ON THE GENERALIZATION OF THE TRIANGLE PEG PROBLEM TO HIGHER DIMENSIONS

A RESEARCH REPORT SUBMITTED TO THE SCIENTIFIC
COMMITTEE OF THE HANG LUNG MATHEMATICS AWARDS

TEAM MEMBERS
MOK CHUN HEI, WEI CHI KONG, TO WANG KIN
TEACHER
MR. CHO KA ON
SCHOOL
S.K.H. TSANG SHIU TIM SECONDARY SCHOOL

AUGUST 2021

Abstract

A lot of work has been put into solving special cases of the famous Square Peg Problem, which focuses on the two dimensional space. The aim of this project is to investigate the generalization of the Triangle Peg Problem into manifolds of higher dimensions.

By considering the Triangle Peg Problem, we have successfully proven the Tetrahedron Peg Problem, i.e. for every smooth compact connected surface, there exists four distinct points on the surface which can form a regular tetrahedron. Finally, by induction, we have generalized a variant of the Triangle Peg Problem to even higher dimensions.

Keywords. Triangle Peg Problem, Tetrahedron Peg Problem, Jordan Curve, Manifolds

Contents

1. Introduction 164
1.1. Motivation 164
1.2. Outline of the Paper 164
1.3. Notations and Definitions 165
2. Revisiting the Jordan Curve 165
2.1. Introduction to the Jordan Curve 165
2.2. The Equilateral Triangle Peg Problem 166
2.3. A Fixed Peg 168
3. Extending to the 3-Dimensional Space 170
3.1. The Regular Tetrahedron 171
3.2. An Extension to the Intermediate Value Theorem 172
3.3. Putting All Together 175
4. Generalizing to Higher Dimensions 177
4.1. The Regular n-simplex 177
4.2. The Regular n-simplex Peg Problem 180
5. Conclusion 182
References 182

1. Introduction

1.1. Motivation. The famous unsolved problem in Mathematics, the Square Peg Problem (or Toeplitz' Conjecture) proposed by Otto Toeplitz in 1911, discusses if every simple closed curve in the two dimensional plane inscribes a square. More preciously,
Conjecture 1.1 (Square Peg Problem). For all simple closed curve $\gamma \subset \mathbb{R}^{2}$, there exist four distinct points $x, y, z, w \in \gamma$ such that they form a square, i.e.

$$
\|x-y\|=\|y-z\|=\|z-w\|=\|w-x\| .
$$

This problem has remained unsolved for over a century.
In the early stage of our research, we were inspired by the paper 'Equilateral triangles and continuous curves' by Mark D. Meyerson [1]. It proves several results related to the triangle peg problem and even the stronger, fixed peg variant of it, which states that each point on every simple closed curve in the two dimensional plane is a vertex of an inscribed equilateral triangle. Formally,

Theorem 1.2 (Fixed Equilateral Triangle Peg Problem). Given any simple closed curve $\gamma \subset \mathbb{R}^{2}$ and a point $x \in \gamma$, there exist two distinct points $y, z \in \gamma$ such that x, y, z is an equilateral triangle, i.e.

$$
\|x-y\|=\|y-z\|=\|z-x\|
$$

Based on the results, we decided to make a proof on the Regular Tetrahedron Peg Problem, and it aided us to deduce some strategies to tackle it in the early phase.

We have also considered other possible shapes such as cuboids and pyramids. However, considering the simple properties of a tetrahedron, we believe that the tetrahedron is the most suitable for our generalized topic.
1.2. Outline of the Paper. In our research, we firstly revisit the Equilateral Triangle Peg Problem and examine the crucial properties of simple closed curves and equilateral triangles to understand the possible methods to generalize and solve the problem.

Then, we attempt to extend our vision from two to three dimensional space to investigate the Regular Tetrahedron Peg Problem: the possibility that all four vertices of a regular tetrahedron lie on a three dimensional compact surface, mainly focusing on its fixed peg variant.

Problem 1.3. Under what condition for a compact surface $S \subset \mathbb{R}^{3}$ and being given a point $x \in S$ do there exist three distinct points $y, z, w \in S$ which form a regular tetrahedron with x ?

Finally, manifolds in higher dimensions would also be a part of our investigations. By considering the outline of our proofs in lower dimensions, we have generalized the Regular Tetrahedron Peg Problem to higher dimensional manifolds, which will be further discussed below.
1.3. Notations and Definitions. Before we begin the investigation, let us define some common terminologies and symbols used in this document.

Definition 1.4. \mathbb{R} denotes the set of all real numbers.
In this document, an n-dimensional point $P \in \mathbb{R}^{n}$ may sometimes refer to the position vector $\overrightarrow{O P}$ where O is the origin.

Definition 1.5. An n-dimensional unit sphere $\mathbb{S}^{n}=\left\{x \in \mathbb{R}^{n+1}:\|x\|=1\right\}$.
Definition 1.6. A curve $\gamma \subset \mathbb{R}^{n}$ is the image of a continuous function $f:[0,1] \rightarrow$ $\mathbb{R}^{n} . f$ is called the parametrization of γ.

Definition 1.7. Define a function $R:\left(\mathbb{R}^{2}, \mathbb{R}^{2}, \mathbb{R}\right) \rightarrow \mathbb{R}^{2}$ with

$$
R(y, x, \theta)=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right](y-x)+x
$$

where x and y are the column vector representations of the points, which returns the image of y under a rotation about x by an angle θ anti-clockwise.

Definition 1.8. ∂S denotes the boundary of the set S.
Definition 1.9. $\operatorname{cl}(S)$ denotes the closure of the set S, i.e. $S \cup \partial S$.

2. Revisiting the Jordan Curve

2.1. Introduction to the Jordan Curve. As aforementioned, the Equilateral Triangle Peg Problem investigates simple closed curves, i.e. Jordan curves. We define Jordan curves as follows:

Definition 2.1. A curve is closed if $f(0)=f(1)$ where $f:[0,1] \rightarrow \mathbb{R}^{2}$ is its parametrization.

Definition 2.2. A Jordan curve is a closed curve whose parametrization $f:[0,1] \rightarrow$ \mathbb{R}^{2} is injective on $[0,1)$.

In addition, the definition of the Jordan arc is useful in later proofs.
Definition 2.3. A Jordan arc is a proper, path-connected subset of a Jordan curve.
Let us recall an important fact about continuity:
Theorem 2.4 (Intermediate value theorem). Given a continuous function f : $[0,1] \rightarrow \mathbb{R}$, if $f(0) \leq f(1)$, then $\forall y \in[f(0), f(1)], \exists x \in[0,1]$ such that $f(x)=y$. Similarly, if $f(0) \geq f(1)$, then $\forall y \in[f(1), f(0)], \exists x \in[0,1]$ such that $f(x)=y$.

In addition, Jordan curves have a simple property, which is stated in the Jordan curve theorem.

Theorem 2.5 (Jordan curve theorem). For a Jordan curve $\gamma, \mathbb{R}^{2} \backslash \gamma$ consists of exactly two connected components, one bounded and one unbounded, and γ is the boundary of each component. [3]

The following definition is adopted for easier reference to the bounded and unbounded commponents (which are, in fact, the "interior" and the "exterior") of a Jordan curve in this paper:

Definition 2.6. For every Jordan curve γ, define $\gamma_{i n t}$ and $\gamma_{\text {ext }}$ to be its bounded (i.e. the interior) and unbounded (i.e. the exterior) connected component of $\mathbb{R}^{2} \backslash \gamma$ respectively.

In other words, a Jordan curve γ divides the 2 D plane \mathbb{R}^{2} into three connected components, the curve γ, the interior $\gamma_{\text {int }}$ and the exterior $\gamma_{e x t}$.

When the Jordan curve theorem and the intermediate value theorem are put together, we get the following fact:

Lemma 2.7. Given a Jordan curve γ and a curve with parametrization $f:[0,1] \rightarrow$ \mathbb{R}^{2}, if $f(0) \in \gamma \cup \gamma_{\text {int }}$ and $f(1) \in \gamma \cup \gamma_{\text {ext }}$, or $f(0) \in \gamma \cup \gamma_{\text {ext }}$ and $f(1) \in \gamma \cup \gamma_{i n t}$, then $\exists x \in[0,1]$ where $f(x) \in \gamma$.

Proof. By the Jordan curve theorem, define a sign function over \mathbb{R}^{2} of

$$
\epsilon(x)= \begin{cases}-1, & x \in \gamma_{i n t} \\ 0, & x \in \gamma \\ 1, & x \in \gamma_{e x t}\end{cases}
$$

And since γ is closed, there exists a well-defined and continuous signed distance function to $\gamma, d: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with

$$
d(x)=\epsilon(x) \min \{\|y-x\|: y \in \gamma\}
$$

which returns the closest distance of x to γ with the sign indicating whether x is inside or outside γ. Note that $d \circ f$ is a continuous function.

For $f(0) \in \gamma \cup \gamma_{\text {int }}$ and $f(1) \in \gamma \cup \gamma_{\text {ext }}, d \circ f(0) \leq 0$ and $d \circ f(1) \geq 0$. Similarly, for $f(0) \in \gamma \cup \gamma_{e x t}$ and $f(1) \in \gamma \cup \gamma_{i n t}, d \circ f(0) \geq 0$ and $d \circ f(1) \leq 0$.

By the intermediate value theorem, $\exists x \in[0,1]$ where $d \circ f(x)=0$ and thus $f(x) \in \gamma$.

This lemma is essential in later proofs as it provides a way to show that there exists a point lying on a Jordan curve.
2.2. The Equilateral Triangle Peg Problem. Before we tackle the Equilateral Triangle Peg Problem, let us prove two lemmas related to the closest and furthest points to a Jordan curve from a given point.

Lemma 2.8. Given a Jordan curve γ and a point $x \in \gamma \cup \gamma_{\text {int }}$, let $y \in \gamma$ be a point where $\|y-x\|$ is maximum, i.e. a furthest point from x. Then $\forall z \in \mathbb{R}^{2}$ where $\|z-x\|=\|y-x\|, z \in \gamma \cup \gamma_{\text {ext }}$.

Proof (by contradiction). Assume $z \in \gamma_{\text {int }}$. Since $\gamma_{i n t}$ is bounded, $\exists r>0$ where $\forall w \in \gamma_{i n t},\|w-x\|<r$, and so $\|z-x\|<r$. Then pick a point z_{1} on the ray $x z$ where $\left\|z_{1}-x\right\| \geq r$. Hence $z_{1} \notin \gamma_{\text {int }}$.

Let a point z_{2} continuously move along the line segment $z z_{1}$ from $z \in \gamma_{\text {int }}$ to $z_{1} \in \gamma \cup \gamma_{\text {ext }}$. By Lemma 2.7, there exists a z_{2} on $z z_{1}$ such that $z_{2} \in \gamma$. Since $x z z_{2} z_{1}$ is a straight line,

$$
\left\|z_{2}-x\right\|=\left\|z_{2}-z\right\|+\|z-x\| \geq\|z-x\|=\|y-x\|
$$

which contradicts with $\|y-x\|$ being maximum. Therefore, $z \notin \gamma_{\text {int }}$.
Lemma 2.9. Given a Jordan curve γ and a point $x \in \gamma \cup \gamma_{\text {int }}$, let $y \in \gamma$ be a point where $\|y-x\|$ is minimum, i.e. a closest point to x. Then for every point $z \in \mathbb{R}^{2}$ where $\|z-x\|=\|y-x\|, z \in \gamma \cup \gamma_{\text {int }}$.

Proof (by contradiction). Assume $z \in \gamma_{\text {ext }}$. Let a point w continuously move along the line segment $x z$ from x to z. By Lemma $2.7, \exists w \in \gamma$ on $x z$. Since $z \in \gamma_{\text {ext }}$, $z \neq w$. And since $x w z$ is a straight line,

$$
\|w-x\|<\|z-x\|=\|y-x\|
$$

which contradicts with $\|y-x\|$ being minimum. Therefore, $z \notin \gamma_{\text {ext }}$.
With these two lemmas, we can prove the Equilateral Triangle Peg Problem, which, to recall, is:

Theorem 2.10 (Equilateral Triangle Peg Problem). Given a Jordan curve γ, there exists three distinct points $x, y, z \in \gamma$ such that x, y, z form an equilateral triangle.

The idea is to consider the third point, z of the equilateral triangle when two of its other points x, y are on γ. Then we will construct a path to move z from the interior to the exterior of γ, hence achieving all three points being on γ in the process. The following is a more concrete proof, mainly focusing on the construction to make z lie in the interior of γ.

Proof. Let $w \in \gamma_{i n t}$. Let a point $x \in \gamma$ where $\|x-w\|$ is minimum, i.e. x is a closest point on γ to w. Let C be the circle centered at w which passes through x. There exist two points $y_{1}, z_{1} \in C$ such that x, y_{1}, z_{1} form an equilateral triangle. Since $\left\|y_{1}-w\right\|=\left\|z_{1}-w\right\|=\|x-w\|$, which is minimum, by Lemma 2.9, $y_{1}, z_{1} \in \gamma \cup \gamma_{\text {int }}$. Now let y_{3} be the intersection point of γ and ray $x y_{1}$ which minimizes $\left\|y_{3}-x\right\|$.

Figure 1. Construction of y_{3} and z_{3}.

Similarly, let z_{2} be the intersection point of γ and ray $x z_{1}$ which minimizes $\left\|z_{2}-x\right\|$. Without loss of generality, assume $\left\|y_{3}-x\right\| \leq\left\|z_{2}-x\right\|$. There exists a point z_{3} on the line segment $x z_{2}$ which forms an equilateral triangle with x and y_{3}.

If $z_{3} \in \gamma_{\text {ext }}$, there exists a point $p \in \gamma$ on the line segment $x z_{3}$. Since $z_{2} \in \gamma$ and $z_{3} \notin \gamma, z_{3} \neq z_{2}$. Since $x p z_{3} z_{2}$ is a straight line, $\|p-x\|<\left\|z_{2}-x\right\|$, which contradicts with $\left\|z_{2}-x\right\|$ being minimum. So $z_{3} \in \gamma \cup \gamma_{\text {int }}$. If $z_{3} \in \gamma$, the proof is done, so now suppose $z_{3} \in \gamma_{\text {int }}$. Let $\theta=\frac{\pi}{3}$ or $-\frac{\pi}{3}$ be the angle where $z_{3}=R\left(y_{3}, x, \theta\right)$, i.e. z_{3} is the image of y_{3} under the rotation about x by θ.

Let a point y_{4} where $\left\|y_{4}-x\right\|$ is maximum, i.e. y_{4} is a furthest point from x. Let a point $z_{4}=R\left(y_{4}, x, \theta\right)$, which forms equilateral triangle with y_{4} and x. Since $\left\|z_{4}-x\right\|=\left\|y_{4}-x\right\|$, by Lemma 2.8, $z_{4} \in \gamma \cup \gamma_{\text {ext }}$.

There exists two distinct Jordan arcs $\gamma_{1}, \gamma_{2} \subset \gamma$ whose end-points are y_{3} and y_{4} as $y_{3} \neq y_{4}$. Since $y_{3}, y_{4} \neq x$, either γ_{1} or γ_{2} contains x. Without loss of generality, assume $x \notin \gamma_{1}$. Now let a point y continuously move along γ_{1} from y_{3} to y_{4}. Let a point $z=R(y, x, \theta)$, which forms an equilateral triangle with x and y. Then z will move from $z_{3} \in \gamma_{\text {int }}$ to $z_{4} \in \gamma \cup \gamma_{\text {ext }}$. By Lemma 2.7, $\exists y \in \gamma_{1}$ where $z \in \gamma$ in the process. Since $y \in \gamma_{1}$ and $x_{1} \notin \gamma_{1}, x \neq y$. Therefore, x, y, z are distinct, all on γ and form an equilateral triangle.
2.3. A Fixed Peg. A stronger version of the equilateral triangle peg problem is that for every point x on a Jordan curve γ, there exist two points $y, z \in \gamma$ where x, y, z form an equilateral triangle. In other words, one of the vertices of the equilateral triangle is fixed. This, in fact, has been proven by D. Meyerson [1]. In this paper, we attempt to extend the problem to isosceles triangles with any vertex angle, whose result is useful in later proofs.

First, let us consider a variation where the fixed peg is in the interior of γ, rather than on γ.

Theorem 2.11. Given a Jordan curve γ and a point $x \in \gamma_{i n t}$, for all angle θ, there exists a point $y \in \gamma$ where $R(y, x, \theta) \in \gamma$.

Proof. Pick two points $y_{1}, y_{2} \in \gamma$ where $\left\|y_{1}-x\right\|$ is maximum and $\left\|y_{2}-x\right\|$ is minimum. By Lemma 2.8, $R\left(y_{1}, x, \theta\right) \in \gamma \cup \gamma_{e x t}$, and by Lemma 2.9, $R\left(y_{2}, x, \theta\right) \in$ $\gamma \cup \gamma_{\text {int }}$. Move a point y along γ from y_{1} to y_{2}. Then $R(y, x, \theta)$ moves from $\gamma \cup \gamma_{\text {ext }}$ to $\gamma \cup \gamma_{i n t}$. And so by Lemma 2.7, $\exists y \in \gamma$ where $R(y, x, \theta) \in \gamma$.

Corollary 2.12. Given a Jordan curve γ and a point $x \in \gamma_{\text {int }}$, there exists two points $y, z \in \gamma$ such that x, y, z form an equilateral triangle.

Proof. Notice that, without loss of generality, $z=R\left(y, x, \frac{\pi}{3}\right)$. Therefore, simply set $\theta=\frac{\pi}{3}$ in the previous theorem.

Moreover, let us define the smoothness of functions and curves.
Definition 2.13. A function is smooth at a point x in its domain if it continuously differentiable at x, i.e. of differentiability class C^{1}.

Definition 2.14. A curve with parametrization f is smooth at a point $f(t)$ if f is smooth at t.

Now let us consider the original problem with the fixed peg being on the Jordan curve, with the added condition of the curve being smooth at the peg.

Theorem 2.15. Given a Jordan curve γ and a point $x \in \gamma$ where γ is smooth at x, for all angle $\theta \in[0, \pi), \exists y \in \gamma$ such that $R(y, x, \theta) \in \gamma$ and $y \neq x$.

The reason why $\theta \neq \pi$ is that there is no such y when γ is strictly convex at x, meaning there exists a straight line passing through x which $\gamma \backslash\{x\}$ lies on one of the open half-planes of the line. An example of such curve is a circle.

Besides, the theorem requires γ to be smooth at x to prevent sharp points at x. A counterexample is a convex polygon.

A way to visualize the theorem is to consider the intersections between γ and the image of γ under the rotation about x by the angle θ anticlockwise.

Figure 2. Example of a strictly convex curve (left) and a convex polygon (right) where γ and its rotation about x (denoted as $R(\gamma, x, \theta)=\{R(y, x, \theta): y \in \gamma\})$ does not have a intersection other than x.

Once again, the focus of the proof is on the construction such that the third point is inside the curve.

Proof. Let $y_{1} \in \gamma$ where $\left\|y_{1}-x\right\|$ is maximum. By Lemma 2.8, $R\left(y_{1}, x, \theta\right) \in \gamma \cup \gamma_{\text {ext }}$.
Let $D(r)=\left\{p \in \mathbb{R}^{2}:\|p-x\|<r\right\}$ be the disc around x of radius r. By differentiability and continuity, there exists a tangent line T at x and some $\delta>0$ where $D(\delta) \cap \gamma$ is a connected Jordan arc, and for all points $z \in \operatorname{cl}(D(\delta)) \cap \gamma$ and $z \neq x$, the angle between the secant line $x z$ and $T<\frac{\pi-\theta}{2}$. Then let $\left\{y_{2}, y_{3}\right\}=\partial D(\delta) \cap \gamma$ be the two end-points of the Jordan arc in $D(\delta) \cap \gamma$. Let α be the angle between the secant line $x y_{2}$ and T, and β be that between $x y_{3}$ and T. Then the angle at center formed by y_{2} and y_{3}

$$
\angle y_{2} x y_{3} \geq \pi-\alpha-\beta>\pi-\frac{\pi-\theta}{2}-\frac{\pi-\theta}{2}=\theta
$$

$C(\delta) \backslash \gamma$ has exactly two connected components, C_{1}, C_{2}.
Claim. One of C_{1} and C_{2} is a proper subset of $\gamma_{i n t}$, and the other one is a proper subset of $\gamma_{\text {ext }}$.

Figure 3. Construction of Theorem 2.15.

If there exist $z_{1} \in C_{1} \cap \gamma_{\text {int }}$ and $z_{2} \in C_{1} \cap \gamma_{\text {ext }}$, move a point z from z_{1} to z_{2} on C_{1}. Then there exists a $z \in C_{1} \cap \gamma$, which contradicts with $C_{1} \subset C(\delta) \backslash \gamma$. So C_{1} is a proper subset of either $\gamma_{\text {int }}$ or $\gamma_{\text {ext }}$. The same applies to C_{2}.

If both $C_{1}, C_{2} \subset \gamma_{i n t}$, then $D(\delta) \subset \gamma \cup \gamma_{\text {int }}$, i.e. γ encloses the whole $D(\delta)$, which contradicts with $D(\delta) \cap \gamma$ being a connected Jordan arc $\subset \gamma$.

If both $C_{1}, C_{2} \subset \gamma_{\text {ext }}$, then $\gamma \subset \operatorname{cl}(D(\delta))$, i.e. $\operatorname{cl}(D(\delta))$ encloses the whole γ. Construct a line L perpendicular to T passing through x. Then there exists a point $z \in \gamma \cap L$ and $z \neq x$. Then the angle between line $x z$ and $L=\frac{\pi}{2}$, which contradicts with the angle between secant lines and $T<\frac{\pi-\theta}{2} \leq \frac{\pi}{2}$ for $\theta \geq 0$. So at least one of $C_{1}, C_{2} \subset \gamma_{i n t}$. Thus, one of C_{1} and C_{2} is a proper subset of $\gamma_{i n t}$, and the other one is a proper subset of $\gamma_{e x t}$.

Since $\angle y_{2} x y_{3}>\theta$, one of $R\left(y_{2}, x, \theta\right)$ and $R\left(y_{3}, x, \theta\right)$ is in C_{1} and the other one is in C_{2}. Therefore, since one of C_{1} and C_{2} is a proper subset of $\gamma_{i n t}$, without loss of generality, assume $R\left(y_{2}, x, \theta\right) \in \gamma_{i n t}$.

Move a point y from y_{1} to y_{2} along the Jordan arc of γ not containing x. Then since $R\left(y_{1}, x, \theta\right) \in \gamma \cup \gamma_{\text {ext }}$ and $R\left(y_{2}, x, \theta\right) \in \gamma_{i n t}$, by Lemma 2.7, there exists some $y \neq x$ where $R(y, x, \theta) \in \gamma$.

Corollary 2.16. Given a Jordan curve γ and a point $x \in \gamma$, if γ is smooth at x, then there exists two points $y, z \in \gamma$ such that x, y, z form an equilateral triangle.

Proof. Notice that, without loss of generality, $z=R\left(y, x, \frac{\pi}{3}\right)$. Therefore, simply set $\theta=\frac{\pi}{3}$ in the previous theorem.

3. Extending to the 3-Dimensional Space

Here, we investigate the Regular Tetrahedron Peg Problem, i.e. the possibility of forming a regular tetrahedron with its 4 vertices on an arbitrary compact connected surface, which is the 3 -dimensional case for the equilateral triangle peg problem.

We define a surface as follows:

Definition 3.1. A n-dimensional hypersurface (n-hypersurface) is a ($n-1$)-dimensional manifold (a topological space where each point has a neighborhood homeomorphic to the ($n-1$)-dimensional Euclidean space), embedded in n-dimensional Euclidean space.

Definition 3.2. A surface is a 3-hypersurface.
In fact, by the classification of closed surface, a compact connected surface is homeomorphic to either the sphere or the connected sum of g tori where $g \geq 1$.

A compact connected hypersurface is similar to a Jordan curve in the way that both divides the two dimensional space into the interior and the exterior. In fact, a compact connected 2-hypersurface is a Jordan curve. This property is stated in the Jordan-Brouwer separation theorem, a higher dimensional generalization of the Jordan curve theorem.

Theorem 3.3 (Jordan-Brouwer separation theorem). For a compact connected hypersurface S in $\mathbb{R}^{n}, \mathbb{R}^{n} \backslash S$ consists of exactly two connected components, one bounded and one unbounded, and S is the boundary of each component. [2]

Similar to the Jordan curves, we define $S_{i n t}$ and $S_{\text {ext }}$ for easier reference.
Definition 3.4. For a compact connected n-hypersurface S, define $S_{\text {int }}$ and $S_{\text {ext }}$ be its bounded (i.e. the interior) and unbounded (i.e. the exterior) connected component of $\mathbb{R}^{n} \backslash S$ respectively.

Due to the similarity in properties between Jordan curves and compact connected hypersurfaces, Lemma 3.7 to 3.9 are also applicable to the latter.

Finally, as we will use the locus of points forming an equilateral triangle with two given points extensively in this section, let us define a function for the locus.

Definition 3.5. Define a function

$$
L(x, y)=\left\{z \in \mathbb{R}^{3}:\|z-x\|=\|z-y\|=\|y-x\|\right\}
$$

where $x, y \in \mathbb{R}^{3}$, returning the locus of points forming an equilateral triangle with x and y.
3.1. The Regular Tetrahedron. First, let us take a look at some properties of a regular tetrahedron which will be useful in later proofs.

Lemma 3.6. Given two points $x, y \in \mathbb{R}^{3}, L(x, y)$ is a circle on the plane normal to the line $x y$ passing through the mid-point of $x y$.

Proof. Let z be a movable point such that x, y, z form an equilateral triangle, where $\angle x y z=\angle y z x=\angle z x y=\frac{\pi}{3}$. Given $x, y, z \in \mathbb{R}^{3}$, the locus of z is the circle rotated about the midpoint of the axis $x y$.

Lemma 3.7. Given three points $x, y \in \mathbb{R}^{3}$ and $z \in L(x, y)$, a point w forms a regular tetrahedron with x, y, z if and only if $w \in L(x, y)$ and its angle at centre with z is $\cos ^{-1} \frac{1}{3}$ on the circle $L(x, y)$.

Proof. Let $\|y-x\|=l$ and let c be the mid-point of the line segment $x y$.

Suppose x, y, z and w forms a regular tetrahedron, we have

$$
\|x-y\|=\|x-z\|=\|y-z\|=\|x-w\|=\|y-w\|=\|z-w\|=l
$$

and so w is on the locus. Therefore,

$$
\|z-c\|=\|w-c\|=l \sin \frac{\pi}{3}=\frac{\sqrt{3} l}{2}
$$

Hence, the angle at centre of w with z is given by

$$
\angle z c w=\cos ^{-1} \frac{\left(\frac{\sqrt{3} l}{2}\right)^{2}+\left(\frac{\sqrt{3} l}{2}\right)^{2}-l^{2}}{2\left(\frac{\sqrt{3} l}{2}\right)\left(\frac{\sqrt{3} l}{2}\right)}=\cos ^{-1} \frac{1}{3}
$$

Now suppose w is on the locus and the angle at centre is $\cos ^{-1} \frac{1}{3}$. Then, $\|x-y\|=$ $\|x-z\|=\|y-z\|=\|x-w\|=\|y-w\|=l$ and $\|z-c\|=\|w-c\|=l \sin \frac{\pi}{3}=\frac{\sqrt{3} l}{2}$. Therefore,

$$
\|z-w\|=\sqrt{\left(\frac{\sqrt{3} l}{2}\right)^{2}+\left(\frac{\sqrt{3} l}{2}\right)^{2}-2\left(\frac{\sqrt{3} l}{2}\right)\left(\frac{\sqrt{3} l}{2}\right) \cos \angle z c w}=l
$$

and therefore, x, y, z and w forms a regular tetrahedron.
3.2. An Extension to the Intermediate Value Theorem. Just as a continuous function $f:[a, b] \rightarrow \mathbb{R}$ has roots if $f(a) \leq 0$ and $f(b) \geq 0$ by the intermediate value theorem, a naturally raised question is whether the extension to a continuous function defined over two dimensions or even n dimensions is correct. More preciously:

Problem 3.8. Define $D=\left\{x \in \mathbb{R}^{n}: r_{1} \leq\|x\| \leq r_{2}\right\}$ be the domain of the function for some $r_{1}, r_{2}>0$. Let $C_{1}=\left\{x \in \mathbb{R}^{n}:\|x\|=r_{1}\right\}$ and $C_{2}=\left\{x \in \mathbb{R}^{n}:\|x\|=r_{2}\right\}$. For any continuous function $f: D \rightarrow \mathbb{R}$, if

- $\forall x \in C_{1}, f(x) \leq 0$; and
- $\forall x \in C_{2}, f(x) \geq 0$,
then does there always exist a compact connected n-hypersurface S where $f(p)=0$ for all $p \in S$, and the origin $\in S_{\text {int }}$?

However, a counterexample can be found by considering the distance function to a variant of the topologist's sine curve,

$$
\begin{aligned}
& \{(r(t) \cos t,-r(t) \sin t): t \in(-\pi, 0)\} \\
\cup & \left\{\left(\frac{3}{2}, 0\right)\right\} \\
\cup & \{(r(t) \cos t, r(t) \sin t): t \in(0, \pi]\} \\
\text { where } & r(t)=\frac{1}{3} \sin \frac{1}{t}+\frac{3}{2}
\end{aligned}
$$

Therefore, an additional condition has to be added to f.

Figure 4. An illustration of the proposed extension and its counterexample.

Theorem 3.9. Define $D=\left\{x \in \mathbb{R}^{n}: r_{1} \leq\|x\| \leq r_{2}\right\}$ be the domain for some $r_{1}, r_{2}>$ 0 . Let $C_{1}=\left\{x \in \mathbb{R}^{n}:\|x\|=r_{1}\right\}$ and $C_{2}=\left\{x \in \mathbb{R}^{n}:\|x\|=r_{2}\right\}$. For any continuous function $f: D \rightarrow \mathbb{R}$, if

- $\forall x \in C_{1}, f(x) \leq 0$; and
- $\forall x \in C_{2}, f(x) \geq 0$,
and f is smooth at x when $f(x)=0$, then there exists a compact connected n-hypersurface S where $f(p)=0$ for all $p \in S$, and the origin $\in S_{\text {int }}$.

Proof. Consider the strict subzero set $S_{1}=\{x \in D: f(x)<0\}$. Note that $f(x)=0$ for all x on the boundary $\partial S_{1} . C_{1} \subseteq \operatorname{cl}\left(S_{1}\right)$, and $C_{2} \subseteq D \backslash S_{1}$.

Let S_{2} be the connected component of $\operatorname{cl}\left(S_{1}\right)$ which contains C_{1}. Let $S_{3}=$ $D \backslash\left(S_{2}\right)$. Pick S_{4} be the connected component of $\mathrm{cl}\left(S_{3}\right)$ which contains C_{2}.

Let $S_{5}=D \backslash S_{4}$, which is connected. By the unicoherence of \mathbb{R}^{n}, the intersection $\operatorname{cl}\left(S_{5}\right) \cap S_{4}=\partial S_{5}$ is connected. By the inverse function theorem, since f is smooth at every point in ∂S_{5}, there exists a compact connected n-hypersurface $S \subset \partial S_{5}$ where the origin $\in S$. Since $\partial S_{5} \subseteq \partial S_{1}, \forall x \in S, f(x)=0$.

Theorem 3.10. Define $D=\left\{x \in \mathbb{R}^{n}: r_{1} \leq\|x\| \leq r_{2}\right\}$ be the domain for some $r_{1}, r_{2}>0$. Let $C_{1}=\left\{x \in \mathbb{R}^{n}:\|x\|=r_{1}\right\}, C_{2}=\left\{x \in \mathbb{R}^{n}:\|x\|=r_{2}\right\}$. For any continuous function $f: D \rightarrow \mathbb{R}$, if there exists an open connected set $C_{0} \subset C_{1}$ where $\operatorname{cl}\left(C_{0}\right) \neq C_{1}$ such that

- $\forall x \in C_{0}, f(x)<0$;
- $\forall x \in \partial C_{0}, f(x)=0$;
- $\forall x \in C_{1} \backslash \operatorname{cl}\left(C_{0}\right), f(x)>0$; and
- $\forall x \in C_{2}, f(x) \geq 0$,
and f is smooth at x when $f(x)=0$, then there exists a compact connected n hypersurface S where $f(p)=0$ for all $p \in S$ and $\partial S=\partial C_{0}$.

The proof is similar to Theorem 3.9.

Proof. Consider the strict subzero set $S_{1}=\{x \in D: f(x)<0\} . \forall x \in \partial S_{1}, f(x)=$ 0 . Then $C_{0} \subseteq S_{1}, \partial C_{0} \subseteq \partial S_{1}$ and $C_{1} \backslash \operatorname{cl}\left(C_{0}\right) \subseteq D \backslash \operatorname{cl}\left(S_{1}\right)$.

Pick S_{2} be the connected component of S_{1} which contains C_{0}. Let $S_{3}=D \backslash S_{2}$. Pick S_{4} be the connected component of S_{3} which contains C_{2}.

Let $S_{5}=D \backslash S_{4}$, which is connected. By the unicoherence of \mathbb{R}^{n}, the intersection $\operatorname{cl}\left(S_{5}\right) \cap S_{4}=\partial S_{5}$ is connected. By the inverse function theorem, since f is smooth at every point in ∂S_{5}, there exists a connected n-hypersurface $S \subset \partial S_{5}$ which $\partial C_{0}=\partial S$. Since $\partial S_{5} \subseteq \partial S_{1}, \forall x \in S, f(x)=0$.

We can combine Theorem 3.9 and 3.10 with Theorem 2.11 to achieve the following results, which can be thought of as the intermediate value theorem on a cylinder:

Corollary 3.11. Given a continuous function $f:\left(\mathbb{S}^{1},[0,1]\right) \rightarrow \mathbb{R}$ where $\forall \theta \in \mathbb{S}^{1}$, $f(\theta, 0) \leq 0$ and $f(\theta, 1) \geq 0$, if f is smooth whenever $f(\theta, t)=0$, then for all angle ϕ, there exists some $\theta \in \mathbb{S}^{1}$ and $t \in[0,1]$ such that $f(\theta, t)=f(R(\theta, \overrightarrow{0}, \phi), t)=0$.

Proof. Let g be a function $\left\{x \in \mathbb{R}^{2}: 1 \leq\|x\| \leq 2\right\} \rightarrow \mathbb{R}$ with

$$
g(\vec{x})=f(\hat{x},\|\vec{x}\|-1)
$$

Note that for all $x \in \mathbb{R}^{2}$, for $\|x\|=1, g(x)=f(\hat{x}, 0) \leq 0$, and for $\|x\|=2$, $g(x)=f(\hat{x}, 1) \geq 0$.

By Theorem 3.9, there exists a Jordan curve $\gamma \subset\left\{x \in \mathbb{R}^{2}: 1 \leq\|x\| \leq 2\right\}$ such that the origin is inside γ and for all points $x \in \gamma, g(x)=0$. Then by Theorem 2.11, there exist a point $x \in \gamma$ where $g(R(x, \overrightarrow{0}, \phi)) \in \gamma$.

Therefore, $g(x)=f(\hat{x},\|\vec{x}\|-1)=0$ and $g(R(x, \overrightarrow{0}, \phi))=f(R(\hat{x}, 0, \phi),\|\vec{x}\|-1)=0$. And so, for $t=\|\vec{x}\|-1$ and $\theta=\hat{x}, f(\theta, t)=f(R(\theta, \overrightarrow{0}, \phi), t)=0$.
Corollary 3.12. Given a continuous function $f:\left(\mathbb{S}^{1},[0,1]\right) \rightarrow \mathbb{R}, \theta_{0} \in \mathbb{S}^{1}$ and an angle $\phi_{0} \in[0,2 \pi)$ where

- $\forall \phi \in\left(0, \phi_{0}\right), f\left(R\left(\theta_{0}, \overrightarrow{0}, \phi\right), 0\right)<0 ;$
- $f\left(\theta_{0}, 0\right)=f\left(R\left(\theta_{0}, \overrightarrow{0}, \phi_{0}\right), 0\right)=0$; and
- $\forall \theta \in \mathbb{S}^{1}, f(\theta, 1) \geq 0$,
if f is smooth whenever $f(\theta, t)=0$, then for all angle $\phi \in\left[0, \phi_{0}\right], \exists \theta \in \mathbb{S}^{1}$ and $t \in[0,1]$ such that $f(\theta, t)=f(R(\theta, \overrightarrow{0}, \phi), t)=0$.

Figure 5. Illustration of the condition of $f(\theta, 0)$ in Corollary 3.12.

Proof. Trivially, if $\phi=0$ or $\phi_{0}, f\left(\theta_{0}, 0\right)=f\left(R\left(\theta_{0}, \overrightarrow{0}, \phi\right), 0\right)=0$.
Now assume $\phi \in\left(0, \phi_{0}\right)$. Let g be a function $\left\{x \in \mathbb{R}^{2}: 1 \leq\|x\| \leq 2\right\} \rightarrow \mathbb{R}$ with

$$
g(\vec{x})=f(\hat{x},\|\vec{x}\|-1) .
$$

g satisfies the condition in Theorem 3.10, and so there exists a Jordan arc $\gamma \subset$ $\left\{x \in \mathbb{R}^{2}: 1 \leq\|x\| \leq 2\right\}$ whose end-points are θ_{0} and $R\left(\theta_{0}, \overrightarrow{0}, \phi_{0}\right)$ such that $\forall x \in$ $\gamma, g(x)=0$.

Construct a open Jordan arc C by constructing a line segment from the origin to θ_{0} and then another one to $R\left(\theta_{0}, \overrightarrow{0}, \phi_{0}\right)$. Note that $\forall p \in C,\|p\|<1$. Let γ^{\prime} be the Jordan curve $C \cup \gamma . R\left(\theta_{0}, \overrightarrow{0}, \phi\right) \in \gamma_{i n t}^{\prime}$.

Pick a point $y_{0} \in \gamma^{\prime}$ such that $\left\|y_{0}\right\|$ is maximum, i.e. a furthest point from the origin, and by Lemma 2.8, $R\left(y_{0}, \overrightarrow{0}, \phi\right) \in \gamma^{\prime} \cup \gamma_{e x t}^{\prime}$. Since $y_{0} \in \gamma$, continuously move a point $y \in \underset{\overrightarrow{0}}{\gamma}$ from θ_{0} to y_{0}. Then by Lemma $2.7, \exists y \in \underset{\overrightarrow{0}}{\gamma}$ such that $R(y, \overrightarrow{0}, \phi) \in \gamma^{\prime}$. Since $\|R(y, \overrightarrow{0}, \phi)\|=\|y\| \geq 1, R(y, \overrightarrow{0}, \phi) \notin C$ and so $R(y, \overrightarrow{0}, \phi) \in \gamma$. Therefore,

$$
y \in \gamma \Longrightarrow g(y)=0 \Longrightarrow f(\hat{y},\|\vec{y}\|-1)=0
$$

and

$$
R(y, \overrightarrow{0}, \phi) \in \gamma \Longrightarrow g(R(y, \overrightarrow{0}, \phi))=0 \Longrightarrow f(R(\hat{y}, \overrightarrow{0}, \phi),\|\vec{y}\|-1)=0
$$

3.3. Putting All Together. Now, we will tackle the tetrahedron peg problem with one fixed peg. As with before, let us first look into the variation in which the fixed peg is inside the surface.

Theorem 3.13. Given a smooth compact connected surface S and a point $x_{0} \in S_{\text {int }}$, then there exist three points $w, y, z \in S$ forming a regular tetrahedron with x_{0}.

Proof. There exists a function $\mu:\left(\mathbb{S}^{1}, \mathbb{R}^{3}, \mathbb{R}^{3}\right) \rightarrow \mathbb{R}^{3}$ where for some fixed x and y, $\mu(\theta, x, y)$ maps θ to the corresponding point on $L(x, y)$, and is continuous when x, y are changing.

By the Jordan-Brouwer separation theorem, define a sign function over \mathbb{R}^{3} of

$$
\epsilon(x)=\left\{\begin{array}{ll}
-1, & x \in S_{i n t} \\
0, & x \in S \\
1, & x \in S_{e x t}
\end{array} .\right.
$$

In addition, define a signed distance function $d: \mathbb{R}^{3} \rightarrow \mathbb{R}$ with

$$
d(x)=\epsilon(x) \min \{\|y-x\|: y \in S\},
$$

returning the minimum distance from a point x to a point on S, negative when inside and positive when outside. Note that d is a continuous function, and is smooth at every $x \in S$.

Pick a point $y_{0} \in S$ which minimizes $\left\|y_{0}-x_{0}\right\|$, i.e. a closest point to x_{0} on S. Consider any point $z \in L\left(x_{0}, y_{0}\right)$ which forms an equilateral triangle with x_{0} and y_{0}. By Lemma 2.9, since $\left\|z-x_{0}\right\|=\left\|y_{0}-x_{0}\right\|$, which is minimal, $z \in S \cup S_{\text {int }}$. Therefore, $L\left(x_{0}, y_{0}\right) \subset S \cup S_{i n t}$.

Now pick a point $y_{1} \in S$ which maximizes $\left\|y_{1}-x_{0}\right\|$. For every $z \in L\left(x_{0}, y_{1}\right)$, $x_{0} y_{1} z$ form an equilateral triangle. Since $\left\|y_{1}-x_{0}\right\|=\left\|z-x_{0}\right\|$, by Lemma 2.8, $z \in S \cup S_{\text {ext }}$. Thus, $L\left(x_{0}, y_{1}\right) \subset S \cup S_{\text {ext }}$.

Move a point y along a path $\gamma:[0,1] \rightarrow S$ from $\gamma(0)=y_{0}$ to $\gamma(1)=y_{1}$ not passing through x_{0}. Then $L\left(x_{0}, y\right)$ will continuously transform from $S \cup S_{\text {int }}$ to $S \cup S_{\text {ext }}$. Since S is a smooth manifold, γ is also smooth. Now define a function $f:\left(\mathbb{S}^{1},[0,1]\right) \rightarrow \mathbb{R}$ with

$$
f(\theta, t)=d\left(\mu\left(\theta, x_{0}, \gamma(t)\right)\right)
$$

returning the d value of the point at angle θ on the circle at time t. Since f is a composition of continuous functions, f itself is continuous too. Moreover, as d is smooth whenever $\mu\left(\theta, x_{0}, \gamma(t)\right) \in S, f$ is smooth whenever $f=0$. Note that for all $\theta \in \mathbb{S}^{1}$,

$$
\mu\left(\theta, x_{0}, \gamma(0)\right) \in L\left(x_{0}, \gamma(0)\right) \subset S \cup S_{i n t} \Longrightarrow f(\theta, 0) \leq 0
$$

and

$$
\mu\left(\theta, x_{0}, \gamma(1)\right) \in L\left(x_{0}, \gamma(1)\right) \subset S \cup S_{\text {ext }} \Longrightarrow f(\theta, 1) \geq 0 .
$$

Then by Corollary 3.11, there exists some $\theta \in \mathbb{S}^{1}$ and $t \in[0,1]$ where $f(\theta, t)=$ $f\left(R\left(\theta, 0, \cos ^{-1} \frac{1}{3}\right), t\right)=0$. Let $y=\gamma(t)$. Therefore,

$$
f(\theta, t)=d\left(\mu\left(\theta, x_{0}, \gamma(t)\right)\right)=0 \Longrightarrow \mu\left(\theta, x_{0}, y\right) \in S
$$

and

$$
\begin{aligned}
& f\left(R\left(\theta, 0, \cos ^{-1} \frac{1}{3}\right), t\right)=d\left(\mu\left(R\left(\theta, 0, \cos ^{-1} \frac{1}{3}\right), x_{0}, \gamma(t)\right)\right)=0 \\
\Longrightarrow & \mu\left(R\left(\theta, 0, \cos ^{-1} \frac{1}{3}\right), x_{0}, y\right) \in S .
\end{aligned}
$$

Let $z=\mu\left(\theta, x_{0}, y\right)$ and $w=\mu\left(R\left(\theta, 0, \cos ^{-1} \frac{1}{3}\right), x_{0}, y\right)$. The angle at center formed by z and w in $L\left(x_{0}, y\right)$ is $\cos ^{-1} \frac{1}{3}$. By Lemma 3.7, $w, x_{0}, y, z \in S$ form a regular tetrahedron.

When $x_{0} \in S_{\text {int }}$, we can easily find a point $y_{0} \in S$ such that any point forming an equilateral triangle with x_{0} and y_{0} lies on or inside S. For $x_{0} \in S$, however, there does not always exist such y_{0}. An example of such surface is a sphere.

Figure 6. The locus of points forming an equilateral triangle with two points $x_{0}, y_{0} \in S$ where S is a sphere. The points a and b represent the intersections between the locus and S.

Therefore, we will make use of the fact that S is smooth at x_{0} to help construct a locus which proves the case where $x_{0} \in S$.

Theorem 3.14. Given a smooth compact connected surface S and a point $x_{0} \in S$, there exists three distinct points $w, y, z \in S$ forming a regular tetrahedron with x_{0}.
Proof. There exists a function $\mu:\left(\mathbb{S}^{1}, \mathbb{R}^{3}, \mathbb{R}^{3}\right) \rightarrow \mathbb{R}^{3}$ where for some fixed x and y, $\mu(\theta, x, y)$ maps θ to the corresponding point on $L(x, y)$, and is continuous when x, y are changing.

Pick a point $y_{1} \in S$ where $\left\|y_{1}-x_{0}\right\|$ is maximum. Then $L\left(x_{0}, y_{1}\right) \subset S \cup S_{\text {ext }}$.
By differentiability and continuity, there exists a point y_{0} in a neighbourhood of x such that $L\left(x_{0}, y_{0}\right) \cap S=\left\{z_{1}, z_{2}\right\}$ for some z_{1}, z_{2} with angle at center $\geq \cos ^{-1} \frac{1}{3}$ with one of the connected components of $L\left(x_{0}, y_{0}\right) \backslash\left\{z_{1}, z_{2}\right\}$ is a subset of $S_{\text {int }}$ and the other one is a subset of $S_{\text {out }}$.

Move a point y along a continuous path $\gamma:[0,1] \rightarrow S$ from $\gamma(0)=y_{0}$ to $\gamma(1)=y_{1}$ not passing through x. Then $L\left(x_{0}, y\right)$ will continuously transform from "about halfly" inside S and "about halfly" outside S to on or outside S.

Define a function $f: \mathbb{S}^{1},(0,1) \rightarrow \mathbb{R}$ with

$$
f(\theta, t)=d\left(\mu\left(\theta, x_{0}, \gamma(t)\right)\right)
$$

By Theorem 3.12, $\exists \theta \in \mathbb{S}^{1}, t \in[0,1]$ such that $f(\theta, t)=f\left(R\left(\theta, \overrightarrow{0}, \cos ^{-1} \frac{1}{3}\right)=0\right.$. Similar to 3.13, $y=\gamma(t), z=\mu\left(\theta, x_{0}, y\right)$ and $w=\mu\left(R\left(\theta, 0, \cos ^{-1} \frac{1}{3}\right), x_{0}, y\right)$ are all on S form a regular tetrahedron with x_{0}.

4. Generalizing to Higher Dimensions

After we have proven the regular tetrahedron peg problem for arbitrary smooth compact connected surface, we are going to generalize the results for cases in even higher dimensions, e.g. 4-dimensional space.
4.1. The Regular n-simplex. First, let us generalize the tetrahedron to higher dimensions.

Definition 4.1. A regular n-simplex is a convex hull of a set of $(n+1)$ points $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ where for every i, j where $0 \leq i, j \leq n$ and $i \neq j,\left\|x_{i}-x_{j}\right\|$ is equal, i.e. any two points are equidistant from each other.

Just as before, we are interested in the locus of points forming n-simplexes. Let us consider the cases in \mathbb{R}^{2} and \mathbb{R}^{3}.

- In \mathbb{R}^{2}, given two points x_{1}, x_{2}, the locus of points forming an equilateral triangle with x_{1}, x_{2} is $\left\{R\left(x_{2}, x_{1}, \frac{\pi}{3}\right), R\left(x_{2}, x_{1},-\frac{\pi}{3}\right)\right\}$, which is a 0 -sphere.
- In \mathbb{R}^{3}, given two points x_{1}, x_{2}, the locus of points forming a regular tetrahedron with x_{1}, x_{2} is a circle (1-sphere), shown in Lemma 3.6. Then, after picking a point x_{3} on the locus, the locus of forming a regular tetrahedron with the three points is two points, a 0 -sphere.
The pattern emerged is formulated and proven in the following theorem, which generalizes it to higher dimensions:
Theorem 4.2. Given m distinct points $X_{1}, X_{2}, \ldots, X_{m} \in \mathbb{R}^{n}$ where $2 \leq m \leq n$, let L be the locus of points forming a regular m-simplex with all X_{i}, where $1 \leq i \leq m$. If all X_{i} form a regular $(m-1)$-simplex, then L is an $(n-m)$-sphere.
Proof (by induction on m). Let R be the side length of the $(m-1)$-simplex.

Claim. The locus L is an $(n-m)$-sphere with radius r_{m}, where

$$
r_{m}= \begin{cases}R, & m=1 \\ R \sqrt{1-\frac{R^{2}}{4 r_{m-1}^{2}}}, & m>1\end{cases}
$$

For $m=2$, under isometry, assume X_{1} is the origin and $X_{2}=(R, 0,0, \cdots, 0)$. A point $P=\left(p_{1}, p_{2}, \cdots, p_{n}\right) \in L$ if and only if

$$
\begin{cases}p_{1}^{2}+p_{2}^{2}+\cdots+p_{n}^{2} & =R^{2} \\ \left(p_{1}-d\right)^{2}+p_{2}^{2}+\cdots+p_{n}^{2} & =R^{2}\end{cases}
$$

Subtracting the two equations yields

$$
\begin{aligned}
\left(p_{1}-R\right)^{2}-p_{1}^{2} & =0 \\
p_{1}^{2}-2 p_{1} R+R^{2}-p_{1}^{2} & =0 \\
p_{1} & =\frac{R}{2} .
\end{aligned}
$$

Then

$$
\sum_{i=2}^{n} p_{i}^{2}=\frac{3 R^{2}}{4}
$$

The locus of P satisfying this equation is an $(n-2)$-sphere with radius $r_{2}=$ $\sqrt{1-\frac{R^{2}}{4 R^{2}}} R=\sqrt{\frac{3}{4}} R=\frac{\sqrt{3}}{2} R$.

When $m=k$ where $2 \leq k<n$, let L_{0} be the locus. Assume L_{0} is an $(n-k)$-sphere with radius r_{k}.

For $m=k+1$, let $\tilde{X}=X_{k+1}$. Since \tilde{X} forms an k-simplex with all X_{i} where $1 \leq i \leq k, \widetilde{X} \in L_{0}$. For a point $P \in L$, i.e. P forms an $(k+1)$-simplex with all X_{i}, P forms an k-simplex with all X_{i} for $1 \leq i \leq k$ and $P \widetilde{X}=R$. Hence, the locus L is all points in L_{0} where $P \widetilde{X}=R$.

Let Y be the point in L_{0} such that $\widetilde{X} Y$ is a diameter of L_{0}. Recall that the radius of L_{0} is r_{k}. Then the diameter $\widetilde{X} Y$ is $2 r_{k}$. Notice that L can be in three forms:

- If $R>2 r_{k}$, then $L=\emptyset$.
- If $R=2 r_{k}$, then $L=\{Y\}$.
- If $R<2 r_{k}$, then L is a $(n-k-1)$-sphere.

Figure 7. An example of the three cases of L when L_{0} is a 1sphere. The black circle shows L_{0}, and the red circle is centered at \widetilde{X} with radius R. L is the intersection between the two circles. L is, from left to right, $\emptyset,\{Y\}$ or a 0 -sphere (which is two points).

Notice that $r_{m}>0$ for all $m \geq 1$. If $r_{m} \leq \frac{1}{\sqrt{2}} R, m \neq 1$, and

$$
\begin{aligned}
r_{m}=R \sqrt{1-\frac{R^{2}}{4 r_{m-1}^{2}}} & \leq \frac{1}{\sqrt{2}} R \\
1-\frac{R^{2}}{4 r_{m-1}^{2}} & \leq \frac{1}{2} \\
\frac{R^{2}}{4 r_{m-1}^{2}} & \geq \frac{1}{2} \\
r_{m-1}^{2} & \leq \frac{1}{2} R^{2} \\
r_{m-1} & \leq \frac{1}{\sqrt{2}} R
\end{aligned}
$$

which, by induction, yields a contradiction. Therefore, $r_{m}>\frac{1}{\sqrt{2}} R>\frac{1}{2} R$, and so $R<2 r_{k} . L$ is a $(n-k-1)$-sphere.

Consider a hyperplane containing P, \widetilde{X}, Y. Recall that $P \widetilde{X}=R$ and $\widetilde{X} Y=2 r_{k}$. Since $\widetilde{X} Y$ is a diameter of L_{0} and $P \in L_{0}, \widetilde{X} P \perp P Y$. Using Pythagoras' theorem, $P Y=\sqrt{4 r_{k}^{2}-R^{2}}$.

Let O be the center of L. By symmetry, O is on $\widetilde{X} Y$ and $\widetilde{X} Y \perp O P . \Delta \widetilde{X} P Y \sim$ $\triangle P O Y$.

Figure 8. A geometric figure of the plane containing P, \widetilde{X} and Y.

Then

$$
\begin{aligned}
\frac{P \widetilde{X}}{\widetilde{X} Y} & =\frac{O P}{P Y} \\
\frac{R}{2 r_{k}} & =\frac{O P}{\sqrt{4 r_{k}^{2}-R^{2}}} \\
O P & =\frac{R \sqrt{4 r_{k}^{2}-R^{2}}}{2 r_{k}} \\
& =R \sqrt{1-\frac{R^{2}}{4 r_{k}^{2}}} \\
& =r_{k+1}
\end{aligned}
$$

Therefore, L is a $(n-k-1)$-sphere with radius r_{k+1}.
4.2. The Regular n-simplex Peg Problem. Now we have formulate a method of picking points and reducing the number of dimensions of the locus. We can now prove the Regular n-Simplex Peg Problem with a fixed interior peg by induction.
Theorem 4.3. Given a compact connected n-hypersurface S with $n \geq 2$ and two points $x_{0} \in S_{i n t}$, then there exists n points $x_{1}, x_{2}, \ldots, x_{n} \in S$ which form a n-simplex with x_{0}.
Proof (by induction on n). Base case. For $n=2, S$ is a Jordan curve. This has already been proven in Corollary 2.12 .

Induction step. Assume when $n=k$ for a $k \geq 2$, given a smooth compact connected k-hypersurface S and a point $x_{0} \in S_{i n t}$, then there exists k points $x_{1}, x_{2}, \ldots, x_{k} \in S$ which form a k-simplex with x_{0}.

For $n=k+1$, we will define L, μ, d, y_{1}, f similarly to Theorem 3.13:
Define a function $L(x, y)=\left\{z \in \mathbb{R}^{k+1}:\|z-x\|=\|z-y\|=\|y-x\|\right\}$ where $x, y \in$ \mathbb{R}^{k+1} and $x \neq y$. By Theorem 4.2, the locus is a $(k-1)$-sphere.

There exists a function $\mu:\left(\mathbb{S}^{k-1}, \mathbb{R}^{k+1}, \mathbb{R}^{k+1}\right) \rightarrow \mathbb{R}^{k+1}$ where for some fixed x and y, θ, x, y maps θ to the corresponding point on the $(k-1)$-sphere $L(x, y)$, and is continuous when x and y are changing.

By assumption, $L\left(x_{0}, y_{0}\right) \subset S_{i n t} \cup S$. Pick a point $y_{1} \in S$ which maximizes $\left\|y_{1}-x_{0}\right\|$. By Lemma $2.8, L\left(x_{0}, y_{1}\right) \subset S \cup S_{\text {ext }}$.

Move a point y along a path $\gamma:[0,1] \rightarrow S$ from $\gamma(0)=y_{0}$ to $\gamma(0)=y_{1}$. Then $L\left(x_{0}, y\right)$ will continuously transform from $S \cup S_{i n t}$ to $S \cup S_{\text {ext }}$. Now define a function $f:\left(\mathbb{S}^{k-1},[0,1]\right) \rightarrow \mathbb{R}$ with

$$
f(\theta, t)=d\left(\mu\left(\theta, x_{0}, \gamma(t)\right)\right)
$$

Note that f is continuous. In addition, $f(\theta, 0) \leq 0$ and $f(\theta, 1) \geq 0$ for all $\theta \in \mathbb{S}^{k-1}$.
Now define another function $g:\left\{x \in \mathbb{R}^{k}: 1 \leq\|x\| \leq 2\right\}$ with

$$
g(\vec{x})=f(\hat{x},\|x\|-1) .
$$

By Theorem 3.9, since $g(x) \leq 0$ for all $x \in \mathbb{R}^{k}$ where $\|x\|=1$, and $g(x) \geq 0$ for all $x \in \mathbb{R}^{k}$ where $\|x\|=2$, there exists a compact connected k-hypersurface S^{\prime} such that $\forall p \in S_{0}, g(p)=0$, and the origin $\in S_{\text {int }}^{\prime}$.

Pick a closest point $y^{\prime} \in S^{\prime}$ which minimizes $\left\|y^{\prime}\right\|$. All the points forming an equilateral triangle with the origin and y^{\prime} is, by Lemma 2.9 , on or inside S^{\prime}. Then by the induction assumption, there exists k distinct points $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{k}^{\prime}$ which forms a k-simplex with the origin.

Let $t=\left\|x_{1}^{\prime}\right\|-1=\left\|x_{2}^{\prime}\right\|-1=\ldots=\left\|x_{k}^{\prime}\right\|-1$ and $y=\gamma(t)$. Moreover, for all $1 \leq i \leq k$, let $x_{i}=\mu\left(\hat{x_{1}^{\prime}}, x_{0}, y\right) \in L\left(x_{0}, y\right)$. Notice that

$$
\begin{aligned}
x_{i}^{\prime} & \in S^{\prime} \\
0 & =g\left(x_{i}^{\prime}\right) \\
& =f\left(\hat{x_{i}^{\prime}},\left\|x_{i}^{\prime}\right\|-1\right) \\
& =d\left(\mu\left(\hat{x_{i}^{\prime}}, x_{0}, \gamma\left(\left\|x_{i}^{\prime}\right\|-1\right)\right)\right) \\
& =d\left(\mu\left(\hat{x_{i}^{\prime}}, x_{0}, y\right)\right) \\
& =d\left(x_{i}\right) \\
\Longrightarrow \quad x_{i} & \in S
\end{aligned}
$$

Since all x_{i}^{\prime} forms a $(k-1)$-simplex, all x_{i} also forms a k-simplex. Combined with $x_{i} \in L\left(x_{0}, y\right)$, the $(k+1)$ points of y and all x_{i} are on S and form a $(k+1)$-simplex with x_{0}.

5. Conclusion

In conclusion, by making use of the fundamental principle in the triangle peg problem, we have generalized it to even higher dimensions, such as the tetrahedron peg problem in the 3-dimensional case. Based on the generalized triangle peg problem, we believe that the case for disphenoids (a class which regular tetrahedra also belong to) and other shapes such as cuboids are some possible directions of future investigations. In addition, as equilateral triangles are ideal shapes in the aesthetics of architecture, the theorems of generalized triangle peg problem may be applicable to fields of architectural studies.

References

[1] Meyerson, M. D. (1980) Equilateral triangles and continuous curves Technical report
[2] Guillemin, V. and Pollack, A. (1974) Differential Topology Prentice Hall
[3] Jordan, M.E.C. (1887) Courbes continues Cours d'analyse pages 587-594

REVIEWERS' COMMENTS

This paper considered the generalization of the classical Triangle Peg problem which says that each point on every simple closed curve in the two dimensional plane is a vertex of an inscribed equilateral triangle. The author extended the idea from plane curves to higher dimensional hypersurfaces cases in Euclidean spaces, proving that given a smooth compact connected surface, there always exist four points on the surface which form a regular tetrahedron. Reviewers think that the authors, being high school students, have good knowledge on college-level mathematical analysis and differential geometry, and suggest that some careful justification on the use of, for instance, implicit/inverse function theorem is needed in the paper.

