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Abstract. In this article, the well-known Buffon’s Needle Problem is gener-
alized. Instead of a needle, we consider dropping a triangle or a rhombus onto

a plane with equally-spaced parallel lines and investigate the probability that

the randomly-dropped figure intersects the lines.

1. Introduction

Assume that a “needle” (line segment) of length a is randomly dropped onto
a plane with parallel lines which are separated by a distance d p¡ aq from
each other. The probability P that the needle intersects the lines is given
by

P �
2a

πd
. (1)

This is the answer to the Buffon’s Needle Problem, which was first stated in
1777 and is one of the most famous problems in the field of geometrical
probability [1]. In section 2 of this article, we investigate the modified
problem in which a triangle is dropped instead of a needle. Finally, in
section 3 of this article, we calculate the corresponding probability when a
rhombus is dropped in place of a needle. The results are also verified by
re-establishing (1) as a special case.

1This work is done under the supervision of the authors’ teacher, Mr. Wai-Man Chu.
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2. Dropping Triangles

Assume that a triangle ABC of sides a, b and c p¤ aq is randomly dropped
onto a plane with parallel lines which are separated by a distance d p¡ 2aq
from each other (see Figure 1). Let θ be the acute angle between side a
and the gridline, and y be the distance between B and the next gridline in
direction of

ÝÝÑ
BC.

Figure 1

Since the triangle will intersect the gridlines if and only if at least two of its
sides intersect the gridlines, we have

P p4ABC intersects the gridlinesq

� P pa or c intersects the gridlinesq

� P pa intersects the gridlinesq � P pc intersects the gridlinesq

� P pboth a and c intersects the gridlinesq

�
2a

πd
�

2c

πd
� P pboth a and c intersects the gridlinesq. (by (1))

Now, in order for both a and c to intersect the gridlines, either

(I) c sinpθ �Bq ¡ a sin θ ¡ y or
(II) a sin θ ¡ c sinpθ �Bq ¡ y.

(Note that it is impossible for a and c to intersect two different gridlines as
a � c ¤ 2a   d.) We also observe that when c sinpθ � Bq � a sin θ, AC is
parallel to the gridlines and so θ � C. Hence, c sinpθ�Bq ¡ a sin θ if θ   C
and c sinpθ �Bq   a sin θ if θ ¡ C.
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Therefore, If B is an acute angle,

P pboth a and c intersects the gridlinesq

�

³C
0 a sin θdθ �

³π{2
C c sinpθ �Bqdθ

d � π2

pNote that y ranges from 0 to d and θ ranges from 0 to
π

2
.q

�
ar� cos θsC0 � cr� cospθ �Bqs

π{2
C

πd
2

�
ap1 � cosCq � cpsinB � cosAq

πd
2

.

Hence,

P p4ABC intersects the gridlinesq

�
2a

πd
�

2c

πd
�

2ap1 � cosCq � 2cpsinB � cosAq

πd

�
2a cosC � 2cp1 � sinB � cosAq

πd
.

Similarly, if B is an obtuse angle,

P pboth a and c intersects the gridlinesq

�

³C
0 a sin θdθ �

³π�B
C c sinpθ �Bqdθ

d � π2
pNote that when θ ¡ π �B, c sinpθ �Bq becomes negative.q

�
ar� cos θsC0 � cr� cospθ �Bqsπ�BC

πd
2

�
ap1 � cosCq � cp1 � cosAq

πd
2

.

Hence,

P p4ABC intersects the gridlinesq

�
2a

πd
�

2c

πd
�

2ap1 � cosCq � 2cp1 � cosAq

πd

�
2a cosC � 2c cosA

πd
.

Combining the results, we have the following theorem:

Theorem 1. If a triangle ABC of sides a, b and c p¤ aq is randomly
dropped onto a plane with parallel lines which are separated by a distance d
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p¡ 2aq from each other, then the probability P that the triangle intersects
the lines is given by

P �

$'&
'%

2a cosC � 2cp1 � sinB � cosAq

πd
, if B is acute,

2a cosC � 2c cosA

πd
, if B is obtuse.

(2)

Example 1: When B � C � 0� and A � 180�, the triangle ABC becomes

a “needle” of length a and by (2), P �
2ap1q � 2cp1 � 0 � 1q

πd
�

2a

πd
, which

agrees with (1).

Example 2: When A � C � 0� and B � 180�, the triangle ABC be-

comes a “needle” of length a� c and by (2), P �
2ap1q � 2cp1q

πd
�

2pa� cq

πd
,

which also agrees with (1).

3. Dropping Rhombuses

Assume that a rhombus ABCD of diagonals AC � a and BD � b p¤ aq is
randomly dropped onto a plane with parallel lines which are separated by a
distance d p¡ aq from each other (see Figure 2). Let x be =ACB, θ be the
acute angle between AC and the gridline, and y be the distance between C
and the next gridline in the direction of

ÝÑ
CA.

Figure 2
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Since secx �
BC

a{2
, each side of the rhombus has length

a secx

2
. Hence, the

“vertical” distances between C and the two ends of the diagonal BD are
a secx

2
sinpθ � xq and

a secx

2
sinpθ � xq, as indicated in Figure 2.

Now, since the rhombus will intersect the gridlines if and only if at least
one of its diagonals intersects the gridlines, we have

P prhombusABCD intersects the gridlinesq

� P pAC or BD intersects the gridlinesq

� P pAC intersects the gridlinesq � P pBD intersects the gridlinesq

� P pboth AC and BD intersects the gridlinesq

�
2a

πd
�

2b

πd
� P pboth AC and BD intersects the gridlinesq. (by (1))

In order for both AC and BD to intersect the gridlines, a sin θ ¡ y and
a secx

2
sinpθ � xq ¡ y ¡

a secx

2
sinpθ � xq. (Note that it is impossible for

AC and BD to intersect two different gridlines as b ¤ a   d.) Hence, either

(I)
a secx

2
sinpθ � xq ¡ a sin θ ¡ y ¡

a secx

2
sinpθ � xq or

(II) a sin θ ¡
a secx

2
sinpθ � xq ¡ y ¡

a secx

2
sinpθ � xq.

Therefore,

P pboth AC and BD intersects the gridlinesq

�

³x
0 a sin θdθ �

³π{2
x ta secx

2 sinpθ � xq � a secx
2 sinpθ � xqudθ

d � π2

pNote that y ranges from 0 to d and θ ranges from 0 to
π

2
.q

�
ar� cos θsx0 �

³π{2
x

a secx
2 � 2 cos θ sinxdθ

πd
2

�
ap1 � cosxq �

³π{2
x a cos θ tanxdθ
πd
2

.

�
ap1 � cosxq � a tanxrsin θs

π{2
x

πd
2

�
2ap1 � cosxq � 2a tanxp1 � sinxq

πd
.
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Hence,

P prhombusABCD intersects the gridlinesq

�
2a

πd
�

2b

πd
�

2ap1 � cosxq � 2a tanxp1 � sinxq

πd

�
2a� 2pa tanxq � 2a� 2a cosx� 2a tanx� 2a tanx sinx

πd

�
2a cosx� 2a sinx

cosx sinx

πd

�
2a secx

πd
.

Finally, since each side of the rhombus has length
a secx

2
, we have the

following theorem:

Theorem 2. If a rhombus ABCD is randomly dropped onto a plane with
parallel lines separated by a distance d, which is longer than the diagonals of
ABCD, then the probability P that the rhombus intersects the lines is given
by

P �
Perimeter of the rhombus

πd
. (3)

Example 3: When AB � BC � CD � DA � L and =BCD � 0�, the

rhombus ABCD becomes a “needle” of length 2L and by (3), P �
4L

πd
�

2p2Lq

πd
, which also agrees with (1).
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