1), (2, n+2), · · · , (n, n+
i) are adjacent to one another, where i = 1, 2, · · · , n, forming a Kn graph. As
χ(Kn) = n, Kn ×Kn cannot be coloured by less than n colours, this proves
that χ(Kn ×Kn) ≥ n.
As χ(Kn×Kn) ≤ n and χ(Kn×Kn) ≥ n, it is proved that χ(Kn×Kn) = n.

For example, when n = 4,
The 1st group of vertices (1, 5), (1, 6), (1, 7), (1, 8) are shaded with colour C1;
The 2nd group of vertices (2, 5), (2, 6), (2, 7), (2, 8) are shaded with colour C2;
The 3rd group of vertices (3, 5), (3, 6), (3, 7), (3, 8) are shaded with colour C3;
The 4th group of vertices (4, 5), (4, 6), (4, 7), (4, 8) are shaded with colour C4.
Thus, all vertices are shaded with 4 colours C1, C2, C3, C4.

Consider any vertices that are adjacent, e.g. (1, 5), (2, 6), (3, 7) and (4, 8), as
(1, 5) is shaded with colour C1, (2, 6) is shaded with colour C2, (3, 7) is shaded
with colour C3, (4, 8) is shaded with colour C4, the scheme ensures that these
vertices must have different colours. Thus, if given 4 colours to colour the
K4×K4 graph, a proper colouring can be achieved, proving χ(K4×K4) ≤ 4.
Moreover, under the basis {(1, 1)}, the vertices (1, 5), (2, 6), (3, 7), (4, 8) are
adjacent to one another, forming a K4 graph. As χ(K4) = 4, K4×K4 cannot
be coloured by less than 4 colours, proving that χ(K4 ×K4) = 4.

4. Conclusion

It is amusing that the relationship between Sudoku and graph theory helps to
find the number of possible Sudoku puzzles. Although the chromatic polynomial
of Sud(n) cannot be calculated due to the lack of a high power computer, the
finding of determining chromatic polynomials from product graph of lower order to
product graph of higher order is of great significance in calculating chr(Sud(n), k),
as it reduces the scale of deletion-contraction method. Furthermore, the proof of
χ(Kn ×Kn) = n gives us a brief picture of how the chromatic number of product
graphs can be determined, thus helping to find the chromatic number of larger
graphs, e.g. Kn ×Kn ×Kn.

For further research, the properties of Kn×Kn×Kn×Kn can be explored, as the
NEPS of Sudoku is in fact Kn × Kn × Kn × Kn under a particular basis. With
advanced technology in the future, the chromatic polynomial ofKn×Kn×Kn×Kn

can be found with extensive power.
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Reviewer’s Comments

Sudoku has been a popular game in recent years and become a fixture in the puzzle
section of many newspapers. The paper under review is motivated by the following
question: how many solved Sudoku puzzles are there in total? This was already
answered by Felgenhauer and Jarvis using computer programming. Nevertheless,
in this paper the authors discuss a graph theoretic approach to this problem using
such concepts as Sudoku graph and chromatic polynomials. They first review ele-
ments of graph theory and in particular an operation called non-complete extended
P -sum (NEPS). Then they describe the construction of the Sudoku graph by ap-
plying suitable NEPSs to copies of complete graphs. Sudoku graph is so named
because the ways of coloring its vertices suitably (called proper colorings) are in
bijective correspondence with all the solved Sudoku puzzles. After showing this
link, the authors discuss chromatic polynomials, which give the number of proper
colorings of graphs in general, and an inductive algorithm of computing them using
contraction and deletion of vertices. Though the authors do not make much head-
way in computing the chromatic polynomial of Sudoku graph due to overwhelming
computational complexity and lack of computer power, they do manage to obtain
some partial results which serve as stepping stones to a complete solution, e.g. an
inductive algorithm of computing the chromatic polynomial of Kn × Kn and the
least number of colors needed to properly color Kn +Kn and Kn ×Kn.

In general the paper is very well-written and a pleasant reading for me. The authors
have done an excellent job in the exposition of various constructions and algorithms
with sufficient illustrations and examples (e.g. the proof of Lemma 8, the expla-
nation on pp.331-333, 335-342 and the proof of Theorem 17). They also put in
some effort in making the paper reader-friendly. For example, they highlight the
terminology they define in bold for the convenience of the (cursory) readers. The
following are some minor problems I found in the paper as well as some suggestions
for improvement.

1. The reviewer has comments on the wordings, which have been amended in
this paper.

2. It is better to say ‘we were surprised to find that...’.
3. It is better to replace this part with a separate mathematical definition of

Sudoku graph Sud(n).
4. It is better to replace ‘are in fact’ by ‘in fact describe’. The sets S1, · · · , S3

are not adjacencies of the graph, but describe the adjacencies.
5. It is better to mention that the polynomial is k(k − 1)(k − 2)(k − 3) because

this factorized form appears again later, e.g. on p.330.
6. It is better to say ‘...does not affect the properness of the colouring of all the

vertices’. The point is that adding an edge still gives a proper colouring. In
the last sentence, again, it is better to say ‘does not change the properness of
the colouring’.
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7. In fact (1, n + i), (2, n + i), · · · , (n, n + i) are NOT adjacent. The authors
should rewrite the whole paragraph and say something along the line: If n
vertices in this graph are adjacent, then they are from different rows and
columns of the array




(1, n+ 1) (1, n+ 2) · · · (1, 2n)

(2, n+ 1) (2, n+ 2) · · · (2, 2n)
...

...
. . .

...

(n, n+ 1) (n, n+ 2) · · · (n, 2n)



.

According to the above colouring scheme, these vertices must have different
colours.




