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Abstract. The aim of our project was to prove our conjecture that the prod-

uct of consecutive positive integers is never a square. In our investigation, we

had developed three approaches to prove it.
In the first approach, we used the fact that a number lying between two consec-

utive squares is never a square to prove that the product of eight consecutive

integers is never a square. Then we made use of relatively prime-ness of con-
secutive integers to prove the rest.

In the second approach, we had used Bertrand’s Postulate Theorem to obtain

a beautiful theorem that the product of consecutive positive integers is never
a square if there is a prime number among them. Besides we had found some

interesting results from this theorem.
When we started our project, we thought that our conjecture had not been

proved. However, we found later in a website that our conjecture has already

been proved by two famous mathematicians P. Erdos and J.L. Selfridge in
1939. Although our conjecture was proved, we didn’t give up but tried our
best to develop our third approach.

In the third approach, we had referred to an academic journal [1] written by
P. Erdos and J.L. Selfridge and knew that the square-free parts of consecutive
integers are distinct. By counting, we arrived at a necessary condition for the

product not to be a square. Unluckily, we then discovered the limitations of the
third approach when the number of consecutive integers is very large. It may
be due to the roughness of our estimation. Although we couldn’t complete the

proof of our conjecture, we all enjoyed the process of formulating conjectures
and thinking new ideas of solving problems through the cooperation among
our team members in the past few months.

1This work is done under the supervision of the authors’ teacher, Mr. Chi-Keung Lai.
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1. Introduction

In this report, we would like to test our conjecture that the product of
pn ¥ 2q consecutive positive integers is never a square. In the past few
months, we had developed three approaches to investigate our conjecture.

The first approach: Through investigating the lengths of consecutive
products, we wished to find some patterns for generalization. However, we
had only proved the products with lengths up to 12 and found hard to go
further.

The second approach: We had proved that the product of consecutive
positive integers is never a square if there is at least a prime among them.
Later, we would explore these consecutive products without primes among
them to see whether our conjecture is still true.

The third approach: After reading an academic journal [1] written by
P. Erdos and J.L. Selfridge, we tried to find another method to prove our
conjecture is true for n ¥ 2.

2. Investigation Background

Our schoolmates had proved that the consecutive products are never a
square for length n � 2, 3, 4 few years ago. After proving more cases,
we believe that the product of any consecutive positive integers is never a
square and started our research.

3. Research Results

3.1. The first approach

Theorem 1. The product of five consecutive positive integers is never a
square.

Proof. Considering the product of five consecutive positive integers, a� b�
c � d � e, we assume the product is a square. Now we investigate our con-
jecture case by case as follows:

Type 1: b and d having a common factor 2.
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Case 1 : a and d having common factor 3.
Since only 2 and 3 can be the common factors of the five consecutive positive
integers, both c and e are relatively prime with the other three numbers. If
the product is a square, c and e must be squares too. However, it is impos-
sible that the difference between two consecutive squares is two. Thus our
assumption is false.

Case 2 : b and e having a common factor 3.
The proof for case 2 is the same as above. It can be done when we consider
that a and c are relatively prime with the other three numbers.

Case 3 : Only c is a multiple of 3.
a and c are now relatively prime. The proof for case 3 is the same as above.

Type 2: a, c and e having a common factor 2.

Case 1 : 3 is not a common factor among the five numbers.
b and d are now relatively prime. The proof for case 4 is the same as above.

Case 2 : a and d having a common factor 3.
Let a � 3k and b � 3k�1. As b is relatively prime with other four numbers,
it must be a square if the product is a square. Since b is odd, so its remainder
is 1 when it is divided by 8 (as the remainder is 1 when any odd square is
divided by 8). Thus b � 24h�1. On the other hand, e � 24h�4 � 4p6h�1q
and 6h� 1 is odd and relatively prime with the other four numbers. There-
fore, if the consecutive product is a square, 5h � 1 must be a square too.
Since 6h� 1 is a square, e is also a square. b and e must be 1 and 4 respec-
tively since their difference is 3. However, the product is not a square after
checking.

Case 3 : b and e having a common factor 3.
Let b � 3k and d � 3k�2. Since d and the other four numbers are relatively
prime, it must not be a square (as the reminder is never 2 when a square
is divided by 3). Hence the assumption is false. The six cases have already
exhausted all the situations of the occurrence of possible common factors.
We found that the assumption is always wrong, so their product is never a
square.

Theorem 2. The product of six consecutive positive integers is never a
square.
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Proof. Now we consider all the remainders when squares are divided by 30.
For any k ¡ 30, p30m � kq2 � 30p30m2 � 2kmq � k2, then p30m � kq2 �
k pmod30q. Therefore it is sufficient to consider the remainders when square
numbers 12, 22, . . . , 302 are divided by 30. By checking, we found that the
remainders of square numbers must not be 7, 13, 17, 23 and 29 when they
are divided by 30. We can say that all integers in the forms p30n � 7q,
p30n� 13q, p30n� 17q, p30n� 23q or p30n� 29q must not be squares. They
also do not have factors 2, 3, and 5. For any six consecutive positive integers,
if there exists a number in the form of p30n � 7q, p30n � 13q, p30n � 17q,
p30n� 23q or p30n� 29q, this number must be relatively prime with others
and non-square. The product of those six consecutive positive integers is
never a square. Therefore their product can only be expressed as either

p30nq � p30n� 1q � p30n� 2q � p30m� 3q � p30n� 4q � p30n� 5q

or

p30n� 1q � p30n� 2q � p30m� 3q � p30n� 4q � p30n� 5q � p30n� 6q.

Since p30n�1q does not have factors 2, 3 and 5, p30n�1q is relatively prime
with the others. Hence p30n � 1q must be a square in order to make the
product a square.

For all odd numbers p2n� 1q,

p2n� 1q2 � 4n2 � 4n� 1 � 4npn� 1q � 8k � 1 since npn� 1q is even.

Since 30n� 1 is a square odd number, therefore

30n� 1 � 8k � 1

ñ 15n � 4k

ñ n � 4M

ñ k � 15M

ñ 30n� 1 � 120M � 1.

Now the product of these 6 consecutive positive integers could be written as

p120Mq�p120M�1q�p120M�2q�p120M�3q�p120M�4q�p120M�5q

or

p120M�1q�p120M�2q�p120M�3q�p120M�4q�p120M�5q�p120M�6q.

In this new form, p120M � 4q � 4p30M � 1q. p30M � 1q do not have
factors 2, 3, and 5. p30M � 1q must be relatively prime with other five
integers. Moreover, p30M � 1q must be a square in order to make the
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product a square. This means p120M � 4q must be a square too. However,
as we have mentioned that p120M � 1q is a square number, it is impossible
for two squares p120M � 1q and p120M � 4q with a difference of 3 except
1�2�3�4�5�6. However, 1�2�3�4�5�6 is not a square. Conclusively,
the product of six consecutive positive integers is never a square.

Theorem 3. The product of seven consecutive positive integers is never a
square.

Proof. This proof of Theorem 3 is similar to that of Theorem 2 by consid-
ering the remainders of square numbers divided by 30. Only the product
(30nq� p30n� 1q� p30n� 2q� p30n� 3q� p30n� 4q� p30n� 5q� p30n� 6q
is possibly a square.

By considering and in the same way as the proof of Theorem 2, we can
conclude that the product of seven consecutive positive integers is never a
square.

Theorem 4. The product of eight consecutive positive integers is never a
square.

Proof. Let the consecutive positive integers be pn� 3q, pn� 2q, pn� 1q, n,
pn� 1q, pn� 2q, pn� 3q and pn� 4q,

M � pn� 3q � n� pn� 2q � pn� 3q � n4 � 2n3 � 9n2 � 18n,

and

N � pn� 2q � pn� 1q � pn� 1q � pn� 4q � n4 � 2n3 � 9n2 � 2n� 8.

M �N � n8 � 4n7 � 14n6 � 56n5 � 49n4 � 196n3 � 36n2 � 144n

¤

�
M �N

2


2

� pn4 � 2n3 � 9n2 � 10n� 4q2 (1)

Besides,�
M �N

2
� 1


2

� n8� 4n7� 14n6� 56n5� 47n4� 192n3� 46n2� 60n� 9.

Since

M �N �

�
M �N

2
� 1


2

� 2n4 � 4n3 � 82n2 � 9

� pn� 6qp2n3 � 16n2 � 14nq � 9 ¡ 0 for n ¥ 7,
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we have

M �N ¡

�
M �N

2
� 1


2

. (2)

Combining the results of (1) and (2), when n ¥ 7, we get

�
M �N

2


2

¡

M � N ¡

�
M �N

2
� 1


2

. Since M � N lies between two consecutive

squares, M �N must not be a square. Moreover,

1 � 2 � 3 � � � 8, 2 � 3 � 4 � � � 9 and 3 � 4 � 5 � � � 10

are not square. Therefore, the product of eight consecutive positive integers
is never a square.

Theorem 5. The product of nine consecutive positive integers is never a
square.

Proof. Now we consider the product of any nine consecutive positive inte-
gers a1, a2, a3, a4, a5, a6, a7, a8 and a9. We now investigate their product

9¹
i�1

ai in the following cases:

Case 1 : Both a1 and a8 are multiples of 7.
Among a2, a3, a4, a5, a6, a7, at least one aj cannot be in the form p30n�7q,
p30n � 11q, p30n � 17q, p30n � 23q or p30n � 29q for otherwise aj must be
relatively prime with other numbers because any number in these forms are
not multiples of 2, 3, 5 and 7. As mentioned above, the number is never a

square and thus
9¹

i�1

ai is never a square too.

By the above reasons, ta2, a3, a4, a5, a6, a7u must be either in the form of
t30n, 30n� 1, 30n� 2, 30n� 3, 30n� 4, 30n� 5u or t30n� 1, 30n� 2, 30n�
3, 30n�4, 30n�5, 30n�6u. In both cases, 30n�1 must be relatively prime
with other numbers and hence it must be a square. As mentioned above,
this number written in the form of 120n� 1, and the third number behind
it is 120n� 4 which can be written as 4p30n� 1q. As the factor 30n� 1 is
relative prime with other numbers, it must be a square again. However, it is
impossible for two squares p120M � 1q and p120M � 4q to have a difference
of 3 except 9!, which is luckily not a square.

Case 2 : a1 and a9 are multiples of 7.
It can be proved similarly by investigate a3, a4, a5, a6, a7, a8 instead of a2,
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a3, a4, a5, a6, a7 as in case 1.

Case 3 : There exists only one multiple of 7 in nine numbers.
It can be proved similarly by investigate a1, a2, a3, a4, a5, a6 instead of a2,
a3, a4, a5, a6, a7 as in case 1.

Theorem 6. The product of ten consecutive positive integers is never a
square.

Proof. Now we consider ten consecutive positive integers a1, a2, a3, a4, a5,
a6, a7, a8, a9 and a10.

Case 1 : If ai and ai�7 are multiples of 7, then the method used in The-
orem 5 can be used to investigate ai� 1, ai�2, ai�3, ai�4, ai�5, ai�6 instead
and the conclusion can be similarly drawn.

Case 2 : If only one of them is a multiple of 7, then any other six num-
bers can be investigated and the conclusion can be similarly drawn.

Theorem 7. The product of eleven consecutive positive integers is never a
square.

Proof. Since the prime factors of eleven positive integers are 2, 3, 5 and 7,
the proof is similar to that of Theorem 6.

Theorem 8. The product of twelve consecutive positive integers is never a
square.

Proof. We now investigate the product of twelve positive integers a1, a2, a3,
a4, a5, a6, a7, a8, a9 and a10, a11, a12.

Case 1 : a1 and a2 having factor 11.
If ai and ai�7 are multiples of 7, we only consider the six numbers ai�1,
ai�2, ai�3, ai�4, ai�5, ai�6 and conclusion can be similarly drawn.

Case 2 : When 11 is not a common factor of any two of the twelve numbers,
the theorem can be proved similarly.

3.2. The second approach

Bertrand’s Postulate [2]: When x is a real number equal to or greater
than 1, there exists at least one prime p such that x   p ¤ 2x.
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Theorem 9. The product of consecutive positive integers is never a square
if there is a prime among them.

Proof. Let a1   a2   � � �   an be n consecutive positive integers for n ¥ 2.

If there is at least one prime among them, we let the greatest prime be
ai. Assume the product of the consecutive numbers is a square, there must
exist integers k and m such that ak � mai for otherwise the product cannot
be a square. i.e. ai   ak � mai ¤ an. Obviously, 2ai exists in the sequence.
However, by the Bertrand’s Postulate, there exists at least one prime p such
that ai   p   2ai ¤ an, which contradict to our assumption that ai is the
greatest prime.

Hence for any n consecutive positive integers containing at least one prime,
their product is never a square.

Corollary 10. For any consecutive positive integers that contains prime
number(s), their product is never a power of any integer.

Proof. Similar to that of Theorem 9.

Corollary 11. For natural number n greater than 1, n! is never a power of
any integer.

Proof. Since n! must contain a prime number 2, n! is never a power of any
integer by Corollary 1.

Corollary 12. For natural number n greater than 1, n!! is never as power
of any integer.

Proof. Case 1 : When n is an even number, let n be 2m for some natural
number m. So n!! � p2mq!! � 2m � m!. If m ¥ 3, then there exists a
greatest prime number p in t1, 2, . . . ,mu and hence n!! cannot be written as
a power of any integer.

Case 2 : Since 1�3 is not a square. For any odd number greater than 3, there
exists the greatest prime number p greater than 3 in the set t1, 3, 5, . . . , nu.
t1, 3, 5, . . . , nu must contain 3p in order to make the product a square. How-
ever, by Bertrand’s Postulate, there exists a prime number p0 such that
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p   p0   3p, which leads to a contradiction. Thus n!! cannot be written as
a power of any integer.

Corollary 13. For any m consecutive positive integers, their product is
never a power of any integer if the first number is smaller than m.

Proof. Let the product be pm�kqpm�k�1q � � � p2m�k�1q where 0   k   m
and k, m P N. By Bertrand’s Postulate, there exists a prime number such
that m � k   p   2m � 2k   2m � k � 1. Applying the Corollary 1, the
result follows.

3.3. The third approach

In July, we knew that a famous mathematician named Erdos had already
proved our conjecture in 1939. The conjecture lasted for 150 years. We were
happy that we have little sense of mathematics to get in touch with the prob-
lem that mathematicians were interested in. At the same time, we were all
worried about what we should do next. Finally we decided to continue the
project and try to find an alternative way. Then, we had the third approach.

In the third approach we investigate the conjecture by filling blanks. Erdos
in [1] stated that if the product of the n consecutive numbers is a square,
then their square-free parts are distinct. (square-free part of a number is the
greatest factor of the number containing no square factors like 4, 9, 16 etc).
We now illustrate our third approach using 13 consecutive numbers as an
example. By considering the prime factors of their square-free integers, we
can prove our conjecture on 13 consecutive numbers by exhaustion: Let the
13 consecutive positive integers be a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11,
a12, a13, each of which can be written as ai � bik

2
i , where k2

i is the greatest
square factor of ai and bi is the square-free part of ai.

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13

Let’s consider b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13 and count the
maximum total number of prime factors they have. In the 13 boxes above,
2 appears at most 7 times, 3 at most 5 times, 5 at most 3 times, 7 at most
2 times and 11 at most 2 times. The total number of prime factors is 19.
If there exists a prime factor greater than or equal to 13 among bi’s, the
product of ai will never be a square. Therefore all prime factors greater
than or equal to 13 can be neglected.
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As Erdos said, all bi’s are distinct. To fill in these 13 boxes, we have to
use the smallest number of factors with different combinations to finish the
job. Firstly we fill in the boxes b1, b2, b3, b4, b5 with 2, 3, 5, 7 and 11
respectively.

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13

2 3 5 7 11

There are 14 prime factors left. We then fill in the box b6 with 1 (a6 is a
square number).

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13

2 3 5 7 11 1

There are 7 empty boxes. For minimizing the number of prime factors used,
empty boxes must be filled with 2 or more prime numbers such that all bi’s
are distinct. Although there are exactly 14 prime numbers, some of them
must be equal no matter how you arrange due to the deficiency of prime
factors. This contradicts that all bi’s are distinct. Thus the product of 13
consecutive positive integers is never a square.

A different method of filling boxes is provided as follows:

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13

2 3 5 7 11 1 2 2 2 2 2 2 3

7 5 5 3 3 3

11

Now b10 � b11 � b12 will contradict to that all bi’s must be distinct. Un-
luckily, this method is impractical when the number of consecutive numbers
is very large. Therefore we try to generalize the above method of counting
and obtain a necessary condition for the product to be a square.

Let n consecutive positive numbers be a1, a2, a3, . . . , an and ai � bik
2
i , where

k2
i is the greatest square factor of ai and bi is the square-free part of ai.

Now we want to estimate the maximum prime total available.
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Consider a particular prime p   n, if the product is a square, then the
number Snppq of prime factor p available in the product of the square-free
parts is given by

Snppq � Qnppq �
p�1qQnppq � 1

2
,

where

Qnppq �
¸
kPN

p2k¤n

��
n

p2k�1

�
�

�
n

p2k

�
� sgn

�
n

p2k�1
�

�
n

p2k�1

�


.

Then the total number of primes available for n consecutive integers is simply
called prime total T pnq given by

T pnq �
¸
p n

Snppq.

On the other hand, we shall find a lower bound for the prime total. We now
fill up the n boxes with the primes or their products such that none of the
boxes have the same number.

b1 b2 b3 b4 b5 b6 b7 . . . . . . . . . . . . . . . bn

To use less prime factors, we first assume that there is a square among the
consecutive integers (one of bi’s can be 1) and put each single prime factor
into each of the πpnq boxes. Then we put the products pipj ’s (where i � j)
into the pn � πpnqq empty boxes. Thus we needs at least tπpnq � 2pn �
πpnqq � 1u prime factors. Hence the necessary condition for the product of
consecutive positive integers to be square is

πpnq � 2pn� πpnqq � 1 ¤ T pnq

2n� πpnq � 1 ¤ T pnq (3)

Let’s investigate the case when n � 13, L.S. � 19 ¡ 18 � R.S.. (3) cannot
be held when n � 13 and therefore the product of 13 consecutive positive
integers is never a square.
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As (3) is a necessary condition for the conjecture to be valid, then we
can rephrase the theorem as follows:

Theorem 14. If 2n�πpnq�1 ¡ T pnq, then the product of any n consecutive
positive integers is never a square.

In other words, we have found a sufficient condition for the consecutive
product not to be a square. We have not completely solved the problem
yet. We then investigated the inequality in the Theorem 10. When n is very

large, we studied whether
T pnq � πpnq � 1

n
is convergent to a real number

smaller than 2.

Now let’s estimate the value of T pnq.

Since Qnppq ¥

"�
n

p

�
�

�
n

p2

�*
and Snppq ¥ Qnppq � 1, we have

T pnq ¥
¸
p n

"�
n

p

�
�

�
n

p2

�*
� πpnq

and

T pnq � πpnq � 1

n

�

¸
p n

"�
n

p

�
�

�
n

p2

�*
� πpnq � 1� πpnq

n

¥

¸
p n

"
n

p
�
n

p2
� 1

*
� 1

n

�

¸
p n

"
n

p
�
n

p2

*
� πpnq � 1

n

�

¸
p n

n

p
�
¸
p n

n

p2
� 1� πpnq

n
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�
¸
p n

1

p
�
¸
p n

1

p2
�

1

n
�
πpnq

n
.

Unfortunately,
¸
p¤n

1

p2
,

1

n
and

πpnq

n
are convergent [3] while

¸
p¤n

1

p
is diver-

gent. Hence ¸
p n

"�
n

p

�
�

�
n

p2

�*
� 1� πpnq

n
diverges to infinity instead of converging to a real number smaller than 2.
Thus this method does not work when the length of the product is too large
and need to be further modified in the future.

4. Research progress

In our first approach, we had tried many examples of consecutive products
and wished to find some patterns for generalization. Although there were
some patterns which helped us to prove few more cases (e.g. from the proof
of lengths 6 and 7 , and the proof of lengths 9 up to 12), we could not
generalize it. Besides, when the number of consecutive integers increased,
it was more difficult for us to prove it. Because of this, we could only give
proofs of lengths up to 12 consecutive integers. Thus we tried to find an-
other approach.

In the second approach, we had used the Bertrand’s Postulate to prove that
if the consecutive numbers consist of prime number(s), then their product is
not a square. Using this theorem, we had arrived at three beautiful results:
“The consecutive product cannot be power of any integers if at least one of
them is a prime number”, “For any n, n! and n!! is never a power of any
integers” and “For m consecutive integers, if the first number is smaller than
m, then their product is never a power of any integers”. However, for any
consecutive numbers without prime, we couldn’t prove it.

At the very beginning, we thought that the conjecture is open. However, in
July , we found that our conjecture had been already proved by the famous
mathematician P. Erdos in 1939. Then Erdos and another mathematician
J.L. Selfridge took 9 years to prove a more general statement “Any product
of consecutive integers cannot be a power of any integers” in 1975. Although
our conjecture was already proved, we did not give up and tried our best to
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see if there were alternative proofs. So we kept on researching and develop-
ing our third approach.

In the third approach, we found a method of filling boxes and obtained
a sufficient condition for the consecutive product not to be square. How-
ever, the method didn’t work when n is large. The main reason may be
that our estimation on the amount of the prime factors of the square-free
integers was too rough and needed to be further modified in the future.

5. Conclusion

Although the three approaches only partially solved our conjecture, we had
found some interesting results ourselves. In the past few months, we all
enjoyed the process of formulating conjectures and thinking new ideas of
solving problems through cooperation. We also had a taste on the confusion
and happiness of doing research.
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