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Abstract. In this paper, we propound an efficacious method to derive the
p-adic valuation of the Catalan number by analyzing the properties of the

coefficients in the base p-expansion of n. We unearth a new connection between

those coefficients and the p-adic valuation of the Catalan number. In fact, we
have discovered that the highest power of p dividing the Catalan number is

relevant to the number of digits greater than or equal to half of p + 1, the

nature of distribution of digits equal to half of p − 1 and the frequency of
carries when 1 is added to n. Meanwhile, we remark that the method we

apply is more natural than the current way used by Alter and Kubota which

is quite artificial.
Applications, examples of our new formula and details about Catalan num-

bers are also included in this paper.

1. Introduction

Catalan numbers, denoted by Cn, are a sequence of natural numbers which appear
in many combinatorial and geometric problems, see, for examples, [11] and [16,
Ch. 7]. This number was discovered by the Belgian mathematician Eugene Charles
Catalan (1814-1894) when he studied the well-formed sequences of parentheses,
see [11] and [16, Ch. 7]. Also the numbers were discovered by Euler when he
investigated the problem of the number of triangulations of convex polygons ([8],
[11] and [16, Ch. 7]). A brief history about this number is given in Appendix A.

Here is the definition of Catalan numbers:

Definition 1. Let C0 = 1. For n ≥ 1, we define the Catalan numbers Cn by the
recursion relation

Cn =

n−1∑
k=0

CkCn−1−k = C0Cn−1 + C1Cn−2 + · · ·+ Cn−1C0

29
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By applying the theory of generating functions and Segner’s recurrence formula
[10], Cn can be represented by the following explicit formula:

Cn =
(2n)!

(n+ 1)!n!
=

1

n+ 1

(
2n
n

)
(1)

where

(
n
r

)
denotes the usual binomial coefficient and n! the usual factorial. It is

easy to deduce from the formula 1 that

Cn+1 =
4n− 6

n
Cn

holds for every positive integer n. We note that more classical formulas for Catalan
numbers involving binomial coefficients can be found, for example, in [15].

Besides the study of proving useful identities connecting Cn and the binomial co-
efficient or other important constants, people were also interested in the parity of
Catalan numbers. Let n ≥ 2 be an integer and vp(n), called the p-adic valuation
of n, be the highest power of p dividing n. By this notation, it is well-known that
v2(Cn) = 0 if and only if n = 2k − 1 for some positive integer k. In other words,
we have

2 - C2k−1 (2)

Several proofs of this result can be found in [1], [4], [6], [11] and [17]. For odd
primes p, Alter and Kubota [2, Theorem 1] generalized (1.2) to the following result:

Theorem 2. For odd primes p, we have p - Cpk−1.

They further showed that the set {Bk(p)}, where eachBk(p) denotes the consecutive
Catalan numbers which are multiples of p, forms into blocks. The lengths and
positions of each Bk(p) are fully determined, see [2, Theorems 2, 3 & 5]. The
main tool they applied is to consider Lemma 1 in [2]. In fact, they considered an
associated sequence {cn} of {Cn}. Then they obtained a recurrence relation of cn
which involves a fraction. Next, by analyzing the factors of the denominator and
numerator of such fraction, they were able to determine the relationship between
vp(Cn−1) and vp(Cn−spm−1), where spm ≤ n < (s + 1)pm for integers m ≥ 0 and
0 < s < p. Furthermore, they expressed Lemma 1 in the following useful form [2,
Theorem 7] and applied it to prove other interesting results [2, Theorems 8 & 9].

Theorem 3. Suppose that n = rmp
m + · · ·+ r1p+ r0 where 0 ≤ r0, r1, . . . , rm < p.

For every i = 0, 1, . . . ,m, we set ni = rip
i + · · ·+ r1p+ r0 and

εi =

{
1, if ni ≥ pi+1+1

2 ;

0, otherwise

Then we have vp(Cn−1) =

m∑
i=0

εi.
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Now Theorem B gives a way to find vp(Cn) in terms of the ni defined in it. However,
the weakness of Theorem B is that such ni and εi are constructed quite artificial.
Thus one may ask: Does there exist any “natural” formula to find up(Cn)? To
overcome this problem, it seems to the authors that Deutsch and Sagan [5,Theorem
2.1] are the first to answer this problem partially in 2006. In fact, they applied the
theory of group actions to show that the largest power of 2 dividing the Catalan
number Cn, namely v2(Cn), is given by

v2(Cn) = δ2(n+ 1)− 1, (3)

where δ2(n) is the sum of the digits in the base-2 expansion of n. By the formula
(3), one may wonder the existence of a connection between vp(Cn) and the digits of
n for odd primes p. This kind of wonders gives birth to the paper you are reading.

In this paper, we investigate the divisibility of the Catalan numbers Cn by the odd
prime p. In fact, we can find an explicit form of a greatest integer function by using
Hermite’s identity as the key. This gives a new method to establish a formula of
vp(Cn) which is similar to Theorem B. Furthermore, by examining the formula (6)
in details, we have discovered that vp(Cn) is closely connected to the nature of the
digits of the base p-expansion of n (see formula (7) below). As a result, this gives
us a new and efficient way to determine vp(Cn). The paper is organized as follows.
In §2, two main results are stated. All the necessary lemmas for the proofs of the
main results are given and shown in §3. The details of the proofs of Theorems 4
and 5 are given in §4 and §5 respectively. In §6, applications of Theorem 5 are
given. In particular, we show that Theorem A is a special case of Theorem 5 and
p - C pk−1

2i

for 1 ≤ i ≤ v2(p − 1). Several examples and remarks about the main

results are discussed in §7. Appendix A is a brief history of Catalan numbers and
Appendix B shows some applications of the numbers.

2. The main results

In the following discussion, we suppose that p is an odd prime and m,n are non-
negative integers.

Theorem 4. Suppose that

n = rmp
m + rm−1p

m−1 + · · ·+ r1p+ r0 (4)

is the base-p expansion of the integer n, where 0 ≤ r0, r1, . . . , rm < p. Furthermore,
for 0 ≤ i ≤ m, suppose that ni = rip

i + · · ·+ r1p+ r0 and

εi =

{
1, if ni ≥ pi+1+1

2 ;

0, otherwise
(5)

Then we have

vp(Cn) =

m∑
i=0

εi −Np, (6)
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where Np is the number of carries when 1 is added to n in base p.

Our next result tells us how to evaluate the summation in the formula (6). Before
stating the result, we have to classify the digits of n into three classes. Let S =
{r0, r1, . . . , rm}. Define subsets S1(p), S2(p) and S3(p) of S by

S1(p) =

{
ri ∈ S | ri ≥

p+ 1

2

}
, S2(p) =

{
ri ∈ S | ri =

p− 1

2

}
,

S3(p) =

{
ri ∈ S | ri ≤

p− 3

2

}
,

Since every digit ri must belong to one and only one S1(p), S2(p) or S3(p), we have

S = S1(p) ∪ S2(p) ∪ S3(p)

and S1(p), S2(p) and S3(p) are disjoint.

Now we further decompose S2(p) into disjoint subsets. In fact, we arrange the digits
of S2(p) in ascending order according to the subscripts and let i1 be the smallest
subscript of the digits in S2(p). Denote T1(p) to be the set of consecutive digits of
S2(p) starting with the subscript i1. Since S2(p) is finite, the smallest subscript of
the digits exists in S2(p)\T1(p) and we call it ri2 . Next, denote T2(p) to be the set
of consecutive subscripts of S2(p)\T1(p) starting with i2. Continuing this process
(k − 2)-times, we can express S2(p) in the following form:

S2(p) = T1(p) ∪ T2(p) ∪ · · · ∪ Tk(p),

where Tj(p) is the set of consecutive digits of S2(p)\[T1(p) ∪ T2(p) ∪ · · · ∪ Tj−1(p)]
starting with the subscript ij for j = 2, 3, . . . , k. By this construction, it is clear
that T1(p), T2(p), . . . , Tk(p) are disjoint.

To get a better understanding of the structures of S2(p) and its subsets T1(p), T2(p),
. . . , Tk(p) are shown as follows:

S1(p) or S3(p)︷ ︸︸ ︷
r0, r1, . . . , ri1−1, ri1 , ri1+1, . . . , ri1+|T1(p)|−1︸ ︷︷ ︸

T1(p)

,

S1(p) or S3(p)︷ ︸︸ ︷
ri1+|T1(p)|, . . . , ri2−1,

ri2 , ri2+1, . . . , ri2+|T2(p)|−1︸ ︷︷ ︸
T2(p)

, . . . . . . . . . . . . ,

S1(p) or S3(p)︷ ︸︸ ︷
rik−1+|Tk−1(p)|, . . . , rik−1,

rik , rik+1, . . . , rik+|Tk(p)|−1︸ ︷︷ ︸
Tk(p)

,

S1(p) or S3(p)︷ ︸︸ ︷
rik+|Tk(p)|, . . . , rm,

Now we are ready to state our next main theorem:
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Theorem 5. Suppose that B(p) = {ri1−1, ri2−1, . . . , rik−1} ∩ S1(p). Then we have

vp(Cn) = |S1(p)| −Np +
∑

riq−1∈B(p)

|Tq(p)|, (7)

where Np is the number of carries when 1 is added to n in base p and the absolute
value refers to the cardinality of the set.

3. Preliminary lemmas

The proof of Theorem 4 depends solely on the famous Legendre’s formula and
a special of the classical Hermite’s identity. We state them in Lemmas 6 and 7
respectively.

Lemma 6. (Legendre’s formula, 1808) Suppose that p is prime and n is a positive
integer. Then we have

vp(n!) =

∞∑
k=1

[
n

pk

]
=
n− sp(n)

p− 1
,

where [x] denotes the greatest integer less than or equal to x and sp(n) is the sum
of the digits of n in the base-p expansion.

Lemma 7. For every real number x, we have

[2x] = [x] +

[
x+

1

2

]

Proof. We observe that both sides of the equation increase by 2 if x increases by 1.
Thus it suffices to prove the equation when 0 ≤ x < 1. If 0 ≤ x < 1

2 , then we have

0 ≤ 2x < 1 and 1
2 ≤ x+ 1

2 < 1 which mean that

[2x] = 0 = 0 + 0 = [x] +

[
x+

1

2

]
If 1

2 ≤ x < 1, then we have 1 ≤ 2x < 2 and 1 ≤ x+ 1
2 <

3
2 < 2. Therefore we get

[2x] = 1 = 0 + 1 = [x] +

[
x+

1

2

]
This finishes the proof of the lemma.

Next we evaluate the value of up(n+1) which will be used in the proof of Lemma 8.

Lemma 8. Suppose that n is the integer in the form (2.1). Then vp(n+ 1) equals
to the number of carries when 1 is added to n in base p.
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Proof. It is clear that a carry exists when 1 is added to n if and only if r0 = p− 1.
Suppose that such a carry exists and Np is the largest positive integer such that

r0 = r1 = · · · = rNp−1 = p− 1

but 0 ≤ rNp < p− 1. Thus we have

n+ 1 = rmp
m + · · ·+ rNp

pNp + (p− 1)pNp−1 + · · ·+ (p− 1)p+ (p− 1) + 1

= rmp
m + · · ·+ (rNp + 1)pNp

= [rmp
m−Np + · · ·+ (rNp

+ 1)]pNp (8)

which implies that

vp(n+ 1) = Np

Since Np carries happen in the sum (8), the desired result follows and the proof is
complete.

4. Proof of Theorem 4

By the formula (1) and Lemma 6, we have

vp(Cn) = vp((2n)!)− 2vp(n!)− vp(n+ 1)

=

∞∑
k=1

[
2n

pk

]
− 2vp(n!)− vp(n+ 1) (9)

By Lemma 7, we can rewrite the expression (9) as

vp(Cn) =

∞∑
k=1

[
n

pk
+

1

2

]
− vp(n!)− vp(n+ 1) (10)

Now we are going to find an explicit formula of the sum on the right-hand side in
the expression (10). Note that we can split it into two sums:

∞∑
k=1

[
n

pk
+

1

2

]
=

m+1∑
k=1

[
n

pk
+

1

2

]
+

∞∑
k=m+2

[
n

pk
+

1

2

]
Since 0 ≤ r0, r1, . . . , rm ≤ p− 1, it is obvious that we have

n = rmp
m + · · ·+ r1p+ r0 ≤ (p− 1)(pm + · · ·+ p+ 1) = pm+1 − 1

By this result and the fact that p ≥ 3, if k ≥ m+ 2, then we know that

0 ≤ n

pk
+

1

2
≤ n

pm+2
+

1

2
≤ pm+1 − 1

pm+2
+

1

2
=

1

p
+

1

2
− 1

pm+2
< 1

In other words, we have
∞∑

k=m+2

[
n

pk
+

1

2

]
= 0
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Next, it is clear from the base-p expansion (4) that

m+1∑
k=1

[
n

pk
+

1

2

]
=

[
rmp

m−1 + · · ·+ r1 +

(
r0
p

+
1

2

)]
+

[
rmp

m−2 + · · ·+ r2 +

(
r1
p

+
r0
p2

+
1

2

)]
+ · · ·+

[
rmp

m + · · ·+ r1p+ r0
pm+1

+
1

2

]
= (rmp

m−1 + · · ·+ r1) + (rmp
m−2 + · · ·+ r2) + · · ·+ rm

+

[
n0
p

+
1

2

]
+

[
n1
p2

+
1

2

]
+ · · ·+

[
nm
pm+1

+
1

2

]
= rm(pm−1 + · · ·+ p+ 1) + rm−1(pm−2 + · · ·+ p+ 1) + . . .

+ r2(p+ 1) + r1 +

m∑
i=0

εi

= rm ·
pm − 1

p− 1
+ rm−1 ·

pm−1 − 1

p− 1
+ · · ·+ r2 ·

p2 − 1

p− 1
+ r1 +

m∑
i=0

εi

=
(rmp

m + · · ·+ r2p
2 + r1p)− (rm + · · ·+ r2 + r1)

p− 1
+

m∑
i=0

εi

=
n− sp(n)

p− 1
+

m∑
i=0

εi (11)

Thus we derive from the expressions (10) and (11) with the help of Lemma 6 that

vp(Cn) =

m∑
i=0

εi − vp(n+ 1) (12)

By Lemma 8, we know that vp(n+ 1) = Np, the number of carries when 1 is added
to n in base p. Hence we have established the formula (6) from the expression (12)
and this completes the proof of Theorem 4.

5. Proof of Theorem 5

Suppose that n takes the form (4) and each εi is defined by (5). We have to evaluate
the sum

m∑
i=0

εi

and this depends on how the digits in S1(p), S2(p) and S3(p) contribute to the
p-adic vp(Cn) respectively.
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Here we analyze the effects of S1(p) and S3(p) on vp(Cn) first. If ri ∈ S1(p), then
since 0 ≤ r0, r1, . . . , ri−1 ≤ p− 1, we have

ni = rip
i + · · ·+ r1p+ r0 ≥

p+ 1

2
pi >

pi+1

2
(13)

Next, suppose that ri ∈ S3(p). Then we have

ni ≤
(
p− 3

2

)
pi + (p− 1)(pi−1 + · · ·+ p+ 1)

=
pi+1

2
− 3pi

2
+ pi − 1

ni <
pi+1

2
(14)

Thus we see immediately from the inequalities (13) and (14) that

εi =

{
1, if ri ∈ S1(p);

0, if ri ∈ S3(p)
(15)

In other words, we can conclude from the result (15) that the following fact holds:

Fact 1. Every digit in S1(p) contributes 1 to vp(Cn), but digits of S3(p) do
nothing to vp(Cn).

Now our proof will be complete if we can show that the contribution of S2(p) to
vp(Cn) is exactly ∑

riq−1∈B(p)

|Tq(p)|

To this end, we suppose that q ∈ {1, 2, . . . , k}. If riq−1 ∈ S1(p), then we know from
the inequality (13) that

niq−1 >
piq

2
or equivalently εiq−1 = 1 (16)

Similarly, if riq−1 ∈ S3(p), then the inequality (14) implies that

niq−1 <
piq

2
or equivalently εiq−1 = 0 (17)

Based on the inequality (16), we can derive easily that

nj = rjp
j + · · ·+ riqp

iq + niq−1

=

(
p− 1

2

)
(pj + · · ·+ piq ) + niq−1

=
pj+1 − piq

2
+ niq−1

nj >
pj+1

2
(18)
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where j = iq, iq+1, . . . , iq + |Tq(p)| − 1. In other words, these mean that εj = 1 for
j = iq, iq+1, . . . , iq + |Tq(p)| − 1. Similarly, it follows from the inequality (17) that

nj = rjp
j + · · ·+ riqp

iq + niq−1 =
pj+1 − piq

2
+ niq−1 <

pj+1

2
(19)

so that εj = 0, where j = iq, iq + 1, . . . , iq + |Tq(p)| − 1. Thus we obtain from the
inequalities (18) and (19) the following fact:

Fact 2. If riq−1 ∈ B(p) = {ri1−1, ri2−1, . . . , rik−1} ∩ S1(p), then it contributes
totally |Tq(p)| to vp(Cn); otherwise, it plays no role in vp(Cn).

Hence, combining Fact 1 and Fact 2, we are able to show that the formula (7)
holds and this completes the proof of the theorem.

Remark 9. It is not hard to see that our Theorem 5 is more convenient and useful
than Theorem 3 for computing vp(Cn) because we only check the (m + 1) digits
r0, r1, . . . , rm rather than the (m + 1) sets of inequalities. Besides, it reveals the
much more “natural”’ and important connection between vp(Cn) and the digits of
n in base-p expansion.

6. Applications of Theorem 5

In this section, we give two applications of our Theorem 5. The first corollary shows
that Theorem 2 is a special of Theorem 5. The second corollary is a new result
which is similar to Theorem 2 in a certain sense.

Corollary 10. For odd primes p and k ∈ N, we have p - Cpk−1.

Proof. Since

pk − 1 = (p− 1)(pk−1 + · · ·+ p+ 1)

= (p− 1)pk−1 + · · ·+ (p− 1)p+ (p− 1) (20)

we have

r0 = r1 = · · · = rk−1 = p− 1 ≥ p+ 1

2
In this case, we have |S1(p)| = k and B(p) = ∅. In addition, we know from the
expansion (20) that there are exactly k carries when 1 is added to pk − 1. By
Theorem 5, we certainly have

vp(Cpk−1) = 0

Corollary 11. For odd primes p and k ∈ N, we have

p - C pk−1

2i

,
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where i = 1, 2, . . . , v2(p− 1).

Proof. Since p is odd, p− 1 is even and thus v2(p− 1) ≥ 1. Since 1 ≤ i ≤ v2(p− 1)
and

pk − 1

2i
=
p− 1

2i
(pk−1 + · · ·+ p+ 1), (21)

pk − 1

2i
are integers for 1 ≤ i ≤ v2(p− 1). If j = p− p−1

2i−1 for 1 ≤ i ≤ v2(p− 1), then

we have

p− j
2

=
p− 1

2i
(22)

Combining the expressions (21) and (22), we derive that

pk − 1

2i
=
p− j

2
(pk−1 + · · ·+ p+ 1), (23)

where j = p− p−1
2i−1 for 1 ≤ i ≤ v2(p− 1). There are two cases:

• Case (1): p = 3. In this case, we have i = j = 1. Thus we know from the
expression (21) that

3k − 1

2
=

(
3− 1

2

)
(3k−1 + · · ·+ 3 + 1)

which imply that

r0 = r1 = · · · = rk−1 =
3− 1

2
(24)

Therefore, S1(3) = ∅ and then B(3) = ∅. By the digits (24), it is obvious

that no carry exists when 1 is added to 3k−1
2 so that N3 = 0. Hence it derives

from Theorem 5 that v3(C 3k−1
2

) = 0, i.e.,

3 - C 3k−1
2

• Case(2): p ≥ 5. If i = 1, then we have j = p− (p−1) = 1 and the expression
(23) gives

pk − 1

2
=

(
p− 1

2

)
pk−1 + · · ·+

(
p− 1

2

)
p+

p− 1

2

Similar to Case (1), we know that

r0 = r1 = · · · = rk−1 =
p− 1

2
(25)

Thus S1(p) = ∅ and B(p) = ∅. Now the digits (25) show that no carry exists

when 1 is added to pk−1
2 so that Np = 0. By Theorem 5, we have vp(Cpk−12),

i.e.,

p - Cpk−12
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Next, we suppose that 2 ≤ i ≤ v2(p − 1). Recall the definition of j and the
fact that p ≥ 5, we have

j = p− p− 1

2i−1
≥ p− p− 1

2
=
p+ 1

2
≥ 3

Thus we follow from this and the expression ( 23) that S1(p) = ∅. By similar
argument as above, we see that Np = 0. By Theorem 5, we get

p - C pk−1

2i

where 2 ≤ i ≤ v2(p− 1).

This completes the proof of the corollary.

For instance, let p = 5 and k = 2. Then 52−1
2 = 12 and 52−1

22 = 6, so we have

C12 = 208012 = 22 × 7× 17× 19× 23 and C6 = 132 = 22 × 3× 11

Hence they imply that 5 - C12 and 5 - C6. However, since C3 = 5, Corollary 11 is
not true for i = v2(p− 1) + 1.

7. Examples and concluding remarks

In this section, several examples are considered and other studies related to the
divisibility of Cn are also discussed. The following two examples explain how effi-
ciency our main formula ( 7) is.

Example 12. Consider the number n = 9936. We want to evaluate v3(C9936) and
v5(C9936) by using the formula (7) in Theorem 5. We first factorize C9936. In fact,
we know from the website [20] that

Then we paste this number to another website [21] to get its factorization:

C9936 = 26 × 36 × 52 × 73 × · · · × 19867 (26)

(a) To find v3(C9936), we note that

9936 = 0× 30 + 0× 31 + 0× 32 + 2× 33 + 2× 34 + 1× 35 + 1× 36

+ 1× 37 + 1× 38 (27)

By the expansion (27), we list the sequence of digits of 9936 as follows:

Therefore, we have |S1(3)| = 2 and B(3) = {2}. It is easy to see from the
expansion (27) that no carry exists when 1 is added to 9936, so N3 = 0.
Hence they imply that

v3(C9936) = |S1(3)| −N3 + |T1(3)| = 2− 0 + 4 = 6

which is consistent with the factorization (26).
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(b) Similarly, we see that

9936 = 1× 50 + 2× 5 + 2× 52 + 4× 53 + 0× 54 + 3× 55 (28)

By the expansion (28), we list the sequence of digits of 9936 as follows:

Notice that |S1(5)| = 2, B(5) = ∅ and N5 = 0, so we follow from the formula
(7) that

v5(C9936) = 2

which is also consistent with the factorization (26).

Example 13. Now we consider another number n = 11186. Similar as Example 12,
we want to evaluate v3(C11186) and v5(C11186). By the website [20] again, we have

Next, the website [21] gives its factorization:

C11186 = 28 × 32 × 53 × 73 × · · · × 22369 (29)

(a) Note that

11186 = 2× 30 + 2× 31 + 0× 32 + 0× 33 + 0× 34 + 1× 35

+ 0× 36 + 2× 37 + 1× 38 (30)

It is easy to see from the expansion (30) that the sequence of its digits is given by

Thus we have |S1(3)| = 3 and B(3) = {2}. To compute N3, we see that the first two
digits are 2 so that two carries occur when 1 is added to 11186 in the 3-expansion
(30). In this case, N3 = 2 and the formula (7) shows that

v3(C11186) = |S1(3)| −N3 + |T2(3)| = 3− 2 + 1 = 2 (31)

Hence the result (31) is compatible with the factorization (29).

(b) Similarly, we have

11186 = 1× 50 + 2× 5 + 2× 52 + 4× 53 + 2× 54 + 3× 55

and its corresponding sequence of digits is given by

Since |S1(5)| = 2, B(5) = {4} and N5 = 0, these and the formula (7) imply that

v5(C11186) = |S1(5)| −N5 + |T2(5)| = 2− 0 + 1 = 3

Remark 14. Besides the formula (3), Deutsch and Sagan [5, Theorem 5.1] gave
a complete characterization of the residue of Cn modulo 3 for a particular class
of positive integers n. Thereafter people started to do research on the congruence
class of Cn modulo prime powers. For instances, Eu, Liu and Yeh [7] determined
the congruence of Cn modulo 8 in 2008, then in 2010, Liu and Yeh [13] classified
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the congruence of Cn modulo 64. Other recent developments or results on the
congruence of Cn modulo 2k or pk can be found in [3], [12] and [19].

Remark 15. There are several monographs about Catalan numbers which were
published in the last ten years. They are Koshy [9] in 2009, Roman [14] and Stanley
[18] both in 2015.

Remark 16. Finally, we remark that Motzkin numbers {Mn} form another im-
portant sequence of numbers which are closely related to Catalan numbers. In fact,
it is well-known that

Mn =

bn/2c∑
k=0

(
n
r

)
Ck

for every positive integer n. It is natural to ask the following question: Does there
exist a formula connecting vp(Mn) and the digits of n for odd primes p?

8. Conclusion

By and large, we propound a new method to establish a formula of the p-adic valu-
ation of Catalan numbers and discover the connection which is previously unknown
between this p-adic valuation and the coefficients of n in the base p-expansion. As
we can derive the p-adic valuation of Catalan numbers merely by determining a
few digits where Theorem 3 requires calculation of various sets of inequalities, this
method is conclusively more natural and convenient than Theorem 3.

9. A brief history of Catalan numbers

Catalan numbers appear in many combinatorial and geometric problems. They
have over 200 years of history. It was first discovered in 1730 by a Chinese scientist.
During this period, many mathematicians derived Catalan number by different
ways like polygons cutting and bracket sequences. In the early years, only Catalan
numbers with small value can be computed but more numbers have been computed
when more formulas of Catalan numbers were discovered by mathematicians.

9.1. The development of Catalan numbers

In 1730s, the Mongolian mathematician Ming Antu mentioned the expansion of
sin(2α), it was the first time to involve Catalan numbers:

sin(2α) = 2 sinα−
∞∑

n=1

Cn−1

4n−1
sin2n+1 α = 2 sinα− sin3 α− 1

4
sin5 α− . . .

Figure 1 is a piece of the manuscript of Ming Antu and the Catalan numbers Cn

for n = 0, 1, 2, 3, 4, 5 and 6 are boxed.
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Later in 1751, Euler defined Catalan numbers as the number of triangulations of
(n + 2)-gon and he applied a binomial formula to derive the following product
formula:

Cn−2 =
2 · 6 · · · (4n− 10)

2 · 3 · · · (n− 1)
(32)

In the 1750s, they can only compute the values of Catalan numbers when n ≤
8. However, in 1758, Segner worked on the number of triangulations of a n-gon
and ultimately discovered the formula in Definition ??. Meanwhile, the values of
Catalan numbers for n ≤ 23 were instantly computed by using that formula.

In 1795, Fuss introduced Fuss-Catalan numbers, it was the number of subdivi-
sions of an n-gon into k-gons. Such numbers form a family of generalized Catalan
numbers and was finished before Catalan. Furthermore, the sequence of Catalan
numbers is a special case of the family of Fuss-Catalan numbers.

In 1838, Lame discovered another way to obtain formula (32). Firstly, he counted
the number An of triangulations of a (n+ 2)-gon with one of its (n− 1) diagonals
oriented and derived

An = 2(n− 1)Cn

Afterwards, he summed over all possible directed diagonals and the result showed
the following formula:

An = n(C1Cn−1 + C2Cn−2 + · · ·+ CnC1)

Eventually, he obtained formula (32) by combining the two formulas of An with
Segner’s formula. It is crucial that his work inspired Catalan who obtained the
current standard formula (32).

9.2. Problems involving Catalan numbers

In 1859, Cayley, who was interested in counting plane trees, proved that the number
of plane trees is the Cn and then introduced another formula for Cn:

Cm−1 =
1 · 3 · 5 · · · (2m− 3)

1 · 2 · 3 · · ·m
2m−1

In 1838, Rodrigues counted in two ways the number Bn of triangulations of (n+2)-
gon where either an edge or a diagonal was oriented. Afterwards, he noticed that

Bn = 2(2n+ 1)Cn and Bn = (n+ 2)Cn+1

which demonstrated that they involved Catalan numbers.

In the same year, he investigated the bracket sequences and noticed that there was
a relation between bracket sequences and Cn. Firstly, he denoted Pn as the number
of bracket sequences of x1, x2, . . . , xn. After that, he discovered that

Pn = n!Cn and P (n+ 1) = (4n− 2)Pn



ON THE DIVISIBILITY OF CATALAN NUMBERS 43

as variable x(n+ 1) can be inserted to the left of any of the (2n− 1) left brackets
or to the right of any of the (2n− 1) right brackets, e.g.

((x2)((x1)(x3)))→ ((x2)(((x1)(x4))(x3))

In 1878, Whitworth introduced ballot sequences. He resolved the problem which
ballot numbers have not been computed yet and eventually realized that the num-
bers he computed were Cn.

9.3. The works of Catalan and naming

It has known that Catalan obtained the current standard formula (1.1). Moreover,
in 1838, he defined ballot numbers, disguised as the number of certain triangula-
tions and gave a formula for the ballot numbers in terms of Cn. In 1878, Catalan
published a book on the divisibility of the Catalan numbers.

Despite he did many on investigating Catalan numbers, they were not called as
Catalan numbers entirely as sometimes they were called the Segner numbers or
the “Euler-Segner numbers”. Nevertheless, in 1968, an American combinatorialist
Riordan used the name Catalan numbers in his monograph and it struck a chord.
It was enormously crucial since his book was very influential at that period. His
monograph was the first book containing the name and it consequently spread after
1968. Not least, in 1976, Martin Gardner’s Scientific American column popularized
this name greatly, the name thus has become popular since that time.

10. Several applications of Catalan numbers

Apart from evaluating Catalan numbers by using some algebraic formulas, we can
also discover them from geometric problems. In fact, Cn appears in many real-life
problems. In this appendix, some applications of Cn will be presented. For further
information, the reader is suggested to read the monographs [9] and [14].

10.1. (n+ 2)-gon triangulation

If we triangulate a (n+ 2)-gon and count the possible ways of it, the result demon-
strates Catalan numbers. Figure ?? illustrates that the ways of triangulating are
1, 2, 5, 14 for the first four polygons respectively. It satisfies the result of using
formula (1) to compute the Catalan numbers.

10.2. Balanced parentheses

Denote n as the number of pairs of parentheses and count the ways of valid combi-
nation where an open parenthesis must match a closed parenthesis. Table 1 shows
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the numbers of ways for the first 4 terms of n are 1, 2, 5, 14 which, again, are the
sequence of the Catalan numbers.

10.3. Mountain ranges

Let n be the number of upstrokes and the number of downstrokes. We use those
upstrokes and downstrokes to form mountains where all strokes must not stay below
the original line. From Figure 3, we notice that the number of ways for n is exactly
Catalan number. It helps us to derive the further answer when n becomes greater
since we cannot sketch a hundred of strokes.

10.4. Counting Diagonal-avoiding Paths

Let’s count the number of paths from (0, 0) to (n− 1, n− 1) on a (n− 1)× (n− 1)
plane without falling below the line: y = x. Figure 4 below shows 1, 2, 5, 14 which
are Catalan numbers. Nonetheless, we can also apply combination to count the
possible paths and the result will be the formula (1.1).

10.5. Staircase tessellations

If you consider the number of ways to form staircase shapes with n rectangle, you
can also obtain Catalan numbers. Figure 5 illustrates that the they are the first
four terms of the sequence of Catalan numbers.
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Reviewer’s Comments

This article studied the p-adic valuation of the Catalan number. Here are the
reviewer’s comments on the paper:

1. Novelty and methodology: The paper improved a result given by Alter and
Kubota [1]. It also mentioned some applications of the claimed results with
a brief explanation of the history of Catalan number. Here are some of the
reviewer’s suggestions:
• On page 30, it would be nice if the author can explain more why the

claimed results are “more natural” than those found in the literature.
And why are the old methods more “artificial”?

• In the reviewer’s opinion, Theorem 4 is quite similar to Theorem B as
proved by Alter and Kubota in [1], while Theorem 5 seems to be a more
important result given in the presented work (at least the reviewer can see
more applications from Theorem 5). It would be more reasonable if the
authors can pinpoint the difference between Theorem 4 and Theorem 5,
and show the significance of Theorem 4 in a more explicit way.

2. Organisation: This paper is well-written, and the ideas and proofs are clear.
It appears that the paper is nearly a publishable journal article! Here are
some of the reviewer’s suggestions:
• In the proof of Theorem 5, the authors used two “facts”, yet they are not

really “facts” (the authors gave the proofs on them) and it may cause
confusions to the readers.

• On the final line of the proof of Theorem 5, rather than simply saying
“Hence, combining Fact 1 and Fact 2, we are able to show that the
formula (7) holds and this completes the proof of the theorem.”, it would
be better if the authors can explain more on the applications of Fact 1
and Fact 2 (in proving Theorem 5).

REFERENCES

[1] R. Alter and K.K. Kubota, Prime and Prime Power Divisibility of Catalan Numbers, J.

Combin. Theory Ser. A, Vol. 15, 1973, pp. 243–256.


