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Abstract. The summation of fractional parts is an old topic in number theory

since the time of G.H.Hardy and J.E.Littlewood (see [3]). Throughout the
years, many mathematicians have contributed to the estimation of the sum∑

n≤N{αn}, where α is an irrational number. In Section 2, we estimate the

fractional part sum of certain non-linear functions, which can be applied to
refine an existing bound of the discrepancy. In Section 3, we continue to make

use of the sum in order to study the distribution of quadratic residues and
‘relatively prime numbers’ modulo integers.

1. Introduction

Definition 1. [5, p.1] For a real number x, let bxc denote the greatest integer ≤ x.
Then, the fractional part {x} is defined as x− bxc.
Definition 2. [5, p.1] Let x1, . . . , xN be a sequence contained in [0, 1). Then, for
any subinterval [α, β) of [0, 1), the counting function A([α, β);N) is defined as

|{x1, . . . , xN} ∩ [α, β)|.
Definition 3. [5, Chapter 2, Definition 1.1] Let x1, . . . , xN be a sequence contained
in [0, 1). Then, the discrepancy DN of the sequence is defined as

sup
0≤α<β≤1

|A([α, β);N)

N
− (β − α)|.

Definition 4. [5, Chapter 2, Definition 1.2] Let x1, . . . , xN be a sequence contained
in [0, 1). Then, the discrepancy D∗N of the sequence is defined as

sup
0<α≤1

|A([0, α);N)

N
− α|.
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Theorem 5 (Koksma’s Inequality). [5, Chapter 2, Theorem 5.1, Example 5.1]
Let f(x) be a continuously differentiable function on [0, 1] and suppose we are given
N points x1, . . . , xN in [0, 1) with discrepancy D∗N . Then,

| 1

N

∑

n≤N
f(xn)−

∫ 1

0

f(t)dt| ≤ D∗N
∫ 1

0

|f ′(t)|dt.

Remark 6. It shows that the summation of fractional parts is in fact closely related
to the discrepancy.

Theorem 7 (Niederreiter). [7, Theorem 4.1] Let f(x) be a strictly increasing
function defined for x ≥ 1 which has a continuous derivative for x ≥ x0. Further-
more, limx→∞ f(x) = ∞, limx→∞ xf ′(x) = ∞, and f ′(x) tends monotonically to
zero as x→∞. If D∗N denotes the discrepancy of the partial sequence of fractional
parts {f(1)}, . . . , {f(N)}, then D∗N = O(f(N)/N) +O(1/Nf ′(N)).

Remark 8. From author’s point of view, the part applying L’Hospital’s Rule of the
proof is not rigorous enough since the limit may not exist. The following theorem
is the corrected form.

Theorem 9. Let f(x) be a strictly increasing function defined for x ≥ 1 which
has a continuous derivative for x ≥ x0. Furthermore, limx→∞ f(x) = ∞, f ′(x)
and xf ′(x) tend monotonically to zero and infinity respectively as x → ∞. Then,
D∗N = O(f(N)/N) +O(1/Nf ′(N)).

Remark 10. The proof is omitted since we will prove a stronger form (see Theorem
26).

Theorem 11. Let f(x) be a function satisfying the conditions of Theorem 9. Then,
∑

n≤N
{f(n)} =

1

2
N +O(f(N)) +O(

1

f ′(N)
).

Proof. It follows immediately from Theorem 5 and Theorem 9.

Remark 12. We will prove a stronger form (see Theorem 18).

2. Distribution of Sequences Modulo One

Lemma 13. Let f(x) be a strictly increasing, continuous function defined for x ≥ 1
with 0 ≤ f(1) < 1. Then, for all positive integers N ,

∑

n≤f−1(N)

bf(n)c+
∑

m≤N

⌊
f−1(m)

⌋
= Nf−1(N) +O(N),

where f−1 denotes the inverse function of f .

[See reviewer’s comment (2)]
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Proof. We consider the figure below.

It shows that

∑

n≤f−1(N)

bf(n)c+
∑

m≤N

⌊
f−1(m)

⌋
= N

⌊
f−1(N)

⌋
+ g(N),

where g(N) denotes the number of positive integers n ≤ N such that f−1(n) is an
integer.
Obviously, g(N) ≤ N . Hence, the lemma follows.

Lemma 14. Let f be a function which is differentiable, increasing and convex on
[1, N ] with f(1) ≥ 0. Then,

∑

n≤N
f(n)− 1

2
(f(1) + f(N))−

∫ N

1

f(t)dt ≤ 1

2
f ′(N).
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Proof. We consider the figure below.

Notice that the shaded area representing the difference of the summation of trapez-
ium and the integration is exactly

∑

n≤N
f(n)− 1

2
(f(1) + f(N))−

∫ N

1

f(t)dt.

It remains to bound the shaded area between i and i+ 1 (i = 1, 2, . . . , N − 1).
Obviously, the shaded area between i and i+ 1 is smaller than the red triangle.
In fact,

Area of triangle =
1

2
(f(i)− (f(i+ 1)− f ′(i+ 1)))

=
1

2
(f ′(i+ 1)− (f(i+ 1)− f(i)))

≤ 1

2
(f ′(i+ 1)− f ′(i)).

The lemma then follows immediately from the telescoping sum from i = 1 to
N − 1.
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Lemma 15. Let f be a function satisfying the conditions of Theorem 9. Then,

lim
x→∞

(f−1)′(x+ 1)

(f−1)′(x)
= 1.

Proof. Given that xf ′(x) tends monotonically to infinity as x → ∞ and therefore

for all x ≥ f(x0), f−1(x)f ′(f−1(x)) = f−1(x)
(f−1)′(x) tends monotonically to infinity as

x→∞. It follows that f−1(x)
(f−1)′(x) ≤

f−1(x+1)
(f−1)′(x+1) . or. equivalently,

(f−1)′(x+ 1)

(f−1)′(x)
≤ f−1(x+ 1)

f−1(x)
.

Thus, it remains to prove that limx→∞
f−1(x+1)
f−1(x) = 1 since (f−1)′(x+1)

(f−1)′(x) > 1.

By Lagrange’s Mean Value Theorem,

lim
x→∞

f−1(x+ 1)

f−1(x)
= lim
x→∞

exp(log f−1(x+ 1)− log f−1(x))

= lim
ξ→∞

exp(
(f−1)′(ξ)
f−1(ξ)

)

= 1,

where ξ ∈ (x, x+ 1). This completes the proof.

Lemma 16. Let f(x) be a strictly increasing function defined for x ≥ 1 which has
a continuous derivative. Furthermore, limx→∞ f(x) = ∞, f ′(x) and xf ′(x) tend
monotonically to zero and infinity respectively as x→∞. Then,

∑

n≤f−1(N)

{f(n)} =
1

2
f−1(N) + E(N) +O(N),

where E(N) :=
∑
m≤N f

−1(m)− 1
2 (f−1(1) + f−1(N))−

∫ N
1
f−1(t)dt.

Proof. Without loss of generality, we can assume that 0 ≤ f(1) < 1 since {x} is a
function with period 1. We have

∑

n≤f−1(N)

{f(n)} =
∑

n≤f−1(N)

f(n)−
∑

n≤f−1(N)

bf(n)c .

By Lemma 13,

∑

n≤f−1(N)

bf(n)c+
∑

m≤N

⌊
f−1(m)

⌋
= Nf−1(N) +O(N).
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Therefore,

∑

n≤f−1(N)

{f(n)} =
∑

n≤f−1(N)

f(n) +
∑

m≤N
f−1(m)−Nf−1(N) +O(N)

=
∑

n≤f−1(N)

f(n) +

∫ N

1

f−1(t)dt+
1

2
(f−1(1) + f−1(N))

+ E(N)−Nf−1(N) +O(N).

By Euler’s Summation Formula [1, Theorem 3.1],

∑

1<n≤f−1(N)

f(n) =

∫ f−1(N)

1

f(t)dt+

∫ f−1(N)

1

{t}f ′(t)dt+N{f−1(N)} − f(1){1}.

We consider the figure below.

It shows that

∫ f−1(N)

1

f(t)dt+

∫ N

1

f−1(t)dt+

∫ 1

f(1)

f−1(t)dt+ f(1) = Nf−1(N).
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Hence,

∑

n≤f−1(N)

{f(n)} = Nf−1(N)− f(1)−
∫ 1

f(1)

f−1(t)dt+O(

∫ f−1(N)

1

f ′(t)dt)

−Nf−1(N) +
1

2
f−1(N) + E(N) +O(N)

=
1

2
f−1(N) + E(N) +O(f(f−1(N))− f(1)) +O(N)

=
1

2
f−1(N) + E(N) +O(N).

This completes the proof.

Lemma 17. Let f be a function satisfying the conditions of Lemma 16. Then,
there exists a constant c > 0 such that for all ε > 0 and sufficiently large N (depend
on ε), we have

|
∑

n≤N
{f(n)} − 1

2
N | ≤ 1 + ε

f ′(N)
+ cf(N).

Proof. Suppose that f−1(M) ≤ N < f−1(M + 1), where M is a positive integer.
Then,

∑

n≤N
{f(n)} =

∑

n≤f−1(M)

{f(n)}+
∑

f−1(M)<n≤N
{f(n)}

=
1

2
f−1(M) + E(M) +O(M) +

∑

f−1(M)<n≤N
{f(n)}

=
1

2
N + E(M) +O(M) +

∑

f−1(M)<n≤N
({f(n)} − 1

2
).

Now, we bound the sum on the right hand side and we conclude that

|
∑

f−1(M)<n≤N
({f(n)} − 1

2
)| ≤ 1

2
(f−1(M + 1)− f−1(M))

≤ 1

2
(f−1)′(M + 1).

By Lemma 15, for all ε > 0 and sufficiently large M (depend on ε), we have

(f−1)′(M + 1) ≤ (1 + ε)(f−1)′(M).

Therefore, ∑

f−1(M)<n≤N
({f(n)} − 1

2
) ≤ (

1

2
+
ε

2
)(f−1)′(M).

By applying Lemma 14 with f−1, we obtain 0 ≤ E(M) ≤ 1
2 (f−1)′(M).

Notice that M ≤ f(N) and (f−1)′(M) ≤ (f−1)′(f(N)) = 1/f ′(N) and hence the
lemma follows (ε are not necessarily the same).
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Theorem 18. Let f be a function satisfying the conditions of Theorem 9. Then,
there exists a constant c > 0 such that for all ε > 0 and sufficiently large N (depend
on ε), we have

|
∑

n≤N
{f(n)} − 1

2
N | ≤ 1 + ε

f ′(N)
+ cf(N).

Proof. Define

F (x) =

{
f(x) if x ≥ x0,
f ′(x0)(x− x0) + f(x0) if 1 ≤ x ≤ x0.

We have ∑

n≤N
{f(n)} =

∑

n≤x0

{f(n)}+
∑

x0<n≤N
{F (n)}

=
∑

n≤x0

({f(n)} − {F (n)}) +
∑

n≤N
{F (n)}.

By triangle inequality,

|
∑

n≤N
{f(n)} − 1

2
N | ≤ |

∑

n≤N
{F (n)} − 1

2
N |+ |

∑

n≤x0

({f(n)} − {F (n)})|.

On the other hand, since F (x) satisfies the conditions of Lemma 16, by Lemma 17,

|
∑

n≤N
{F (n)} − 1

2
N | ≤ 1 + ε

F ′(N)
+ cF (N).

The theorem then follows since
∑
n≤x0

({f(n)} − {F (n)}) is bounded.

Lemma 19. Let f be a function satisfying the conditions of Lemma 20. Then,

lim
x→∞

(f−1)′′(x)

(f−1)′(x)
= 0.

Proof. Given that xf ′(x) tends monotonically to infinity as x → ∞ and therefore

for all x ≥ f(x0), 1
f−1(x)f ′(f−1(x)) = (f−1)′(x)

f−1(x) tends monotonically to zero as x→∞.

Consequently, we have
d

dx

(f−1)′(x)

f−1(x)
≤ 0.

Thus, by quotient rule,

f−1(x)(f−1)′′(x)− (f−1)′(x)(f−1)′(x)

(f−1(x))2
≤ 0.

Notice that f−1(x) is a convex function and hence (f−1)′′(x) ≥ 0.
Rearranging the terms above gives

(f−1)′′(x)

(f−1)′(x)
≤ (f−1)′(x)

f−1(x)
.

Since the left hand side is nonnegative, the lemma follows.
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Lemma 20. Let f(x) be a strictly increasing function defined for x ≥ 1 which has
a continuous nonnegative third derivative. Furthermore, limx→∞ f(x) = ∞, f ′(x)
and xf ′(x) tend monotonically to zero and infinity respectively as x→∞. Then,

∑

n≤f−1(N)

{f(n)} =
1

2
f−1(N) +

1

12
(f−1)′(N) +O((f−1)′′(N)) +O(N).

Proof. By the proof of Lemma 16, we have
∑

n≤f−1(N)

{f(n)} =
∑

n≤f−1(N)

f(n) +
∑

m≤N
f−1(m)−Nf−1(N) +O(N)

and

∑

1<n≤f−1(N)

f(n) =

∫ f−1(N)

1

f(t)dt+

∫ f−1(N)

1

{t}f ′(t)dt+N{f−1(N)} − f(1){1}.

By Euler-Maclaurin Formula [6, Theorem B.5],

∑

1<m≤N

f−1(m) =

∫ N

1

f−1(t)dt+
1

2
(f−1(N)− f−1(1)) +

1

12
((f−1)′(N)− (f−1)′(1))

+
1

6

∫ N

1

B3({t})(f−1)′′′(t)dt,

where B3(t) is the third Bernoulli polynomial.
In [6, Corollary B.4], B3({t}) is proved to be bounded. Therefore,

∑

n≤f−1(N)

{f(n)} =
∫ f−1(N)

1

f(t)dt+

∫ N

1

f−1(t)dt−Nf−1(N) +
1

2
f−1(N)

+
1

12
(f−1)′(N) +O(

∫ f−1(N)

1

f ′(t)dt) +O(

∫ N

1

(f−1)′′′(t)dt) +O(N)

=
1

2
f−1(N) +

1

12
(f−1)′(N) +

∫ f−1(N)

1

f(t)dt+

∫ N

1

f−1(t)dt

−Nf−1(N) +O((f−1)′′(N)) +O(N).

The remaining part is similar to the proof of Lemma 16.

Lemma 21. Let f be a function satisfying the conditions of Lemma 20. Then,
there exists a constant c > 0 such that for all ε > 0 and sufficiently large N (depend
on ε), we have

|
∑

n≤N
{f(n)} − 1

2
N | ≤

7
12 + ε

f ′(N)
+ cf(N).

Proof. It is similar to the proof of Lemma 17.

Theorem 22. Let f(x) be a strictly increasing function defined for x ≥ 1 which has
a continuous nonnegative third derivative for x ≥ x0. Furthermore, limx→∞ f(x) =
∞, f ′(x) and xf ′(x) tend monotonically to zero and infinity respectively as x→∞.
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Then, there exists a constant c > 0 such that for all ε > 0 and sufficiently large N
(depend on ε), we have

|
∑

n≤N
{f(n)} − 1

2
N | ≤

7
12 + ε

f ′(N)
+ cf(N).

Proof. It is similar to the proof of Theorem 18

Lemma 23. Let DN denote the discrepancy of the partial sequence of fractional
parts {f(1)}, . . . , {f(N)}. For all t ∈ [0, 1], if

R(t;N) :=
∑

n≤N
{f(n) + t} − 1

2
N,

then

DN =
1

N
sup

t1,t2∈[0,1]
|R(t1;N)−R(t2;N)|.

Proof. Suppose that t1 < t2, then
∑

n≤N

{f(n) + t1} −
∑

n≤N

{f(n) + t2} = (
∑

n≤N

(f(n) + t1)−
∑

n≤N

bf(n) + t1c)

− (
∑

n≤N

(f(n) + t2)−
∑

n≤N

bf(n) + t2c)

= (t1 − t2)N − (
∑

n≤N

bf(n) + t1c −
∑

n≤N

bf(n) + t2c)

= (t1 − t2)N −A([1− t1, 1− t2);N).

Now, let α, β be 1− t1, 1− t2 respectively. Therefore, 0 ≤ α < β ≤ 1 and
∑

n≤N
{f(n) + t1} −

∑

n≤N
{f(n) + t2} = (β − α)N −A([α, β);N).

On the other hand,
∑

n≤N
{f(n) + t1} −

∑

n≤N
{f(n) + t2} = R(t1;N)−R(t2;N).

The lemma then follows immediately from the definition of discrepancy.

Criterion 24. The sequence (f(n)) is equidistributed modulo 1 if and only if for
all t ∈ [0, 1], we have

lim
N→∞

1

N

∑

n≤N
{f(n) + t} =

1

2
.

Proof. In [5, Chapter 1, Lemma 1.1], the sequence (f(n)+t) is proved to be equidis-
tributed modulo 1 if (f(n)) is equidistributed modulo 1. Then, in [5, Chapter 1,
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Theorem 1.1], it shows that

lim
N→∞

1

N

∑

n≤N
{f(n) + t} =

1

2
.

To prove the converse, by the definition of R(t;N) in Lemma 23,
∑

n≤N
{f(n) + t1} −

∑

n≤N
{f(n) + t2} = R(t1;N)−R(t2;N).

On the other hand, it is given that

lim
N→∞

1

N
(
∑

n≤N
{f(n) + t1} −

∑

n≤N
{f(n) + t2}) = 0.

Since t1, t2 above are chosen arbitrarily, by Lemma 23,

lim
N→∞

DN = lim
N→∞

1

N
sup

t1,t2∈[0,1]
|R(t1;N)−R(t2;N)| = 0.

Therefore, the sequence (f(n)) is equidistributed modulo 1 (see [5, Chapter 2,
Theorem 1.1])

Remark 25. We can apply the criterion to prove a weaker form of Fejer’s Theorem
[5, Chapter 1, Corollary 2.1]: If the function f(x) satisfies the conditions of Theorem
9, then the sequence (f(n)) is equidistributed modulo 1.

Theorem 26. Let f be a function satisfying the conditions of Theorem 9. Then,
there exists a constant c > 0 such that for all ε > 0 and sufficiently large N (depend
on ε), we have

DN ≤
3
2 + ε

Nf ′(N)
+
cf(N)

N
.

Proof. By the proof of Lemma 17, there exists a constant c > 0 such that for all
ε > 0 and sufficiently large N (depend on ε), we have

−(
1
2 + ε

f ′(N)
+ cf(N)) ≤ R(t;N) ≤ 1 + ε

f ′(N)
+ cf(N).

Therefore, by Lemma 23,

DN =
1

N
sup

t1,t2∈[0,1)
|R(t1;N)−R(t2;N)| ≤

3
2 + 2ε

Nf ′(N)
+

2cf(N)

N
.

The theorem then follows immediately (ε, c are not necessarily the same).

Remark 27. This theorem is a stronger form of Theorem 9 since D∗N ≤ DN (see
[5, Chapter 2, Theorem 1.3]) and one of the implied constants is explicit.
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Theorem 28. Let f be a function satisfying the conditions of Theorem 22. Then,
there exists a constant c > 0 such that for all ε > 0 and sufficiently large N (depend
on ε), we have

DN ≤
1 + ε

Nf ′(N)
+
cf(N)

N
.

Proof. It is similar to the proof of Theorem 26.

Remark 29. There are common functions satisfying the conditions of Theorem
22. In fact, we have the following corollaries.

Corollary 30. Let DN be the discrepancy of the sequence of fractional parts {αnσ}
where n = 1, 2, . . . , α > 0, 0 < σ < 1

2 . Then, for all ε > 0 and sufficiently large N
(depend on ε), we have

|
∑

n≤N
{αnσ} − 1

2
N | ≤

7
12 + ε

ασ
N1−σ

and

DN ≤
1 + ε

ασ
N−σ.

Corollary 31. Let DN be the discrepancy of the sequence of fractional parts
{α(log n)σ} where n = 1, 2, . . . , α > 0, σ > 1. Then, for all ε > 0 and sufficiently
large N (depend on ε), we have

|
∑

n≤N
{α(log n)σ} − 1

2
N | ≤

7
12 + ε

ασ
N(logN)1−σ

and

DN ≤
1 + ε

ασ
(logN)1−σ.

3. Distribution of Sequences Modulo Integers

Lemma 32. Let p be an odd prime, then

p−1∑

n=0

{n
2

p
+

1

q
} = (

1

2
+

1

q
)p− 1

2
+

1

p

p−1∑

n=0

n
(n
p

)
−

p−1∑

n=0

{n2

p }+ 1
q≥1

1,

where
(n
p

)
is the Legendre symbol.
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Proof. We have

p−1∑

n=0

{n
2

p
+

1

q
} = (

p−1∑

n=0

{n2

p }+ 1
q<1

+

p−1∑

n=0

{n2

p }+ 1
q≥1

){n
2

p
+

1

q
}

=

p−1∑

n=0

{n2

p }+ 1
q<1

({n
2

p
}+

1

q
) +

p−1∑

n=0

{n2

p }+ 1
q≥1

({n
2

p
}+

1

q
− 1)

=

p−1∑

n=0

{n
2

p
}+

p−1∑

n=0

1

q
−

p−1∑

n=0

{n2

p }+ 1
q≥1

1.

Notice that
∑p−1
n=0{n

2

p } is twice the sum of quadratic residues (mod p) divided by

p. Therefore,

p−1∑

n=0

{n
2

p
+

1

q
} = 2

p−1∑

n=0

n

p
(
1

2
(1 +

(n
p

)
)) +

p

q
−

p−1∑

n=0

{n2

p }+ 1
q≥1

1

=
1

p

p−1∑

n=0

n
(n
p

)
+

1

2
(p− 1) +

p

q
−

p−1∑

n=0

{n2

p }+ 1
q≥1

1

= (
1

2
+

1

q
)p− 1

2
+

1

p

p−1∑

n=0

n
(n
p

)
−

p−1∑

n=0

{n2

p }+ 1
q≥1

1.

This completes the proof.

Theorem 33. Let L(1) denote the sum
∞∑

k=1

1

k

(k
p

)
.

[See reviewer’s comment (3)]
Suppose that prime p ≡ 3 (mod 4) and p 6= 3. Then, we have the following results:

(a) The number of quadratic residues (mod p) between 0 and 1
3p is

{
1
6 (p− 1) +

√
p

π L(1) if p ≡ 1 (mod 3),
1
6 (p− 2) +

√
p

2π L(1) if p ≡ 2 (mod 3).

(b) The number of quadratic residues (mod p) between 2
3p and p is

{
1
6 (p− 1)−

√
p

π L(1) if p ≡ 1 (mod 3),
1
6 (p− 2)−

√
p

2π L(1) if p ≡ 2 (mod 3).
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Proof. We shall prove part (b) first. Only the case that p ≡ 1 (mod 3) is proved
since the proofs are similar. Recall that the Fourier series of {x} (x 6∈ Z) can be
expressed as

1

2
− 1

2πi

∑

k 6=0

e2πikx

k
.

Therefore,

p−1∑

n=0

{n
2

p
+

1

3
} =

p−1∑

n=0

(
1

2
− 1

2πi

∑

k 6=0

e2πik(
n2

p + 1
3 )

k
)

=
1

2
p− 1

2πi

∑

k 6=0

1

k

p−1∑

n=0

e2πik(
n2

p + 1
3 )

=
1

2
p− 1

2πi

∑

k 6=0

ζk3
k
G(k; p),

where G(k; p) is the Gauss sum.
We shall calculate the sum on the right hand side first. Recall that (see [1, p.195])

G(k; p) =
(
k
p

)
i
√
p if p ≡ 3 (mod 4) and p - k. It follows that

∑

k 6=0

ζk3
k
G(k; p) =

∑

k 6=0
p-k

ζk3
k

(k
p

)
i
√
p+

∑

k 6=0
p|k

ζk3
k
p

=
∑

k 6=0

ζk3
k

(k
p

)
i
√
p+

∑

k 6=0
p|k

ζk3
k
p.

Since
(−1

p

)
= (−1)

p−1
2 = −1, we have

(−k
p

)
=
(−1

p

)(k
p

)
= −

(k
p

)
. Thus, the

sum can be written as

i
√
p

∞∑

k=1

ζk3 + ζ−k3

k

(k
p

)
+ p

∞∑

k=1

ζpk3 + ζ−pk3

pk
.

Now, we shall calculate the sums above separately. We have

∞∑

k=1

ζk3 + ζ−k3

k

(k
p

)
= −

∞∑

k=1
3-k

1

k

(k
p

)
+ 2

∞∑

k=1

1

3k

(3k

p

)

= −
∞∑

k=1

1

k

(k
p

)
+ 3

∞∑

k=1

1

3k

(3k

p

)
.
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By the Law of Quadratic Reciprocity, if p ≡ 1 (mod 3), then
(

3
p

)
= −1.

Thus,
∞∑

k=1

ζk3 + ζ−k3

k

(k
p

)
= −2L(1).

On the other hand, since p ≡ 1 (mod 3), it follows that pk ≡ k (mod 3), and so
∞∑

k=1

ζpk3 + ζ−pk3

k
=

∞∑

k=1

ζk3 + ζ−k3

k

=
√

3iL(1, χ)

=
√

3i(
1

9
π
√

3)

=
πi

3
,

where χ is the Dirichlet character (mod 3) such that χ(2) = −1 and L(1, χ) is the
Dirichlet L-function.
Finally, by combining the sums, we have

p−1∑

n=0

{n
2

p
+

1

3
} =

1

2
p− 1

2πi
(−2i

√
pL(1) +

πi

3
)

=
1

2
p+

√
p

π
L(1)− 1

6
.

By Lemma 32,

(
1

2
+

1

3
)p− 1

2
+

1

p

p−1∑

n=0

n
(n
p

)
−

p−1∑

n=0

{n2

p }+ 1
3≥1

1 =
1

2
p+

√
p

π
L(1)− 1

6
.

In fact, we have the following identity [2, p.8]: If p ≡ 3 (mod 4), then

L(1) = − π

p
3
2

p−1∑

n=0

n
(n
p

)
.

Hence, after rearrangement, we obtain

p−1∑

n=0

{n2

p }+ 1
3≥1

1 =
1

3
(p− 1)− 2

√
p

π
L(1).

Notice that the sum on the left hand side is twice the number of quadratic residues
(mod p) between 2p

3 and p. Then, part (b) follows immediately.
Next, we shall prove part (a). Suppose that q is a quadratic residue (mod p), then
−q must not be. Therefore, the number of quadratic residues (mod p) between 0
and 1

3p is

1

3
(p− 1)− (

1

6
(p− 1)−

√
p

π
L(1)) =

1

6
(p− 1) +

√
p

π
L(1).
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This completes the proof.

[See reviewer’s comment (4)]

Theorem 34. Suppose that prime p ≡ 3 (mod 4). Then, we have the following
results:

(a) The number of quadratic residues (mod p) between 0 and 1
4p is

{ 1
8 (p− 3) if p ≡ 3 (mod 8),
1
8 (p− 3) +

√
p

2π L(1) if p ≡ 7 (mod 8).

(b) The number of quadratic residues (mod p) between 3
4p and p is

{ 1
8 (p− 3) if p ≡ 3 (mod 8),
1
8 (p− 3)−

√
p

2π L(1) if p ≡ 7 (mod 8).

Proof. It is similar to the proof of Theorem 33.

Definition 35. If 1 ≤ α ≤ n, then ϕα(n) is defined as the number of integers
between α and n (including α) that are relatively prime to n. In particular, when
α = 1, ϕ1(n) is exactly the Euler’s totient function ϕ(n).

Lemma 36. If n, q > 1, we have
n∑

m=1
(m,n)=1

{m
n

+
1

q
} = (

1

2
+

1

q
)ϕ(n)− ϕ(1−1/q)n(n).

Proof. We have
n∑

m=1
(m,n)=1

{m
n

+
1

q
} = (

n∑

m=1
(m,n)=1
m
n + 1

q<1

+

n∑

m=1
(m,n)=1
m
n + 1

q≥1

){m
n

+
1

q
}

=
n∑

m=1
(m,n)=1

m<(1−1/q)n

(
m

n
+

1

q
) +

n∑

m=1
(m,n)=1

m≥(1−1/q)n

(
m

n
+

1

q
− 1)

=
1

n

n∑

m=1
(m,n)=1

m+
1

q
ϕ(n)− ϕ(1−1/q)n(n)

=
1

n
(
1

2
nϕ(n)) +

1

q
ϕ(n)− ϕ(1−1/q)n(n)

= (
1

2
+

1

q
)ϕ(n)− ϕ(1−1/q)n(n).

This completes the proof.
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Lemma 37. Let χ be a nonprincipal character (mod n). Then, we have
∞∑

k=1

χ(k)

k
cn(k) = L(1, χ)(µ ∗ χ)(n),

where cn(k) is the Ramanujan sum.

Proof. We begin with the following identity [4, Theorem 271]:

cn(k) =
∑

d|n
d|k

µ(
n

d
)d.

Therefore,
∞∑

k=1

χ(k)

k
cn(k) =

∞∑

k=1

χ(k)

k

∑

d|n
d|k

µ(
n

d
)d

=
∑

d|n

∞∑

m=1

χ(md)

md
µ(
n

d
)d

=
∞∑

m=1

χ(m)

m

∑

d|n
µ(
n

d
)χ(d)

= L(1, χ)(µ ∗ χ)(n).

This completes the proof.

Lemma 38.

(a) Let χ be the Dirichlet character (mod 3) such that χ(2) = −1. Then,

(µ ∗ χ)(n) =

{
0 if 9 | n or n has a prime factor p ≡ 1 (mod 3),
λ(n)2ω3(n) otherwise,

where λ(n) is the Liouville function and ω3(n) denotes the number of distinct
prime factors p 6= 3 of n.

(b) Let χ be the Dirichlet character (mod 4) such that χ(3) = −1. Then,

(µ ∗ χ)(n) =

{
0 if 4 | n or n has a prime factor p ≡ 1 (mod 4),
λ(n)2ω2(n) otherwise,

where ω2(n) denotes the number of distinct odd prime factors of n.

Proof. We shall prove part (a) only since the proofs are similar. The convolution
of two multiplicative functions is still a multiplicative function, so the value of
(µ ∗ χ)(n) for all positive integers n are determined by the value at powers of
primes. We have

(µ ∗ χ)(pk) =
∑

d|pk
µ(
pk

d
)χ(d).
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If p 6= 3, then since µ(pk) = 0 for all k ≥ 2, it follows that

(µ ∗ χ)(pk) = χ(pk)− χ(pk−1) = χ(p)k−1(χ(p)− 1).

Therefore,

(µ ∗ χ)(pk) =

{
0 if p ≡ 1 (mod 3),
(−1)k2 if p ≡ 2 (mod 3).

If p = 3, then it is not difficult to conclude that

(µ ∗ χ)(3k) =

{
−1 if k = 1,
0 if k ≥ 1.

Then, part (a) follows immediately.

Theorem 39. If n ≥ 3, then

ϕ2n/3(n) =

{
1
3
ϕ(n) if 9 | n or n has a prime factor p ≡ 1 (mod 3),

1
3
ϕ(n) + 1

6
λ(n)2ω3(n) otherwise.

Proof. We have

n∑

m=1
(m,n)=1

{m
n

+
1

3
} =

n∑

m=1
(m,n)=1

(
1

2
− 1

2πi

∑

k 6=0

e2πik(
m
n + 1

3 )

k
)

=
1

2
ϕ(n)− 1

2πi

∑

k 6=0

e
2πik

3

k

n∑

m=1
(m,n)=1

e2πi
m
n k

=
1

2
ϕ(n)− 1

2πi

∑

k 6=0

ζk3
k
cn(k).

Notice that cn(k) = cn(−k) and therefore

∑

k 6=0

ζk3
k
cn(k) =

∞∑

k=1

ζk3 − ζ−k3

k
cn(k)

=
√

3i
∞∑

k=1

χ(k)

k
cn(k),

where χ is the Dirichlet character (mod 3) such that χ(2) = −1.
By Lemma 37,

∞∑

k=1

χ(k)

k
cn(k) = L(1, χ)(µ ∗ χ)(n)

= (
1

9
π
√

3)(µ ∗ χ)(n).
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Thus,
n∑

m=1
(m,n)=1

{m
n

+
1

3
} =

1

2
ϕ(n)− 1

2πi
(
√

3i)(
1

9
π
√

3)(µ ∗ χ)(n)

=
1

2
ϕ(n)− 1

6
(µ ∗ χ)(n).

By Lemma 36, we have

(
1

2
+

1

3
)ϕ(n)− ϕ2n/3(n) =

1

2
ϕ(n)− 1

6
(µ ∗ χ)(n)

and therefore

ϕ2n/3(n) =
1

3
ϕ(n) +

1

6
(µ ∗ χ)(n).

The theorem then follows immediately from Lemma 38.

Theorem 40. If n > 4, then

ϕ3n/4(n) =

{
1
4
ϕ(n) if 4 | n or n has a prime factor p ≡ 1 (mod 4),

1
4
ϕ(n) + 1

4
λ(n)2ω2(n) otherwise.

Proof. It is similar to the proof of Theorem 39.

Theorem 41. For x > 1 we have
∑

n≤x
ϕ2n/3(n) =

1

π2
x2 +O(x log x)

and ∑

n≤x
ϕ3n/4(n) =

3

4π2
x2 +O(x log x).

Therefore, the average order (see [1], p.1) of ϕ2n/3(n) and ϕ3n/4(n) are 1
π2n and

3
4π2n respectively.

Proof. We only prove the first formula since the proofs are similar. By Theorem
39,

∑

n≤x
ϕ2n/3(n) =

∑

n≤3
ϕ2n/3(n) +

∑

3<n≤x
ϕ2n/3(n)

=
1

3

∑

n≤x
ϕ(n) +

1

6

∑

n≤x
(µ ∗ χ)(n) +O(1).

Since |µ(k)| ≤ 1, |χ(k)| ≤ 1, it follows that

|(µ ∗ χ)(n)| ≤
∑

d|n
|µ(

n

d
)χ(d)| ≤ d(n).

Thus, ∑

n≤x
ϕ2n/3(n) =

1

3

∑

n≤x
ϕ(n) +O(

∑

n≤x
d(n)) +O(1).
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In fact, we have the following asymptotic formulas for the partial sums of d(n) and
ϕ(n) (see [1, Theorem 3.3, Theorem 3.7]):

∑

n≤x
d(n) = x log x+ (2γ − 1)x+O(

√
x),

∑

n≤x
ϕ(n) =

3

π2
x2 +O(x log x). (x > 1)

The theorem then follows.

Remark 42. The theorem can be refined. We can show that (see [1, Theorem
3.10])

∑

n≤x
(µ ∗ χ)(n) =

∑

n≤x
χ(n)M(

x

n
)

≤
∑

n≤x
|M(

x

n
)|,

where M(x) :=
∑
n≤x µ(n).

By the Prime Number Theorem, we have M(x) = o(x) (see [1, Theorem 4.14]).
Then, it is not difficult to conclude that

∑

n≤x
ϕ2n/3(n) =

1

3

∑

n≤x
ϕ(n) + o(x log x)

and ∑

n≤x
ϕ3n/4(n) =

1

4

∑

n≤x
ϕ(n) + o(x log x).
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is the usage of the condition p 6= 3? p ≡ 3 (mod 4) was assumed, then p ≡
1 or 2 (mod 3) were also introduced. One may use Chinese Remainder Theorem
to combine those congruences and present in a remark.

Section names “Distribution of Sequences Modulo One” and “Distribution of Se-
quences Modulo Integers” were unclear.

The author may introduce big-O and little-o notations in Section 1. The depen-
dance of implied constant should be discussed at each occurrence.
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this paper.

2. Page 2, Lemma 13: what if f = 1− exp(−x)?
3. Page 13, Theorem 33: Is L(1) convergent?
4. Page 15, the proof of Theorem 33: justify the first three equalities.




