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Abstract. In this project, we shall introduce a new quantity associated with
any given shape on the plane: “optimal curve”, which is defined as the shortest

curve such that its convex hull fully covers a given shape S. Here curve can
involve straight lines or union of straight lines. [See reviewer’s comment (2)]

We shall investigate on some properties of this kind of curve and also prove a

theorem that among shapes with a given fixed length of perimeter, the circle
has the maximal optimal curve. [See reviewer’s comment (3)] Moreover, we

will introduce an algorithm to find the shortest curve with convex hull equals

a given shape in polynomial time.

1. Introduction

Isoperimetric problems refer to all kinds of mathematics problems that maximize
or minimize a certain quantity given a fixed perimeter of a plane figure. The
well-known classical isoperimetric problem is to determine a plane figure with the
largest possible area given the length of its perimeter. The solution is indeed a
circle. In this paper, we are interested in another type of isoperimetric problem.
Before explaining the actual problem, we shall first introduce a kind of curve for
each plane figure.

“Optimal curve” is defined as the shortest curve such that its convex hull fully
covers a given shape S. Here curve can involve straight lines or union of straight
lines.

The project starts with a known result about the optimal curve of a circle. Then we
will solve the alternative isoperimetric problem: what is the plane figure with the
longest possible optimal curve given the length of its perimeter? We shall show that
the solution is indeed also a circle. After that, we will research on some properties
of the optimal curve for a given shape. There is no general solution to the optimal
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curve of arbitrary plane figure, yet we can use the properties to limit the possible
curves and resort the problem to a computer program. Then we will eventually try
to solve the problem in polynomial time which is rather efficient for application.

Chapter 1 is the introduction to the project, with some definitions used throughout
the project and two known theorems that are useful in the project.

Chapter 2 is about proving that the shape with greatest optimal curve given a fixed
perimeter is actually the circle. [See reviewer’s comment (4)] This is the main result
of the project.

Chapter 3 is about finding the shortest curve such that its convex hull is a given
convex polygon S. The shape of the curve turns out varying a lot for different
polygons so we will introduce an algorithm to find the solution in polynomial time.

Before we proceed to the main content, a number of symbols and terms which will
be widely used in the project are defined as follows:

Definitions: [See reviewer’s comment (6)]

P : arbitrary point set
N : a curve
S: a convex set, it may be called a “shape” in the paper
C(S) convex hull of convex set S
C(A1A2A3 . . . An) : convex hull of points A1, A2, A3, . . . An.
L(N) : length of a curve N
G(S) : a curve with convex hull containing S, i.e. S ⊆ C(G(S))
γ(S) : a collection of all curves with convex hull congruent to S
γ0(S) : shortest curve in γ(S), i.e. γ0(S) ∈ γ(S) and

L(γ0(S)) ≤ L(N) ∀N ∈ γ(S)
Γ(S) : a collection of all curves with convex hull containing S, i.e.

Γ(S) = {N is a curve | S ⊆ C(N)}
Γ0(S) : shortest curve in Γ(S), i.e. Γ0(S) ∈ Γ(S) and

L(Γ0(S)) ≤ L(N) ∀N ∈ Γ(S). We call this curve the
“optimal curve” of shape S. This will be the major con-
cern of the whole article. Note that the “optimal curve”
may not be unique.

int(S): the interior part of shape S, i.e.
int(S)

= {T ∈ R2\S | for all line l passing through T , l ∩ S 6= ∅}
ext(S): the exterior part of shape S, i.e. ext(S) = R2\(S∪ int(S)).
l(AB): the line passing through points A and B
r(AB): the ray starting from A and passing through B
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AB: the line segment from A to B

ÂB: A and B are points on a given curve, then ÂB is the part of
the curve with endpoints A and B.

∠ABC: the undirected angle between
−−→
BA and

−−→
BC that is not greater

than π

supp ∠ABC: the undirected angle between
−−→
BA and

−−→
CB that is not greater

than π

ref ∠ABC: the undirected angle between
−−→
BA and

−−→
BC that is greater

than π and smaller than 2π.
P(∠ABC): r(BA) and r(BC) divide the R2 plane into two parts.

P(∠ABC) is the part where ∠ABC is at (excluding
r(BA) and r(BC)). Similarly define P(supp ∠ABC) and
P(ref∠ABC).

“Supporting line” a line on the plane that intersect S on at least one point so
of shape S: that shape S lies on only one half-plane divided by this line.

Besides, there are two key theorems that will be used in the project:

Theorem 1. Given a point set, among the continuous shapes that completely covers
the whole set, the convex hull of the set has the smallest perimeter.

[See reviewer’s comment (7)]

Proof. Firstly among any convex sets covering the point set, the convex hull has
the smallest perimeter. This can be proved by contradiction. Suppose another
convex set that covers the point set has smaller area. Since this convex set also
covers the convex hull, we can find two points on the boundary of this set that are
not connected by straight line on the boundary of the set. Then as long as we take
the two points close enough, we can draw a straight line between them that does
not intersect the convex hull. Then by replacing the original curve between the
two points with the straight line we can get a convex set with smaller perimeter,
contradiction.

For non-convex sets, we can take their convex hull to form a convex set with perime-
ter shorter than theirs, which in term has perimeter longer than or equal to that
of the convex hull of the original set. So the result follows.
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Theorem 2. The optimal curve of circle is a shape like this:

For this theorem, it is a known result due to H. Joris in the paper [2] Theorem 2.
I will not reproduce the proof here again due to its length and the proof itself does
not contribute to the following context. The result, though, plays an essential role
in the project.

2. The shape with greatest optimal curve given a fixed length of perime-
ter

[See reviewer’s comment (5)]

In Chapter 1, we have introduced that the optimal curve, i.e. the shortest curve
with convex hull covering a given circle has a shape like this (the blue line):

It is a “yurk”-like shape. It is determined only by the given shape (a circle in this
case), and a supporting line. In general, given an arbitrary connected shape, we
can define a yurk Y (S, l) for each supporting line l.

Definition 3. For a given shape S and its supporting line l,

1. Choose two supporting lines a, b that are perpendicular to l. Then each of a, b
touches S on at least one point from the definition of supporting lines. Choose
one of the touching points on a and label it as A. Similarly label the point B
on b. (it is obvious that the choice of the touching point will not affect Y (S, l))

2. Label A′ = a∩l and B′ = b∩l. We define the yurk Y(S, l) = A′A∪ÂB∪BB′.
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Example of Y (S, l) for a given hexagon S:

Definition 4. Define width as the distance between two parallel supporting lines
of shape S, and d(S,l) is the width of S in the direction perpendicular to l.

[See reviewer’s comment (8)]

We shall first consider a special case for shape S:

Theorem 5. L(Y (S0, l)) =
p

2
+d(S0, l), where S0 is a centrosymmetric convex set,

i.e. a convex set with rotational symmetry of order 2 with respect to a point O on
the plane.

[See reviewer’s comment (9)]

Proof. Consider an supporting line p of S0 that is perpendicular to line l, then if
we perform a rotation of 180 degrees with respect to O, then we will get another
supporting line p′ of S0.

Label A as one of the points at which p intersects S0, then the rotational image of
A, labelled as A′, will also be one of the intersection points of p′ and S0. Since A′

is the image of A, so A,O,A′ collinear. Furthermore, AO = OA′.

Label the projection of A,O,A′ on l as H,O′, H ′ respectively.

Then since S0 is centrosymmetric, so every line m passing through O will cut the
perimeter of S into two congruent parts, i.e. AA′ cuts the perimeter into half. Let

the length of perimeter be P , then L(ÂA′) =
p

2
.

Moreover, as O is midpoint of AA′, O′ is midpoint of HH ′, so AH+A′H ′ = 2OO′.
Notice that if we rotate OO′ and l by 180 degrees with respect to O to get OO′′

and l′ respectively, then as OO′ ⊥ l and OO′′ ⊥ l′, O′O′′ is indeed the width of
shape S0 in the direction perpendicular to l. So 2OO′ = O′O′′ = d(S0, l).
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Therefore:

L(Y (S0, l)) = L(AH ∪ ÂA′ ∪A′H ′) = AH + L(ÂA′) +A′H ′

=
p

2
+ 2OO′ =

p

2
+ d(S0, l).

Theorem 6. min
l
L(Y (S0, l)) ≤

(
1

2
+

1

π

)
P for all centrosymmetric set S0.

Proof. By Theorem 5, min
l
L(Y (S0, l)) =

p

2
+ min

l
(d(S0, l)) =

p

2
+ 2 min

l
(OO′).

(O′ is defined as in the proof of Theorem 5)

In fact OO′ is the distance from O to line l. To make OO′ the shortest, we should
first notice that O′ must lie on S0. It is because if otherwise, suppose OO′ intersects
S0 at K, we can choose the supporting line l0 which touches S0 at K instead. This
would be a shorter choice than l. From the convexity of S0 this line exists.

So all we have to do is to find a point K on S0 such that OS0 is minimal, and
then take the supporting line which touches S0 at K. So the length of OK is

d′ =
1

2
min
l

(d(S0, l)).

If we draw a circle with radius d′ and centre O, then this circle should lies completely
inside shape S. So the length of perimeter of this circle is less than that of S0, i.e.

2π(d′) ≤ P , d′ ≤ p

2π
by Theorem 1.

So min
l
L(Y (S0, l)) =

p

2
+ min

l
(d(S0, l)) =

p

2
+ 2d′ ≤ p

2
+ 2× p

2π
=

(
1

2
+

1

π

)
P.
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Theorem 7. min
l
L(Y (S, l)) ≤

(
1

2
+

1

π

)
P for all convex set S.

Proof. Let dmin be the minimum width of convex set S, i.e. there exist parallel
supporting lines l0, l

′
0 such that distance between them is dmin, while the distance

between any other pairs of parallel supporting lines of convex set S is not less than
dmin.

Pick an arbitrary point O on the plane.

Let convex set S′ be the rotational image of convex set S by 180 degrees with respect
to point O. Now consider the Minkowski Sum of S + S′ = M (See Appendix 1 for
definition and properties):

From the properties of Minkowski Sum we know that the width of M is at least
2dmin (Theorem 15) and its perimeter is 2P (Theorem 16). Moreover M is cen-
trosymmetric (Theorem 17), so there exists a point O such that M has rotational
symmetry of order 2 with respect to O. [See reviewer’s comment (10)]

↓

Then by Theorem 5, L(Y (M,L)) =
2P

2
+ d(M, l) = P + d(M, l).

By Theorem 6,
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min
l
L((Y (M,L)) ≤

(
1

2
+

1

π

)
(2P )

min
l

(P + d(M, l)) ≤
(

1

2
+

1

π

)
(2P )

P + min
l

(d(M, l)) ≤
(

1

2
+

1

π

)
(2P )

P + 2dmin ≤ P +
2P

π

dmin ≤
P

π

Back to the convex set S.
Label the two supporting lines of S that are perpendicular to l0 as a0, b0. a0
intersects l0, l

′
0 at A′, A′′ respectively, b0 intersects l0, l

′
0 at B′, B′′ respectively. The

touching points of shape S on a0, b0 are A and B respectively.

Notice that:

L(Y (S, l0)) + L(Y (S, l′0)) = A′A+ L(ÂB) +BB′ +A′′A+ P − L(ÂB) +BB′′

= P + 2d(S, l) = P + 2dmin

∴ min
l
L(Y (S, l)) ≤ min{L(Y (S, l0)), L(Y (S, l′0))} ≤ 1

2
(L(Y (S, l0)) + L(Y (S, l′0)))

=
1

2
(P + 2dmin) ≤ 1

2

(
P + 2

P

π

)
=

(
1

2
+

1

π

)
P

Now we shall prove the main theorem of the project:

Given a fixed length of perimeter, the shape with maximum optimal curve is a
circle.

Definition 8. Define a function r(S) = L(optimal curve of S)
L(perimeter of S) .



CURVE OPTIMIZATION PROBLEM 35

Theorem 9. r(S) ≤ r(C) for all convex set S, where C is a circle on the plane.

Proof. By Theorem 2, for a circle C with radius r, r(C) =
π + 2

2π
=

1

2
+

1

π
. So it is

left to prove that for all shape S on the Euclidean plane, r(S) ≤ 1

2
+

1

π
. Since for

arbitrary convex set S, the convex hull of Y (S, l) can cover the whole shape S, so
we have:

r(S) =
L(optimal curve of S)

L(perimeter of S)
≤ minl L(Y (S, l))

L(perimeter of S)
≤
(
1
2 + 1

π

)
P

P
=

1

2
+

1

π
= r(C)

It is now left to prove that the equality case of the inequality in Theorem 9 holds
if and only if S is a circle.

For this, we have to re-consider the equality cases in the various inequalities. For the
equality in Theorem 9 to hold, all the equality cases in the intermediate inequalities
have to hold.

In Theorem 6, the equality case of the inequality d′ ≤ P

2π
holds if and only if the

shape S is exactly a circle (by Theorem 1). So the shape M in Theorem 7 is a
circle, i.e. with constant width. So the shape S in Theorem 7 also has constant
width, which is the radius of the circle M (by Theorem 15).

Now re-consider the inequality in the proof of Theorem 7:

min
l
L(Y (S, l)) ≤ min{L(Y (S, l0)), L(Y (S, l′0))} ≤ 1

2
(L(Y (S, l0)) + L(Y (S, l′0)))

=
1

2
(P + 2dmin) ≤ 1

2

(
P + 2

P

π

)
=

(
1

2
+

1

π

)
P

The second inequality sign reveals that L(Y (S, l0)) = L(Y (S, l′0)) when equality
holds. Since the shape S is of constant width, l0 can be any supporting line of
shape S. So this requires L(Y (S, l0)) = L(Y (S, l′0)) to hold for all the supporting
lines of shape S. So S is a centrosymmetric shape.

It is left to show that the only shape of constant width and is centrosymmetric is
circle.

For this, let a shape of constant width has a diameter (the line connecting two
extreme points in a given direction) AB. AB must pass through the center of
symmetry. Otherwise, its central image A′B′ is another diameter in the same
direction. In the parallelogram ABA′B′ one of the angles A or B is not less than
90◦. Assuming it’s A, from 4BAB′, BB′ > AB. But this leads to a contradiction,



36 PING NGAI CHUNG

because in a shape of constant width no two points may be at the distance exceeding
its diameter (common width in any direction.)

Therefore, all diameters of a centrally symmetric shape of constant width pass
through the center of symmetry. Because of the symmetry, each of the diameters
is divided in half by that point. So it is a circle with diameter equals to the width.

Therefore, the shape with greatest optimal curve given a fixed length of perimeter
is circle.

3. The shortest curve such that its convex hull is a given convex
polygon S

In this chapter, we will first introduce three properties of the shortest curve and
then suggest an algorithm to find the curve for a general polygon S given the
coordinates of all its vertices.

Suppose the polygon S has vertices A1, A2, A3, . . . An, where Ai and Ai+1 are con-
secutive ∀i = 1, 2, 3, . . . , n and An+1 = A1.

Lemma 10. The shortest curve passes through Ai ∀A1, A2, A3, . . . An.

Proof. We shall prove by contradiction, i.e. assume that the shortest curve does
not pass through Ai for some i ∈ {1, 2, 3, , n}.

Denote the curve by γ0(S).

Since the convex hull of the curve is exactly shape S, no points on the curve should
be in the exterior part of S. Since S is convex, the whole shape S is in the same
half-plane divided by l(AiAi1) and also in the same half-plane divided by l(AiAi+1).
Thus γ0(S) is in the region P (∠Ai−1AiAi+1) ∪ r(AiAi−1) ∪ r(AiAi+1).
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i.e. C(γ0(S)) is in the region P (∠Ai−1AiAi+1) ∪ r(AiAi−1) ∪ r(AiAi+1) too.

Notice that Ai ∈ S ⊆ C(γ0(S)).

If Ai is inside C(γ0(S)), then for all point T ∈ C(γ0(S)), l(AiT ) cuts the plane into
two half-planes such that the intersection of each of the half plane and C(γ0(S))
is not empty. However as Ai−1 ∈ C(γ0(S)) and the whole C(γ0(S)) is on one
half-plane of l(AiAi−1) only, this yields a contradiction.

So Ai lies on the boundaries of C(γ0(S)), WLOG suppose the line which includes
the side on which Ai be l0.

Yet as Ai /∈ γ0(S), there exist two points M,N ∈ γ0(S) which lies on l0. Since
Ai ∈ MN , M,N lies on different sides of Ai on l0. But this contradict to the fact
that C(γ0(S)) is in the region P (∠Ai−1AiAi+1) ∪ r(AiAi−1) ∪ r(AiAi+1).

[See reviewer’s comment (11)]

Lemma 11. The shortest curve will pass each vertex at most one time.

Proof. Proof by contradiction.

Assume that the curve pass vertex Ai more than once.

Case 1) Ai is the endpoint of γ0(S)

Then Ai is of at least degree 3. Let AiT be the line segment which starts with Ai
and is the first segment of γ0(S). If we choose a point B in AiT , then as Ai is still
of at least degree 2, so C(γ0(S)) = C(γ0(S)\BAi), yet L(γ0(S)) > L(γ0(S)\BAi),
so we can replace γ0(S) by γ0(S)\BAi. This contradicts the minimality of γ0(S).
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Case 2) Ai is not the endpoint of γ0(S)

Then Ai is of at least degree 4.

Let BAi and AiC be two consecutive line segments of γ0(S). If we replace BAi
and AiC by BC, then as the degree of Ai is still at least 2, the convex hull will not
change, but the total length of the curve would be shorter as BAi + AiC > BC,
this again contradicts the minimality of γ0(S).

[See reviewer’s comment (12)]

Lemma 12. There is no self-intersection on the shortest curve.

Proof. This is again proved by contradiction.

Suppose there exist two lines AD and BC in γ0(S) which intersect each other.
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Let E be the intersection point of AD and BC, then by triangle inequality,

AE + EC > AC,BE + ED > BD,

so AD + BC = AE + ED + BE + EC > AC + BD. Moreover since the convex
hull of AD and BC is C(ABCD), while the convex hull of AC and BD is also
C(ABCD), so we can construct a new curve γ′0(S) = (γ0(S)∪AC ∪BD)\AD\BC.
It has the same convex hull as γ0(S), yet shorter, this contradicts to the minimality
of γ0(S).

From Lemma 10 we can conclude that the curve γ0(S) is the union of line segments
whose endpoints are the vertices of S. From Lemma 11 we know that γ0(S) passes
each vertex exactly once, so there are n − 1 line segments in γ0(S). From simple
counting we know that the number of such curves is only n!. The shortest among
these n! curves would be γ0(S).

In general the shape of the shortest curves can be complicated, so we would try an
algorithmic approach to find the shortest curve for a general polygon.

Since we have limited the answer to be the shortest among a finite number of
curves, a simple algorithm would certainly be finding the length of all the n! curves
and take the minimum. However, the time complexity for this algorithm would be
at least O(n!), provided that we can find an O(1) algorithm to find the length of
curves.
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However, the time complexity of this algorithm would be non-polynomial and thus
not efficient and applicable for large n. So in the following, we would introduce an
algorithm in polynomial time on n using the three lemmas.

First we shall develop a recursion relation using Lemma 12. We first choose one of
the n vertices as a starting point of the curve. WLOG we shall choose A1. Label
it as γ1 on the curve. Then we shall notice that there are only two choices of γ2,
which are A2 or An. It is because if we choose neither of them, say we choose
Ai, i 6= 2, n, then by Lemma 12 the curve will not intersect itself, so the curve will
then completely be on either the left side or the right side of l(A1Ai). But as A2

and An are on different sides of l(A1Ai), so at least one of them cannot be reached
by the curve. This is a contradiction to Lemma 10.

Using similar logic we can show that when k vertices are chosen, there are only two
choices of the (k + 1)th vertex. That is the vertex so that all the chosen vertices
are consecutive. A rigorous description is as follows:

Define a function R : {1, 2, 3, , n}3 → R as follows:
R(S, T, L) is the length of shortest curve that passes through verticesAS , AS+1, . . . , AT
if S ≤ T , or AS , AS+1, . . . , An+T if S > T and ends at point AL. From the obser-
vation in the above paragraph, L = S or T .

Then we can develop the following relations:

R(S, T, S) = min(R(S + 1, T, S + 1) +ASAS+1, R(S + 1, T, T ) +ASAT )

R(S, T, T ) = min(R(S, T − 1, S) +ASAT , R(S, T − 1, T − 1) +AT−1AT )

With the base case that R(N,N,N) = 0 ∀N ∈ {1, 2, 3, , n}, we can develop an
dynamic programming algorithm with pseudo code like this:

(please note that in the following code, D,S, T and X are all taken modulo n, i.e.
negative values are added by n, while values larger than n are subtracted by n)
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L(P,Q) = length of APAQ

for D from 0 to n− 1 by 1
for T from 1 to n by 1

IF D = 0 then R(T −D,T, T ) := 0;
ELSE
S := T −D
R(S, T, T ) := min(R(S, T − 1, S) + L(S, T ), R(S, T − 1, T − 1)

+L(T − 1, T ))
for S from 1 to n by 1

T := S +D
R(S, T, S) := min(R(S + 1, T, S + 1) + L(S, S + 1), R(S + 1, T, T )

+L(S, T )

MIN =∞
for X from 1 to N by 1

IF R(X,X − 1, X) < MIN then MIN := R(X,X − 1, X)
IF R(X,X − 1, X − 1) < MIN then MIN := R(X,X − 1, X − 1)

output MIN

In this way we can find the minimum curve in time complexity O(n2).

The complete code in C++ and the program description is attached in the Appendix
2 of the project.

Conclusion

In this project, the main result is to prove that the convex set with greatest optimal
curve given a fixed perimeter is a circle. We have also introduced an algorithmic
approach to find the curve with convex hull exactly equal to a given shape. Most
of the contents in these two parts are original.

The first result is a pure mathematical discussion and the result is believed to be
new. The introduction of the Minkowski Sum is probably the most critical part of
the proof. I have taken the proof of the Theorem of Barbier as reference and found
it quite useful.

The second part, however, is quite different from the first part, in terms of both the
result and the approach. The original goal of this part is indeed to find the actual
optimal curve for a general shape. However, on the way that we do the research,
we find that the shape of the optimal curve can actually vary a lot even for very
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similar shapes. The number of combinations is too voluminous that a pure logical
discussion may not be able to find an elegant and useful result. We have thought of
determining the conditions of the choice of different curves, yet no good properties
can be found. So we eventually resort to an algorithmic approach, which seem to
be more practical. Though this may reduce the elegancy of the project, we believe
this can be of practical importance in other curve optimization problems.

A close variation of Theorem 2, the forest problem, is once open for a few decades
([1]). So it is not surprising that the more general result of considering the optimal
curve for general shapes is complicated. I sincerely hope that the algorithm I
introduced as well as the conclusion made in Chapter 2 would be useful in tackling
this problem.

Last but not least, I would like to thank my teacher advisor, Ms. Luk Mee Lin,
for her precious opinions on my project, and also Prof. Oliver Knill of Harvard
University for introducing me the topic and giving some insights.
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Appendix 1: Minkowski Sum

For two given convex set A and B on the Argand plane, the Minkowski Sum A+B
is defined as follows:

A+B = {a+ b | a ∈ A, b ∈ B}.

Here is a list of facts of Minkowski Sum which are used in the project.
(Unless otherwise specified, all the definitions used here are as mentioned in the
main context.)

Theorem 13. The shape of A + B is independent to the choice of origin of the
Argand plane.

Proof. For convenience, denote the set X when O is chosen as origin as XO. So for
two different origins, say O and O′, choose arbitrary point x ∈ (A + B)O. Then
there exist a ∈ AO, b ∈ BO such that a+ b = x by definition.

Since
−−→
O′O + a ∈ AO′ ,

−−→
O′O + b ∈ BO′ so:

2
−−→
O′O + x = 2

−−→
O′O + a+ b = (

−−→
O′O + a) + (

−−→
O′O + b) ∈ (A+B)O′
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This means that every points in (A+B)O′ is a simple translation of (A+B)O by

2
−−→
O′O. Thus they have the same shape.

Theorem 14. If A and B are convex sets, then A+B is a convex set.

Proof. We can define convex set rigorously as follows:
A point set S is convex if ∀x, y ∈ S, dx + (1 − d)y ∈ S ∀d ∈ [0, 1]. This is just a
rephrase of the usual definition of convexity: the line segment joining any pair of
points of S lies entirely in S.

Then pick arbitrary two points, y ∈ (A+B). [See reviewer’s comment (13)] Suppose
ax, ay ∈ A and bx, by ∈ B such that ax + bx = x and ay + by = y. Since A and B
are convex sets, so for d ∈ [0, 1], dax + (1− d)ay ∈ A and dbx + (1− d)by ∈ B.
Therefore

dx+ (1− d)y = d(ax + bx) + (1− d)(ay + by)

= (dax + (1− day + dbx+ 1− dby
∈ A+B by definition. [See reviewer’s comment (14)]

So (A+B) is also convex.

Theorem 15. d(A, l) +d(B, l) = d(A+B, l). In other words, the width of (A+B)
in the direction perpendicular to line l equals the sum of the widths of A and B in
the same direction.

Proof. In this proof, we shall put the whole problem onto a Cartesian plane instead
of Argand plane using the well-known correspondence between the two of them for
convenience.

Suppose the angle between line l and the x-axis as θ. Suppose the normal form of
the equations of the two supporting lines of A parallel to l as x cos θ+ y sin θ = pA
and x cos θ + y sin θ = qA (WLOG let pA < qA). Define pB , qB , pA+B and qA+B in
a similar way. Then the width d(A, l) = |pA − qA|. Moreover, ∀(x, y) ∈ A,

pA ≤ x cos θ + y sin θ ≤ qA.
Similarly d(B, l) = |pB − qB | and ∀(x, y) ∈ B,

pB ≤ x cos θ + y sin θ ≤ qB .

Please note that the equality in all the 4 inequalities hold for at least one pair of x
and y.

Now for each point (x, y) ∈ (A + B), there exist (xA, yA) ∈ A and (xB , yB) ∈ B
such that (x, y) = (xA, yA) + (xB , yB). As

pA ≤ xA cos θ + yA sin θ ≤ qA and pB ≤ xB cos θ + yB sin θ ≤ qB ,
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so pA + pB ≤ x cos θ + y sin θ ≤ qA + qB . Pick (xA, yA) ∈ A so that

pA = x cos θ + y sin θ

and (xB , yB) ∈ B so that

pB = x cos θ + y sin θ.

Then pA + pB = (xA cos θ + yA sin θ) + (xB cos θ + yB sin θ) = x cos θ + y sin θ.
Similarly we can verify that the equality in both inequalities hold for at least one
pair of x and y.

Therefore d(A+B, l) = (qA + qB)− (pA + pB) = d(A, l) + d(B, l).

Theorem 16. The perimeter of (A+B) equals the sum of perimeters of A and B.

Proof. We shall first consider the case when A and B are both convex polygons.

Arbitrarily pick one of the sides of A and label the line that it lies on as a. Suppose
the angle between a and real axis is θ. For convenience multiply every points in A
and B by e−iθ. Now by theorem 13 we can choose one ended point of the chosen side
as the origin while the rest of the side lie on the positive real axis. Now translate B
so that B lies completely above the real axis and touches the real axis on at least
one point.

Let la be the length of the chosen side, so the part that A touches the real axis is
{x | 0 ≤ Re(x) ≤ la}.

Firstly since both A and B lies completely above the real axis, (A + B) also lies
completely above the real axis.

If none of the sides of B is parallel to a, suppose the point that B touches real axis
as β. So the part that it touches the real axis would be {x | β ≤ Re(x) ≤ β + la}.
This means that A+B would have a side with length la.

If one of the sides of B is parallel to a, suppose the part that B touches real axis
as {x | β ≤ Re(x) ≤ β + lb}. Then the part that it touches the real axis would
be {x | β ≤ Re(x) ≤ β + la + lb}. This means that A + B would have a side with
length la + lb.

Since the side is arbitrarily chosen, we can do the same on every side of A and B.
This means that for every side of A and B, there will be a side of A+B with the
same length and parallel to it, i.e. each side of A and B are translated to be a side
of A + B. It is left to prove that each side of A + B is parallel to one of the sides
of A or B.

This is obvious using the proof by contradiction. If one of the sides of A + B is
not parallel to any of the sides of A and B, then the supporting lines of A and B
parallel to this side would touch A and B at only one point. So by the definition of
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Minkowski Sum the supporting line of A+B parallel to this side would also touch
the shape at only one point, contradict to the fact that it is a side of A+B.

So the sides of A+B are composed of the sides of A and B only, so the perimeter
of A+B is equal to the sum of perimeter of A and B.

Now consider the general case of A and B. Let PA and PB be the perimeters of A
and B respectively. We shall now construct polygon A′ with n sides in the following
way:

Choose a point on the boundary of A and label it as A1. On the boundary of A,

label a new point A2 so that L(Â1A2) =
PA
n

. Now label Ai+1 on the boundary of

A so that Ai+1 is on different side of Ai as Ai−1, i = 2, . . . , n. An+1 should then be
equal to A1.

Label the polygon A1A2A3 . . . An as A′. B′ is constructed in a similar way. Firstly
A′ is a convex polygon since A is convex. Also, due to the convexity of A, A′ is
completed covered by A.

So (perimeter of A′)≤(perimeter of A), (perimeter of B′)≤(perimeter of B).

On the other hand, for each AiAi+1, construct a line li that touches A and is parallel
to A. Then l1, l2, . . . , ln shall construct another polygon A′′ with n sides. Moreover,
A′′ completely cover A. So (perimeter of A)≤(perimeter of A′′). Similarly construct
B′′ and we have (perimeter of B)≤(perimeter of B′′).

We shall then notice that as A covers A′ and B covers B′, then A+B covers A′+B′.
Similarly A′′ +B′′ covers A+B. So

(perimeter of A′ +B′) ≤ (perimeter of A+B) ≤ (perimeter of A′′ +B′′).

Notice that as n tends to infinity, A′ tends to A′′ and B′ tends to B′′. So A′ +B′

tends to A′′ +B′′, i.e. (perimeter of A′ +B′) = (perimeter of A′′ +B′′). So

(perimeter of A′ +B′) = (perimeter of A′′ +B′′) = (perimeter of A+B),

(perimeter of A′) = (perimeter of A′′) = (perimeter of A) and

(perimeter of B′) = (perimeter of B′′) = (perimeter of B)

Since A′ and B′ are polygons,

perimeter of A′ +B′ = (perimeter of A′)+(perimeter of B′),

so

perimeter of A+B = (perimeter of A)+(perimeter of B).

Therefore the general case is solved.

Theorem 17. If convex set S′ is the rotational image of convex set S by 180 degree
with respect to a given point O, the S + S′ is centrosymmetric with centre O.
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Proof. Take O as the origin of the Argand plane. For every point x ∈ S+S′, there
exist a ∈ S and b ∈ S′ such that a + b = x. Moreover, as S and S′ are rotational
images with respect to O, so −b ∈ S and −a ∈ S′, so −x = −a − b ∈ S + S′.
Therefore S + S′ is centrosymmetric.

Appendix 2: The computer program:

The C++ code of the program is:

The program runs in this way:

1. Input the number of sides of the polygon:
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2 Input the coordinates of each vertex of the polygon clockwisely:

3 The program will output the length of the optimal curve:

A slight adjustment on the data structure used in the program can actually
produce the whole curve:
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Reviewer’s Comments

The reviewer has some comments about the presentation of this paper, as well as
the notations and typos.

1. The reviewer has comments on the wordings, which have been amended in
this paper.

2. It is a little ambiguous to specify that “here curve can · · · union of straight
lines”. The reviewer suggests either deleting it or rewriting it as “here curves
can involve unions of straight and curved lines”.

3. It may be better to replace “maximal” by “longest”.
4. It may be better to replace “greatest” by “longest”.
5. It may be better to replace “greatest” by “longest”.
6. Definitions for “int(S)” and “ext(S)” are confusing (with typos?) and not

canonical;
Definition for P (∠ABC) is not so mathematical although it can be under-
stood. How about “r(BA) and r(BC) divide R2 plane into two sectors.
P (∠ABC) is the minor sector with angle not greater than π ”?

7. (a) it may be more precise to replace “continuous shapes” by “connected
shapes”;

(b) in the 3rd line of the proof, “smaller area” should be “smallest perimeter”;
(c) the first part of the proof may be more readable together with a graph;
(d) the second part, the conclusion of “convex hull has smaller perimeter

than the original set” is not obvious, so a proof or a reference may be
needed here.

8. “the direction perpendicular to l” is ambiguous and appears several times,
and it should mean “the distance between two supporting lines parallel to l”.

9. P should be defined first, i.e. the perimeter of S0 (or perimeter of S for
Theorem 7), and the notation P defined in section 1 should be deleted.

10. “there exists a point O” is not accurate, and it should be just the point O
chosen before.

11. The proof is confusing.
Firstly, the convex hull of the curve is assumed to be exactly S, i.e. C(γ0(S)) =
S, and it is obvious that Ai is on the boundary of S, which implies the first
case “Ai inside C(γ0(S)) does not make sense.
The reviewer suggests rewriting the proof as follows.
Since Ai ∈ C(γ0(S)), there exist finite points Pj ∈ γ0(S), j = 1, · · · , k such
that Ai lies in the convex polygon Ω with vertexes Pj . Case 1: Ai lies in the
interior of Ω; Case 2: Ai lies on one side (edge) of Ω, called l0. Then derive
the contradictions for both the two cases.

12. What is the definition of “degree of point Ai?
13. It should be “two points x, y ∈ (A+B)”.
14. It should be “(dax + (1− d)ay) + (dbx + (1− d)by) ∈ (A+B).
15. The references should be arranged in the alphabetical order.


