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Abstract. This essay will analyze a function that is a generalization of the

Gauss sum. The function happens to be closely related to the cycle index

of the symmetric group, which will also be analyzed. Some properties of the
Gauss sum will be generalized. A number-theoretic inequality is also obtained.

1. Introduction

By Theorem 33, jχ, the main function in this thesis, is a generalization of the
Ramanujan’s sum, the Gauss sum, and the coefficient of the cyclotomic polyno-
mial. [See reviewer’s comment (1)] It is hoped that the properties of them can be
understood better through the investigation of jχ.

Some notation that is used in the report is introduced at the beginning. Then,
the main theorems, especially the equation connecting jχ and the cycle index of
the symmetric group, are presented. After that, properties of the cycle index of
the symmetric group and its relationship with the Gaussian binomial coefficient
are displayed. Some properties of the Gauss sum related to its separability and
primitive Dirichlet characters are generalized. Finally, some special values of jχ are
evaluated. An inequality version of a well-known equation connecting the mobius
function and the Euler totient function will also be demonstrated.

2. Notation

This essay will use the following notation.

Notation 1. N is the set of positive integers, C is the set of complex numbers, and
∅ is the empty set.
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Notation 2. φ(n) is the Euler totient function.

Notation 3. µ(n) is the Mobius function.

Notation 4. χ(n) is a Dirichlet character and χ1(n) is the principal Dirichlet
character. χm represents the Dirichlet character for which χm(n) = (χ(n))m for
all n ∈ Z. [See reviewer’s comment (2)]

Notation 5. ζk is e2πi/k.

Notation 6. For a Dirichlet character χ mod k, denote G(n, χ) =
∑k
a=1 χ(a)ζank

as the Gauss sum associated with χ. The Ramanujan’s sum ck(n) denotes G(n, χ1).

Notation 7. An = {1, 2, . . . , n}, An,m = {X ⊂ An | X has m elements.}

Notation 8. For a set S, define α(S) =
∑
x∈A x and β(S) =

∏
x∈A x. Also, define

α(∅) = 0 and β(∅) = 1.

Notation 9. Denote the Gaussian binomial coefficient by

[
n
m

]
q

=

m∏
r=1

qn−m+r − 1

qr − 1
.

It is well-known that

[
n
m

]
q

is a polynomial in q.

3. Relationships between Different Values of jχ

The following function is the main function that will be investigated in this paper.

Definition 10. Let z ∈ C, n ∈ N, m ∈ N ∪ {0}, and χ be a Dirichlet character
mod n. Define

jχ(z, n,m) =
∑

S∈An,m

χ(β(S))zα(S)

[See reviewer’s comment (3)]

We will also define j(z, n,m) = jχ1
(z, n,m).

Remark 11. In the following parts, unless otherwise stated, whenever jχ(z, n,m)
appears, it is understood that z ∈ C, n ∈ N,m ∈ N ∪ {0}, and χ is a Dirichlet
character mod n.

Remark 12. Note that we have

jχ(z, n,m) =


1 if m = 0∑
1≤a1<a2<···<am≤n

m∏
r=1

(χ(ar)z
ar ) if 1 ≤ m ≤ φ(n)

0 if m > φ(n)
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In the second case, the sum is taken over all a1, a2, . . . , am satisfying 1 ≤ a1 <
a2 < · · · < am ≤ n. Note that jχ(z, n,m) is also the coefficient of xn−m in∏n
k=1(x+ χ(k)zk). That is, we have

n∏
k=1

(x+ χ(k)zk) =

n∑
m=0

jχ(z, n,m)xn−m

Theorem 13. For all m ≥ 1, we have

jχ(z, n,m) =
1

m

m∑
l=1

(−1)l+1jχl(z
l, n, 1)jχ(z, n,m− l) (1)

Proof. We have

jχl(z
l, n, 1)jχ(z, n,m− l)

=

(
n∑
a=1

χl(a)zla

) ∑
S∈An,m−1

χ(β(S))zα(S)


=

∑
S∈An,m−l+1

∑
k∈S

z(l−1)kχ(kl−1)χ(β(S))zα(S)

+
∑

S∈An,m−l

∑
k∈S

zlkχ(kl)χ(β(S))zα(S)

This shows that the right hand side of equation 1 is a telescoping sum so we have

1

m

m∑
l=1

(−1)l+1jχl(z
l, n, 1)jχ(z, n,m− l)

=
1

m

∑
S∈An,m

∑
k∈S

χ(β(S))zα(S)

+
1

m

m∑
l=2

∑
S∈An,m−l+1

∑
k∈S

(−1)l+1z(l−1)kχ(kl−1)χ(β(S))zα(S)

+
1

m

m−1∑
l=1

∑
S∈An,m−l

∑
k∈S

(−1)l+1zlkχ(kl)χ(β(S))zα(S)

+
1

m

∑
S∈An,0

∑
k∈S

zmkχ(km)χ(β(S))zα(S)

=
∑

S∈An,m

χ(β(S))zα(S)

since the middle two terms cancel each other out and the last term is zero. [See
reviewer’s comment (4)]
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Remark 14. By a similar proof, we have

∑
S∈An,m

zα(S) =
1

m

m∑
l=1

(−1)l+1

(
n∑
a=1

zla

) ∑
S∈An,m−l

zα(S)


for m ≥ 1.

Let ZSm(a1, a2, . . . , am) be the cycle index of the symmetric group Sm. [See re-
viewer’s comment (5)] By [4], we have

ZSm(a1, a2, . . . , am) =
∑

j1+2j2+···+mjm=m

m∏
k=1

ajkk
kjkjk!

(2)

for m ≥ 1 and

ZSm(a1, a2, . . . , am) =
1

m

m∑
l=1

alZSm−l(a1, a2, . . . , am−l) (3)

where ZS0
is defined as 1. Note that this recurrence relation is quite similar to

equation 1. In fact, we have the following important theorem, which gives a recur-
rence relation of the j function, and shows that the j function is closely related to
the cycle index of the symmetric group.

Theorem 15.

jχ(z, n,m) = (−1)mZSm(−jχ(z, n, 1),−jχ2(z2, n, 1), . . . ,−jχm(zm, n, 1)) (4)

In other words, we have

jχ(z, n,m) =
∑

j1+2j2+···+mjm=m

(−1)m+
∑m
k=1 jk

m∏
k=1

jχk(zk, n, 1)jk

kjkjk!

for m ≥ 1.

Proof. We will use induction on m. The cases for m = 0 and m = 1 are trivial.
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Assume Equation 4 holds for all m ≤ k − 1 where k ≥ 2. Then

jχ(z, n, k)

=
1

k

k∑
l=1

(−1)l+1jχl(z
l, n, 1)jχ(z, n, k − l)

=
1

k

k∑
l=1

(−1)l+1jχl(z
l, n, 1)

(−1)k−lZSk−l(−jχ(z, n, 1),−jχ2(z2, n, 1), . . . ,−jχk−l(zk−l, n, 1))

= (−1)k
1

k

k∑
l=1

(−jχl(zl, n, 1))

ZSk−l(−jχ(z, n, 1),−jχ2(z2, n, 1), . . . ,−jχk−l(zk−l, n, 1))

= (−1)kZSk(−jχ(z, n, 1),−jχ2(z2, n, 1), . . . ,−jχk(zk, n, 1))

Thus, Equation 4 is true for m = k and this completes the induction.

Remark 16. By a similar proof, we have

∑
S∈An,m

z
α(S)
0

= (−1)mZSm

(
−

n∑
a=1

za0 ,−
n∑
a=1

z2a0 , . . . ,−
n∑
a=1

zma0

)

= (−1)m lim
z→z0

ZSm

(
−z(z

n − 1)

z − 1
,−z

2(z2n − 1)

z2 − 1
, . . . ,−z

m(zmn − 1)

zm − 1

)

Corollary 17. jχ(ζrn, n,m) = (−1)mZSm(−G(r, χ),−G(2r, χ2), . . . ,−G(mr, χm)).
In particular, χ(ζn, n,m) = (−1)mZSm(−cn(1),−cn(2), . . . ,−cn(m)). Note that
this expresses the coefficient of cyclotomic polynomial in terms of the Ramanujan’s
sum.

[See reviewer’s comment (6)]

The theorem below shows that the j function satisfies a reflection formula.
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Theorem 18. For z 6= 0, we have jχ(z, n,m) = jχ(z, n, φ(n))jX(z−1, n, φ(n)−m).

Proof. The case for m > φ(n) is trivial. Assume m ≤ φ(n). Let {a1, . . . , aφ(n)} be
the reduced residue system modulo n. Then

jχ(z, n,m) =
∑

S∈An,φ(n)−m

χ(a1a2 . . . aφ(n))z
a1+···+aφ(n)χ(β(S))z−α(S)

= χ(a1a2 . . . aφ(n))z
a1+···+aφ(n)

∑
S∈An,φ(n)−m

χ(β(S))z−α(S)

= jχ(z, n, φ(n))jχ(z−1, n, φ(n)−m)

The value of jχ(z, n, φ(n)) will be determined in Theorem ??.

We also have the following trivial result.

Theorem 19. If n is even, then jχ(−z, n,m) = (−1)mjχ(z, n,m).

4. Cycle index and the Gaussian binomial coefficient

Lemma 20. Let g(q, n,m) =
∑
S∈An,m q

α(S). Then we have

g(q, n,m) =

[
n
m

]
q

q
m(m+1)

2

Proof. A proof is provided in [3]. A slightly different proof will be provided here.
Define

f(q, n,m) =
∑

0≤a1≤···≤am≤n

qa1+···+am

Then, we have

f(q, n,m) =

n∑
r=0

∑
0≤a1≤···≤am−1≤r

qa1+···+am−1qr

=

n∑
r=0

f(q, r,m− 1)qr

We shall use induction to prove that f(q, n,m) =

[
m+ n
m

]
q

. We have

f(q, n, 1) = 1 + q + · · ·+ qn =

[
1 + n

1

]
q
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Assume f(q, n, k) =

[
k + n
k

]
q

where k ∈ N. We need to prove that

f(q, n, k + 1) =

[
k + 1 + n
k + 1

]
q

By the recurrence of f proved above and the induction hypothesis, it suffices to
prove that [

n+ k + 1
k + 1

]
q

=

n∑
r=0

[
r + k
k

]
q

qr

which is true by induction on n.

Let bi = ai + i for 1 ≤ i ≤ m. Then 0 < a1 < · · · < am ≤ n if and only if
0 ≤ b1 ≤ · · · ≤ bm ≤ n−m. Thus,

g(q, n,m) =
∑

0<a1<···<am≤n

qa1+···+am

=
∑

0<b1≤···≤bm≤n−m

qb1+···+bm+1+2+···+m

= q
m(m+1)

2 f(q, n−m,m)

=

[
n
m

]
q

q
m(m+1)

2

By comparing Remark 16 and Lemma 20, we can obtain the following theorem.

Theorem 21. For all z0 ∈ C, we have[
n
m

]
z0

z
m(m+1)

2
0 = lim

z→z0
(−1)mZSm

(
−z(z

n − 1)

z − 1
,−z

2(z2n − 1)

z2 − 1
, . . . ,−z

m(zmn − 1)

zm − 1

)
Corollary 22. For all n ∈ C and non-negative integers k, we have

ZSk (−n,−n, . . . ,−n)︸ ︷︷ ︸
k copies of −n

= (−1)k
(
n
k

)
(5)

Proof. This follows directly by taking z0 = 1 in Theorem 21. We will present
another proof below.

When k = 0, both sides are 1 so the equation is true. When k ≥ 1 and n = 0, both
sides are 0 so the equation is true. Assume n 6= 0. When k = 1, both sides are −n
so the equation is true. Assume the equation is true for all k ≤ m where m ∈ N.
We need to prove that Equation 5 is true for k = m+ 1. By Equation 3, it suffices
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to prove that

(−1)m+1

(
n

m+ 1

)
= − n

m+ 1

m+1∑
l=1

(−1)m+1−l
(

n
m+ 1− l

)
which is equivalent to (

n− 1
m

)
=

m+1∑
l=1

(−1)l+1

(
n

m+ 1− l

)
This is well known and can be proved easily by induction on m.

We will use the following lemma to prove that jχ(z, n,m) is zero for some special
values of z, n,m in the subsequent sections.

Lemma 23. Let m ∈ N and i1, . . . , is be positive integers such that

gcd(i1, . . . , is) - m

Let a1, . . . , am ∈ C. Assume ai = 0 for all i ∈ Am\{i1, . . . , is}. Then ZSm(a1, . . . , am).

Proof. Whenever j1 + 2j2 + · · · + mjm = m, there exists i ∈ Am\{i1, . . . , is} for

which ji 6= 0 so
∏m
k=1

a
jk
k

kjk jk!
= 0. Thus,

ZSm(a1, a2, . . . , am) =
∑

j1+2j2+···+mjm=m

m∏
k=1

ajkk
kjkjk!

= 0

5. Inequalities for jχ

Theorem 24. For any positive real number z and integer n ≥ 2, we have

j(z, n,m) ≥
(
φ(n)
m

)
z
nm
2

Equality holds if and only if z = 1,m = 0, or m ≥ φ(n).

Proof. By the arithmetic mean-geometric mean inequality,

j(z, n,m) ≥
(
φ(n)
m

)(
z

(
φ(n)− 1
m− 1

)
nφ(n)

2

) 1(
φ(n)
m

)
=

(
φ(n)
m

)
z
nm
2

[See reviewer’s comment (7)]

By [1], we have the following theorem:
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let χ be any nonprincipal character modulo n, and let f be a nonnegative function
which has a continuous negative derivative f(x) for all x ≥ x0. Then if y ≥ x ≥ x0,
we have ∑

x<a≤y

χ(a)f(a) = O(f(x))

We will slightly modify the proof of it to prove a result without the big O notation.

Lemma 25. Let χ be any nonprincipal character modulo n, and let f be a nonneg-
ative function which has a continuous nonnegative derivative f(x) for all x ≥ x0.
Then if y ≥ x ≥ x0, we have∣∣∣∣∣∣

∑
x<a≤y

χ(a)f(a)

∣∣∣∣∣∣ ≤ φ(n)f(x)

Proof. Let
∑
a≤x χ(a) = A(x). By Exercise 6.15 in [1], we have

|A(x)| ≤ φ(k)

2
= M

for all x. By Abel’s summation formula, we have∑
x<a≤y

|χ(a)f(a)| =
∣∣∣∣f(x)A(x)− f(y)A(y)−

∫ y

x

A(t)f ′(t)dt

∣∣∣∣
≤ |f(x)A(x)|+ |f(y)A(y)|+

∣∣∣∣∫ y

x

A(t)f ′(t)dt

∣∣∣∣
≤Mf(x) +Mf(y) +M(f(x)− f(y))

= 2Mf(x)

= φ(n)f(x)

Lemma 26. Let χ be any nonprincipal character modulo n. For any real number
z ∈ (0, 1), we have |jχ(z, n, 1)| ≤ φ(n)z.

Proof. Let r = z−1 and let ε be any real number less than 1. Putting

f(t) = r−t, x0 = 0, x = ε, and y = n

in Lemma 25, we have

|jχ(r−1, n, 1)| =

∣∣∣∣∣∣
∑

ε<a≤n

χ(a)

ra

∣∣∣∣∣∣ ≤ φ(n)

rε

Hence, |jχ(r−1, n, 1)| ≤ φ(n)
r and the result follows.
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Theorem 27. Let m ∈ N and z ∈ (0, 1). If χ, χ2, . . . , χm are all nonprincipal
characters modulo n, then

|jχ(z, n,m)| ≤
(
φ(n) +m− 1

m

)
zm

Proof. We have

|jχ(z, n,m)| =

∣∣∣∣∣∣
∑

j1+2j2+···+mjm=m

(−1)m+
∑m
k=1 jk

m∏
k=1

jχk(zk, n, 1)jk

kjkjk!

∣∣∣∣∣∣
≤

∑
j1+2j2+···+mjm=m

m∏
k=1

(φ(n)zk)jk

kjkjk!

= ZSm(φ(n), φ(n), . . . , φ(n))zm

= (−1)m
(
−φ(n)
m

)
zm

=

(
φ(n) +m− 1

m

)
zm

by Corollary 22 and Lemma 26. [See reviewer’s comment (8)]

6. Generalization of some properties of the Gauss sum

By [1], if n ∈ Z, k ∈ N, χ is a Dirichlet character mod k and gcd(n, k) = 1, then

G(n, χ) = χ(n)G(1, χ). We will generalize this result in Theorem 28 and 29.

Theorem 28. Let n ∈ Z, k, r ∈ N and let χ be a Dirichlet character mod k. If
gcd(n, k) = 1, then G(nr, χr) = χr(n)G(r, χr).

Proof.

G(nr, χr) =

k∑
a=1

χr(a)ζnrak =

k∑
a=1

χr(n)χr(na)ζnrak

As gcd(n, k) = 1, in Z/kZ, n, 2n, . . . , kn is a permutation of 1, 2, . . . , k. Thus,

G(nr, χr) =

k∑
b=1

χr(n)χr(b)ζbrk = χr(n)G(r, χr)

Theorem 29. Let n ∈ Z, k ∈ N,m ∈ N ∪ {0}. If gcd(n, k) = 1, then

jχ(ζnk , k,m) = χm(n)jχ(ζk, k,m)
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Proof. The equation is clearly true for m = 0. Assume m ≥ 1. Then

jχ(ζnk , k,m)

= (−1)mZSm(−G(n, χ),−G(2n, χ2), . . . ,−G(mn,χm))

= (−1)mZSm(−χ(n)G(1, χ),−χ2(n)G(2, χ2), . . . ,−χm(n)G(m,χm))

= (−1)mχm(n)ZSm(−G(1, χ),−G(2, χ2), . . . ,−G(m,χm))

= χm(n)jχ(ζk, k,m)

By [1], if χ is primitive, then G(n, χ) = χ(n)G(1, χ) for all n ∈ Z. [See reviewer’s
comment (9)] We will generalize this result in Theorem 31.

Lemma 30. Let χ be a Dirichlet character mod k. If χm is primitive and d
mod m, then χd is primitive.

Proof. Assume χd is imprimitive. Then there exists t | k with 0 < t < k such that
χd(b) = 1 for all b ≡ 1 (mod t) with gcd(b, k) = 1. Thus,

χm(b) = (χd(b))
m
d = 1

for all b ≡ 1 (mod t) with gcd(b, k) = 1, which means χm is imprimitive, a contra-
diction.

Theorem 31. Let m ∈ N and i1, . . . , is be positive integers such that

gcd(i1, . . . , is) - m

If χi is primitive for all i ∈ Am\{i1, . . . , is}, then jχ(ζnk , k,m) = χm(n)jχ(ζk, k,m)
for all n ∈ Z.

Proof. If gcd(n, k) = 1, then jχ(ζnk , k,m) = χm(n)jχ(ζk, k,m) by Theorem 29.

If gcd(n, k) ≥ 2, then

jχ(ζnk , k,m) = (−1)mZSm(a1, a2, . . . , am)

where ai = −G(ni, χi), which equals zero for all i ∈ Am{i1, . . . , is}. By Lemma 23,

ZSm(a1, a2, . . . , am) = 0. Thus, jχ(ζnk , k,m) = 0 = χm(n)jχ(ζk, k,m).

By Lemma 30 and Theorem 31, we have the following corollary.

Corollary 32. If χr is primitive for all r > m
2 , then

jχ(ζnk , k,m) = χm(n)jχ(ζk, k,m)

for all n ∈ Z.
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7. Special values of j

Theorem 33. We have

1. j(ζnk , k, 1) = ck(n),
2. jχ(ζnk , k, 1) = G(n, χ),

3. (−1)mj(ζn, n,m) = coefficient of xφ(n)−m in the nth cyclotomic polynomial
Φn(x).

Proof. Trivial. [See reviewer’s comment (10)]

By [2], Gauss has proved that

n∏
r=1,gcd(r,n)=1

r

≡

{
−1 (mod n) if n = 4, pa or 2pa where p is an odd prime and a ≥ 1

1 (mod n) otherwise

Thus, we have the following theorem.

Theorem 34.

jχ(z, n, φ(n))

≡


χ(−1)z

nφ(n)
2 if n = 4, pa or 2pa where p is an odd prime and a ≥ 1

z if n = 1

z
nφ(n)

2 otherwise

Theorem 35. Let χ be a Dirichlet character mod n. Let h be the order of χ, that
is, the smallest k ∈ N such that χk = χ1. Then,

jχ(1, n,m) =

(−1)
m(h+1)

h

(
φ(n)
h
m
h

)
if h | m

0 if h - m

Proof. We have

jχ(1, n,m) = (−1)mZSm(a1, . . . , am)

where ai = −
∑n
a=1 χ

i(a), which equals −φ(n) if h | i and equals 0 if h - i. If h - m,
then ZSm(a1, . . . , am) = 0 by Lemma 23.
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Assume h | m and let m = ht. Then,

ZSht(a1, . . . , aht) =
∑

j1+2j2+···+htjht=ht

ht∏
k=1

ajkk
kjkjk!

=
∑

r1+2r2+···+trt=t

t∏
s=1

(−φ(n))rs

(hs)rsrs!

= ZSt

(
−φ(n)

h
,−φ(n)

h
, . . . ,−φ(n)

h

)
The last expression has t copies of −φ(n)h and equals (−1)t

(
φ(n)
h
t

)
by Corollary 22.

Thus, jχ(1, n, ht) = (−1)t(h+1)

(
φ(n)
h
t

)
.

From Lemma 20, we have the following theorem.

Theorem 36. For any prime p and z, we have j(z, p,m) =

[
p− 1
m

]
z

z
m(m+1)

2 .

Theorem 37. For all z0 ∈ C, we have

j(z0, n, 1) = lim
z→z0

∑
d|n

µ(d)zd(zn − 1)

zd − 1

Proof. For all z for which zn 6= 1, we have

j(z, n, 1) =
∑

a=1,gcd(a,n)=1

za

=
∑
a=1

∑
d|gcd(a,n)

µ(d)za

=
∑
a=1

∑
d|a,d|n

µ(d)za

=
∑
d|n

n/d∑
m=1

µ(d)zmd

=
∑
d|n

µ(d)zd(zn − 1)

zd − 1

As j(z, n, 1) is a polynomial in z, we have

j(z0, n, 1) = lim
z→z0

∑
d|n

µ(d)zd(zn − 1)

zd − 1
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Remark 38. For n ≥ 2, we have

j(z0, n, 1) = lim
z→z0

∑
d|n

µ(d)zd(zn − 1)

zd − 1

= lim
z→z0

∑
d|n

µ(d)

(
1 +

1

zd − 1

)
(zn − 1)

= lim
z→z0

∑
d|n

µ(d)(zn − 1)

zd − 1

Corollary 39. We have

1.
µ(n)zn

zn − 1
=
∑
d|n

µ
(n
d

) j(z, d, 1)

zd − 1
for zn 6= 1,

2.
z(zn − 1)

z − 1
=
∑
d|n

j(z
n
d , d, 1) for z 6= 1.

Proof. For zn 6= 1, we have

j(z, n, 1)

zn − 1
=
∑
d|n

µ(d)zd

zd − 1

By Mobius inversion formula, we have

µ(n)zn

zn − 1
=
∑
d|n

µ
(n
d

) j(z, d, 1)

zd − 1

[See reviewer’s comment (11)]

For z 6= 1, we have

j(z
1
n , n, 1) =

∑
d|n

µ(d)z
d
n (z − 1)

z
d
n − 1

By Mobius inversion formula, we have

z
1
n (z − 1)

z
1
n − 1

=
∑
d|n

j(z
1
d , d, 1)

so
z(zn − 1)

z − 1
=
∑
d|n

j(z
n
d , d, 1)

By Theorem 24 and Remark 38, we have the following theorem.
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Theorem 40. For any positive real number z0 and integer n ≥ 2, we have

lim
z→z0

∑
d|n

µ(d)(zn − 1)

zd − 1
≥ φ(n)z

n
2
0

Equality holds if and only if z0 = 1 or n = 2.

Remark 41. Note that this is a generalization of the well-known equation∑
d|n

µ(d)
n

d
= φ(n)
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Reviewer’s Comments

In this paper under review, the author defines and studies the properties of the
following function

jχ(z, n,m) =
∑

1≤j1<j2<···<jm≤n

χ

(
m∏
i=1

ji

)
z
∑m
i=1 ji

where χ is a Dirichlet character mod n, z ∈ C, n,m ∈ N. To justify his claim that
jχ(z, n,m) is a generalization of various objects in number theory, namely Gauss
sums, Ramanujan’s sums and coefficients of cyclotomic polynomials, the author
derives an assortment of identities and inequalities involving jχ which specialize to
those involving the Gauss sum, etc. For instance, in §6, it is shown that jχ satisfies

jχ(ζnk , k,m) = χm(n)jχ(ζk, k,m)

where ζk is a primitive k-th root of unity. This identity is a generalization of the
identity involving Gauss sums

G(nr, χ) = χr(n)G(r, χr),

where G(n, χ) :=

k∑
a=1

χ(a)ζan for χ being mod k. Moreover, the function jχ allows

the author to deduce the ‘quantum’ analogue of known identities in combinatorics
and number theory. For instance, Theorem 27 shows that jχ for χ being principal is
the quantum analogue of a binomial coefficient. Corollary 30 can be interpreted as
the quantum analogue of the fact that the summatory function of the Euler totient
function φ is the identity function, whereas the inequality in Theorem 31 is the
quantum analogue of the Möbius inversion formula∑

d|n

µ(d)
n

d
= φ(n).

The main tool the author utilizes in proving his results is the expression of jχ in
terms of the cycle index of the symmetric group Sm (Theorem 6). Throughout the
paper, the author demonstrates his understanding of, and ability in applying, some
notions and results from advanced undergraduate mathematics, notably arithmetic
functions and estimate using Abel’s summation formula.

While his results are interesting in its own right, the exposition of the paper under
review leaves much to be desired. The introduction is poorly written, and context
and motivation for the notions he wants to generalize and his main results are
blatantly lacking. Rather than mentioning straight right away one of his main
results (Theorem 24) in the first sentence of the introduction, which certainly puts
off the non-expert reader, he should have taken a step-by-step approach in writing
his introduction, beginning with the definitions of Gauss sums, etc. and their
significance and applications in number theory, and then justifying his study of jχ
as a generalization of the above notions by saying a few words about Theorem 24.
Very often in proofs of his results explanations are inadequate, and more remarks
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and connecting paragraphs should have been put in place to inform the reader his
lines of thought, what the results are for and how one should best interpret his
results. For instance, the reviewer is surprised that the author does not mention
that Theorem 27, Corollary 30 and Theorem 31 are actually quantum analogues of
known identities, even though he cites Quantum Calculus as one of the references
which the reviewer believes was used in his proofs. Also perplexing is that while
the cycle index is one of the main tools he uses in this paper, he does not mention
where the cycle index arises. The following are specific mistakes the reviewer found
and suggested improvements.

1. As mentioned above, give motivations and say a few words about Theorem 33.
2. Define (principal) Dirichlet characters and say that χ(n) is a Dirichlet char-

acter modulo k.
3. There is an inconsistent use of notation. While in Notation 4, χ is (implicitly)

assumed to be modulo k, here χ is assumed to be modulo n.
4. More explanations should have been given. For example, the two summands

in lines 4 and 5 of the proof actually correspond to two cases, namely k ∈ S
or k /∈ S for S ∈ An,m−`.

5. Give context and motivation for cycle index of the symmetric group.
6. Explain why j(ζn, n,m) is a coefficient of a cyclotomic polynomial.
7. The proof only deals with the case m ≤ φ(n). How about the case m > φ(n)?
8. In fact Theorem 6 is used as well.
9. Explain what ‘primitive’ Dirichlet character means.

10. Refrain from saying ‘trivial’. The author should have at least said a few more
words in the proof, even though it is trivial to him.

11. It is not at all clear to the reviewer why he can use Möbius inversion formula

here, as the function
µ(d)zd

zd − 1
is not multiplicative.


