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Abstract. We study the problem of finding the maximum number of maximal

chains in a given size-k subset of a square poset [n] × [n]. This was proposed
by Johnson, Leader, and Russell but not yet solved. Kittipassorn had given

a conjectural solution to the problem. We verify Kittipassorn’s conjecture for

0 ≤ k ≤ 3n − 2 and solve a variant problem for the case 3n − 1 ≤ k ≤ 4n − 4,
which also supports the conjecture. For general k, we find that the optimal

configuration is given by a 1-Lipschitz function. We also generalize the problem

to rectangle posets and give a solution to one particular poset.
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1. Introduction

Consider the subsets of the power set of {1, 2, ..., n}. Johnson, Leader, and Russell
[1] solved asymptotically the maximum number of maximal chains in a subset with
a given proportion of size. At the end of the paper, they considered a variant of the
problem in which the set is P = {1, 2, ..., n}2 with a partially order. They asked
the following question, with M(T ) denoting the number of maximal chains of P
contained in T , where T ⊆ P, i.e.

M(T ) := #{m ⊆ T : m is a maximal chain in P}.

Question 1.1 ([1], Question 9). Given an integer k with 0 ≤ k ≤ n2, what is

max
T⊆P
|T |=k

M(T )?

In other words, we choose k elements in the setP to form a subset T aiming for the
greatest number of maximal chains in T . We can represent the set P = {1, 2, ..., n}2
by an n× n square grid.

An equivalent statement to the problem is as follows: given an n × n grid and
an integer k, among all configurations of k points in the grid, what is the maximum
number of paths going from the bottom to top (only going upwards) that only pass
through the selected points?

For example, Figure 1 shows a configuration with n = 5. The poset P is the grid
with 25 grid points (not the 16 squares) and the configuration T is the subset of P
as shown with the 14 blue points. The red line shows one of the maximal chains of
P contained in T .

Kittipassorn [2] made a contribution to the problem by imposing more constraints
to the original problem: given the number of elements in each level r1, r2, . . . , r2n−1

instead of the total number of elements k in the grid, he gave a construction of
optimal configurations. Therefore, we only need to consider Kittipassorn’s configu-
rations for any n and k. Kittipassorn also conjectured the answer for the original
problem for all n and k.

In our paper, in contrast to Johnson, Leader, and Russell’s paper of finding the
asymptotic solution, we make progress on the exact value of the maximum number
of maximal chains. We verify Kittipassorn’s conjecture for 1 ≤ k ≤ 3n − 2 and
consider a variant problem for the case 3n − 1 ≤ k ≤ 4n − 4, which also supports
the conjecture. For general k, we find that the optimal configuration is given by a
1-Lipschitz function.

In Section 2, notation in poset theory is given. We also review the progress made
by Kittipassorn. In Section 3, we solve the problem for the case 2n−1 ≤ k ≤ 3n−2
and investigate the problem of general k. In Section 4, we develop an algorithm to
compute the maximum number of maximal chains in T with the proven results. At
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Figure 1. A maximal chain of P contained in T

last, in Section 5, we consider a variant problem for the case 3n − 1 ≤ k ≤ 4n − 4
and generalize the problem to rectangle posets.

2. Background

2.1. Notations. We first review some terminology and definitions from poset the-
ory. For reference, we refer the reader to [4].

Let n be a positive integer. Denote [n] denote the set {1, 2, ..., n}. Consider the
partially ordered set, or in short, poset (P,⪰) where P := [n]2, endowed with the
partial order ⪰, defined by

(i, j) ⪰ (i′, j′) ⇔ i ≥ i′ and j ≥ j′.

For simplicity, we will use P instead of (P,⪰).
A maximal chain of P is a chain in P with 2n− 1 elements.
Now we introduce some definitions that will be frequently used.

Definition 2.1. We can partition the poset P into levels by

P =

2n−1⊔
d=1

Ld,

where Ld := {(i, j) : i+ j = d+ 1}.

A maximal chain is thus a chain with exactly one element from each level Ld,
where d = 1, 2, . . . , 2n− 1.

Definition 2.2. Deonte P (P) the power set of P. Define M : P (P) → Z≥0 to be a
function given by

M(T ) := #{m ⊆ T : m is a maximal chain in P}.

In other words, M maps a subset T of the poset P to the number of maximal
chains of P contained in T .

Definition 2.3. Define JLR : Z2
≥0 → Z≥0 to be a function given by

JLR(n, k) := max
T⊆P
|T |=k

M(T ).
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In other words, JLR maps the couple (n, k) to the maximum number of maximal
chains of P contained in T , with |T | = k.

For convenience, let us call a configuration T ⊆ P optimal if

M(T ) = max
S : |S|=|T |

M(S).

2.2. Kittipassorn’s configuration. Teeradej Kittipassorn [2] considered a
restricted case of the problem in which the number of elements in each level of T
is also given, namely r1, r2, ..., r2n−1. More precisely, we have the following variant
of the Johnson-Leader-Russell question: given r1, r2, . . . , r2n−1, what is maxM(T ),
where the maximization is over all configurations T such that ri = |T ∩ Li|, for all
1 ≤ i ≤ 2n − 1? This has been solved by Kittipassorn. In the following, we will
describe his solution to the problem.

Given r1, r2, . . . , r2n−1, Kittipassorn considered the following configuration
T ∗(r1, r2, . . . , r2n−1):

T ∗(r1, r2, . . . , r2n−1) :=

2n−1⋃
h=1

{(
h+ 1

2
+ t,

h+ 1

2
− t

)
: t = αh, αh + 1, ..., βh

}
,

where for each h = 1, 2, ..., 2n− 1, the numbers αh and βh are unique real numbers
such that

αh + βh ∈ {0, 1}, βh − αh + 1 = rh, and h+ 2αh is an odd integer.

Another way to describe the configuration T ∗(r1, r2, . . . , r2n−1) is that it is the
unique configuration satisfying the following conditions:

(1) For each level, all the elements are condensed in the middle.
(2) If we have to break the left-right symmetry, all the extra elements are put

on the right.

For “left-right symmetry”, we mean that the number of elements in the right and in
the left parts of P in T is the same. In this paper, we call such a configuration Kit-
tipassorn’s configuration. We will use a shorthand notation M(r1, r2, . . . , r2n−1) =
M(T ∗(r1, r2, . . . , r2n−1)). The following example demonstrates how we form Kitti-
passorn’s configurations.

Example 2.4. Figure 2 shows the Kittipassorn’s configuration T ∗(1, 1, 2, 3, 1, 2, 1)
when n = 4 and (r1, r2, r3, r4, r5, r6, r7) = (1, 1, 2, 3, 1, 2, 1). The elements which
break the left-right symmetry are coloured in red.

Notice that the number of maximal chains in this configuration is 6, so

M(1, 1, 2, 3, 1, 2, 1) = 6.

Kittipassorn [2] proved that such configuration has the greatest number of maxi-
mal chains with given numbers of elements in each level r1, r2, ..., r2n−1. We rephrase
this in the following lemma. It solves the variant question by providing a construc-
tion of optimal configurations.
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Figure 2. T ∗(1, 1, 2, 3, 1, 2, 1)

Lemma 2.5 (Kittipassorn’s lemma [2]). Suppose that non-negative r1, r2, . . . , r2n−1

are given. Then

max
T : ∀i, |T∩Li|=ri

M(T ) = M(r1, r2, . . . , r2n−1).

The proof of Lemma 2.5 is attached in Appendix A. With Kittipassorn’s lemma,
in order to compute

max
T : |T |=k

M(T ),

it suffices to consider only the configurations which are Kittipassorn’s configurations.
Moreover, Kittipassorn [2] proposed a conjectural solution to the original Johnson-

Leader-Russell problem. Before introducing the conjecture, we need a new notation.
Previously, we partition P into 2n−1 parts L1, L2, ..., L2n−1 by the vertical positions
of elements. Now we partition P by the horizontal positions. For each d = −(n −
1), ..., n− 1, we partition P into columns by

Cd := {(i, j) ∈ P : j − i = d}.

Conjecture 2.6 (Kittipassorn’s conjecture [2]). Let n be a positive integer. We
define the sequence T1, T2, . . . , Tn2 of Kittipassorn’s configurations by adding one
element at a time so that each Ti has exactly i elements. To add elements from T1

to Tn2 , we fill the columns in the following order:

C0, C1, C−1, C2, C−2, . . . , Cn, C−n.

In each column, we fill the points from bottom to top (see an example as in Figure
3).

Given 1 ≤ k ≤ n2, we have

max
T : |T |=k

M(T ) = M(Tk).

For example, Figure 3 shows the order of adding the elements from T1 to T16

according to Conjecture 2.6 when n = 4. For example, the configuration T11 contains
the 11 points labeled 1 to 11.

Notice that the conjecture gives a construction of optimal configurations, which
solves the original Johnson-Leader-Russell problem.

Kittipassorn’s conjecture implies the following formula for 2n− 1 ≤ k ≤ 3n− 2:

JLR(n, k) = 2k−2n+1.
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Figure 3. The order of elements added from T1 to T16 when n = 4

In Subsection 3.1, we prove that this conjectural formula is correct.
The conjecture also implies the following formula for 3n− 1 ≤ k ≤ 4n− 4:

JLR(n, k) = 24n−k−4F2k−6n+7,

where Fi denotes the i-th Fibonacci number which are given by F0 = 0, F1 = 1, and
for i ≥ 2, we have Fi := Fi−1 + Fi−2.

In our paper, we do not prove the above conjectural formula for 3n−1 ≤ k ≤ 4n−4
but we show that this formula is true for a variant of the problem in Subsection 5.1.

It was observed by Tanya Khovanova [3] that for the case k = 3n+ c for a fixed
integer c ≥ −1, the number JLR(n, k) appears to double whenever n is increased by
1, for n ≥ c + 4. While this has not been proved yet, the “doubling” phenomenon
can be explained in view of Kittipassorn’s conjecture. Thus we give the following
remark.

Remark 2.7. Let c ≥ −1 be a fixed integer. Kittipassorn’s conjecture implies the
following conjectural formula: for all integers n ≥ c+ 4,

JLR(n, 3n+ c) = 2n−c−4F2c+7.

If n ≥ c+ 4, then when n is increased by 1, we have that maxM(T ) is doubled.

3. Main results

3.1. The case 0 ≤ k ≤ 3n − 2. To begin our investigation, we start off by some
small values of k. First consider the case when 0 ≤ k ≤ 2n− 2.

Proposition 3.1. If 0 ≤ k ≤ 2n− 2, then

JLR(n, k) = 0.

Proof. Assume not, then there exists a configuration T with a maximal chain m ⊆ T .
However, |m| = 2n− 1 but |T | ≤ 2n− 2. This gives a contradiction. □

Lemma 2.5 shows that given the number of elements in each level, we can give a
unique construction of optimal configurations. Therefore, it remains to allocate the
k elements to the 2n− 1 levels. In the following lemma, we give an upper bound of
r1r2 · · · r2n−1 which helps to find the upper bound of JLR(n, k).
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Lemma 3.2. Given non-negative integers r1, r2, ...r2n−1 such that r1 + r2 + · · · +
r2n−1 = k. Suppose k = (2n−1)q+h where q, h ∈ Z≥0 and 0 ≤ h < 2n−1, we have

r1r2 · · · r2n−1 ≤ ⌊ k

2n− 1
⌋
2n−h−1

⌈ k

2n− 1
⌉
h

.

The equality holds when there are 2n− h− 1 ri’s are equal to ⌊ k
2n−1⌋ and h ri’s are

equal to ⌈ k
2n−1⌉.

Proof. We claim that r1r2 · · · r2n−1 attains the maximum when all ri = ⌊ k
2n−1⌋ or

⌈ k
2n−1⌉. If 2n − 1 | k, then the results follows by the AM-GM inequality. Now for

the case that 2n − 1 ∤ k. Assume, for the sake of contradiction, that there exists
ri > ⌈ k

2n−1⌉ and r1r2 · · · r2n−1 attains the maximum. As r1 + r2 + · · ·+ r2n−1 = k,

there exists rj ≤ ⌊ k
2n−1⌋. Thus ri > rj + 1. The product (ri − 1)(rj + 1) =

rirj + ri − rj − 1 ≥ rirj . This gives a contradiction.
Therefore, when r1r2 · · · r2n−1 attains the maximum, it takes the form

⌊ k

2n− 1
⌋x⌈ k

2n− 1
⌉
2n−x−1

,

where 0 ≤ x ≤ 2n− 1 is an integer. As 2n− 1 ∤ k, we have

x⌊ k

2n− 1
⌋+ (2n− x− 1)⌈ k

2n− 1
⌉ = xq + (2n− x− 1)(q + 1) = k,

which gives x = 2n− h− 1. The case where there exist ri < ⌊ k
2n−1⌋ is similar. This

completes the proof. □

The following proposition gives an explicit solution to the problem for the case
2n− 1 ≤ k ≤ 3n− 2.

Proposition 3.3. If 2n− 1 ≤ k ≤ 3n− 2, then

JLR(n, k) = 2k−2n+1.

Proof. Consider any configuration T with k elements. Let ri = |T ∩ Li|, i.e. the
number of elements in the i-th level, we have r1 + r2 + · · · + r2n−1 = k. By Kit-
tipassorn’s lemma (Lemma 2.5), for the purpose of computing JLR(n, k), we may
assume T is a Kittipassorn’s configuration.

Now we want to show that M(T ) ≤ r1r2 · · · r2n−1. Let m ∈ T be a maximal
chain, then m contains exactly one element in each level. For the i-th level, there are
ri choices of element that can be contained in m. Therefore, M(T ) ≤ r1r2 · · · r2n−1.

As ri are non-negative integers, r1r2 · · · r2n−1 attains its maximum when there
are exactly k − 2n+ 1 2’s and 4n− k − 2 1’s by Lemma 3.2. Thus,

M(T ) ≤ 2k−2n+1 · 14n−k−2 = 2k−2n+1.

For the construction for the equality case, an optimal configuration when 2n−1 ≤
k ≤ 3n− 2 has exactly one element in odd order of levels and at most two elements
in even order of levels. For each level, the elements are condensed in the middle,
i.e. it is a Kittipassorn’s configuration. Notice that the total number of elements in
such a configuration is at least 2n− 1 and at most 3n− 2. □
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Figure 4. A configuration T such that M(T ) = 4

Example 3.4. Figure 4 gives a construction of T such that M(T ) attains the upper
bound 211−2×5+1 = 4 when n = 5 and k = 11.

3.2. Investigation on general k. In this section, we investigate the problem of
general values of k. The first proposition considers the upper bound of M(T ) for all
0 ≤ k ≤ n2.

Proposition 3.5. For 0 ≤ k ≤ n2, we have

JLR(n, k) ≤ 2k−2n+1.

Proof. We have shown the case for 0 ≤ k ≤ 3n− 2 in Proposition 3.1 and 3.3. And

as M(T ) ≤ M(P) =
(
2(n−1)
n−1

)
≤ 22n−2, the bound is trivial for k ≥ 4n− 3.

It now remains to show the inequality for the case 3n− 1 ≤ k ≤ 4n− 4. Consider
any configuration T with k elements. By Lemma 3.2 and similar to Proposition 3.3,
we have

M(T ) = r1r2 · · · r2n−1 ≤ ⌊ k

2n− 1
⌋
2n−h−1

⌈ k

2n− 1
⌉
h

.

On the other hand, as 3n−1 ≤ k ≤ 4n−4, we have q = 1 and h = k−2n+1, and thus
⌊ k
2n−1⌋ = 1 and ⌈ k

2n−1⌉ = 2. This gives M(T ) ≤ 12n−h−1 · 2k−2n+1 = 2k−2n+1. □

Remark 3.6. The equality in Proposition 3.5 can only hold when 2n − 1 ≤ k ≤
3n− 2.

This gives us the idea to consider the number of elements in consecutive levels. An
intuitive idea is that no elements should be “wasted”, i.e. it does not belong to any
maximal chains. Observe that if there are more than ri+1 elements in the (i+1)-th
level, then some elements in Kittipassorn’s configuration are “wasted”. Similarly,
elements are “wasted” if there are less than ri − 1 elements in the (i− 1)-th level.

Therefore, removing the “wasted” elements will not affect the number of maximal
chains in a configuration. On the other hand, as k is fixed, we can add new elements
to the configuration. In the following lemma, we develop an algorithm to construct
the new position of the removed elements such that the number of maximal chains
is increased.
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Lemma 3.7. Let T ⊊ P be a configuration such that M(T ) > 0. Then there exists
v ∈ P− T such that

M(T ) < M(T ∪ {v}).
Proof. As M(T ) > 0, there exists a maximal chain m ⊆ T . On the other hand, as
T ̸= P, there exists v ∈ P− T . As v /∈ m, there are two cases: m is to the left of v
or m is to the right of v.

First consider the case when m is to the left of v (as in Figure 5).

m

v

Figure 5. m to the left of v

m

v

Figure 6. m is to the right of v

Thus the set U := {maximal chains m ⊆ T : m is to the left of v} is non-empty.
Define a function Area : U → Z≥0 which maps a maximal chain to the number

of elements in P on its left. For example, Area(m) in Figure 5 is 2. Since U is
a non-empty finite set, the image Area(U) is a finite non-empty subset of Z≥0.
Let B := max(Area(U)). Then there exists a maximal chain m∗ ∈ U such that
Area(m∗) = B.

Notice that m∗ cannot be the right boundary of P because v is on its right. Hence,
there exist v1, v2, v3 ∈ m∗ in a certain configuration on Figure 7.

Now we want to show that v4 /∈ T . Suppose, for the sake of contradiction, that
v4 ∈ T , then v4 ̸= v because v /∈ T . This means that there exists a maximal chain
m∗∗ = (m∗ − {v2}) ∪ {v4} which is also to the left of v. Thus m∗∗ ∈ U . However,
Area(m∗∗) = B + 1, which contradicts the maximality of Area(m∗). Therefore, we
have v4 /∈ T and M(T ∪ {v4}) > M(T ) because m∗∗ ∈ T ∪ {v4} but m∗∗ /∈ T .

The other case where m is to the right of v is proven similarly. And this completes
the proof. □
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v1

v2

v3

v4

Figure 7. The existence of v1, v2, v3 ∈ m∗

v

Figure 8. A configuration with a “wasted” element v

m∗

Figure 9. The maximal chain m∗ with the greatest Area

Example 3.8. Given n = 4 and k = 12, consider a configuration as in Figure
8. Notice that the red point v is not in any of the maximal chains. Hence we can
remove it without affecting the value of M(T ). Figure 9 shows the maximal chain
m∗ with the greatest Area. By the algorithm in Lemma 3.7, we pick u /∈ T . Notice
that selecting u increases the number of maximal chains, as in Figure 10.

Here we introduce some shorthand notation. For any f : {1, 2, . . . , 2n−1} → Z≥0

such that 0 ≤ f(i) ≤ |Li|, we define T ∗(f) to be

T ∗(f) := T ∗(f(1), f(2), ..., f(2n− 1)).

We also define M(f) to be

M(f) := M(T ∗(f)).

Then we introduce the following theorem by considering ri in consecutive levels.
But before that, we give a definition of 1-Lipschitzness.
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u

Figure 10. The improved configuration by adding a new element u

Definition 3.9. A function f : {1, 2, ..., 2n − 1} → R is said to be 1-Lipschitz if
for all x ∈ {1, 2, ..., 2n− 2}, we have

|f(x+ 1)− f(x)| ≤ 1.

The following lemma shows that no elements are “wasted” only if the configura-
tion is given by a 1-Lipschitz function.

Lemma 3.10. Let T ∗ be a Kittipassorn’s configuration. For all v ∈ T ∗, v is con-
tained in at least one maximal chain only if T ∗ is given by a 1-Lipshchitz function.

Proof. Without loss of generality, assume that rh+1 > rh for some 1 ≤ h ≤ 2n− 1.
Then we pick the rightmost element v = (i, j) ∈ Lh+1 ∩ T . If v ∈ m for some
maximal chain m, then (i − 1, j) ∈ m or (i, j − 1) ∈ m, which are elements in Lh.
Now we want to find the number of elements in Lh ∩ T and Lh+1 ∩ T respectively.
In a Kittipassorn’s configuration, we have

i+ j − 1

2
+ βh = i− 1.

Thus βh = i−j−1
2 . As αh + βh ∈ {0, 1}, αh = − i−j−1

2 or − i−j−1
2 + 1. Thus

rh = βh −αh +1 = i− j or i− j +1. On the other hand, if v ∈ Lh+1 ∩ T and is the
rightmost element, rh+1 = i− j+1 or i− j+2 respectively. This gives rh+1−rh = 0
or 1. □

Theorem 3.11. Let n be a positive integer. For given k such that 2n− 1 ≤ k ≤ n2,

JLR(n, k) = maxM(f),

where the maximization of M(f) is over all 1-Lipschitz functions f : {1, 2, ..., 2n −
1} → Z≥1 such that

∑2n−1
i=1 f(i) = k.

Proof. Assume, for the sake of contradiction, that JLR(n, k) > maxM(f), i.e. there
exists a Kittipassorn’s configuration T which is optimal but is not given by a 1-
Lipschitz function. Then by Lemma 3.10, there exists v ∈ T that is not in any
maximal chain. Hence we can remove it without changing M(T ), i.e.

M(T − {v}) = M(T ).

After removing v, we have T ⊊ P. By Lemma 3.7, there exists u ∈ P − T such
that M((T − {v}) ∪ {u}) > M(T ). Also notice that |(T − {v}) ∪ {u}| = |T |. This
contradicts to the maximality of M(T ). □
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1,1

2,1 2,2

3,1 3,2 3,3

4,1 4,2 4,3 4,4

5,1 5,2 5,3

6,1 6,2

7,1

Figure 11. The indices of elements in a 4× 4 poset

4. Computational results

4.1. Pseudo-code. Using the results obtained in the previous section, we can de-
velop a much more efficient computer program to compute JLR(n, k) than exhaust-
ing all the possibilities. By Lemma 2.5 and Theorem 3.11, we reduce the runtime of
the program by considering the following three constraints:

(1) There is a total number of k elements in all levels, i.e. r1+r2+· · ·+r2n−1 = k.
(2) For all 1 ≤ i ≤ 2n− 2, |ri+1 − ri| ≤ 1.
(3) The configuration has to be a Kittipassorn’s configuration.

The pseudo-code of the program is shown in Appendix C. From line 1 to 35,
a function chain is defined by inputting n and r1, r2, ..., r2n−1 and outputting
M(r1, r2, ..., rn). Recall that M(r1, r2, ..., rn) is defined in Section 2.2. From line
36 to 51, we partition the given k into 2n − 1 parts: r1, r2, . . . , r2n−1 given by a
1-Lipschitz function, which is checked by the Boolean variable bo. It is true if and
only if the difference of elements in any two levels is at most 1. Then we exhaust all
possible Kittipassorn’s configurations to find the optimal configuration.

Notice that each element is indexed by (i, j), where i is the order of level and j
is the order counting from the left. For example, a 4× 4 poset is indexed as:

Notice that this indexing is not the same as the normal definition, i.e. P =
[n]× [n] = {(i, j) : i, j ∈ [n]}. However, it is easier to develop the pseudo-code with
the above indexing because it arranges the elements according to the level.

In the following example, we compare the efficiency of codes with and without
our results.

Example 4.1. We can use the following four different computer algorithms to com-
pute the value of JLR(7, 25).
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(1) Running through all the subsets of 25 elements in the 7× 7 grid: number of
cases =

(
49
25

)
≈ 6.32× 1013.

(2) Running through all the tuples (1 ≤ ri ≤ |Li|) and arrange them in Kitti-
passorn’s configuration: number of cases = 1× 2×· · ·× 6× 7× 6×· · ·× 1 ≈
3.62× 106.

(3) Running through all tuples with r1 + r2 + · · · + r13 = 25 and arrange them
in Kittipassorn’s configuration: number of cases ≈ 1.31× 105.

(4) Running through all tuples with r1+r2+ · · ·+r13 = 25 given by a 1-Lipschitz
function and arrange them in Kittipassorn’s configuration: number of cases
= 1100.

Therefore, we can see that our code greatly improves the efficiency of computing
JLR(n, k).

4.2. Numerical results. The computational results of JLR(n, k) when 2 ≤ n ≤ 6
and 2n− 1 ≤ k ≤ n2 are shown in the following tables. However, this program does
not follow the pseudo-code in Subsection 4.1. It is a brute-force program that does
not use any result in this paper (Program 1 in Example 4.1). This is an inefficient
code compared to the pseudo-code we developed with the mathematical results.
However, as we did not use any of the results in this paper, we can use this code
from scratch to check our results. Notice that the results of the program support
the conjectural formulae in Conjecture 2.6 and Remark 2.7.

n k JLR(n, k)

2
3 1
4 2

3

5 1

6 2
7 4
8 5

9 6

4

7 1
8 2
9 4

10 8
11 10
12 13
13 15

14 18

n k JLR(n, k)

4
15 19
16 20

5

9 1

10 2
11 4
12 8

13 16
14 20
15 26

16 34
17 39

18 45

19 54
20 57

21 61

n k JLR(n, k)

5

22 64
23 68
24 69
25 70

6

11 1
12 2

13 4
14 8
15 16

16 32
17 40

18 52

19 68
20 89

21 102

n k JLR(n, k)

6

22 117
23 135
24 162
25 171

26 183
27 197
28 206
29 218

30 232
31 236
32 241

33 245
34 250
35 251

36 252

5. Variant problems

In this section, we will consider some variations of the original Johnson-Leader-
Russell problem. The first variation restricts the values of f(i) and the second one
considers the number of maximal chains in rectangular posets (instead of square
posets).

Now we let JLR(n, k;U) to be the maximum number of maximal chains of P in
subset T with given size k in U ⊆ P, i.e.

JLR(n, k;U) := max
T∈U:|T |=k

M(T ).
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5.1. Conjectural solution for the case 3n− 1 ≤ k ≤ 4n− 4. In this section, we
solve a variant problem of JLR(n, k) for 3n − 1 ≤ k ≤ 4n − 4. First, we give the
following conjecture:

Conjecture 5.1. For 3n− 1 ≤ k ≤ 4n− 4, we have

JLR(n, k) = JLR(n, k;U)

where U = {T ∈ P : for i ∈ 1, 2, ..., 2n− 1, |T ∩ Li| ≤ 2}.

Notice that Conjecture 5.1 is a special case of Kittipassorn’s conjecture, Conjec-
ture 2.6. For 3n − 1 ≤ k ≤ 4n − 4, Kittipassorn’s conjecture suggests that there
exists an optimal configuration in which there are at most two elements in each level.
Such an optimal configuration belongs to the set U. Therefore, to find JLR(n, k), it
suffices to find the maximum number of maximal chains in the subset U.

We introduce two algebraic lemmas.

Lemma 5.2. For t ∈ Z≥0 and b1, b2, . . . , bt+2 ∈ Z≥1, we have

Fb1+2Fb2+2 · · ·Fbt+2 ≤ 2t−1Fb1+b2+···+bt−t+3.

The equality holds if and only if t = 1.

Proof. It suffices to show if a, b ≥ 1, then Fa+2Fb+2 < 2Fa+b+1.
For the base case, when a = b = 1, F3 × F3 = 4 ≤ 4 = 2× F4.
Apply strong induction on a. Assume x ≥ 1 is a positive integer such that for

all 1 ≤ i ≤ x, Fi+2Fb+2 < 2Fi+b+1. Then for x + 1, as Fx+1Fb+2 < 2Fx+b and
Fx+2Fb+2 < 2Fx+b+1, we have (Fx+1 +Fx+2)Fb+2 < 2(Fx+b+1 +Fx+b), as required.

Notice that the above induction only works for t ≥ 2. We can check that the
equality holds when t = 1. □

Lemma 5.3. For a, b ≥ 2, we have

2a−1Fb ≤ 2aFb−1.

The equality holds if and only if b = 3.

Proof. It follows from the fact that for all b ≥ 2, Fb = Fb−1+Fb−2 and Fb−2 ≤ Fb−1.
The only case that this equality holds is when b = 3. □

Proposition 5.4. For given 3n− 1 ≤ k ≤ 4n− 4,

JLR(n, k;U) = 24n−k−4F2k−6n+7

where Fi denotes the i-th Fibonacci number.

Proof. For all 1 ≤ i ≤ 2n − 1, we have f(i) = 1 or 2 by the definition of U. Notice
that f(1) = 1. Let t be the number of times when a sequence of consecutive 2
occurs, and the lengths of the sequences are b1, b2, ..., bt ≥ 1. Notice that we have
b1 + b2 + · · ·+ bt = k − 2n+ 1.

On the other hand, the number of 1’s in the set of f(i) is 4n− k− 2 and both of
the first and last part are some sequences of 1’s. We also know that sequences of 1’s
and 2’s alternates. Thus we have t ≤ 4n− k − 3.

Notice that M(f) = Fb1+2Fb2+2 · · ·Fbt+2. By Lemma 5.2, we have

Fb1+2Fb2+2 · · ·Fbt+2 ≤ 2t−1Fb1+b2+···bt−t+3 = 2t−1Fk−2n+4−t.
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Figure 12. A maximal chain in [n]× [2]

By Lemma 5.3, this is maximized when t = 4n− k − 3. The result follows. □

5.2. Generalization to rectangle posets. In this section, we generalize the prob-
lem to rectangle posets. We consider the following poset

Pn×m := [n]× [m] = {(i, j) : i ∈ [n] and j ∈ [m]}.

We consider the first non-trivial case, where m = 2 and n is any positive integer.
We want to find

JLRn×2(n, k) := max
T :|T |=k

M(T )

where T ⊆ Pn×2.
We first define the following terminology in the poset Pn×2.

Definition 5.5. Given a maximal chain m, an overlap is a set {(x, 1), (x, 2)} ⊆ m
for some x ∈ [n].

Example 5.6. Figure 12 shows a maximal chain in [n] × [2] with an overlap (red
points).

With the above definition, we have the following lemma.

Lemma 5.7. There is exactly one overlap in a maximal chain in Pn×2.

Proof. In a maximal chain m ∈ Pn×2, let a be the number of elements in m but not
in any overlaps of m and b be the number of elements in both m and the overlaps.
Hence we have a + b = n + 1, which is the total number of elements in a maximal
chain.

On the other hand, we have a+b/2 = n. Solving the two equations simultaneously,
we have a = n − 1 and b = 2. Thus there is exactly one overlap in a maximal
chain. □

Proposition 5.8. Let T ⊆ Pn×2. If 1 ≤ k ≤ 2n then

JLRn×2(n, k) = k − n.

Proof. Let T be any configuration with k elements in Pn×2. Suppose, for the sake of
contradiction, thatM(T ) ≥ k−n+1. However, by Lemma 5.7, we know that there is
a overlap in each of the maximal chains. Hence if there are k−n+1 maximal chains,
there are at least k − n+ 1 + n = k + 1 elements. This gives a contradiction. □
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Appendix

A. Proof of Kittipassorn’s lemma. The proof below of Kittipassorn’s lemma
(Lemma 2.5) is from Kittipassorn’s unpublished manuscript [2].

To prove this lemma, Kittipassorn first define the ordering of the poset elements
in each level. Let vj ∈ Li ∩ T . The ordering of vj ’s is defined to be: the middle
element is named v1, add one element at a time going outward columns from the
middle. If we have to break the left-right symmetry, add a element to the right first.

Define a(v) and b(v) to be the number of chains containing (1, 1) and v = (i, j)
with i − j + 1 elements in a configuration T and a Kittipassorn’s configuration
respectively. For convention, if v /∈ T , then a(v) = 0; if v /∈ T ∗, then b(v) = 0.

Instead of proving his original lemma, Kittipassorn proves a stronger proposition:

Proposition 6.1. Let u1, u2, ..., uri in any configuration T and v1, v2, ..., vri in a
Kittipassorn’s configuration T ∗. For all i = 1, 2, ..., 2n− 1, we have

a(u1) ≤ b(v1)

a(u1) + a(u2) ≤ b(v1) + b(v2)

...

a(u1) + a(u2) + ...+ a(uri) ≤ b(v1) + b(v2) + ...+ b(vri).
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Proof. Let ũ1, ũ2, ..., ũri+1 and ṽ1, ṽ2, ..., ṽri+1 be elements in Li+1∩T and Li+1∩T ∗

respectively. Apply induction on i, we have

b(ṽ1) + b(ṽ2) + ...+ b(ṽri+1
) = 2b(v1) + ...+ 2b(vki−1

) + b(vi) + b(vi+1)

≥ 2a(u1) + ...+ 2a(uki−1
) + a(ui) + a(ui+1)

≥ a(ũ1) + a(ũ2) + ...+ a(ũri+1
),

as required. □

B. Pseudo-code for computing JLR(n, k).

FUNCTION chain (positive integer n, vector (r[1], r[2],..., r[2n-1]))
a: 2D array [0..(2n-1) ,0..n] of non -negative integers
b: 2D array [0..(2n-1) ,0..n] of boolean
x, z: positive integer
for i from 1 to 2n-1 do

if r[i] != 0 then
if i <= n then x := ceil(i/2)
else x := ceil ((2n-i)/2
if (i mod 2 = 0) then x := x+1
if (r[i] mod 2 = 0) and (i mod 2 = 0) then

z := ceil(r[i]/2)
else z := floor(r[i]/2)+1
y:=x-1
for j from 1 to z do

b[i][x] := TRUE
x := x+1

for j from 1 to (r[i]-z) do
b[i][y] := TRUE

y := y-1
else b[i][j] := FALSE

a[1][1] := 1
for i from 1 to 2n-1 do

if i <= n then x := i
else x := 2n-i
for j from 1 to x do
if b[i][j] then

if i<=n then
a[i][j] := a[i-1][j-1] + a[i-1][j]

else a[i][j] := a[i-1][j] + a[i-1][j+1]
else a[i][j] := 0

RETURN a[2n -1][1]
MAIN

INPUT positive integers n, k
max , count: non -negative integer
bo: boolean
bo := TRUE
r[1] := 1
r[2n-1] := 1
Partition k-2 into 2n-3 parts: r[2], r[3], ..., r[2n-2]
for each partition do

for each i from 2 to 2n-1,
if abs(r[i]-r[i-1]) >1 then

bo := FALSE
if bo then

count := chain(n,r[1], r[2], ..., r[2n-1])
if max < count then max := count

OUTPUT max
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The author of this paper studied the Johnson-Leader-Russell question on square
posets about finding the subset of given size k in the square poset [n]× [n] that con-
tains the largest number of (2n− 1)-chains. Progress toward the problem was made
by Kittipassorn. The author builds on Kittipassorn’s work to settle the question in
a small but nontrivial range of values of k, and in a slightly larger range under a
reasonable-seeming hypothesis about where the maximum could be obtained. The
paper also introduced a very natural and interesting extension to the case of rectan-
gular posets, and some codes that can efficiently compute exact answers in a large
family of cases.
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