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ABSTRACT. Given a regular polygonal paper inscribed in a unit circle, the
paper is cut along its radii and each division (consisting of one or more sub-
divisions) is made into a cone. These cones are allowed to be slanted to obtain
a greater capacity. The purpose of this study is to maximize the total capacity
of cones made from the paper over all ways of divisions.

The methodology in this report is streamed into two parts - minimax strat-
egy and bounds by inequalities. For triangular paper, the rims of cones are
parameterized before their water depths are expressed explicitly. The capaci-
ties of cones are maximized over angles of slant. Different ways of division are
compared to and out the optimal solution. Probing into general cases, var-
ious inequalities are set up analytically and exhaustively to bound the total
capacities for comparisons.

To obtain the greatest capacities, cones made from one sub-division should
be slanted but those from multiple sub-divisions should be held vertically.
For a polygonal paper of six or more sides, it should be divided into two
divisions, each comprising two or more sub-divisions with a central angle ratio
of 0.648:1.352, approaching the way of division in circular paper.

1. Introduction

[See reviewer’s comment (1)] The objective of our project consists of two problems.
The first problem is to find the method to cut a paper circle into sectors and make
cones with the maximum total capacity. The number of cones is not restricted
and the cones are not necessarily identical. The capacity of a cone is easy to find
but when there are more cones, the problem is not so simple. It can be quite a
difficult Calculus problem as the number of variables (i.e. the number of cones)
is also a variable. We used computer softwares to calculate the total capacities in
many cases. It seems that the solution of the problem is a relatively simple case.
For example, a unit circle can be cut into two sectors with each arc length 7, three
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2w T
sectors each with — or four sectors each with arc length —. We can find the total

capacity in each case to get some clues. We did not restrict our investigation just
on evenly cut sectors but in general, it seems that the total capacity is the greatest
when there are only two cones.
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FIGURE 1. Ways of cutting the circle

We then switch our foci on two tasks. The first one is to find the best way to cut
the circle into two sectors (to obtain the greatest total capacity) and we successfully
solve it by using the symmetric property of the problem to reduce a polynomial
equation in degree 7 to a cubic equation. The second task is to show that the
total capacity of the cones will decrease if we cut a sector with central angle not

4
exceeding — into two smaller sectors. This can assure us that the solution of

the problem is to cut the circle into only two sectors. Our strategy to this second
task is to consider the total capacity of two cones made with sectors such that

2v/6

the sum of the arc length does not exceed some constant (——m). We use the

convexity of the derivative of the total capacity and proved a useful inequality. Our
strategy worked well as we managed to find a beautiful proof, much simpler than
we expected, although we still need the 4th derivative of the volume of the cone.

The second problem is a variation, or a generalization of the first problem. This time
we are searching for the method to cut regular polygons along their radii (FIGURE
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8a). The ‘cones’ (FIGURE 8b) are not really normal cones as they have zig-zag
on the rim. We started with the seemingly simplest case: the ‘sector’ (actually is
an isosceles triangle) is cut along two adjacent radii. The capacity is quite difficult
to find, as we can slant the ‘cone’ in different ways and get a larger capacity than
that when the ‘cone’ is held vertically. This part requires quite a bit of hard work
and results a rather complicated trigonometric equation. We used the two kinds of
Chebyshev Polynomials to help us to solve for some cases. In the due course, we
managed to

find a general rule to factorize our polynomials (converted from the complicated
trigonometric equations). We then tried to use these work to simplify our original
trigonometric equation, without introducing Chebyshev Polynomials, and reduce it
to a trigonometric equation as simple as

(n—1)cos(n+ 1)+ (n+1)cos(n—1) =0 (1)

[See reviewer’s comment (2)] which is not so difficult to solve numerically.

(b) 9,5-CONE

(a) A 5-portion paper in a paper nonagon
FIGURE 2

This seemingly simplest case turned out to be the most complicated case. We found
that when the ‘sector’ consists of more ‘isosceles triangles’, the capacity of the ‘cone’
will be the greatest when it is held vertically. Although it took us some more hard
work to prove this, it enable us to solve the problem with the results in the first
problem, the circle problem. The polygon problem is still more complicated than
the circle problem. Although (1) looks simple, it is not easy to find a solution in
closed form and besides, the capacity of the ‘simple’ ‘cone’ is a complicated function
of the solution of the equation. We avoided to find the actual value of this kind of
‘cones’ as we think it was almost impossible to do that. Instead, we found an upper
bound for this capacity and do the final comparison work. The problems raised in
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the project are solved completely and the solution of the second problem is closely
related to that of the first one, although they are exactly not the same.

2. How Much Water Can a Paper Circle Hold?

In many mathematics textbooks, we can find problems of calculating the volume
(capacity) of a cone made with a given circular sector. We begin our project with a
less commonly asked problem. When we cut a sector from a paper circle and make
such a cone, there is always something left. The remained part is also a sector and
can be used to make one more cone. So with a paper circle, we can make more
than one cones. Actually, we can cut the paper circle into any number of sectors
and make cones. Our first problem is to find the largest possible total capacity of
these cones.

2.1. A Cone with the Greatest Capacity

As all circles are similar, we can assume the paper circle has unit radius. Let V()
be the capacity of the cone made with a sector of arc length x (where 0 < z < 2).
2 An? — 22
The base radius of the cone is z and its height is \/1 - (i) = u
27 27 27

Therefore, we have

w2 \2 [ Vir? — 22
Viz) = 3 (%) ( 2w )
Vi) = TS 2

and its first derivative is

V'(z) = % <2xm— ‘”3>

247
8m2x — 323
247m2\/4nw? — 22
2v/6
V' is continuous on [0, 27]. Since V'(x) > 0 when 0 < z < \Sfﬂ and V'(z) <0
2\/671' 2\/67r
3

< x < 2m, V attains its greatest value when z = (FIGURE 3).

when

Thus the greatest possible capacity of such a cone is

2V/6m 1 (2/6r) ) NCAY
() () v ()
2437

Y
=~ (0.12830017
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FIGURE 3. Graph of V().

If the circular sector is cut from a paper unit circle, a sector with arc length 27w —

2v/6
Vor will be left and when this sector is also used to make a cone, the total capacity

3
2 2
of the cones is V ( \{fﬂ) +V (27r — \géﬂ

the way to make the greatest total capacity, as two identical semicircles will make

V3w

two cones with total capacity 2V (m) = 5 & 0.14433767. But this is still not the

greatest possible total capacity. FiIGUR 4 shows the graph of V(z) + V(27 — z),
which is the total capacity of the cones made when the paper circle is cut into
two sectors. We can see from the graph that the total capacity of the cones made
by two semi-circles is almost the greatest value of all possible total capacity, but
ironically it is a local minimum there. We can see from the graph that we will have
a larger total capacity if the paper circle is cut into two sectors with arc lengths
approximately in the ratio 2 : 1. We will find the ratio in Section 2.4. This is
actually the largest possible value of the total capacity, as we will show in the
next two sections that we cannot increase the total capacity by cutting the sectors
further.

> ~ 0.13933407. However, this is not

2.2. Cutting a Sector

There are infinity many ways to cut the paper unit circle. Our problem of
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FIGURE 4. Graph of V(z) + V(27 — ), showing that cutting the
circle into 2 semi-circles does not give the greatest total capacity.

finding the greatest total capacity is equivalent to find

n
w1+12JIrI.1.E.lJ)r(:rn:27r Z V({E])
neN\{1} J=1
It seems to be very difficult to solve as the number of variables is not known. In
TABLE 1, we find the total capacity of the cones when we cut a paper unit circle
in different ways (and make cones). The table is not exhaustive, and it can never
be. But with the help of these experiments, we make a conjecture that the total

capacity is larger when the paper is cut into only two sectors.

As we don’t know the number of variables, it is difficult to use Calculus of several
variables. Instead, we will prove that when a sector is not too ’big’ (which means
that the arc length is not too ’long’), it is better not to divide the sector into small
sectors. It means that the capacity of the cone made with the original sector is
always larger than the total capacity of the cones made with those smaller sectors.

Suppose that we have a circular sector of radius 1 and arc length k, where 0 < k& <
27r. This sector can be cut into two (or more) smaller sectors. For 0 < x < k, define
a function fi by

felx)=V(x)+V(k—x)
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Ways of cutting the paper circle Total capacity of cones made

T+ 0.14433767

2 2
( \ééﬂ) + (27r— ‘{fﬂ> 0.13933407

2r 2w 27

—_—+ =+ — .104

7T3 ;3: 37r 0.10475667

—+ -+ -+ 0.08068717
2 ?277 227T 2 27
e 06531
5+5+5+5+5 0.06531977
0.64802777 + 1.35197237 0.14535327

TABLE 1. Total capacity of cones made with different number of sectors.

which is the total capacity of the two cones made by the two smaller sectors with

2\/(371'

the total capacity of the cones made by those smaller sectors is less than the sector
made by the original sector, i.e. fi(z) < fx(0) for 0 < 2 < k. (Theorem 1) [See
reviewer’s comment (3)]

arc lengths x and k — x. We can prove that when k is not greater than

5
FIGURE b5a shows the graph of fi(x) for 0 <z < k, when k = Zﬂ [See reviewer’s

k
comment (4)] The graph is symmetric in the line £ = — for obvious reasons. fj

is decreasing on the left half of the graph and has the greatest value at z = 0 or
x = k, meaning that we will have the greatest total capacity if we don’t cut the
sector into smaller sectors. FIGURE 5c show that when £ is larger, we can obtain
a greater total capacity if we cut the sector. It seems that there is an upper bound
for the arc length of the sector that the total capacity will be the largest if we don’t

2\/67‘(

cut the sector. This upper bound is indeed 5 the value we found in Section
2.1 (See FIGURE 5b).

k
As mentioned above, as fi is symmetric in the line z = 5 If fi is strictly decreasing

24/671
3
value at © = 0 or k. This means that we cannot get a larger total capacity by
cutting the sector to two smaller sectors. In order to do that, we proceed to find

the derivatives of V up to the fourth order.

k
on [0, 2] (assuming k < ), then we can conclude that fj attains its greatest

(47% — 22) (872 — 922) + z(873x — 323)

Vi) = 2472 (V4r? — 22)3
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FIGURE 5

. Graph of fi(z) for different values of k.

3zt — 187222 + 1674
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ol R R

1272(\/4n? — 22)3
So,
VO () = 1 |:12$3 — 3672z N 3z(3x* — 187222 + 16774)]
e (i T ey

_ —z5 + 10722 — 32rtx
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A (Var? —a?)5 (vVar2 — 22)7

_ —27m222 — 3974

WA=y

|



MAKING PAPER CONES WITH THE GREATEST TOTAL CAPACITY 335

We are now ready to prove the following Theorem 1.

2\/(371'

Theorem 1. Let k < ——. When a sector with arc length k of a paper unit circle

is cut into smaller sectors. The total capacity of the cones made with those smaller
sectors is less than that of the cone made with the original sector.

k
Proof. We will prove the theorem by showing that fi is decreasing on [O, 2}.

Obviously, we have

fi@) =V'(z) = V'(k — ).

) ()
(0 =vo-v(3)
— _V'(k).

6 2v/6
Vor appears. When k < \?{W, V/(k) > 0 and

So, we have

and

Here is where the upper bound

hence
fr(0) <o0.

k
Now we have f/(z) < 0atz =0 and z = 7 What we need is that fj(z) < 0

for all values in between, and it is true as f}, is a convex function in [O, ;] (See
—272g? — 327t
is strictly decreasing. When 0 < z < 5 we have k — 2 > 5 > z and hence
VO (k —z) < VB (x). Therefore,

& fi(x)

—h = VO () -V (k—2)>0
X

FIGURE 6aand 6b). Since v*(z) = is always negative, V(3

k k
for all z € (0, 2). This proves that f; is strictly convex on {0, 2}. So, for

= (0,5), we have
= ((1-F) 0+ (%) (3))

()3 ()

<0.
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filx) fi(@)

1ol
ol

(a) When k = 3 (b) When 0 < k <

267 2V/67
3
FIGURE 6. f} () is a convex function.

k
Therefore, fj is strictly decreasing on [O, 2] and by symmetry, fi attains its great-
2\/671'
3

in the sense of obtaining the greatest total capacity. O

est values when x = 0 or k. So for k£ < , one cone is better than two cones,

2.3. Two Sectors Are the Best

We can now use Theorem 1 to show that the greatest total capacity is obtained
when the paper unit circle is cut into 2 sectors only.

If the circle is cut into 3 or more sectors, the smallest two sectors should have a

2
\{fﬂ. By Theorem 1, the

total capacity will increase if we assemble the 2 sectors into one. We can repeat
this process as long as there are 3 or more sectors. So we can conclude that when
the total capacity is the greatest, there must be only two sectors.

47
total arc length not greater than —, which is less than

In FIGURE 7, a paper unit circle is cut into five sectors (and the sectors are used to
made cones). We can increase the total capacity step by step, each time assembling
the two smallest sectors. The process ends when there are only two sectors left and
the only way we can further increase the total capacity is to vary the ratio of the
arc lengths of the two cones.
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(a) A circle is divided into 5 sectors (To-
tal capacity = 0.07510107). A and B are
the two smallest sectors and they have a

sum of arc length smaller than%.

AB

DE

(¢) The capacity will increase if we com-
bine sectors D and E (Total capacity
= 0.1076987). AB and C' become the
two smallest sectors and they have a sum

of arc length smaller than 4?7r

AB

(b) The capacity will increase if we com-
bine sectors A and B (Total capacity
= 0.08383627). D and E become the

two smallest sectors and they have a sum

4
of arc length smaller than %

ABC

DE

(d) The capacity will increase if we com-
bine sectors AB and C (Total capacity
= 0.14473597). There are only two sec-
tors left, so the greatest total capacity is
corresponding to a two-sectors case.

FIGURE 7. A paper unit circle is cut into five sectors. The corre-
sponding total capacity increases as we assembling the two smallest

sectors each time.
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2.4. The Greatest Total Capacity

In the previous section, we have shown that the total capacity is the greatest when
the unit circle is cut into exactly two sectors of some sizes. So the greatest total
capacity is the greatest value of fo,. We have

for(x) =V'(x) = V(21 — x)
_ 8r%z—3a? 3 8m2(21 — 1) — 3(27 — x)3
2Un2\/An? — 22 2Um2\/4x2 — 27 —2)?
Therefore, f5. (z) =0 when
(8m2x — 32%) /A2 — (21 — )2 = [872(2m — x) — 3(27 — 2)?|\/An2 — 22
Squaring,

(8m%x — 32%)?[4r? — (21 — )] = [87%(27 — 2) — 3(27 — x)®)?(47? — 2?)

and results a polynomial equation of degree 7. This equation is symmetric about
x =m. So, if we let x =7 — u (and hence 2m — 2 = w + ). Then

(872 (m— ) — 3(m — 1)) 2[4m? — (m+u)?] = [87%(m ) — 3((m -+ u))*2(4n% — (m— )?)
and can be simplified as

8ru(—5m® + 5lrtu?® — 87r2ut 4+ 9ub) = 0

with roots 0, ++/0.1238844977, ++/0.4956795667, ++/9.0471026037. (The factor
in the brackets is cubic in u? and so this equation can be solved algebraically.)

By symmetry, we can consider those z € [0, 7] only, i.e. © = 7, = 0.2959548557
of 0.648027704r.

Here f},(0.2959548557) # 0, f5(0.06480277047) = 0.

5 ()

1
= ——— and the attains a minimum value when z = 7.
18v/37 for

2 (0.6480277047) = —0.021862974 < 0 and the fo, attains its greatest value when
x = 0.6480277047.

Theorem 2. [See reviewer’s comment (5)] The total capacity of cones made with
all the sectors cut from a paper unit circle is the greatest when the circle is cut
into exactly two sectors, with one of them with arc length approzimately equal to
0.6480277047.

The greatest possible total capacity is
f2(0.06480277047) = 0.14535332157
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3. Making CONEs with a Paper Triangle

In Section 2, we solved the problem of finding the way to cut a paper unit circle
along its radii so that the resultant sectors can be used to make cones with a greatest
total capacity. Circles are sometimes regarded as regular polygons of infinitely many
sides. If we replace the paper circle with a paper regular polygon in the problem,
it is natural to think that a similar result will hold when the number of sides of
the polygon is large, as the ‘cones’ then made will be nearly circular cones. We can
expect that in order to obtain the greatest total capacity, we should cut the paper
(along the radii) into two parts, with ratio of central angles being approximately
0.648 : 1.352. But when the number of sides is not so large, it would not be so easy
to make a conclusion. Is there any regular polygon that we should cut it into more
than 2 pieces in order to obtain the greatest total capacity of the ‘cones’ formed?

3.1. Capacity Problem of Regular Polygons

In our project, a polygon refers to a regular polygon which can be inscribed in a unit
circle. In order to precisely define our problem, we need the following definitions.

Definition 3. An n-sided regular polygon has n radii (the radius of regular poly-
gon is the same as its circumradius [4]), which divide the polygon into n identical
isosceles triangles. If a polygon is cut with some of the radii into several pieces,
each piece is either an isosceles triangle or union of several isosceles triangles. We
call such a piece a k-portion paper if it is the union of k isosceles triangles (when
k =1, it is merely an isosceles triangle.) (See FIGURE 8a and 8c)

Definition 4. [See reviewer’s comment (6)] A k-portion paper (1 <k <mn) can be
folded into paper cups (without over- lapping). We call it a k-portion CONE, an
n, k-CONE or simply a CONE if it is a part of an infinite right circular cone. The
azxis of a CONE is the axis of the corresponding right circular cone. (See FIGURE
8b and 8d)

Definition 5. We can fill an n; k-CONE (making with an n-sided polygon) with
water, and the capacity of the CONE wvaries as the way we hold the CONE. The
mazimum capacity of the CONE is denoted by V;, 1.

A polygon can be cut into several 1-portion or multi-portion papers and each CONE
made with them can be held in some way so that its capacity is the greatest. This
project is to find the way to maximize the sum of all the maximum capacities of the

CONEs. For convenience, we call this the maximum (or greatest) total capacity of
the CONEs.
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a) A 5-portion paper in a paper
I(lo)nagon (b) 9,5-CONE

4

é:)ua?e l-portion paper in a paper (d) 4,1-CONE

FicUre 8. Examples of k-portion papers and n, k-CONEs

3.2. A Paper Triangle

We start from a polygon with the least possible number of sides, a regular triangle.
(FIGURE 2.2).

Obviously, we can cut the triangle into 1-portion paper and 2-portion paper, and
there are totally 2 ways to make the CONEs with total capacity

(a) 3V, (FIGURE 10a), and
(b) Va1 + Va2 (FIGURE 10b).

3.3. Maximum Capacity of a 3,2-CONE

In order to find V3 2, we have to first determine how to hold the 3,2-CONE so that
it can be filled with the largest amount of water. As we will see in Theorem 13
[See reviewer’s comment (7)], the CONE has the greatest capacity when it is held
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FIGURE 9. Regular triangle

(b) one 1-portion paper and one 2-

(a) three 3-portion papers portion paper

F1GURE 10. Combination of portions of a triangular paper

vertically, which means that its axis is perpendicular to the horizontal. The shape
of the water then is a right circular cone with slant height sin% (FIGURE 12a and

FIGURE 12h).

4T . ow
— sin —

1 2 1)?
The base radius of the cone is ->——0 — ~ and its height is (sin E) —l=) =
2m 3 6 3
V5

5 Therefore,

w1 (3) (%) -5 ®
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(a) 2-portion paper (b) 3,2-CONE

FiGURE 11. The shape of a 3,2-CONE

1

(b) sector of the inscribed circle of

(a) three 3-portion papers the paper triangle

FiGURE 12. Shape of water in a 3,2-CONE

3.4. Maximum Capacity of a 3,1-CONE

The water inside a 3,2-CONE has the shape of a right circular cone and its volume
is easy to find. But a 3,1-CONE is much more complicated. When we fold the
1-portion paper into a CONE (FIGURE 13b), it is obvious that the CONE would
not attain its maximum capacity if we hold it vertically.

Here we introduce a 3-dimensional Cartesian coordinate system into the picture so
that the vertex of the CONE is the origin, the axis of the CONE is the positive
z-axis and the shortest generatrix! projects on the positive x-axis. (FIGURE 14).
By Theorem 92, the maximum capacity will be attained when the CONE is rotated
about the y-axis by some positive angle ¢.

We rotate the CONE about the y-axis through an angle ¢ and fill it with water.
The depth of water h is the least value of z of the points on the rim of the CONE

1The perimeter of the base of a cone is called the ‘directrix’, and each of the line segments
between the directrix and apex is a ‘generatrix’ of the lateral surface.[3]
2The statement here is not exactly the same as Theorem 9, but they are equivalent.
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(a) 1-portion paper (b) 3,1-CONE

Ficure 13. 3,1-CONE made from 1-portion paper

N

F1GURE 14. Introducing 3D Cartesian coordinate system

(FIGURE 15). The water has the shape of a right circular cone cut by an imaginary
inclined plane (so that the water has an elliptical surface).
By Theorem 7, the capacity of the CONE is
wh?secd® g tan® o
3(v/1 — tan? ¢ tan? )3
Here « is the semi-vertical angle of the CONE.
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»
>

F1GURE 15. CONE rotated through an angle ¢

3.4.1. Height of the CONE

In this subsection, we need to parametrize the rim of the CONE in order to find h.
Suppose that the semi-vertical angle of the CONE is «, and the angle between the
z-axis and the axis of the CONE is ¢. « can be found using the following Theorem:

Theorem 6. (a) If a sector of central angle x is folded to make a cone (without
overlapping) and the semi-vertical angle of the cone is «, then

) x
sinaw = —.
2w

(b) The semi-vertical angle of an n,k-CONE is given by

sina = —.
n

Proof. (a) Without loss of generality, we may assume that the radius of the sector
is 1. Then the arc length of the sector is #. This arc is folded to become the

T
circumference of the base of the cone. So the base radius of the cone is o
T

As the slant height of the cone is 1, we have sina = i

(b) Ann, k-CONE can be embedded in a right circular cone and this right circular
cone can be made by a sector with a centre angle equal to the centre angle

k
of the k-portion paper for making the CONE. So we have = = (n) (27) and
hence

sina = —.
n
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A B

FIGURE 16. P is any point on AB [See reviewer’s comment (8)]

x

FIGURE 17. P is any point on the rim

1
For a 3,1-CONE, sina = 3 and hence tana =
In FIGURE 16, OAB is a 1-portion paper with altitude OD. For any point P on
AB with such that ZPOD = 0, where _?ﬂ << % (0 is positive when P lies

between B and D and is negative when P lies between A and D.)

5

Lo
sin —
9:
cos OP
OP = lsecﬁ
2

As the CONE is symmetric about the xz-plane, we can parameterize the half of
the rim with positive y-coordinate only. The position vector of a point on this part
of the rim of the CONE is

sin o« cos 360 cos 30
sect sect
5 sin o sin 36 = e sin 360

Ccos o NG
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where 0 < 0 < g [See reviewer’s comment (9)]
If the CONE is rotated about the y-axis as described in the previous section, the
above half-rim will be transformed to

cos¢p 0 —sing cos 36
sect
6 0 1 0 sin 30
sing 0 cos¢ V8

and hence any point on the rotated half-rim has the z-coordinate

sec

(sin ¢ cos 30 + /8 cos ¢) (4)

The depth of water is the least value of z. So we have to find the derivative of z.

% - W(Sin(bcos?ﬂ +V8cos¢) + ﬂ(f?,singbsin?’@))
_ W(Sinqbcos?ﬁJr\/§COS¢*3Sin¢Sm30COt9)
- w[ﬁlcos?’ef3cos0+\/écoscb*3(3Sin9*4sm30)cow]
- w(ﬁlmsg@—%oswr\/§cosqﬁ*9sini9+12(1 — cos® 0) cos )
= w(—ScongeJrSCO“ﬁ)

1 1
: cos@—ﬂ(cotqﬁ)ﬁl

1 1 1 1
- |cos? O + —=(cot ¢)3 cos 6 + §(cot (/b)ﬂ

V2

3.4.2. Capacity of the CONE for Small Angle of Slant from the Vertical
In order to find the maximum total capacity, we have to consider two cases:

1. when 0 < ¢ < o

2. Whena<¢<g—a.

If 0 < ¢ < a, then cot ¢ > cota = /8 and hence

ol
|
e

1 1
cos — —(cot phi)s <

7 (V8)

1
]_7
V2
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d - . ™ .
So, 7 > 0 and hence Z is increasing on 6 € |0, —|. The least value of z is

g(sinqﬁ + v/8cos ¢) and thus the capacity of CONE is

1, S
0 [6(Sm¢+\/§cos¢)} sec® ¢ <8>

e )]

_ NG ( tan¢+\/§>3

648 8 — tan? ¢

Nlw

V87 \/g—I—tan(b
648 \/g—tanqs

G R
648 V8 —tang )

V' is the greatest when tan ¢ =

and hence the greatest capacity of CONE for
0<op<ais

Sl

[N

643 oL
V8
_ Vi
588

3.4.3. Capacity of the CONE for Large Angle of Slant from the Vertical

™ 1
fa<¢d¢< = —a, — <cot < /8 and hence
6< G- g <cotd

< —(cot ¢)% <1

|

| =
Sl
)

ol

1
So,%ﬁOwhenOﬁ@ﬁcos_l[

ﬁ(co‘ﬂ ?)
dx

1
20 > 0 when % >0 > cos™? [\/i(COt ¢)§} .
z is the least when

cosf = [%(cot ¢)%}
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which implies that
sec = (V8tan ¢)%

and

cos30 = 4cos® 0 — 3cosh

4 (\}gt ¢) 3 U«m %)
2 cot ¢ — \[(cot 3.

ol

|

ca\»-A

Thus, the capacity of the CONE is

3
o (sin ¢ cos 36 + /8 cos qﬁ)}

V2

3
> {Sin¢(\/§cot¢ - i(cot (b)%) + \/gcosqb}
64/8 — tan? ¢

(\/isec d(\/Btan @)

1 3
;¢> [tan ¢(2 cot ¢ — 3(cot ¢)7) + 4]

3
) [6 cot ¢ — 3(cot ¢) 3]
6v/8cot? —1

_ .7 2(cot¢)%—1 ’
Scot2p— 1|

2us — 1 1
u for u > —, then

8u2 — 1 VR’
oy @ ()% - (1) (5) () 000

Let f(u) =
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4 _
—guTl <4u2 — 6u’ + 1)

(8u? —1)2

SO,fI(’U,) 1 1+\/§

<0 if2—<u<70ru>

f attains its greatest value when u =

Therefore, V is the greatest when (cot ¢)
The greatest capacity of the CONE is

349

3
6v2 (1 +V3 )
8 -1
2
3
_Vor V3
12 (1+V3)3 -1
_ Ve
12(3 4+ 2v/3)3
_ V/52V3 - 90 _
B 36 '
14 V52v3 —90 52v/3 — 90
S \5/;77 < V3 7, the greatest capacity of 3,1-CONE is \3[767T
and the corresponding value of ¢ is given by

1+3
2

wlno

(cot 0)
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tan ¢ = (1 +2¢§>

=1/6v3 — 10.

3.5. Maximum Total Capacity of the CONEs

Njw

In the Sections 3.2, we know that we can divide the regular triangle into either three
1- portion papers, or one 1-portion and one 2-portion paper. The respectively total
capacity are

52v/3 — 90
36

V52v3-90 V5
36 +

(a) 3V31 =3 l 1 ~ 0.0215125927, and

T 0.20973753x.

(b) V314 V39 = 162

Therefore, in order to get the maximum total capacity of CONEs made with the
paper regular triangle, we should divide it into three 1-portion papers and incline

the CONEs made with angle of slant tan—! \/61/3 — 10 from the vertical.

4. Greatest Capacity of a CONE
4.1. Finding the Volume

Our problem of finding the capacity of CONEs is actually about finding the volume
of inclined cones, or equivalently right circular cones which are cut by inclined
planes.

The volume of any cone with base area A and height h, no matter it is regular or

1
non-regular, is given by §Ah; whereas the area of an ellipse of semi-major axis a
and semi-minor axis b is given by wab.

Therefore, in order to find the volume of the CONE with elliptical base, we need
to find a and b, thus we can have the area of the elliptical water surface.

With the help of FIGURE 18, we can find a using trigonometry.

2a = htan(¢ + ) — htan(¢ — )
tan ¢ + tan « tan ¢ — tan o
(1 —tangtana 1+ tan¢ta11a)
2h(tan o + tan o tan? ¢)
- 1 — tan? tan? o
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________________________

(a) An inclined right circular cone (b) The cones side view

FI1GURE 18. An inclined right circular cone and its side view

hsec? ¢ tan o 5)
a= .
1 —tan? ¢tan® a
FIGURE 18 is showing one of the possible cases. When the axis of the cone and the

vertical make an angle less than the semi-vertical angle of the cone (See FIGURE
19), we have

2a = htan(o + ¢) + htan(o — ¢) (6)
As tan(a — ¢) = —tan(¢ — «), (6) will also result (5).

FIGURE 19. Side view of another cone

In order to find b, the trigonometric relation between ¢, o and a is not enough
for us to get the result, so instead of a mass calculation on the original cone, we
introduce an imaginary right circular cone with the same vertex and axis as the

given inclined cone, and its base passes through the minor axis of the base of the
inclined cone (FIGURE 20).

If d is the distance between the centre of the elliptic water surface and the point
where the axis of the imaginary cone meets the water surface.

For ¢ > a,

2a = htan(¢ + o) — htan(¢ — )
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(a) Sideview: if ¢ > « (b) Sideview: if a > ¢

FI1GURE 21. Side view of the CONE and the right circular cone

a=d+ htan¢ — htan(¢ — «)
whereas, for a > ¢,
2a = htan(a + ¢) — htan(a — ¢)
a=d+ htan¢ + htan(a — ¢)

As tan(a — ¢) = — tan(¢ — «), the two cases are indeed equivalent, with a common
solution of

d = —[htan(¢ + @) + htan(¢ — )] — htan ¢

_h [ tan¢ +tana tan ¢ — tan «
2 \1-tan¢tana 1+tangtana

DN | =

) — htan¢
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h(t tan ¢ tan®

_ (an¢+2an¢5 2n «@) ~ htané
1 — tan” ¢ tan” «
htan ¢ 2 2 2

= 1+tan“ o — 14 tan” ¢ tan” o

1 — tan? ¢ tan® a( ¢ )
B htan ¢ sec? ¢ tan? o
1 —tan®¢tan’ o

FIGURE 22. Top view of the cone

Now consider the base of the imaginary cone. The radius of the base is
htan ¢ sec? ¢ tan? o sin ¢
h dsi t =[(h t
(hsec ¢ + dsin ¢) tan « < sec ¢ + I tan’dta’a an a
htan? ¢ sec ¢ tan? o
< sec + 1 — tan? ¢ tan? o ana
tan? ¢ tan® o
=h 1 t
sec ¢ ( + 1 — tan® ¢ tan? a) ana
_ hsecotana
- 1—tan?¢tana

By Pythagoras’ Theorem
hsec ¢ tan « 2
v = —(d 2
(1 —tan2¢tan2a> (dcos¢)

( hsec ¢ tan o >2<htan¢sec¢tan2a>2

1 —tan? ¢ tan® o 1 —tan? ¢tan? «
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_ hsec ¢ tan «
B (1 —tan? ¢ tan?
(hsec ¢ tan a)?

1 — tan? ¢ tan® o
hsec ¢ tan «
V/1—tan? ¢ tan? o

We are now ready to prove the following theorem:

2
) (1 — tan? ¢ tan® o)

Theorem 7. The volume of an inclined cone with semi-vertical angle «, angle of
slant ¢ of its axis with the vertical and height h (the distance from the vertex to the
base) is given by

wh3 sec? ptan® o

V =
2(y/1 — tan? ¢ tan? a)3

Proof. Therefore, the volume of water is

V= gabh

_mh hsec? ¢ tan o hsec ¢ tan o
3 \1-tan®ptan’ V1 — tan? ¢ tan? o
wh3sec3 g tan? o

2(y/1 — tan® ¢ tan? a)3

4.2. Parametrizing the CONE

order to find the depth of water inside a CONE, which is the least value of the z-
coordinates of points on the rim, we need to introduce a parametrization of the rim.
The rim of a k- portion CONE is the union of k congruent and inter-connecting
portions. It is reasonable to consider the parametrization of one of the rims only.
First we introduce a 3-dimensional Cartesian coordinate system to describe the
CONE and parametrize one of k portions of the rims (FIGURE 23) such that

1. The positive z-axis is the axis of the CONE.

2. The origin is at the vertex of the CONE.

3. The mid-point of one of the portions of the rim is vertically above the positive
x-axis. We call this portion of the rim the principal rim, although its selection
is arbitrary.

As defined in Definition 2, the CONE is a part of an infinite right circular cone
with same semi-vertical angle. It will be of much convenience to parametrize the
extended cone first. (See Definition 8)
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FIGURE 23. The principal rim (blue)

Definition 8. A n, k-CONE is folded with a k-portion paper of a reqular n-gon with
radius 1. The k-portion paper is itself inscribed in a sector of the circumscribing unit

k
circle, with centre angle —(2m). If we fold the circular sector, we will obtain a right

circular cone with slant height 1, and the original n,k-CONE can be embedded in

this right circular cone. (FIGURE 24) We call this right circular cone the extended
cone of the n, k-CONE.

xz

FIGURE 24. The principal rim (blue) and the extended cone (red)
of a 9, 5-CONE
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By Theorem 6, the semi-vertical angle of the CONE « is given by
sina = —
n

In FIGURE 25, P is a point on a side PyP; of the k-portion paper of a regular
n-gon (which is going to be the principal rim of the CONE folded). OP (O is the
centre of the corresponding regular polygon) is extended to meet the circumscribed
circle at P. Suppose that OP makes an angle 6 with OH (—m < 6 < 7)), where
His the midpoint of PyP;. When the circumscribed sector is folded to make the
extended cone, P will become a point of the circumference of the base of extended
cone. The projection of OP on the zy-plane makes an angle ¢ with the positive x
axis (FIGURE 26) which is given by

(sina)(¥) = (1)(0)
0

=T

FIGURE 25. Parametrizing the extended cone
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FI1GURE 26. The polygonal paper

Hence, the circumference of the base of the extended cone is parametrized as:

k no nf

sin a cos S k cos T

7 . . k . nd 1 no

OP = | sinasiny | = — sin — = — ksin —
" k n k

oS v ZVn? — k2 2 _ k2
n

We say that the extended cone and the respective CONE is at its standard position
if it is parametrized as above. In general, we can rotate or incline the CONE
(and the extended cone) in different ways. Sometimes, a CONE has its standard
position does not guarantee its greatest capacity!. We can rotate the extended
cone about the z-axis through an angle 5. It makes no difference to the extended
cone but one can see that the respective CONE look different (rotated), unless

2
B is a multiple of T We can also slant the extended cone and the respective

CONE in some direction. As the choice of the principal rim is arbitrary, we can
describe the slanting as a rotation about the z-axis through an angle ¢. The value
of B can be restricted to be in the interval |0, % as the CONE is k-fold rotational

symmetrical about its axis and is reflectional symmetrical. We can always choose
a suitable principal rim so that ¢ is non-negative and as it doesnt make sense to

have ¢ > g — a (o is the semi-vertical angle of the CONE), we can assume that

ILater we will show that only 1-portion CONEs should be slanted in order to obtain the
greatest capacity.
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o€ [O, 5~ a] As we are going to parametrize the ’first rim’ only, the parameter
T
6 is in the interval [—f f]

)
nn

When the CONE (and the extended cone) is rotated about the z-axis through 3, the
projection of the rim of CONE on the zy-plane is also rotated through 8(FIGURE
27).

/’"*—w-’_._ o
e
& - pad e
o 2
v = o
//’ b ~_
& ~ -~
P \.\ 2
7 \
- ~
//’ ~
rd
rd / b\\
A [N
{ f [
V (I
v/ (]
/{ ) [
4 O '
\ — Uy
( 1 I
AY
W !
A 1]
\\ I}
N né ;“
W T I
N g r
\\\ ;{ [
\
AT Py
AJEEN
v 7 P
\ ~ /
LT &
ST L e
s = - |
Py
M

FI1GURE 27. Projection of CONE rim onto xy-plane

From the figure, Py, H, P, P, are all rotated about O such that OH makes an
angle of 8 with the positive z-axis. Here the projection of the position vector O P’

n
on the zy-plane makes an angle v» = — + [ with the positive z-axis. Hence, the
circumference of the base of the rotated extended cone is given by

k cos n—g—i—ﬂ
) k

n| ksin %e—i-,@
Ny
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FIGURE 28. Reparametrizing the extended cone to CONE

Note that the ‘principal rim’ of the CONE can be obtained by scaling O? by the
length of OP (FIGURE 28).

2
The height OH of the triangle OFPy P, is cos 21 = cos ~ whereas the length of the
n n

™

OP is cos — secf. Hence when ¢ = 0, the principal rim of the CONE is parametrized
n

as:

k cos %0 +5>
1 s 9
—cos —secd | i % +ﬁ>
Vn? — k2

Then we slant the CONE by rotating it through an angle ¢ € [Og - a} , suing the

transformation matrix and results the position vector of a point on the principal
rim

no
cos¢p 0 sing k cos (k: +8
1 s
Z cos — sec . [ nb
€085, 8¢ 0 I 0 k sin <k+5
—sing 0 cos¢ eyl

In particular, the z coordinates of a point on the principal rim is

1
z:Ecos%seCQ \/n2—k2COS¢—k‘Sin¢COS(7;j+ﬁ>:|. (7)
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4.3. To Rotate or Not to Rotate
4.3.1. z Is the Least for a Non-positive 6

When a 3-dimensional Cartesian coordinate system is introduced so that the vertex
of the n, k-CONE is the origin. The rim of the a portion of the CONE has the z-
coordinate

1 0
2= = cos Zsech {\/nQ — k2 cos ¢ — ksin ¢ cos (7; +ﬂ>} ,
n n

Be [0%] and 6 € [—3,5]

S — 12
where ¢ € {0, g - a} = lO,tan1 nk] i

z depends on three variables, namely ¢, 5 and 6. ¢ and § decide the position of
the CONE and 0 is a parameter describing the rim. We write z = z(6) to indicate
that z is a function of §. With ¢ and § fixed, the water depth & is the least value
of z.

If z is the least when 6 = ), we can prove that ¢y < 0. For instance, suppose that
6o > 0. We will prove that z(—6y) < z(0y). As secfy = sec(—0p), we only have to

compare cos n—eo + B | with cos M + B ]. Since 6y € (0, z},
k k n

s TL(—Q())
WS_ES A +4< 7"‘57 k
If k> 2,
n(ZO)Jrﬂ‘< GO IR N

As cosine is even and is strictly decreasing on [0, 7r],

(m’(}—i-ﬁ) Scos(n(;eo)—i-ﬂ>.

no
If k=1 and 70 + B < 7, the above argument still holds and

(”90 + 5) < cos (n(;(%) + ﬂ) :

nby
If £k =1 an d7+5>7r then 0 < 27—fB—nby < 7m. So0 <

n(—bo
k
if B — nfy < 0. Therefore, we have

(n@o +B) = cos(2m — f — nby) < cos <n(k€)0) +5> .

n(—bo)
2 +8<2r—fB—

nfy < wif f—nby > 0 and +ﬁ’ =nbly—B+2r—2nby=2r—F—nby <7
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So, in all cases, cos <7”LZO + B) < cos (n(;@o) + ﬁ) and hence z(—6y) < (o).

When z attains its least value, 8 < 0.

4.3.2. The capacity is the largest when g = %

The position of the CONE is determined by two parameters, 8 and ¢. When ¢ is
fixed, the capacity is proportional to the cube of the water depth. We will prove

in this section that water depth is the greatest when g = % Suppose that h is the

least value of z when 8 = % As shown in Section 4.3.1, h = z(6) for some 6y < 0.
Although it is not easy to find the least value of z(#) for each 8 (with ¢ fixed), we
can prove that the water depth is the greatest when = % by proving that for any
B e [O, %), there exists a 6 such that z(0) < h.
Here we write z = z(3, 0) to indicate that z depends on both 8 and 6. For instance,
)
If g e [nzo—i—k k),wecanﬁndaﬁe(ﬁm 0] such that 7_’_5_”790_’_E (See
FIGURE 29) As secant is decreasing for 6 € (6, 0],

secy > secl

and hence

1
h:fcosﬁsecﬁo \/MCosgb—ksingbcos — E
n n k k
1
zfcoszseceo [MCosqb—kSin(/)cos(ne B)}
n n

k
>1cos7Tsec€[\/WCos¢—ksin¢cos (T;f )]
n n
= z(B,0)

and in particular, h > z <7”LZO + %, O>.

nﬁo T
If — h
B e [ = +k>,t en

nby T
h > _
( 2 k’0>

+
1 0
= ~cos n2 k2 cos ¢ — ksin ¢ cos dl + T
n k k

3

1 T
> — cos —
n

n2 k2 cos ¢ — ksin ¢ cos B}
n
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Da
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FI1GURE 29. Along the red line segments, z is the largest at A.

= z(8,0).

We can now conclude that

Theorem 9. For fized ¢ € [0, g — a] , the water depth is the largest when 5 = %

From now on, we take § = % and thus
1 0
2(0) = -~ cos % sec {\/nQ — k2 cos ¢ — ksin ¢ cos (TZ + Z)} , (8)
which depends on ¢ and 6 only.

4.3.3. The Water Depth

wh3sec3 gptan® o
3(y/1 — tan? ¢ tan? a)3
of z(f) and depends on ¢ only. So V is a function of ¢. However, it is very difficult
to express V' (or h) in terms of phi. Instead, we will express V' in terms of 6, where
0 is the value that makes z the largest for such a ¢.

By Theorem 7, V =

. In our problem, h is the least value

First we have to maximize z for a fixed ¢.

d 1
- cosZsecG[\/n2 — k2cos¢tand

a9 n
— ksin ¢ tan ¢ LA D in ¢ sin ., 9)
S a COSs k k k ns S. k k .
Let
f(0) = vn? — k?cos ¢ — ksin ¢ cos (?—FZ) + nsin ¢ sin (729 —i—Z) cotf (10)

for 6 € [—%,0). Then

dz 1 0
- EcosﬁsecﬁtaHOf(H) (11)
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when 6 £ 0. Here we have

2
f(0) =sin¢ {nsin (n@;—w) — msin (n@lj—ﬂ) csc? 6 + %cos (nGlj—ﬂ') cotH]

_ nsiné [—k(l—sin29)sin (mg]:_ﬂ) ~+ nsinf cos d cos (nﬂ;—w)}

 ksin?6
= 7718;21?1;(;89 {—kcos@sin <n9];|— W) + nsin 6 cos (n@;— W)]
i 0 k)0 — k)0
= 771;1]@115?:20; {(n — k) sin <(n * k? + 7T> — (n+k)sin ((n k? + W)} .
So, we have
i 0
£10) = "SR ) (12)
where
9(8) = (n — k) sin (W) — (n+ k)sin (W) . (13)
We have
q'0) = (n - k)k(n ) {cos ((n i kk)G + 7T> — cos ((n — kk)ﬁ + W)] . (14)

(n+k)o+m
k

— k)6
FIGURE 30. (n k:) i > whenever —% <6<0
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As we can see in FIGURE 30, for 6 € (—%,O),
(n—k)f+= n+k)o+m
k k

COS((nJrkk)eer) >COS<(n—kk)9+7r>

and hence by (14), ¢’'(9) > 0. So, g is strictly increasing.
As g(0) = -2k sin% <0,

. So we have

T
g(0) <0 forfe (_E’O) (15)
By (12),
f1(0) <0
and thus f is strictly decreasing for 6 € [—%, 0).
From (10), when k =1,

f(0) = +v/n? —1cos ¢+ singcosnd — %s;nnq
n

By I’'Hopital’s Rule,
sinnf . n cosnb

=n.

im im ———
00— tan  o=0- sec?d

Therefore,

lim f(0) = v/n2 — 1cos ¢ +sin¢ — n?sin ¢

0—0—
alir(r)l f(0) =+v/n? —1cos¢(l —tangpy/n? — 1) (16)
o
We are now ready to prove the following theorems.

Theorem 10. When k=1 and 0 < ¢ < «, z is the least if and only if 6 = 0.

1
Proof. f 0 < ¢ < «, 0 < tan¢ < tanaw = ———. By (16), lim f(¢) > 0.
n2—1 0—0—
d
Therefore, by (11), d—; <0 forfe {—z7 O). So z attains its least value if and only
n
if 0 =0. O

Theorem 11. When k=1 and a < ¢ < % —a, z is the least for some 8 <0 and

this 0 is unique.

Proof. If a < ¢ < % —a, tang > tana =
By (16), lim f(#) < 0. We also have
6—0—

f (75) = /n?2 — lcos¢ — sin ¢

n

1
———— and tan¢ < cota = V/n? — 1.
vn?2 —1 -
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1
—n2-1 1— — ¢
n cosqb( sqrin? — 1 an (;5)

> 0.

As f is strictly decreasing for 6 € [—z, O)7 f(6) = 0 for a unique 6 = §y. Moreover,
n

we have .
ﬂ9{>0 if —— <0<y
<0, iffy<6<0.
By (11),
dz [>0 ﬁ—%§9<%
W{<Q ifhp<0<0
z attains its least value at 0 = 6, O]

When k > 2, note that
f (—%) =/n? —k?cos¢ — ksin¢g
Vn?2 —k2>0 ifo=0

= k
vn? — k2 cos (1— —————tan ) >0 if¢p>0.
o\ e te) =0 e
/nZ _ k2
as 0 < ¢ < g — o implies that tan ¢ < cota = ynr v
Also, we have Glim f(0) = —o0. As f is strictly decreasing, there exists a unique
—0~

0o € [—I, O) such that f(6y) = 0. Moreover, we have
n

<0, ifdp<6<0
(17)

>0 if —~<f<b’
n
For multi-portion CONE, we have the following theorems.

Theorem 12. When k > 2 and ¢ > 0, z is the least for some 6 < 0 and this 0 is
UNLQUE.
. . . dz
Proof. By (11 and (17), if y is the unique € such that f(6y) = 0, then ¥ < 0 when
d
_r <60 < 0y and d—; > 0 when 6y < 6 < 0. z attains its least value at 0 = 6. [
n
Theorem 13. When k > 2 and ¢ = 0, z is the least if and only if 0 = 0.

1
Proof. By (8), when ¢ = 0, z(0) = Ecosﬁsec 0vn? — k2. By the property of

n
secant function, z is the least if and only if 6 = 0. O
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4.3.4. Capacity of An 1-portion CONE When ¢ Is Small

By Theorem 10, when £ =1 and 0 < ¢ < «, the water depth is

1
h==cosZ {\/anlcosqﬁJrsingb

n n
and by Theorem 7, the capacity of the n, 1-CONE is given by

wh3 sec3 ptan? o
3(v/1 — tan? ¢ tan® )3

1
3 qpped
- wh? sec ¢(n2—1>
3 \/1— ! tan? ¢
7 tan

7r
mv/n2 — 1cos® —

_ n t +/2_13
3n3(\/n2—1—tan2¢)3(an¢ -1

7"\/”2_1‘3033% \/ (tan¢ + vn2 — 1)2
3n3 (vVn? —1—tang¢)(vn? — 1+ tan ¢)

2 37 3
mvn* —1cos - m+tan¢
3n? vn? —1—tang

Theorem 14. When k = and 0 < ¢ < «, the capacity of an n,1-CONE is

V =

3
3 [1 cos E(Singzﬁ +vn?— 1cos¢)}
non

3

3

m/n?2 — 1 cos® il WnZ —1

V= 1 -
3n3 vVn2 —1—tang¢
Since 0 < ¢ < @, tana = 5 . Therefore
nZ —
3
< mv/n2 —1cos® — Wn2 —1 )
- 3n3 vn?2 —1—tana
3
B m/n2 — 1cos® — QM .
- 3
3n 1 — 1
n? —1
3
m™/n 1cos® = n2
- 3n3 n2—2
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and hence

mvn2 — 1 cos® %
VS S 1

The equality of (18) holds if and only if ¢ = «a.
Theorem 15. When k=1 and 0 < ¢ < «, the greatest capacity of an n,1-CONE

mv/n2 — 1cos® il
n
3(vn? —2)3

4.3.5. Capacity of a Multi-portion CONE

18

In Section 4.3.3, we proved that when k£ > 2, or when £k = 1 and ¢ > «, z is the
. dz
least at a unique # = 0y and — =0.
do | y—p,
By (8) and (9), in such cases, the least value of z is given by

1 0
z= fcosﬁsecﬁo {\/n2 — k2 cos ¢ — ksin ¢ cos <no + W)]
n

n k k

where
tan g | v/ n2 — k2 cos ¢ — ksin ¢ cos (TL];OO +Z)] + nsin ¢ sin <nk€o+7;) =0.

This least value of z is the water depth h. So we have

0
htanfy = — cos Esecﬁo sin ¢ sin %0 + il .
n k k
To simplify our notations, we simplify write 9 for 6y. So if ¥ # 0,
T . (m9 + 7r)
cos — sin ¢ sin
n
h=— 19
sin ¢ (19)
where
) 9
tand |v/n? — k2 cos ¢ — ksin ¢ cos (12 + Zﬂ + nsin ¢ sin (T; + Z) =0. (20)
By Theorem 7,
V- wh? sec?® g tan? o
3(y/1 — tan? g tan? a)3
3
k2 hsec ¢

~ 3(n? —k2) k?tan® ¢
1- n2 — k2
3
_ wkAVn? — k2 hsec ¢
3 \/nQ—kQ—tharP(é
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coszsin¢sin <m9+7r) sec ¢ ’
nk?v/n? — k2 n k

3 siny/n2 — k2 — k2 tan? ¢
Therefore, we have
r Lo (nU+T
e [m o] e | oS ( k >
3 =l —
9 | n | s — k2 — k2 tan? 9)
i Lo (ni+T
27402 1.2\13 Si ( )
yi= |2 0 R (n” = k) cos? = — i 5 (21)
9 | n | sin® 9((n? — k2) cot® ¢ — k?)

As we can see in Section 4.3.3, for any given k and ¢, there exists a unique ¥ such
that h = z(¢¥)). So it is possible to represent V' in terms of 9. Here we should once
again emphasize that 9 is not the parameter 6 describing the rim of the CONE as
in Section 4.3.1. ¥ is the uniquely determined by ¢.

Theorem 16. Let n,k € Z™, 9,0 € R and o = sin~

following conditions are satisfied:

. Suppose that one of the

3\w

1L.n>3k>20¢ [—%,0} and¢€[7g }
2. n>3,k>1,0€ [—%,o} and ¢ € [a, 5 — o
i

)} —&-nsuubsm( 19;_7T) =0, then

Proof. Assume that n > 3. By differentiation,

0 = sec? ¥ |:\/77/2 — k2 cos ¢ — ksin ¢ cos (nﬁ;—w)]
—I-tanﬁ[— v n? —kgsin(b;%) — k cos ¢ cos <m9+7r> 9

If tan v |:\/n2 — k2 cos ¢ — ksin ¢ cos (

¢ is a bijective function of 9.

k dd
. . (nd+7 _(nd+7\dp n? . nd+m
+ns1nq§sm( ’ ) —&—ncosqbsm( 3 )M—l—ksmq’)cos( ’ )

_—sec219 nsin ¢ sin @
~ tand? k

+tan19[— V' n? —k%inqﬁ% — k cos ¢ cos (nﬂ+7r> o

k dvy
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+ nsin ¢ sin (m?;—w) + n cos ¢ sin (m9—|—7r) @—I——smécos (m?;—w)

k dv
=-n # — tan | sin ¢ sin AT v n? — k?sin ¢ tan dé
sin v cos 1 k

dv
] nd +mw\ do nd + 7\ do
— kcos ¢ tan ¥ cos ( 3 )dg—l-ncos(bsln( 2 )dﬁ

n? . m9—|—ﬂ'
+ ?smqﬁcos

B cos? in s nd +mw +n72¢ nd +mw
=-n i sin ¢ sin 3 3 sin ¢ cos 3

+ | — v/n? — k2sin ¢ tan — k cos ¢ tan 9 cos (m?l;l—w)
. (Y4 7m\ | do
+ncos¢s1n< 3 > P

n sin ¢ nd+m\ . . (Y47
= sy [ncos( 3 )smﬁ—ksm( 3 )(30519}
. do
_ 2 _ 1.2 ap
vn?—k Slnq[)tanﬁdﬁ

cos ¢ ) nd+m . . (nY+7w\]| do
+ Sn o {—ksmgﬁtanﬁcos( 3 )+n51n¢sm< A ﬂ prl

_ nsing {(n_k)sm (WWHT) — (n+ K)sin ((”’fﬁ””)]

2k sin ¢ k k
— {\/ — k2sin g tand + Obz (Vn? — k2 cos ¢ tan 19)} %
nsin ¢ vn2 — k2 do
= o 9(0) - ————tand—2
2k sin ¢ sin ¢ dvy

where g(¥) is defined in (13).

By (15),g(9) < 0 for ¥ € (—%,0).

do s
Therefore, pr < 0 for ¥ € <_ﬁ’ 0).

By continuity, ¢ = ¢(¥) is a strictly decreasing and hence is a bijective function in

¥ on [—E,O].
o
When 9 = 0 we have

tan —~ [\/712 —k2cos¢p — ksing| =0
n

n2 — k2

t =
an ¢ 3
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1. Suppose that & > 2. When 6 = 0, we have

. T
nsin ¢gsin — =

k
¢

When k > 2, ¢ : [ff, 0] — [0,Z — a] is bijective. (See FIGURE 31)
n

0
0.

2

77777777777777777777777 j*(\
I

FIGURE 31. ¢ is a bijective function of ¥ when n =9 and k = 2

2. Suppose that k = 1. Then we have
tan (\/n2 — 1lcos¢+ sinqbcosm?) —nsingsinnd =0

By continuity, we have

in ny
lim (\/n271c08¢+sin¢cosm9) =nsing lim anils

9—0— 9—0—- tand
n cos nv
vVn?2 —1cos¢+sing =nsing lim 3
9—0— sec? )
=n?sing
1
tan ¢ = ——
n?—1
$ =«

When k=1, ¢ [~,0] = [a,F — a] is bijective. (Sce FIGURE 32)
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by z—a

e 8

= v

FIGURE 32. ¢ is a bijective function of ¥ when n =9 and k =1

As ¢ is a bijective function of 1, it is possible to express V in terms of 9. Let

sin? 9[(n? — k) cot? ¢ — k7]

sin? ot
k

cos? ¥ tan? 9[(n? — k?) cot? ¢ — k2|

sin? ot
k

mtanﬁcos(b:ksin(btanﬂcos (7/“9]:'7(> —nSin¢Sin (nﬁ]:_ﬂ->
\/mtan19C0t¢: k tan ¢ cos (m?—i_W) —nsin (mg—i_ﬂ)

k k
2
tan? 9[(n? — k%) cot? ¢ — k%] = {ktanﬁcos (mg]:_ﬂ-) — nsin (mg]:—ﬂ-)]

— k% tan? 9
nd+m
k
—2nktan19cos< ) (nﬂ_HT)

— k% tan? 9

) )
= —k?tan® 9 sin? <n +7r> + nZsin (n ]:FW)

S =

(22)

By (20),

= k2 tan? ¥ cos® (
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— 2nk tan ¥ cos <n +7T> sin m9—|—7r)

(
m9+ﬂ')
d

= (n? — k*tan®¥) sin (

—2nktam9cos( ) m””)
So by (22),
s = cos? ¥(n? — k* tan? ) — 2nk sin ¥ cos ¥ cot (nﬁk—)— W) (23)
and by (21)

i = [ERE ) (e (1), 2

4.3.6. Maximum Capacity of Multi-portion CONE

As in (23),
0
s = cos? 19(n2 — 12 tan2 %) — 2nk sin 9 cos ¥ cot (” l;hr)
9
= n2cos? ¥ — k% sin® 9 — 2nk sin v cos 9 cot <n ]:—W>
2 _ g2 2 4 k2 )
_n —|—n + cos 29 — nk sin 29 cot mwtn
2 2 k
Thus,
ds

= = —(n? 4 k?) sin 29 — 2nk cos 20 cot <m9]:-7r) + n? sin 20 csc? (mgljﬂ)

= sin 20 |n? cot? (m?k—:i—w) — 2nk cot 29 cot (nﬁ;—ﬂ> —kQ]

2
= sin 29 (ncot (nﬂ}:—ﬂ) —kcot219> —kQCSC29]

= sin 24 |n cot (nﬂ;rw) kcot219ksec219]

[ncot (nﬁlj—ﬂ-) —kcot219+k‘se0219]

1

sin 20 sin? (

{ncos (nﬁ;w) sin 209 — k sin (nﬁ;w) (1+cos219)}

nd+m
k




MAKING PAPER CONES WITH THE GREATEST TOTAL CAPACITY 373

{n cos (7“9]:_7r) sin 24 + k sin (m?]:— 7r) (1 —cos 219)}

4 sin 1 cos nd+m\ . . nd +mw
= ncos | ——— | sin — ksin [ ——— | cos
) Lo (nU+T k k
sin 29 sin 7

{ncos (nﬁ]:r 7r) cos ¥V + ksin (7“9; 7r) sinﬁ}

{(n — K)sin (WW”> — (n+k)sin (("_kk)“g”ﬂ

Hence we have
ds — g(9)p(v)

- 25
di 2sin? nd +n (25)
k
where g(¢) is defined as (13) and
p(’l9) = (n — k‘) CcoS (W) Tl + k? COS < 19 + 7T> (26)
By (15), g(9) < 0 when 9 € (2,0}, ~~ < (”“fk)ﬂ” <7 and
E<W . Soif k> 2, bothcos<(n+k)19 ) and
n

k
cos ((n—k‘k)ﬁ—i—ﬂ) are positive. By (25), if k > 2

ds
LA
a0 =

for ¥ € (—E,O). Therefore, s is strictly decreasing on (—Z7O>. By (24), V is
n n

strictly increasing on (fz,()). By continuity, V' is the greatest when ¢ = 0 and
n
by (20), V is the greatest when ¢ = 0.

Theorem 17. When k > 2, the capacity of n, k-CONE is the greatest when ¢ = 0,
and the greatest capacity is

™ s
Vok = ——k%\/n? — k2 cos® —.
n

3n3
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4.3.7. Maximum Capacity of 1-portion CONE

To investigate the maximum capacity of an 1-portion CONE, we put & = 1 in (26),
p(¥) =—(n—1)cos(n+ 1) — (n+ 1) cos(n — 1)9

So we have p(0) = —2n < 0 and p (—E) = 2ncos — > 0.
n n
As
p'(9) = (n—1)(n+1)[sin(n + 1)9 + sin(n — 1)¥].

If9e (L,O), we have —7 < (n+ 1)9 < (n — 1)¥ < 0 and hence p'(9) < 0.

n

7r 7r T
Ifde|——,——— ), then 7 <2—7—(n+1)Y < (n—1)9 < —— and thus

n n+1 2

sin(n 4+ 1)9 4+ sin(n — 1)9 = sin(n — 1)¥ —sin[-27 — (n+ 1)9] < 0

and hence p'(¥) < 0. By continuity, pis strictly decreasing on [fz, O]
n
There exist a unique 97 such that p(d1) = 0.

By (15) and (25), 5 < 0 for 0 € [—5,191) and 2% > 0 for 0 € (9y,0]. Thus, s

dvy
attains its least value (for a < ¢ < g — «) if and only if ¢ = 4.

3

Therefore, V attains its greatest value (for a < ¢ < % — «) if and only if ¥ = ¥;.

By Theorem 10, if 0 < ¢ < «, the capacity of the 1-portion CONE is the greatest
when ¥ = 0, or equivalently, = «. Here we can show that the capacity will be
even larger when ¥ =9, (and ¢ > «).

By the proof of Theorem 16, we know that when o < ¢p < g —a, ¢ = a if and only

. do T
if 9 = 0. we also have P < 0 for <_ﬁ’0>'

Suppose that ¢(¥1) = ¢1. Then for ¢ € (a, ¢1), we have ¥ € (¥1,0). By (24) and
the chain rule,

d(s7t) d
Vi [ - k)5 (2 ) @
= (cos2 7) S
do 9 n do
dvy
d
[mAn? - k) §< 21) 1 ﬁ
= 79 COS n 32 @
dy

>0

By continuity, V' is strictly increasing for ¢ € [a, ¢1]. So we have the following
theorem.
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Theorem 18. The capacity of an n,1-CONFE is greatest when ¥ = v, where
Y1 is the only root of the equation (n — 1)cos(n + 1)9 + (n + 1) cos(n — 1)9 = 0

in the interval (—%,0). When the CONE has the greatest capacity, 8 = 7 and
tan ¥y (vn? — 1cos ¢ + ksin ¢ cosnidy) — nsin gsinndy = 0.

5. What Can We Do with a Paper Polygon?

Tedious as it seems, the calculation in Section 3 provokes us to find the maximal
total capacity of CONEs made from a paper regular polygon.

5.1. Capacity of CONEs

Now we go on to consider the total capacity of a k-portion CONE made from a
n-sided polygonal paper. For k > 2, by Theorem 17 the greatest capacity of an

n, k-CONE is
Vo = iI<:2\/ n2? — k2cos® L.
’ 3n3 n

It is hard to find a general formula for V,, ; in closed forms. Instead, we will find
an upper bound B, of V,, ; to do the comparison.

A convenient way to choose B,, as the volume of some inclined circular cone which is
an extension of the n, 1-CONE. We inclined the CONE (rotate it about the y-axis)
in a way that the lowest and the highest points of the rim are of the same height
(FIGURE 33). We can then extend the generatrices of the CONE to the same level
as these two points, to form an inclined circular cone, which is clearly an extension
of the original CONE. The volume of this inclined circular cone is denoted by B,,.

h S

—————————————— €T

F1Gure 33. Upper bound(red) for a 1-portion cone’s capacity

Here we have

cos(¢ + o) = cos % cos(¢ — )
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. . Q . .
cos ¢ cos a — sin ¢ sin a = cos — (cos ¢ cos a + sin P sin a)
n

sqrtn® —1cos¢ —sin g T (sqrtn2 — 1cos¢ + sin (b)
= cos

n n

Vn? —1—tan¢:cos% (\/n2 - 1+tan¢>)
vn? —1 (1 — cos %)

tan ¢ = =
1+ cos —
n
which is equivalent to
s
tang 1 —cos o 27

n®—1 1+COSE'
n

Note also that the water level h in this case is given by
h = cos(¢ + a).
By Theorem 7, the upper bound B, is given by
wh3sec? g tan? o 7 cos (¢ + a) sec® g tan? a
- 3(y/1 — tan? ¢ tan® a)3 N 3(y/1 — tan? ¢ tan® )3
7(cos @ — sin a tan ¢)? tan? o
3(y/1 — tan? ¢ tan? a)3

% (Vn?—1- tan¢)3 7

B,

nZ
— —3
3 (y/1- 5
By (27), we have
) 3
— cos —
E(vnr=1)" (1 - ol =
n 1+ cos —
B, = n
2
1—cos—
3 1-—
1+ cos —

(Vn2 —1) (2cos %)3
3 (yioos)°

3

™ T 2

=53 712—1((3087) .
3n n

Hence we have the following theorem

™
n3
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Theorem 19. An upper bound B,, of the mazimum capacity V, 1 of ann,1-CONE

is given by
3
2

B, = l\/n2 -1 (cosz)7
n

3n3

5.2. Are Two CONEs Still the Best?

In Section 2, we can see that maximum total capacity of the cones made with
sectors of a paper circle is attained at 2-cone case. But in Section 3, we can see
that the maximum total capacity of the CONEs made with portions of a regular
triangle is the 3-pieces case. If we regard a circle as a polygon of infinitely many
sides, these results suggest that when the number of sides of the polygon is large
enough, the greatest total capacity will be attained by making two CONEs only.
But when there are fewer sides, we may need more CONEs to maximize the total
capacity.

By Theorem 17, k > 2, the capacity of an n, k-CONE is the greatest when it is held
vertically, and the water inside is in the shape of a right circular cone. If we have
two multi-portion papers cut from a regular n-sided polygon, as long as the sum of

2v/6
the central angles does not exceed iw, we can increase the total capacity of the

CONEs made by assembling them to only one multi-portion paper (Theorem 1). If

6
k and [ are integers such that 2(k2 and k < %, then

Vo + Vak—1 < Vo (28)

2v/6
In the paper circle problem, if the central angle is too large (larger than —fﬂ), we

will not cut the sector into smaller sectors as this will reduce the total capacity of
the cones. But in the paper polygon problem, it is possible that the total capacity
will increase when we cut a multi-portion paper. This is because, by Theorem 18,
the capacity of a 1-portion CONE in a slant position can be larger than that when
it is in the standard position. Therefore, we have to compare

1. 2Vn’1 with Vn’27 and
2. Vo1 + Vi =1 with Vj, i, when k > 3.

As it is difficult to find V,, 1, we will use B, instead in the following comparisons:

1. What we want to have is that
Vo > 2B, (29)

or equivalent,

4 2
7= deos T > 2T /71 (cos )
n n n

3n3

wj
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3
2\/n2—4>\/n2—1<sec%>2

This is true for n > 4 as we have

3 3
2

(sec E>§ < (sec 2) = V8.

n
nd

a.
n?—4 3 3 \/Z .[256
2/ =2,/1— >0, [1— —— === {2 3
n? — n?—17~ (4)?-1 5 25>\f

Since B, > V,, 1, we have

2Vn,1 S Vn72

forn>4

2
. Here we need (when 3 < k < ’;‘)

‘/n,k > Bn + Vn,k—l

which is equivalent to

K2V/n? — k2 — (k% — 1)y/n? — (k—1)2 > v/n? — 1 (sec %)

Let f(x) = 22v/n?2 — 22 for 0 < x < n. Then
2

2 2., 3
f(x) =22/n?2 — 22 — * _ e e

\/n2 — 2 \/TZQ — 2

3
2

(30)

(31)

By Largrange’s Mean Value Theorem, there exist at least a point ¢ in (k—1, k),

such that
J(R) = f(k—1) = ['(0
KR SR — (h— 12T — (1) = 2= 3¢

So it suffices to prove that
2n2c — 33 ™
n?—1 o (sec ﬁ)
It is easy to prove that 32 holds when n > 6.
First we have

(secz>%<<secz>%* l %* % %< @ %*§
n/ —\ 6/ \V3) \27 256 ) 4

For2<k—-1<z<k, let
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Then we have

n*—-24 5 11 20 11 20 61
D=7 177 w171 w1 s
and
on? (:m) L <3n>3
3n 4 4 )
9 (4> - n?—1 4
- 15n3 5
T 64(n2—-1) 4
1523 5
64n2 4
15 5
> 26) -
>0
: " 18x . :
Since ¢"(x) = o < 0 for all real z, g is a concave function and hence

3 2 3
g(x) > 0forall 0 < z < Z". (FIGURE 34) Since Hﬂ < Z” for all' integers

g9(x)

FIGURE 34. The graph of g(z)

2
n>6,g(x)>0for0<a< [;l-‘ (32) holds for n > 6.

Since By, > Vj, 1, we have

Vn,l + Vn,kfl S Vn,k (33)

3 2 3 2
1F0rn212,£—’7?n—‘ >In—(?n+1>:1n—2—120. Cases for 6 < n < 11, the claim

can be verified numerically.
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kR R (K~ 1)y/n? — (k12 — Vi 1 (sec %)
3 9V7 — 8v/3 — /1800 = 3.44179971
3
4

3
36 — 421 — 216 (sec %) 2 ~ 10.93730896
12 — 2/6 (sec ) ? ~ 5.267611740

TABLE 2. Cases for4 <n <5

[ B N N

2
form>6and3 <k < ?n . For 4 < n <5, we exhaust all cases to check the
validity of (31) (TABLE 2). Note that in each case, the difference is greater
than 0. So (33) also holds for 4 <n <5.

Now we have the following result.

Theorem 20. For a paper polygon with 4 or more sides, the mazimum total ca-
pacity of CONEs as made with portions of this paper is attained in a case of 2
CONEs.

Proof. As we have
Vii + Va1t < Vo (34)
2
for any positive integers k and 1 such that [ < k < [;—‘ , we can always assemble

the two smallest pieces of portion papers to increase the total capacity, as long as
there are 3 CONEs or more. The maximum total capacity must be attained in a
case of 2 CONEs O

5.3. How to Cut the Paper?

In the previous section, we know that the greatest total capacity can be obtained
in a two- CONE cases if the polygon has 4 sides or more. But in what way should
the paper be divided?

Theorem 21. For a paper polygon of 6 or more sides, the solution of the greatest
total capacity problem does not involve any 1-portion CONEs.

Proof. Tt suffices to show that
Voo +Vn,n—2>B,+V, 1 (35)
as this implies that Vi, 2 + Vj, n—2 > V.1 + Vi n—1. Recall (29) in Section 5.2
Va2 > 2B,
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for n > 4. It is sufficient to verify that
Bn + Vn,n72 > Vn,nfl

i.e.

Note that, for n > 8, we have

e - (1) Ve
1

=(1- 1— 2
n—1 2n — 1
2
1 2
>(1—- —— 1—
< 8—1> 2(8) — 1
/1728
V1715
>1

and we are done.

n Vn,Q + Vn,n—2 - Bn - Vn,n—l
6 0.012360483
7 0.025468439

TABLE 3. Casesfor 6 <n <7

For 6 < n < 7, we adopt a brute-force method and check case—by—case1 (TABLE 3).
As the difference in each case is greater than 0, it can concluded that the inequality
holds for every n > 6. ]

5.4. Marginal Case - Square Paper

In the case of a paper square, we know from the Theorem 20 that the greatest total
capacity is attained at one of the 2-CONE cases. But whether a 1-portion CONE
should be included is not known. Hence, we first need to find the maximum capacity
of a 1-portion CONE before making comparisons between different combinations
of CONEs.

1The expressions are too complicated and trivial so we only list out numerical values.
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5.4.1. Capacity of 1-portion CONE

Bt Theorem 18, the maximum capacity of Vj ; corresponds to
3cosbl +5cos30 =0

This can be solved by using Multiple Angle Formulae, or we can use Chebyshev
Polynomials[1] to simplify the calculations. Let uw = cosf and T,, = cosm#@ (for
m € ZT). We have (see Appendix A)

0 =315+ 573
= 3(16u® — 20u® + 5u) + 5(4u® — 3u)
= 8u’(6u? — 5)
The only solution of this equation such that f% <O0<0isu= %

5
Hence Vi1 = {Tg ~ 0.00920192587.

5.4.2. Comparing the Total Capacity

The capacities of multi-portion CONEs are calculated as follows:

22)V/4% — 22
Vig = TRV -2 3T 0.0255155181
: 3. 43 4
32)/42 _ 32
Vis = % cos® g ~ 0.0438475487.

The total capacity of combinations are listed in TABLE 4: In conclusion, the maxi-
mum total capacity in the case of pentagonal paper is approximately 0.053049473,
attained at a combination of 1-portion and 3-portion CONEs.

Combination Total Capacity
Va1 +Vags 0.0530494737
Vio+ Vao 0.0510310367

TABLE 4. Comparing total capacity of different combinations of
CONEs made from square paper

5.5. Marginal Case - Pentagonal Paper

Previously in Section 5.2, we know that a larger capacity can be obtained in cases
of 2 CONEs than those of more divisions. However, the inequalities in that section
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fail to predict whether a 1-portion CONE should be involved. For this reason,

we first need to find the maximum capacity of an 1-portion CONE prior to the
comparisons.

5.5.1. 1-portion CONE Capacity

By Theorem 18, the maximum capacity of V5 1 corresponds to (see Appendix A)

0 = 4T + 6T}
= 4(32u® — 48u* + 18u? — 1) + 6(8u* — 8u? + 1)
= 2(64u’ — 72u* + 120 + 1)

The solution of this equation such that —% < 0 <0isu= 0.946772794. Hence
V5,1 = 0.08094773.
5.5.2. Comparing the Total Capacity

The capacities of multi-portion CONEs are calculated as follows:

m(2%)v/52 — 22

_ ) 3T
Vo = D= cos® £~ 0.0258828037
32)/52 32
Vss = W()W cos® g ~ 0.0508328167
42 V52 — 42
Vay = % cos® g ~ 0067770887

The total capacity of combinations are listed in TABLE 5: In conclusion, the maxi-
mum total capacity in the case of pentagonal paper is approximately 0.076715619,
attained at a combination of a 2-portion and a 3-portion CONEs.

Combination Total Capacity
Vo1 + Vs 0.0758718607
Vso+ Vi3 0.0767156197

TABLE 5. Comparing total capacity of different combinations of
CONEs made from pentagonal paper



384 H.S. KWAN, K.C. LO, C.C. WAN

F1GURE 35. The octagonal paper and its inscribed circle

5.6. The Complete Solution for Polygonal Paper of More Sides

With the results in previous sections, we will illustrate our solution to a particular
case of m-sided polygonal paper where n > 6. Here, we take a piece of octagonal
paper as an example.

By Theorem 20 and Theorem 21, the maximum total capacity must be attained in
a certain two-CONE case with multi-portion CONEs only.

Next, as only multiple-portion cones are within consideration, we can directly go
into considering the inscribed circle of the paper (FIGURE 35). Recall that in
Section 2, we have the maximum total capacity attained at central angle 6 =
0.6480277047. Then the corresponding peak (FIGURE 36)! for this octagon is
given by

ko  0.6480277047

8 27

ko ~ 2.592110816

Q

But whether the maximum total capacity lies on the central angle ratio of 2 : 6 or
3 : 5 needs checking as listed in TABLE 6:

Combination Total Capacity
Vso+Vse  0.11370651247
Vas+Ves  0.11442156147

TABLE 6. Comparing total capacity of different combinations of
CONEs made from paper octagon

1Here we take k:n =0 : 27
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Fu(k)

(a)

FIGURE 36. The graph of f,(k) and its magnified part(500X)

Hence the maximum total capacity in the case of paper octagon is approximately
0.11442156147, attained at a combination of 3-portion and 5-portion CONEs.

6. Conclusion

The objective of this project is to find the method to cut a paper regular polygon
along its radii to make cone-like containers (named CONEs here) that together can
fill with the largest amount of water. We managed to solve the problem completely.

Although there are many different ways to cut the paper, the best way (in the
sense of holding more water) is always to cut the polygon to two unequal pieces,
with one piece with area about twice as that of the other one, with the exception
of the case of regular triangle. The problem and the solution has a limiting case,
which is a circle. The circle problem is the foundation of the general problem, as
the general problem can be reduced to the circle problem in all but a few cases.
These exceptional few cases are interesting as it is difficult to give a closed form of
the solution. Fortunately, we can prove that the solution is related to the root of
a simple (simple to state, but not so simple to solve) trigonometric equation. This
enable us to solve many cases using computing softwares.

The following table shows the ways to cut a regular n-sided polygon so that the
total capacity of the CONEs made is the greatest.
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n Combination of portions Total Capacity Ratio of central angle
3 1,1,1 0.02151259207 /

4 1,3 0.05304947307 1:3

5 2,3 0.07671561907 1:1.5

6 2,4 0.09440237447 1:2

7 2,5 0.10611945957 1:2.5

8 3,5 0.1144215614m 1:1.666666667
9 3,6 0.1206003233 1:2

10 3,7 0.12495957007 1:2.333333333
102 32,68 0.1451358859 1:2.125
10* 3240, 6760 0.1453531930m 1:2.086419753
106 324014, 675986 0.14535321457 1:2.086286395
108 32401385, 67598615 0.14535321457 1:2.086287824

100 3240138518, 6759861482  0.14535321457 1:2.086287807

oo(circle) / 0.1453532147 1:2.086287806

TABLE 7

Appendix A. Chebyshev Polynomials of the First Kind

The Chebyshev polynomials[2] are named after the Russian mathematician Pafnuty
Lvovich Chebyshev. There are two kinds of Chebyshev polynomials, the first kind
(TABLE 8) which are denoted by T),, and the second kind which are denoted by
U,,. The Chebyshev polynomials of the first kind is defined by

To(z) =1
Ti(x) =x
Thi1(x) = 22T, () — Tro1(z) forn e ZT.
If we let x = cosf for some angle 6, then for any positive intgeger n, Tn(x) =
cosnd. By Theorem 18, V,, 1 = [W] ’ (cos3 %) (i) 5, where s = s(6)
is defined by (23) and 6 is the root of
m=—1)Th1+n+1)T—1=0
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in {—z, O}
n

n Tn
3 4u® — 3u
4 Sut — 8u? +1
5 16u® — 20u® + 5u
6 32u8 — 48u* + 18u? — 1
7 64u” — 112u° + 56u® — Tu
8 128u® — 256uS + 160u* — 32u? + 1
9 256u? — 576u" + 432u® — 120u® + 9u

10 521ut0 — 1280u® + 1120uS — 400u? + 50u? — 1

TABLE 8. Chebyshev Polynomials T;,

Listed in the following are some numerical values.

u

S

Vn,l

© 00 g O Ot = W 3

T o T e T o SO S = S SR Tt
N O Ut R W NN = O

0.82644583
0.91287093
0.94677279
0.96391327
0.97385800
0.98016416
0.98442252
0.98743676
0.98965020
0.99132426
0.99262149
0.99364735
0.99447274
0.99514679
0.99570444

6.4641016
13.5
22.513089
33.519507
46.523171
61.525472
78.527017
97.528105
118.52890
141.52950
166.52997
193.53033
222.53063
253.53087
286.53107

0.007170864 7
0.0092019267
0.008094773m
0.00660021 77
0.0053226117
0.004323273m
0.0035551067
0.0029622437
0.0024995307
0.002133574m
0.0018402407
0.0016021017
0.001406473m
0.001244012m
0.0011077517

387
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18 0.99617105 321.53124 0.0009924297
19 0.99656546 358.53138 0.0008940207
20 0.99690184 397.53150 0.0008094087
21 0.99719105 438.53160 0.0007361567
22 0.99744154 481.53169 0.0006723357
23 0.99765992 526.53177 0.0006164067
24 0.99785146 573.53184 0.0005671297
25 0.99802039 622.53190 0.0005234977
26 0.99817014 673.53195 0.0004846847
27 0.99830350 726.53200 0.0004500117
28 0.99842279 781.53204 0.0004189117
29 0.99852992 838.53208 0.0003909127
30 0.99862648 897.53211 0.0003656177

TABLE 9. Numerical values of V, 1

REFERENCES

[1] S. Hollos, and R. Hollos, Chebyshev polynomials, Tutorial articles available on the Exstrom
Labs website (2006), http://www.exstrom.com/journal/sigproc/chebident.pdf

[2] Wikipedia, Chebyshev polynomials, http://en.wikipedia.org/wiki/Chebyshev_polynomials

[3] Wikipedia, Cone, http://en.wikipedia.org/wiki/Cone

[4] Wikipedia, Radius, http://en.wikipedia.org/wiki/Radius



MAKING PAPER CONES WITH THE GREATEST TOTAL CAPACITY 389

Reviewer’s Comments

The reviewer has some comments about the presentation of this paper and the
typos.

1.

*®

The grammatical tense is always changing and not consistent in “Introduc-
tion”.
Equation (1), it may be better to roughly mention the meaning of n and 6.
“less than the sector” should be “less than the capacity of the cone”.

2V/6

5
There is no specialty for k = ZW’ how about replacing it with 0 < k£ < Tﬂ'

for consistency?

Although it does not affect the conclusion, it is better to mention fo,(0) =
for(2m) = 0 and as a consequence the maximum of for(x) is attained at
x = 0.6480277047.

The definition of “n,k-CONE” is not clear. How about moving there the
Definition 8 on page 355, which constructively defines the “n,k-CONE” and
the corresponding extended cone.

It should be Theorem 13, not Theorem 9, that implies the greatest capacity
for 3,2-CONE.

The point “D” is missing.

It may be more readable to mention the geometrical calculation of the angle
36.



