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Abstract. The central problem we are investigating is based on a problem
from the 2018 Singapore International Mathematics Challenge. It is about a

mathematical model of the probabilities that the people on a footbridge from

two sides meet. In our paper, we generalize the contest problem in various
cases. We develop a Markov model then formulate a transition matrix to solve

the generalized problem. Also, we define an expansion rule of the transition
matrices to reduce the time complexity to compute. Furthermore, we propose

a new topic on the expected number of collisions. We tackle the problem by

performing Jordan decomposition. Lastly, we optimize the method of finding
eigenvalues by observing the recursive relationships in transition matrices.

1. The Contest Problem

The central problem we are investigating is based on a problem from the 2018
Singapore International Mathematics Challenge [1] organized by the National Uni-
versity of Singapore. We construct a mathematical model about the probabilities
that people on a two-lane system collide. We find that the change in probabilities
due to different constraints is inspiring. The difficulty of calculation increases when
there are more people walking on the footbridge.

As a result, we decide to use the knowledge on matrices and apply Markov Chain
on the Busy Footbridge Problem. In this section, we introduce the Busy Footbridge
problem and some patterns we observe.

1.1. The Busy Footbridge Problem

Here comes the contest problem from Section C, the 2018 Singapore International
Mathematics Challenge.
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Consider a long East-West footbridge, where two groups of people from each side
are heading to the opposite directions. Provided that the footbridge is just wide
enough for two people to pass each other, and hence can be considered as having
two lanes. People arrive in a steady stream from both ends and join either lane
randomly with equal probability.

When two people walking in opposite directions meet, there is a collision if they
are on the same lane and one of the two people must change to the other lane,
with equal probability, before they can pass each other and continue walking. In
the absence of collisions, people remain in their lane, and we assume that people
walking in the same direction are sufficiently spread out that they do not overtake
or interact with each other.

Definition 1. We define ,m be the mth person from the West and , be any person
from the West. We define -n be the nth person from the East and - be any person
from the East.

,2 → ,1 → ← -1 ← -2

,3 → ← -3

Example 2. This example illustrates the collisions and changes in lanes when two
people (,1 and -1) meet.
Case 1: When the two people are on the same lane, a collision occurs.

,1 → ← -1

Case 1: outcomes Either ,1 changes lane and -1 remains on the upper lane, or
vice versa.

← -1

,1 → or
,1 →

← -1

Case 2: When the two people are on different lanes, no collision occurs.

,1 →
← -1

Case 2 outcome: They pass each other and remain on their original lanes.

,1 →
← -1

1.2. Illustrative examples

When we consider the footbridge with more people, the problem becomes compli-
cated.
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Example 3. Suppose there are two people from each side and they are arranged in
the following state, what is the probability that ,2 collides with -2?

,2 → ,1 → ← -1 ← -2

Note that ,1 must collide with -1. The positions of -1 and -2 after ,1 passes
through will be listed in the following cases.

Case 1: ,1 collides with -1 and changes to the lower lane.

,2 → ← -1 ← -2

,1 →

In order to collide with -2, ,2 must remain on the upper lane after colliding with
-1.

Pr(,2 collides with -2 ∣ Case 1) = 1

2

,2 → ← -2

← -1 ,1 →

Case 2: ,1 collides with -1 and remains on the upper lane. Then ,1 collides
with -2 and changes to the bottom lane.

,2 → ← -2

← -1 ,1 →

,2 must collide with -2.

Pr(,2 collides with -2 ∣ Case 2) = 1

,2 → ← -2

← -1 ,1 →

Case 3: ,1 collides with -1 and remains on the upper lane. Then ,1 collides
with -2 and remains on the upper lane.

,2 → ,1 →
← -1 ← -2

,2 cannot collide with -2.

Pr(,2 collides with -2 ∣ Case 3) = 0

,2 → ,1 →
← -1 ← -2
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Hence, in this example,

Pr(,2 collides with -2) =
1

2
× 1

2
+ 1

4
× 1 + 1

4
× 0 = 1

2

Example 4. Suppose there are three people from each side and they are arranged
in the following state. What is the probability that ,3 collides with -3?

,1 → ← -1 ← -2

,3 → ,2 → ← -3

More cases and possible outcomes have to be considered. Hence, we have to adopt
a better approach.

1.3. Mathematical modeling on the Busy Footbridge Problem

Definition 5. We denote pm,n be the probability that the mth person from the West

collides with the nth person from the East (,m collides with -n). We denote qn be
the limiting value of pm,n (the existence will be proved in Chapter 5) when m tends
to infinity for all n, which is

qn = lim
m→∞pm,n

The main idea of the Busy Footbridge Problem is to model the configuration of the
people and the collisions between them. For a footbridge with sufficiently many
people walking on it, what is the probability that the nth person from the East
collides with the person very far away from the West (qn)? In the Singapore Inter-
national Mathematics Challenge Section C - Busy Footbridge Problem Question
3, we are going to calculate p1,n, p2,n, q1, q2 and q3 for all people with equal proba-
bility to change lane and equal probability to enter the footbridge on one of the two
lanes. For further investigation, we are going to generalize the problem to calculate
pm,n and qn for all m,n.

1.4. Monte Carlo Algorithm

Before solving the problem mathematically, we try to tackle it with Monte Carlo
Algorithm, a randomized algorithm, to get a clearer concept. [See reviewer’s com-
ment (1a)] With the help of computer programs, we randomize the lane that ,
enters, the movement of , whether it remains on the original lane or changes lane
in a collision and the initial positions of -n. There are m , and we put m to be a
sufficiently large number (m = 100 in our program) and we repeat the process 107

times. We count the number of collisions of ,m with each -n.

qn ≈ Number of Collisions of -n with ,m

Number of Times

We obtain the following results.
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Figure 1. The results of q1 and q10

Observation 6. The value of qn seems to be
1

n + 1
for small n. From the above

results, qn decreases as n increases. In addition, the rate of decrease of qn decreases
when n increases. However, qn starts to fluctuate without any easily observable
patterns when n becomes larger. [See reviewer’s comment (2b)]

Observation 7. In the change of the positions of the people from the East during
the simulation, we conclude that the decrease in limiting value qn is due to the
increase of the length of consecutive people on the same lane, as it increases the
difficulty of clearing out people in front of -n.

1.5. Motivation

We can approximate qn and find their patterns by Monte Carlo Algorithm. How-
ever, we would like to find the exact values of pm,n and qn. In addition, when n
and m become larger, the computer does not have sufficient capacity to compute.
Hence, the Monte Carlo Algorithm is not efficient enough. We adopt the Markov
Model to solve the problem.

2. Essential Background of Markov Chain

In this chapter, we want to introduce Markov Chain into our problem. The move-
ment of people on the footbridge can be interpreted as states changing. People
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from one side can be in different configurations and we want to find the probability
that one configuration changes to another.

2.1. Markov chain

A Markov chain is a stochastic model describing a sequence of possible events
in which the probability of each event depends only on the state attained in the
previous event.

Definition 8. A discrete-time Markov chain is a sequence of random variables
X1,X2, . . . , with the probability of moving to the next state depends only on the
present state and not on the previous states, such that

Pr(Xn+1 = x ∣X1 = x1,X2 = x2, . . . ,Xn = xn) = Pr(Xn+1 = x ∣Xn = xn)

while Pr(X1 = x1,X2 = x2, . . . ,Xn = xn) > 0.

2.2. Transition matrix

Definition 9. Denote si,j be the probability of moving from state j to state i in
one step. The transition matrix (Markov matrix) is a square matrix with dimension
u × u that contains all si,j.

S =
⎛
⎜⎜⎜
⎝

s0,0 s0,1 . . . s0,u−1
s1,0 s1,1 . . . ⋮
⋮ ⋮ ⋱ ⋮

su−1,0 . . . . . . su−1,u−1

⎞
⎟⎟⎟
⎠

Since the total transition probability from state j to all others is 1, the column sum

is
u−1
∑
i=0

si,j = 1.

3. Applying Markov chain to the Busy Footbridge Problem

As pm,n depends on not only the nth person, but also other people on the lanes, we
decide to investigate the positions of the whole set of people in the East, instead of
one particular person.

3.1. Introduction of the Busy Footbridge Problem solution

We denote V T
n be the vector with dimension 1 × 2n which the ith entry represents

the probability that , collides with -n in state i. We denote L
(m−1)
n be the vector

with dimension 2n × 1 which the ith entry represents the probability that the state
i occurs after the first m − 1 , passes all n -. A Markov matrix Sn is introduced
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to encode the probabilities of transitions between each state. We find pm,n by the
following equation.

pm,n = V T
n L

(m−1)
n = V T

n (Sn)m−1L(0)n

[See reviewer’s comment (1b)]

3.2. Interpretation of the Busy Footbridge Problem

Since the movement of people on each side of the footbridge is relative, we can
interpret the people from the East side (-) are standing instead of walking, while
the people from the West side (,) are passing the people from the East side (-)
discretely one by one.

Notice that the probability that ,m collides with -n depends on the people in
front of -n, but independent on those behind. So, when calculating pm,n, we can
interpret that there are only n -’s.

3.3. Binary states representation

We introduce the binary representation to arrange the states orderly. Without the
diagrams of smilies on the footbridge, the binary representation is very important
to understand the theorems and lemmas.

Definition 10. We denote Ω(n) be the sample space of states and R(n) ∈ Ω(n) be
a state of n people from the East, where

R(n) = (r1, r2, . . . , rn), ri =
⎧⎪⎪⎨⎪⎪⎩

1, if the ith person is on the upper lane,

0 otherwise.

We denote ∣R(n)∣ be a binary number which represents a state. We denote input
states be the configurations of people from the East before the mth person from
the West passes, while output states be the configurations of people from the East
after the mth person from the West passes.
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Example 11. This example illustrates the correspondence of the states for n = 2
into binary state representation.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

-1-2

-2

-1

-1

-2

-1-2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

00

01

10

11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

3.4. Formulation of transition matrix in Busy Footbridge Problem

A transition matrix is generated such that the rows represent the output states,
while the columns represent the input states. Each cell in the matrix represents
the probability of each input state changing to each output state.

Definition 12. Denote Sn be the transition matrix with n people from the East.
We denote sni,j be the probability that the jth input state changes to the ith output
state. Therefore,

Sn =
⎛
⎜⎜⎜⎜
⎝

sn0,0 sn0,1 . . . sn0,2n−1−1

sn1,0 sn1,1 . . . sn1,2n−1−1

⋮ ⋮ ⋱ ⋮
sn2n−1−1,0

sn2n−1−1,1
. . . sn2n−1−1,2n−1−1

⎞
⎟⎟⎟⎟
⎠

Example 13. This example illustrates the probabilities that each input state changes
to each output state in S2. Each column index represents a possible input state while
each row index represents a possible output state.

00 01 10 11

00 3
4

3
8

1
4

1
8

01 0 3
8

0 1
8

10 1
8

0 3
8

0

11 1
8

1
4

3
8

3
4
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3.5. Forming transition matrix by exhaustion method

We perform exhaustion to find Sn. For each input state, we simulate the movement
of a ,. We enumerate all possible outcomes of its movements, move on to the next
position and simulate it recursively and obtain the probabilities of state changes.

Example 14. The following example illustrates the probabilities of the input state:
(10), changing to each output state, which are the probabilities of the 2nd column
in S2.

s20,2 =
1

4
+ 1

8
= 3

8
s21,2 = 0

s22,2 =
1

4
+ 1

8
= 3

8

s23,2 =
1

4

We obtain the following results by performing exhaustion.
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S1 =
⎛
⎝

3
4

1
4

1
4

3
4

⎞
⎠

S2 =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

3
4

3
8

1
4

1
8

0 3
8

0 1
8

1
8

0 3
8

0

1
8

1
4

3
8

3
4

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

S3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3
4

3
8

3
8

3
16

1
4

1
8

1
8

1
16

0 3
8

0 3
16

0 1
8

0 1
16

0 0 3
16

0 0 0 1
16

0

0 0 3
16

3
8

0 0 1
16

1
8

1
8

1
16

0 0 3
8

3
16

0 0

0 1
16

0 0 0 3
16

0 0

1
16

0 1
8

0 3
16

0 3
8

0

1
16

1
8

1
8

1
4

3
16

3
8

3
8

3
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Note that the exhaustion method takes O(2n × 2n) time to perform.

3.6. Forming collision vector by exhaustion method

Definition 15. Denote V T
n be the vector with dimension 1×2n which the ith entry

represents the probability that a person from the West collides with the nth person
from the East in state i.

Vn =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

vn0

vn1

⋮

vn2n−1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

We perform exhaustion to find Vn. For each input state, we simulate the movement
of ,. We enumerate all possible outcomes of its movements, move on to the next
position and simulate it recursively and obtain the probability that , collides with
-n.
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Example 16. The following example illustrates the probability of a person from the
West collides with the nth person in the input state: (10), which is the probability
of the 2nd cell in V2.

v22 =
1

2
+ 1

4
= 3

4

We obtain the following results by performing exhaustion.

V1 =
⎛
⎝

1
2

1
2

⎞
⎠
, V2 =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1
4

3
4

3
4

1
4

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

, V3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
8

7
8

5
8

3
8

3
8

5
8

7
8

1
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Note that exhaustion method also takes O(2n × 22
n) time to perform.

3.7. Forming initial vector

Definition 17. We denote L
(m−1)
n be the vector with dimension 2n × 1 which the

ith entry represents the probability that the state i occurs after the m − 1th person
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from the West passes the nth person from the East.

L(0)n =
⎛
⎜⎜⎜
⎝

1
2n

⋮
1
2n

⎞
⎟⎟⎟
⎠

The product of the transition matrix and the initial vector represents the probabilities
that each state occurs after the first person from the West passes R(n). Inductively,
the product of the transition matrix raised to an mth power and the initial vector
represents the probabilities that each state occurs after m people from the West
passes R(n).

L(m)n = (Sn)mL(0)n

Example 18. We will calculate p10,2.

p10,2 =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1
4

3
4

3
4

1
4

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

T

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

3
4

3
8

1
4

1
8

0 3
8

0 1
8

1
8

0 3
8

0

1
8

1
4

3
8

3
4

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

9

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1
4

1
4

1
4

1
4

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1
4

3
4

3
4

1
4

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

T

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

440235
1048576

439209
1048576

434601
1048576

433579
1048576

85077
1048576

86103
1048576

88663
1048576

89685
1048576

89685
1048576

88663
1048576

86103
1048576

85077
1048576

433579
1048576

434601
1048576

439209
1048576

440235
1048576

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1
4

1
4

1
4

1
4

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

= 174763

524288

The above calculation takes O((2n)3× lg(m)). When n becomes large, the comput-
ing time increases exponentially. However, when m becomes large, the computing
time increases logarithmically. Note that pm,n = pn,m. So, if n >m, we can calculate
pn,m instead of pm,n in order to reduce the time complexity.
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Example 19. The following is an example that n >m:

p3,5 = p5,3

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
8

7
8

5
8

3
8

3
8

5
8

7
8

1
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

T
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3
4

3
8

3
8

3
16

1
4

1
8

1
8

1
16

0 3
8

0 3
16

0 1
8

0 1
16

0 0 3
16

0 0 0 1
16

0

0 0 3
16

3
8

0 0 1
16

1
8

1
8

1
16

0 0 3
8

3
16

0 0

0 1
16

0 0 0 3
16

0 0

1
16

0 1
8

0 3
16

0 3
8

0

1
16

1
8

1
8

1
4

3
16

3
8

3
8

3
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

4
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
8

7
8

5
8

3
8

3
8

5
8

7
8

1
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

T
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

14955
32768

13973
32768

12785
32768

11871
32768

11121
32768

10335
32768

9243
32768

8517
32768

757
32768

1739
32768

1839
32768

2753
32768

1455
32768

2241
32768

2373
32768

3099
32768

245
32768

139
32768

239
32768

65
32768

303
32768

129
32768

261
32768

27
32768

1451
32768

1557
32768

2545
32768

2719
32768

2481
32768

2655
32768

3483
32768

3717
32768

3717
32768

3483
32768

2655
32768

2481
32768

2719
32768

2545
32768

1557
32768

1451
32768

27
32768

261
32768

129
32768

303
32768

65
32768

239
32768

139
32768

245
32768

3009
32768

2373
32768

2241
32768

1455
32768

2753
32768

1839
32768

1739
32768

757
32768

8517
32768

9243
32768

10335
32768

11121
32768

11871
32768

12785
32768

13937
32768

14955
32768

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 269

1024

With the formula, we are able to compute pm,n for all m and n. However, it takes
a long time to compute the transition matrix, as well as the collision vector. So,
we are going to use another method to compute the transition matrix in the next
chapter. In addition, the probability that a person changes lanes in a collision and
the probability that a person enters one of the two lanes are fixed and both are
1

2
in this chapter. We would like to further investigate the problem with variable

probabilities.

4. Generating Transition Matrix, Initial Vector and Collision Vector

In this chapter, we will generate the transition matrix Sn and the collision vector
Vn with another method. We try to observe the patterns between S1, S2, S3 and



120 LOK KAN YUEN, OMEGA NOK TO TONG, ETHAN LOK KAN TSANG

so on. We propose a method to generate Sn and Vn recursively. In addition, we
generalize the problem and method for the probabilities that a person changes lanes
ρ in a collision and enters lanes σ.

4.1. Forming Markov matrix recursively

We are going to demonstrate and prove the transition matrix expansion rule which
generates Sn recursively.

Notation 20. We write the transition matrix Sn as the following:

Sn =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

sn0,0 sn0,1 . . . sn0,2n−1

sn1,0 sn1,1 . . . sn1,2n−1

⋮ ⋮ ⋱ ⋮

sn2n−1,0
sn2n−1,1

. . . sn2n−1,2n−1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

Define

Mni,j =
⎛
⎝
sn2i,2j sn2i,2j+1

sn2i+1,2j sn2i+1,2j+1

⎞
⎠

Then

Sn =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

sn0,0 sn0,1 . . . sn0,2n−1

sn1,0 sn1,1 . . . sn1,2n−1

⋮ ⋮ ⋱ ⋮

sn2n−1,0
sn2n−1,1

. . . sn2n−1,2n−1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

Mn0,0 Mn0,1 . . . Mn0,2n−1

Mn1,0 Mn1,1 . . . Mn1,2n−1

⋮ ⋮ ⋱ ⋮

Mn2n−1,0
Mn2n−1,1

. . . Mn2n−1,2n−1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

Definition 21. Let R(n) ∈ Ω(n). Define (R(n))∗, (R(n))∗ ∈ Ω(n+1) by the followingL

● (R(n))∗ refers to appending one more person on the lower lane on the right

of the nth person in R(n), which is appending rn+1 = 0 to R(n).
● (R(n))∗ refers to appending one more person on the upper lane on the right

of the nth person in R(n), which is appending rn+1 = 0 to R(n).

Observation 22. When , passes R(n−1), and R(n−1) changes to a new state
R′(n−1) ∈ Ω(n−1), the person from the West will be on the different lane of the
(n−1)th person from the East just after they meet each other. If a collision occurs,
either one will move to the other lane. If there is no collision, they will remain on
their original lane, which are on different lanes.
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Example 23. This example illustrates Observation 22. According to the tree
diagram in Example 14, suppose (10) be the input state, the possible output states
are (11) or (10) or (00). We can see that the person from the West is on the
different lane of the 2nd person from the East. That is,

-1 -2

,
or

-1 ,
-2

or
,

-1 -2

Lemma 24. The relations between the elements in Sn−1 and the elements in Sn

can be represented by the following:

sn−1i,j = sn2i,2j + sn2i+1,2j = sn2i,2j+1 + sn2i+1,2j+1

Proof. Let A,B ∈ Ω(n−1) and ∣A∣ = j and ∣B∣ = i. Then ∣A∗∣ = 2j and ∣A∗∣ = 2j + 1.

After a , passes R(n), sn−1i,j represents the probability of A changing to B. Just

after the person passes or collides with the (n − 1)th person from the East, A∗
changes into either B∗ or B∗ , so the sum of the probabilities that A∗ changes
to B∗ or B∗ equal to the probability that A changes to B. Similarly, the sum of
the probabilities that A∗ changes to B∗ or B∗ also equal to the probability that A
changes to B.

Example 25. Suppose A = (10) and B = (00) and Pr(B ∣ A) = s20,2 = 3
8

. By
Observation 22, , is on the upper lane when it just passes -2. We can divide
the problem into the following cases.

Case 1: A∗ changes to B∗. Pr(B∗ ∣ A∗) = 1 × 3

8
= 3

8
as - is on the lower lane, ,

does not collide with -3. So, the state remains unchanged.

Case 2: A∗ changes to B∗. Pr(B∗ ∣ A∗) = 0 × 3

8
= 0. , has to collide with -2

and remain on the bottom lane in order to collide with -3 and to change -3 to the
upper lane. So, it is unable to change to B∗.’

Case 3: A∗ changes to B∗ or B∗, Pr(B∗ ∣ A∗) = Pr(B∗ ∣ A∗) = 1

2
× 3

8
= 3

16
, ,

must collide with -3 and -3 has
1

2
to be on the upper lane or lower lane.

Then,

Pr(B∗ or B∗ ∣ A∗) = s30,5 + s31,5 =
3

16
+ 3

16
= 3

8
= s20,2

and

Pr(B∗ or B∗ ∣ A∗) = s30,4 + s31,4 =
3

8
+ 0 = 3

8
= s20,2
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Theorem 26. (Expansion Rule)

⎛
⎝
Mni,j

Mni+1,j

⎞
⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

sn2i,2j sn2i,2j+1

sn2i+1,2j sn2i+1,2j+1

sn2i+2,2j sn2i+2,2j+1

sn2i+3,2j sn2i+3,2j+1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

sn−1i,j
1
2
× sn−1i,j

0 1
2
× sn−1i,j

1
2
× sn−1i+1,j 0

1
2
× sn−1i+1,j sn−1i+1,j

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

,

where i ≡ 0 (mod 2).

Proof. Suppose A,B ∈ Ω(n−2). In Sn−1, since i ≡ 0 (mod 2), there exists a ∣B∗∣ = i
and ∣(B∗)∗∣ = 2i+1. For j ≡ 0 (mod 2), there exists a ∣A∗∣ = j so ∣(A∗)∗∣ = 2j. Since
(A∗)∗ is unable to change to (B∗)∗, sn2i+1,2j = 0.

For j ≡ 1 (mod 2), there exists a ∣A∗∣ = j so ∣(A∗)∗∣ = 2j. Since (A∗)∗ is unable to
change to (B∗)∗, sn2i+1,2j = 0. By Lemma 24,

sn2i,2j+1 + sn2i+1,2j+1 = sn−1i,j and sn2i,2j = sn−1i,j
Similarly, sn2i+2,2j+1 = 0 and sn2i+3,2j+1 = sn−1i+1,j .

Suppose C ∈ Ω(n−1),D ∈ Ω(n−2). In Sn−1, since i ≡ 0 (mod 2), there exist a ∣D∗∣ = i
so ∣(D∗)∗∣ = 2i and ∣(D∗)∗∣ = 2i + 1. There also exists a ∣C ∣ = j and ∣C∗∣ = 2j + 1.

Given that a person from the West changes the people from the East from state C
to D∗, by Observation 22, that person must be on the upper lane after passing
the (n − 1)th person, and must collide with the nth person from the East. The nth

person from the East has equal probability to change or remain after the collision
which leads to two outcomes, ∣(D∗)∗∣ = 2i and ∣(D∗)∗ = 2i + 1. So, there is equal
probability of (D∗)∗ and (D∗)∗ to occur. By Lemma 24,

sn2i,2j+1 = sn2i+1,2j+1 =
1

2
sn−1i,j

Similarly,

sn2i+2,2j = sn2i+3,2j =
1

2
sn−1i+1,j

In the above situation, that is with a
1

2
probability which a person changes lane in

a collision and
1

2
probability that a person chooses the lane, we are able to use the

above methods to generate the transition matrix Sn for all n.

Using Theorem 26, we can find Sn in terms of S(n−1). Therefore, we could generate
the transition matrix Sn for all n recursively.
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4.2. General extension of transition matrix

We generalize the above theorems, with various probabilities that a person enters
the footbridge on one of the two lanes and changes lane in a collision.

Definition 27. Denote σ be the probability that people from both sides enter the
footbridge on the upper lane. Denote ρn be the probability that the nth person from
the East remains on the original lane in a collision occurs.

We first represent S1 with ρ1 and σ

S1 =
⎛
⎝

1 − (1 − σ)(1 − ρ1) σ(1 − ρ1)

(1 − σ)(1 − ρ1) 1 − σ(1 − ρ1)
⎞
⎠

Theorem 28.

⎛
⎝
Mni,j

Mni+1,j

⎞
⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

sn2i,2j sn2i,2j+1

sn2i+1,2j sn2i+1,2j+1

sn2i+2,2j sn2i+2,2j+1

sn2i+3,2j sn2i+3,2j+1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

sn−1i,j (1 − ρn)sn−1i,j
0 ρnsn−1i,j

ρnsn−1i+1,j 0

(1 − ρn)sn−1i+1,2 sn−1i+1,j

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

where i ≡ 0 (mod 2).

Proof. The proof is similar to Theorem 26. Suppose A,B ∈ Ω(n−2). In Sn−1, since
i ≡ 0 (mod 2), there exists a ∣B∗∣ = i and ∣(B∗)∗∣ = 2i + 1.

For j ≡ 0 (mod 2), there exists a ∣A∗∣ = j so ∣(A∗)∗∣ = 2j. Since (A∗)∗ is unable to
change to (B∗)∗, sn2i+1,2j = 0.

For j ≡ 1 (mod 2), there exists a ∣A∗∣ = j so ∣(A∗)∗∣ = 2j. Since (A∗)∗ is unable to
change to (B∗)∗, sn2i+1,2j = 0. By Lemma 24,

sn2i,2j+1 + sn2i+1,2j+1 = sn−1i,j and sn2i,2j = sn−1i,j
Similarly, sn2i+2,2j+1 = 0 and sn2i+3,2j+1 = sn−1i+1,j .

Suppose C ∈ Ω(n−1),D ∈ Ω(n−2). In Sn−1, since i ≡ 0 (mod 2), there exists a ∣D∗∣ = i
so ∣(D∗)∗∣ = 2i and ∣(D∗)∗∣ = 2i + 1. There also exists a ∣C ∣ = j and ∣C∗∣ = 2j + 1.

Given that a person from the West changes the people from the East from state C
to D∗, by Observation 22, the person from the West must be on the upper lane
after passing the (n − 1)th person, and must collide with the nth person from the
East. The nth person from the East has probability ρn to remain after the collision
which leads to two outcomes, ∣(D∗)∗∣ = 2i and ∣(D∗)∗∣ = 2i + 1. By Lemma 24,

sn2i,2j+1 = (1 − ρn)sn−1i,j and sn2i+1,2j+1 = ρnsn−1i,j
Similarly,

sn2i+2,2j = ρnsn−1i,j and sn2i+3,2j = (1 − ρn)sn−1i,j
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4.3. Forming collision vector recursively

Appending rn+1 = 0 or 1 to Rn ∈ Ωn, which is appending (n + 1)th people to Vn,
we can obtain Vn+1. We expand each cell in Vn to two cells at the corresponding
position to obtain Vn+1.

Notation 29. We write the collision vector Vn as the following:

Vn =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

vn0

vn1

⋮

vn2n−1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

Define

Uni =
⎛
⎝
vn2i

vn2i+1

⎞
⎠

Then

Vn =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

vn0

vn1

⋮

vn2n−1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

Un0

Un1

⋮

Un2n−1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

Lemma 30.

vn2i + vn2i+1 = 1

Proof. Suppose A ∈ Ω(n−1) and ∣A∣ = i. Then ∣A∗∣ = 2i and ∣A∗∣ = 2i+1. Just after a
person from the West meets the (n − 1)th person from the East, that person from
the West can be on either the upper lane or the lower lane. It collides with the nth

person in A∗ if he is on the lower lane or with the nth person in A∗ if he is on the
upper lane, so the sum of the probabilities of colliding with the nth person in states
A∗ and A∗ is 1.

Theorem 31. (Expansion Rule)

( Uni

Uni+1

) =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

vn2i

vn2i+1

vn2i+2

vn2i+3

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1
2
× vn−1i

1 − 1
2
× vn−1i

1 − 1
2
× vn−1i+1

1
2
× vn−1i+1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

where i ≡ 0 (mod 2).
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Proof. In Vn−1, for i ≡ 0 (mod 2), there exists a ∣A∗∣ = i. When we append the nth

person from the East on the lower lane, the state can be represented by (A∗)∗. The
collision with the nth person from the East only occurs if the person from the West
collides with the (n − 1)th person and remains on the lower lane. The probability
that the person from the West remains on its original lane after the collision is
1 − 1

2
= 1

2
.

vn2i =
1

2
vn−1i

From Lemma 30,

vn2i + vn2i+1 = 1 and
1

2
vn−1i + vn2i+1 = 1 and vn2i+1 = 1 − 1

2
vn−1i

Similarly, for i ≡ 1 (mod 2),

vn2i+3 =
1

2
vn−1i+1 and vn2i+2 = 1 − 1

2
vn−1i+1

4.4. General extension of collision vector

We first represent V1 in terms of σ.

Vi = (
1 − σ
σ
)

Theorem 32.

( Uni

Uni+1

) =
⎛
⎜⎜⎜
⎝

vn2i

vn2i+1

vn2i+2

vn2i+3

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

(1 − ρn−1)vn−1
1 − (1 − ρn−1)vn−1

1 − (1 − ρn−1)vn−1i+1
(1 − ρn−1)vn−1i+1

⎞
⎟⎟⎟
⎠

where i ≡ 0 (mod 2).

Proof. The proof is similar to Theorem 31. In Vn−1, for i ≡ 0 (mod 2), there
exists a ∣A∗∣ = i. When we append the nth person from the East on the lower lane,
the state can be represented by (A∗)∗. The collision with the nth person in the
East only occurs if the person from the West collides with the (n−1)th person and
remains on the lower lane. The probability that the person from the West remains
on the original lane after the collision is 1 − ρn−1.

When we go through the whole process for other cases, we have a conclusion of
Lemma 30. Each person from the East can have different ρ, and we can use the
same method to solve the problem, as the last person is independent to the previous
n − 1 people.
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4.5. General extension of initial vector

Appending rn+1 = 0 or 1 to Rn ∈ Ωn, which is appending (n + 1)th people to L
(0)
n ,

we can obtain L
(0)
n+1. We expand each cell in L

(0)
n to two cells at the corresponding

position to obtain L
(0)
n+1.

Notation 33. We write the collision vector L
(0)
n as the following:

Ln =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

ln0

ln1

⋮

ln2n−1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

Define

Hni =
⎛
⎝
ln2i

ln2i+1

⎞
⎠

Then

Ln =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

ln0

ln1

⋮

ln2n−1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

Hn0

Hn1

⋮

Hn2n−1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

We first represent L1 in terms of σ

L1 =
⎛
⎝

1 − σ

σ

⎞
⎠

Theorem 34. (Expansion Rule)

Hni =
⎛
⎝
ln2i

ln2i+1

⎞
⎠
=
⎛
⎝
(1 − σ)ln−1i
σln−1i

⎞
⎠

Proof. Suppose A ∈ Ω(n−1) and ∣A∣ = i. The ∣A∗∣ = 2i and ∣A∗∣ = 2i + 1. When we
append the nth person from the East on the lower lane, A changes to either A∗ or
A∗. The nth person from the East has probability (1 − σ) to enter the footbridge
on the lower lane, changing the state to A∗. Similarly, it has probability σ to enter
the footbridge on the upper lane, changing the state to A∗. Therefore,

ln2i = (1 − σ)ln−1 and ln2i+1 = σln−1i
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Using the above lemmas, we are now able to generate the transition matrices and
collision vector with the Expansion rules recursively instead of performing exhaus-
tion. By looking at S1 and V1, we can avoid the large amount of calculations and
generate Sn and Vn for larger n. In addition, we are able to compute the pm,n with
variable probabilities of changing lanes and entering lanes.

5. Finding the Limiting Value by Ergodic Theory

Recall qn be a limiting value of pm,n when m tends to infinity for all n. Ergodic
Theory is the study of a long-term average behavior of systems evolving in time. In
order to obtain the limiting value qn, we apply the Ergodic Theory to the Markov
Model of the Busy Footbridge Problem.

5.1. Ergodic Theory

Definition 35. A square matrix P is called regular if there exists an integer n such
that all entries of Pn are positive.

Lemma 36. The Markov chain in the Busy Footbridge Problem with 0 < ρi < 1,
∀i ∈ {1,2, ..., n} is a regular Markov chain.

Proof. To prove the Markov chain is regular, we prove that Sn is accessible, which
any state is possible to go to every state with a finite number of steps. We introduce
an n-step algorithm to change one state to another with n people on the East. In
the first step, a person from the West enters the footbridge on the same lane to the
nth person from the East. The person from the West remains on the original lane
before he meets the nth person. Then, he eventually collides with the nth person
from the East, the position of the nth person after the collision depends on the
output state.

Similarly, for the ith step, a person from the West enters the footbridge on the same
lane to the (n − i + 1)th person from the East. The person from the West remains
on the original lane before he meets the (n − i + 1)th person. Then, the person
from the West eventually collides with the (n − i + 1)th person from the East, the
position of the (n− i+ 1)th person after the collision depends on the output states.
If the person from the West collides with the (n − i + 2)th to the nth person from
the East, the person from the West changes lane and does not affect the positions
of the (n − i + 2)th to the nth person from the East.

Therefore, after n steps, we can change any state to another arbitrary state. So, all
states are accessible and all entries in (Sn)n are positive. Hence, the Markov chain
is regular. [See reviewer’s comment (1c)]

Theorem 37. Let P be a regular Markov matrix and π be the stationary probability
vector of P . π is defined as a probability distribution (i.e. π is an eigenvector of
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P , associated with eigenvalue 1), which is

Pπ = π

For an ergodic Markov chain, there exists a unique probability vector and it is
strictly positive.

Theorem 38. Let P be the transition matrix for a regular chain. Then lim
m→∞P

m

approaches a limiting matrix ∏ with all column be the same vector π, which is
strictly positive (i.e., the components are all positive and they sum to one).

[See reviewer’s comment (2a)]

Note that our problem is a regular Markov matrix by Lemma 36. Using Theo-
rem 37, we have the following corollary.

Corollary 39. qn = lim
m→∞pm,n exists for all n and lim

m→∞(Sn)m exists for all n.

5.2. Computation of qn

Definition 40. We denote πn be the stationary probability vector of Sn, which is

πn =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

πn1

πn2

⋮

πn2n

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

lim
m→∞(Sn)m for all n reaches a stationary state, in which the row vectors are constant

vectors. So, the initial probability is independent. So, with Vn and πn, we can
calculate qn by the following equation:

qn = V T
n ⋅ πn

Example 41. The example illustrates the computation of q1, q2 and q3.
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Computing q1: Recall V T
1 = ( 1

2
1
2
)

⎛
⎝

3
4

1
4

1
4

3
4

⎞
⎠
⎛
⎝
π1

π2

⎞
⎠
=
⎛
⎝
π1

π2

⎞
⎠

and π1 + π2 = 1

⎛
⎝
π1

π2

⎞
⎠
=
⎛
⎝

1
2

1
2

⎞
⎠

q1 = ( 12
1
2
)
⎛
⎝

1
2

1
2

⎞
⎠

= 1

2

Computing q2: Recall V T
2 = ( 1

4
3
4

3
4

1
4
)

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

3
4

3
8

1
4

1
8

0 3
8

0 1
8

1
8

0 3
8

0

1
8

1
4

3
8

3
4

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

π1

π2

π3

π4

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

π1

π2

π3

π4

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

and pi1 + π2 + π3 + π4 = 1

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

π1

π2

π3

π4

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

5
12

1
12

1
12

5
12

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

q2 = ( 14
3
4

3
4

1
4
)

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

5
12

1
12

1
12

5
12

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

= 1

3
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Computing q3: Recall V T
2 = ( 1

8
7
8

5
8

3
8

3
8

5
8

7
8

1
8
)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3
4

3
8

3
8

3
16

1
4

1
8

1
8

1
16

0 3
8

0 3
16

0 1
8

0 1
16

0 0 3
16

0 0 0 1
16

0

0 0 3
16

3
8

0 0 1
16

1
8

1
8

1
16

0 0 3
8

3
16

0 0

0 1
16

0 0 0 3
16

0 0

1
16

0 1
8

0 3
16

0 3
8

0

1
16

1
8

1
8

1
4

3
16

3
8

3
8

3
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

π1

π2

π3

π4

π5

π6

π7

π8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

π1

π2

π3

π4

π5

π6

π7

π8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

π1

π2

π3

π4

π5

π6

π7

π8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

77
216

13
216

1
216

17
216

17
216

1
216

13
216

77
216

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

q3 = ( 18
7
8

5
8

3
8

3
8

5
8

7
8

1
8
)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

77
216

13
216

1
216

17
216

17
216

1
216

13
216

77
216

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 7

27

The sequence of qn continues with q4 =
53

243
≈ 0.2181, q5 =

419

2187
≈ 0.1916.
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Figure 2. The results of qn by Ergodic Theory

Figure 3. The results of qn by Monte Carlo Algorithm

[See reviewer’s comment (2c)]

6. Expected Number of Collisions

In this chapter, we would like to investigate the expected number of collisions
between ,n with -s. As we are considering a finite number of ,s, Ergodic theory
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is not suitable in this chapter. We introduce Jordan normal form of Sn to solve the
problem.

6.1. Attempt on finding the expected number of collisions

The answer will be the sum of the probabilities that -n collides with the first m
,s, which can be calculated by the following: [See reviewer’s comment (1d)]

Expected number of collisions =
m

∑
i=1
pi,n

=
m

∑
i=1
V T (Sn)i−1L(0)n

= V T (
m

∑
i=1
(Sn)i−1)L(0)n

Generally, we can solve the summation by the formula of sum of geometric series,
that is

m

∑
i=1
(Sn)i−1 = ((Sn)m − I) × ((Sn) − I)−1

[See reviewer’s comment (1e)]

However, by Theorem 37, 1 is an eigenvalue of Sn for all n, and det(Sn − I) = 0.
Hence, (Sn − I)−1 does not exist. So, the geometric sum formula is not applicable.
In order to find the sum faster, we decide to use Jordan decomposition as an
alternative to compute the summation.

6.2. Jordan decomposition

Definition 42. The matrix Jn,i is a Jordan block. In a Jordan block, it has λi’s
on the diagonal, 1’s on the superdiagonal and 0’s elsewhere. A Jordan matrix is a
block matrix that has Jordan blocks down its block diagonal and is zero elsewhere.

For example, let Jn−1, Jn−2, . . . , Jn,p be Jordan blocks, which each Jn,i is in the form

Jn,i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λi 1 0

λi 1

λi ⋱

⋱ 1

0 λi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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The Jordan matrix Jn is in the form

Jn =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

Jn,1 0

Jn,2

⋱

0 Jn,p

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

We want to use Jordan decomposition to transform the Sn to PnJnP
−1
n , where Jn

is a Jordan matrix.

To calculate Si
n, we have

(Sn)i = (PnJnP
−1
n )i = Pn(Jn)iP −1

n

Then

Expected number of collisions = V T (
m

∑
i=1
(Sn)i−1)L(0)n

= V TPn (
m

∑
i=1
(Jn)i−1)P −1

n L(0)n ,

where (Jn)i is comparatively easier to compute than (Sn)i for large i.

However, in order to perform Jordan decomposition, we have to solve for eigenvalues
and eigenvectors of Sn. Normally, to find the eigenvalues of Sn, the determinant
of (Sn −λI) have to be calculated, which has a time complexity of O((2n)!). Also,
the characteristic polynomial of degree 2n has to be solved. Therefore, we develop
a fast method to find eigenvalues, by observing recursive relationships of Sn and
its corresponding eigenvalues.

Example 43. We demonstrate the Jordan decomposition for S2.

S2 =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

3
4

3
8

1
4

1
8

0 3
8

0 1
8

1
8

0 3
8

0

1
8

1
4

3
8

3
4

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1
12

1
16

1
2

5
12

− 1
12

− 1
16

0 1
12

− 1
12

1
16

0 1
12

1
12

− 1
16

− 1
2

5
12

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1
4

0 0 0

0 1
2

1 0

0 0 1
2

0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1 −5 −5 1

0 −8 8 0

1 1 −1 −1

1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠
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In addition, we could obtain a general form of pm,n by the following, in order to
answer the original contest problem,

pm,n = V T (Sn)m−1L(0)n = V TPn(Jn)m−1P −1
n L(0)n

Example 44. This example illustrates the computation of pm,1 and pm,2.

Computing pm,1

pm,1 = (
1
2
1
2

)
T

(
3
4

1
4

1
4

3
4

)
m−1
(
1
2
1
2

)

= ( 1
2

1
2
)(−1 1

1 1
)(

1
2

0
0 1

)
m−1
(−

1
2

1
2

1
2

1
2

)(
1
2
1
2

)

= (0 1)(
1

2m−1
0

0 1
)(0

1
2

)

= 1

2

Computing pm,2

pm,2 =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1
4

3
4

3
4

1
4

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

T

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

3
4

3
8

1
4

1
8

0 3
8

0 1
8

1
8

0 3
8

0

1
8

1
4

3
8

3
4

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

m−1
⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1
4

1
4

1
4

1
4

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

= ( 1
4

3
4

3
4

1
4
)

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1 −1 0 1

−1 1 −8 1
5

−1 −1 8 1
5

1 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1
4

0 0 0

0 1
2

1 0

0 0 1
2

0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

m−1
⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1
12

− 5
12

− 5
12

1
12

− 1
2

0 0 1
2

− 1
16

− 1
16

1
16

1
16

5
12

5
12

5
12

5
12

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1
4

1
4

1
4

1
4

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

= (−1 0 0 4
5
)

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1
4m−1

0 0 0

0 1
2m−1

0 0

0 0 1
2m−1

0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1
16

0

0

5
16

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

= 1

3
− 1

4m+1



A MARKOV MODEL OF THE BUSY FOOTBRIDGE PROBLEM 135

6.3. Observation of patterns of eigenvalues

Recall the generalized S1 from Chapter 4.2:

S1 = (
1 − (1 − σ)(1 − ρ1) σ(1 − ρ1)
(1 − σ)(1 − ρ1) 1 − σ(1 − ρ1)

)

To find the Jordan form of S1, we have to find its eigenvalues λ. We can find λ by
solving the following equation:

det(S1 − λI) = 0
RRRRRRRRRRRR

1 − (1 − σ)(1 − ρ1) − λ ρ(1 − ρ1)

(1 − σ)(1 − ρ1) 1 − σ(1 − ρ1) − λ

RRRRRRRRRRRR
= 0

(1 − λ)(ρ1 − λ) = 0

λ = ρ1 or 1

We find σ is independent to all eigenvalues. By the Expansion rules in Theorem 28
with the second person from the East changes lane with probability ρ2 in a collision,
the eigenvalues of S2 are 1, ρ1, ρ2 and ρ1ρ2 by solving det(S2 − λI) = 0. So, we
speculate that there is a relationship between eigenvalues of S1 and S2. If λ is the
eigenvalue of S1, λ and ρ2λ are also the eigenvalues of S2. We rewrite S1 to be in
the following form to avoid clumsy expressions in the following calculations.

S1 =
⎛
⎝
a b

c d

⎞
⎠

Then, we try to prove that for any eigenvalue λ in S1, both λ and ρ2λ are the
eigenvalues for S2. With the expansion rule in Theorem 28, we can generate S2

in terms of a, b, c, d.

00 01 10 11

00 a (1 − ρ2)a) b (1 − ρ2)b

01 0 ρ2a 0 ρ2b

10 ρ2c 0 ρ2d 0

11 (1 − ρ2)c c (1 − ρ2)d d
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We can find the eigenvalues by solving det(S2 − λI) = 0. We first evaluate S2 − λI

S2 − λI =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

a (1 − ρ2)a b (1 − ρ2)b

0 ρ2a 0 ρ2b

ρ2c 0 ρ2d 0

(1 − ρ2)c c (1 − ρ2)d d

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

λ 0 0 0

0 λ 0 0

0 0 λ 0

0 0 0 λ

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

a − λ (1 − ρ2)a b (1 − ρ2)b

0 ρ2a − λ 0 ρ2b

ρ2c 0 ρ2d − λ 0

(1 − ρ2)c c (1 − ρ2)d d − λ

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

We transform S2 − λI with the following row and column operations, as they only
affect the sign of det(S2 − λI).

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

a − λ (1 − ρ2)a b (1 − ρ2)b

0 ρ2a − λ 0 ρ2b

ρ2c 0 ρ2d − λ 0

(1 − ρ2)c c (1 − ρ2)d d − λ

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

∼

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

a − λ a − λ b b

0 ρ2a − λ 0 ρ2b

ρ2c 0 ρ2d − λ 0

c c d − λ d − λ

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

r1 + r2 → r1

r3 + r4 → r4

∼

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

a − λ a − λ b b

c c d − λ d − λ

0 ρ2a − λ 0 ρ2b

ρ2c 0 ρ2d − λ 0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

r3 → r2

r4 → r3

r2 → r4

∼

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

a − λ b a − λ b

c d − λ c d − λ

0 ρ2b ρ2a − λ 0

ρ2c 0 0 ρ2d − λ

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

c3 → c2

c4 → c3

c2 → c4
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We denote transformed matrix as the following:

(S2 − λI)′ =
⎛
⎜⎜⎜
⎝

a − λ b a − λ b
c d − λ c d − λ
0 ρ2b ρ2a − λ 0
ρ2c 0 0 ρ2d − λ

⎞
⎟⎟⎟
⎠
= (A

′ B′

C ′ D′)

where A′,B′,C ′,D′ are block matrices. We observe that A′ = B′ = (S1−λI). Hence
A′B′ = B′A′. So, det(S2 − λI) = det(D′A′ −C ′B′) (by [2]).

∣det(S2 − λI)∣ = ∣det(S2 − λI)′∣
= ∣det(D′A′ −C ′B′)∣
= ∣det(D′ −C ′)detA′∣

=
RRRRRRRRRRRR

RRRRRRRRRRRR

ρ2a − λ −ρ2b

−ρ2c ρ2d − λ

RRRRRRRRRRRR
× detA′

RRRRRRRRRRRR

=
RRRRRRRRRRRR

RRRRRRRRRRRR

ρ2a − λ −ρ2b

−ρ2c ρ2d − λ

RRRRRRRRRRRR
× (−1)2 × detA′

RRRRRRRRRRRR

=
RRRRRRRRRRRR

RRRRRRRRRRRR

ρ2a − λ ρ2b

ρ2c ρ2d − λ

RRRRRRRRRRRR
× detA′

RRRRRRRRRRRR
= ∣det(ρ2S1 − λI)det(S1 − λI)∣

Since λ is an eigenvalue of S1, det(S − λI) = 0. Then,

det(S2 − λI) = 0

and the eigenvalues of S2 are those of S1.

Now, we try to prove ρ2λ are also the eigenvalues of S2 by proving det(S2−ρ2λI) = 0.
Using the same row operation above, we can form (S2 − ρ2λI)′ and divide it into
A′′,B′′,C ′′,D′′ as the following:

(S2 − ρ2λI)′ =
⎛
⎜⎜⎜
⎝

a − ρ2λ b a − ρ2λ b
c d − ρ2λ c d − ρ2λ
0 ρ2b ρ2a − ρ2λ 0
ρ2c 0 0 ρ2d − ρ2λ

⎞
⎟⎟⎟
⎠
= (A

′′ B′′

C ′′ D′′)

Note that A′′ = B′′. We have
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∣det(S2 − ρ2λI)∣ = ∣det(S2 − ρ2λI)′∣
= ∣det(D′′A′′ −C ′′B′′)∣
= ∣det(D′′ −C ′′)detA′′∣

=
RRRRRRRRRRRR

RRRRRRRRRRRR

ρ2a − ρ2λ −ρ2b

−ρ2c ρ2d − ρ2λ

RRRRRRRRRRRR
× detA′′

RRRRRRRRRRRR

=
RRRRRRRRRRRR

RRRRRRRRRRRR

ρ2a − ρ2λ −ρ2b

ρ2c ρ2d − ρ2λ

RRRRRRRRRRRR
× (−1)2 × detA′′

RRRRRRRRRRRR

=
RRRRRRRRRRRR
(ρ2)2

RRRRRRRRRRRR

a − λ b

c d − λ

RRRRRRRRRRRR
× detA′′

RRRRRRRRRRRR
= ∣(ρ2)2 det(S1 − λI)det(S1 − ρ2λI)∣

Again, for the eigenvalue λ in S1, det(S1 − λI) = 0. So,

det(S2 − ρ2λI) = 0

The eigenvalues of S2 are those of S1 times ρ2.

6.4. General eigenvalues for Markov matrix

In order to find all eigenvalues for Sn, we denote new notations for Sn−1 and Sn.

Notation 45.

Sn−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a0,0 . . . . . . a0,2n−2−1 b0,0 . . . . . . b0,2n−2−1
⋮ ⋱ ⋮ ⋮ ⋱ ⋮
⋮ ⋱ ⋮ ⋮ ⋱ ⋮

a2n−2−1,0 . . . . . . a2n−2,2n−2−1 b2n−2−1,0 . . . . . . b2n−2−1,2n−2−1
c0,0 . . . . . . c0,2n−2−1 d0,0 . . . . . . d0,2n−2−1
⋮ ⋱ ⋮ ⋮ ⋱ ⋮
⋮ ⋱ ⋮ ⋮ ⋱ ⋮

c2n−2−1,0 . . . . . . c2n−2,2n−2−1 d2n−2−1,0 . . . . . . d2n−2−1,2n−2−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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and by the Expansion rule, we have

Sn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a0,0 (1 − ρn)a0,1 . . . a0,2n−1−1
0 ρna0,1 . . . ρn+1a0,2n−1−1
⋮ ⋮ ⋱ ⋮

(1 − ρn)a2n−2−1,0 a2n−1−1,0 . . . a2n−1−1,2n−2−1
c0,0 (1 − ρn)c0,1 . . . c0,2n−1−1
0 ρnc0,1 . . . ρn+1c0,2n−1−1
⋮ ⋮ ⋱ ⋮

(1 − ρn)c2n−2−1,0 c2n−1−1,0 . . . c2n−1−1,2n−2−1

(

b0,0 . . . . . . (1 − ρn+1)b0,2n−2−1
⋮ ⋱ ⋮
⋮ ⋱ ⋮

(1 − ρn)b2n−1−1,0 . . . . . . b2n−2−1,2n−2−1
d0,0 . . . . . . (1 − ρn+1)d0,2n−2−1
⋮ ⋱ ⋮
⋮ ⋱ ⋮

(1 − ρn)d2n−1−1,0 . . . . . . d2n−2−1,2n−2−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Definition 46. We define ri and cj be the ith row and the jth column. We define
(Sn − λI)′ from (Sn − λI) by the following operations (*).

Step 1:{
r4i + r4i+1 → r4i

r4i+2 + r4i+3 → r4i+3
∀i ∈ {0,1, . . . ,2n−2 − 1}

Step 2:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

r4i → r2i

r4i+1 → r2n−1+2i
r4i+2 → r2n−1+2i+1
r4i+3 → r2i+1

∀i ∈ {0,1, . . . ,2n−2 − 1}

Step 3:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

c4j → c2j

c4j+1 → c2n−1+2j
c4j+2 → c2n−1+2j+1
c4j+3 → c2j+1

∀i ∈ {0,1, . . . ,2n−2 − 1}

We define (Sn − ρnλI)′ from (Sn − ρnλI) by the same operations.
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Lemma 47.

(Sn − λI)′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a0,0 − λ a0,1 . . . b0,2n−2−1
a1,0 a1,1 − λ . . . b1,2n−2−1
⋮ ⋮ ⋱ ⋮

c2n−2−1,0 c2n−1−1,1 . . . d2n−2−1,2n−2−1 − λ
0 ρna0,1 . . . ρ0b0,2n−2−1

ρ0a1,0 ⋱ ⋮
⋮ ⋱ ⋮

ρnc2n−2−1,0 . . . . . . 0

a0,0 − λ a0,1 . . . b0,2n−2−1
a1,0 a1,1 − λ . . . b1,2n−2−1
⋮ ⋱ ⋮

c2n−2−1,0 c2n−2−1,1 . . . d2n−2−1,2n−2−1 − λ
ρna0,0 − λ . . . . . . 0

⋮ ⋱ ⋮
⋮ ⋱ ⋮
0 . . . . . . d2n−2−1,2n−2−1 − λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Furthermore, we denote

(A
′
n B′

n

C ′
n D′

n
) = (Sn − λI)′

(Sn − ρnλI)′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a0,0 − ρnλ a0,1 . . . b0,2n−2−1
a1,0 a1,1 − ρnλ . . . b1,2n−2−1
⋮ ⋮ ⋱ ⋮

c2n−2−1,0 c2n−1−1,1 . . . d2n−2−1,2n−2−1 − ρnλ
0 ρna0,1 . . . ρ0b0,2n−2−1

ρ0a1,0 ⋱ ⋮
⋮ ⋱ ⋮

ρnc2n−2−1,0 . . . . . . 0

(

a0,0 − ρnλ a0,1 . . . b0,2n−2−1
a1,0 a1,1 − ρnλ . . . b1,2n−2−1
⋮ ⋱ ⋮

c2n−2−1,0 c2n−2−1,1 . . . d2n−2−1,2n−2−1 − ρnλ
ρna0,0 − ρnλ . . . . . . 0

⋮ ⋱ ⋮
vdots ⋱ ⋮

0 . . . . . . d2n−2−1,2n−2−1 − ρnλ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Furthermore, we denote

(A
′′
n B′′

n

C ′′
n D′′

n
) = (Sn − ρnλI)′
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Proof. The results can be obtained by the computation of the operations.

Remark 48. The example of the computation refers to Chapter 6.3.

Theorem 49. The eigenvalues of Sn are the eigenvalues of Sn−1 and the eigenval-
ues of Sn−1 times ρn.

Proof. We have A′
n = B′

n and A′
nB

′
n = B′

nA
′
n. So,

∣det(Sn − λI)∣ = ∣det(D′
nA

′
n −C ′

nB
′
n)∣

= ∣det(D′
n −C ′

n)detA′
n∣

= ∣det(D′
n −C ′

n)det(Sn−1 − λI)∣
= ∣det(ρnSn−1 − λI)det(Sn−1 − λI)∣

Since λ is an eigenvalue of Sn−1, det(Sn−1 −λI) = 0. Then det(Sn −λI) = 0. Hence,
the eigenvalues of Sn are those of Sn−1.

We have A′′
n = B′′

n, and A′′
nB

′′
n = B′′

nA
′′
n. So,

∣det(Sn − ρnλI)∣
= ∣det(D′′

nA
′′
n −C ′′

nB
′′
n)∣

= ∣det(D′′
n −C ′′

n)detA′′
n∣

=

RRRRRRRRRRRRRRRRRRRRRRRRRRR

(ρn)2
n−1

RRRRRRRRRRRRRRRRRRRRRRRRRRR

a0,0 − λ −a0,1 a0,2 . . . . . . −b0,2n−2−1
−a1,0 a1,1 − λ −a1,2 . . . . . . b0,2n−2−1
a2,0 −a2,1 ⋱ ⋮
⋮ ⋮ ⋱ ⋮
⋮ ⋮ ⋱ ⋮

−c2n−2−1,0 c2n−2−1,1 . . . . . . . . . d2n−2−1,2n−2−1 − λ

RRRRRRRRRRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRRRRRRRRRR
× ∣det(Sn−1 − ρnλI)∣

=

RRRRRRRRRRRRRRRRRRRRRRRRRRR

(ρn)2
n−1

RRRRRRRRRRRRRRRRRRRRRRRRRRR

a0,0 − λ a0,1 a0,2 . . . . . . −b0,2n−2−1
a1,0 a1,1 − λ a1,2 . . . . . . b0,2n−2−1
a2,0 a2,1 ⋱ ⋮
⋮ ⋮ ⋱ ⋮
⋮ ⋮ ⋱ ⋮

c2n−2−1,0 c2n−2−1,1 . . . . . . . . . d2n−2−1,2n−2−1 − λ

RRRRRRRRRRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRRRRRRRRRR
× ∣(−1)2

n−1 det(Sn−1 − ρnλI)∣
= ∣(ρn)2

n−1 det(Sn−1 − λI)det(Sn−1 − ρnλI)∣
Since λ is an eigenvalue of Sn−1, det(Sn−1 −λI) = 0. Then det(Sn − ρnλI) = 0. The
eigenvalues of Sn are those of Sn−1 times ρn.

By the method above, we could acquire eigenvalues of Sn from eigenvalues of S1,
which only has a time complexity of O(2n × n). We could then solve for the eigen-
vectors of Sn by solving (Sn − λI)v = 0, where v is the eigenvector.
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By doing numerical experiments, we find that for any eigenvalues with algebraic
multiplicity higher than 1, there is only 1 eigenvector. [See reviewer’s comment
(2d)] We propose the following conjecture:

Conjecture 50. The dimension of the eigenspace corresponding to each eigenvalue
of Sn is 1.

Assuming the conjecture holds, we can determine Jn of the transition matrix Sn

immediately. Even if the conjecture does not hold, we can still find Jn by the
standard method.

7. Special Cases

In the above investigation, we focus on the person with a probability 0 < ρ < 1 that
a person changes lane in a collision. So, in this section, we are going to deal with
the extreme cases where ρ = 0 or ρ = 1. We denoted a person with ρ = 0 as a ‘polite
person’, and a person with ρ = 1 as a ‘stubborn person’. These cases are considered
in the 2018 Singapore International Mathematics Challenge Section C Question
1.

7.1. Polite person

Consider there is a polite person from the East. If a collision occurs between the
person from the West and the polite person from the East, the polite person changes
lane while the person from the West remains on the original lane. Let -n0 be a
polite person. After , meets -n0 , the position of , remains unchanged and ,
meets -n0+1 on the lane after , meets -n0−1. In other words, the configuration of
the people from East behind -n0 is independent on -n0 . So, we can interpret the
situation by eliminating the polite person -n0 from the East.

If the nth person is a polite to R(n−1), we can simply ignore and eliminate that
person. Then, Sn−1 = Sn.

7.2. Stubborn person

Consider there is a stubborn person from the East. If a collision occurs between the
person from the West and the stubborn person, the stubborn person must remain
on the original lane while the person from the West changes to the other lane. Fixed
an integer n0. Let -n0 be a stubborn person. After , meets pass through -1 to
-n0 , the position of the , must on the different lane of -n0 . So, we can interpret
this situation as -0+1 as the first person from the East.

If the nth person is stubborn, we treat the n+ 1th person from the East as the first
person from the East. In addition, , meets -n+1 on the lane different from -n.
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So σ is fixed. Then,

Sn+1 = S1 and

σ =
⎧⎪⎪⎨⎪⎪⎩

1, if the stubborn person is on bottom lane,

0, otherwise.

7.3. Possible extensions

In our paper, we consider the footbridge with 2 lanes only. We may extend the
problem to more lanes. We can also develop a Markov model to solve the problem.
For example, if there are 3 lanes, we are able construct a transition matrix S1 with
dimension 3 × 3. We can also define similar expansion rules to find Sn, Vn and Ln

recursively.

8. Summary on Busy Footbridge Problem

In Chapter 3, we can compute pm,n for all m and n. We generate transition ma-
trices, collision vectors, and initial vectors to solve the Busy Footbridge Problem.
In Chapter 4, we define expansion rules in order to generate Sn, Vn and Ln respec-
tively. In addition, we are able to compute pm,n for various ρ and σ. In Chapter
5, we can apply the Ergodic Theory to obtain the limiting value qn efficiently. We
compare the exact value of qn to the approximate results obtained by Monte Carlo
Algorithm. The results are similar but not exactly equal to 1

n+1 . In Chapter 6,
we further investigate the problem on the expected number of collisions. We apply
Jordan Decomposition to ease our calculation. In Chapter 7, we discuss special
cases of the problem where ρ = 0 and 1.

Finally, we answer the original contest problem using our Markov Model, namely

pm,1 =
1

2
;

pm,2 =
1

3
− 1

4m+1 ;

q1 =
1

2
;

q2 =
1

3
;

q3 =
7

27
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Reviewer’s Comments

This article addressed a mathematical model of the probabilities that the people
on a footbridge from two sides meet. Here are some of the reviewer’s comments:

1. Novelty and methodology: The paper generalised the model to various cases
and applied a Markov model to solve those problems. The authors compared
the results generated by Monte Carlo Algorithm with those obtained from
Markov chain method. The idea and method look fine, yet it missed some
details and steps in explaining the claimed results. Here are some of the
reviewer’s suggestions:
(a) The authors claimed to use Monte Carlo algorithm in approximating qn.

Yet there is no explanation on neither why Monte Carlo algorithm is used
nor why it can approximate qn.

(b) It is not clear why pm,n can be given by such formula. The authors
should give more explanations on it as this is a very important formula
in the paper. Similarly, the authors should explain more in obtaining the
formula for qn.

(c) In order to prove that the Markov chain is regular, one needs to show
that for SOME integer n, the corresponding matrix Pn has only positive
entries (according to Definition 35). Yet the authors only mentioned in
the final line that “So, all states are accessible and all entries in (Sn)n are
positive.” Does it mean that it is true for ALL n ∈ N? If the reviewer is
correct, the authors tried to show “for all n ∈ N, there exists m ∈ N (which
may depend on n) such that (Sn)m contains only positive entries.” Yet
the authors did not explain it clearly in the paper.

(d) The authors mentioned that “The answer will be the sum of the proba-
bilities that (black smiling face)n collides with the first m (white smiling
faces).” Why is it true? At least the reviewer is not sure why the sum
always gives a positive integer.

(e) “Generally, we can solve the summation by the formula of sum of geomet-
ric series”, IN GENERAL such formula is NOT true unless ((Sn) − I)−1
exists (in particular not true for the case in the paper).

2. Organisation: The organisation is fine except that the authors missed the
sources or references in supporting the arguments. Here are some examples:
(a) It would be better if the authors can provide the reference or sources for

Theorem 5.3 and Theorem 5.4.
(b) The authors mentioned that “However, qn starts to fluctuate without

any easily observable patterns when n becomes larger.” I am curious on
how the fluctuation is as the reviewer cannot see such fluctuation from
Figure 1.

(c) The authors should pinpoint the difference between the values of qn ob-
tained by different methods.

(d) The authors mentioned “By doing numerical experiments, we find that for
any eigenvalues with algebraic multiplicity higher than 1, there is only
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1 eigenvector.” The authors should illustrate those claimed numerical
examples in supporting the argument.

(e) The listed references are not sufficient. The authors should include more
references used in the work.


