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Abstract. In 1903, an anonymous reader submitted a question to Mathe-
matical Questions in The Educational Times: Find all consecutive triples of

sums of two squares. J.E. Littlewood later posed a question on whether in

general there exist infinitely many triples n, n+ h, n+ k that are simultane-
ously sums of two squares? By solving the equation a2 + 2 = (a− l)2 + b2, we

give all consecutive triples of sums of two squares such that the first number

is a perfect square. This method is generalised to solve Littlewoods problem
for the case when h is a perfect square.

We also prove that there are infinitely many pairs of consecutive triples of

sums of two squares such that the first numbers of the two triples differ by 8.

1. Introduction

In 1903, an anonymous reader submitted a question to Mathematical Questions in
the British journal The Educational Times: Find all consecutive triples of sums
of two squares. Solutions were submitted by A. J. Champneys Cunningham and
two other British academics. [8] In 2000, problem A2 of the 61st William Lowell
Putnam Mathematical Competition was to show that there exist infinitely many
triples (n, n+ 1, n+ 2) such that each member of the triple is a sum of two squares.
[5]1 This can be easily proved by giving an infinite sequence of triples having the
property. (4n4 + 4n2, 4n4 + 4n2 + 1, 4n4 + 4n2 + 2) is one of the examples as





4n4 + 4n2 = (2n2)2 + (2n)2

4n4 + 4n2 + 1 = (2n2 + 1)2 + 02

4n4 + 4n2 + 2 = (2n2 + 1)2 + 12
.

1For examples, (0,1,2) is the first set of those triples since 0 = 02 + 02, 1 = 12 + 02 and
2 = 12 + 12.
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Many solutions of the Putnam problem can be found on the web. All these solutions
construct infinitely many such triples. But the triples given in these solutions are
all different, and many triples with the property are not included in any of these
solutions. The 1903 Educational Times problem is much harder than the 2000
Putnam problem. In our project, we give a partial solution to the 1903 problem,
with an additional condition that one of the three numbers of the triple is a perfect
square. We also proved that there are infinitely many pairs of consecutive triples
of sums of two squares such that their starting numbers differ by 8.

When n is a perfect square, it is obvious that both n and n + 1 are sums of two
squares. We have a triple of the desired property if n+2 can be written as the sum
of two squares. It leads to our search for the solution to the quadratic Diophantine
equation a2 + 2 = (a − l)2 + b2. We find that the equation has solutions if and
only if all prime factors of l are congruent to 1 or 7 modulo 8, and we can give the
general solution of the equation if we have the square roots of 2 modulo l. [See
reviewer’s comment (1)]

We then further apply our method to the equation a2 + k = (a − l)2 + b2 (k is
an arbitrary integer). The possible values of l depend on the prime factorization
of k. Our work on this equation gives a partial solution to a problem posed by
John Edensor Littlewood: Given distinct positive integers h and k, do there exist
infinitely many triples n, n+ h, n+ k that are simultaneously sums of two squares?
[8]

2. A Putnam problem

In 2000, a problem appeared in the 61st Williams Lowell Putnam Mathematical
Competition:

Prove that there exist infinitely many integers n such that n, n+1
and n+2 are each the sum of the squares of two integers. [Example:
0 = 02 + 02, 1 = 02, 12, 2 = 12 + 12.]

There are many solutions to this statement available on the internet. Most of them
take n+ 1 as a perfect square. If n+ 1 = x2 = x2 + 02, then n+ 2 = x2 = x2 + 12

and what remains is to show that there are infinitely many ways to write n = x2−1
as the sum of two squares.

For convenience, we call a triple of non-negative integers (n, n + h, n + k) an h, k-
triple if n, n+h and n+k are all sums of two perfect squares. The Putnam problem
is to prove that there exist infinitely many 1,2-triples.
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2.1. When n+ 1 is a square

Let z be an given even integer. Then z2 + 1 = ab for some odd integers a and b.

By letting x =
a+ b

2
and y =

a− b
2

, we have z2 + 1 = x2 − y2. Take n = x2 − 1,

then n = z2 + y2, n+ 1 = x2 + 02.[6]2

In particular, we can take a = z2 + 1 and b = 1. Then x =
z2

2
+ 1, y =

z2

2
and

hence n = z2 +

(
z2

2

)2

, n+ 1 =

(
z2

2
+ 1

)2

+ 02 and n+ 2 =

(
z2

2
+ 1

)2

+ 12. As

(
z2

2
+ 1

)2

is a strictly increasing function for positive z, this construction gives

infinitely many 1, 2-triples.

Remark 1. Whenever the middle number of an 1, 2-triple is a perfect square, say
x2, x2 − 1 is a sum of two squares. Since x2 − 1 = y2 + z2 and a perfect square
has remainder either 0 or 1 when it is divided by 4, both y and z must be even, as
otherwise x2 = y2 + z2 + 1 will have remainder 2 or 3 when it is divided by 4. [See
reviewer’s comment (2)] Let a = x+ y, b = x− y. Then abx2− y2 = z2 + 1. So the
above solution actually gives a method to construct all 1,2-triples with the middle
number being a perfect square.

2.2. 1,2-triples by solutions of a Pells Equation [6]

Pell’s equation x2 − 2y2 = 1 has infinitely many solutions. 3 If n = x2 − 1, then
n = y2 + y2, n+ 1 = x2 + 02, n+ 2 = (y − 1)2 + (y + 1)2. 4

Remark 2. As the middle numbers of the 1,2-triples given by this solution are
perfect squares, all of them are covered by the solution in Section 2.1. However,
the idea of using the solutions of a Pells Equation helps us to prove a property of
1,2-triples in Chapter 3.

2.3. BrahmaguptaFibonacci Identity

The famous BrahmaguptaFibonacci identity [12]

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2

2The original proof includes a condition that z2 + 1 is not prime. This condition is indeed

unnecessary.

3Let


x1
y1


 =


1

0


,


xn+1

yn+1


 =


3 4

2 3




xn
yn


 for n ≥ 1. Then x2n − 2y2n = 1. [2]

4The solutions of Pells Equations grow very fast. Among the first 12,095 1,2-triples, this

method covers only five of them.
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can be used to generate an 1,2-triple from another 1,2-triple. Let x2 − 1 = z2y + 2
which is the sum of two squares, then

x4 − 1 = (x2 − 1)(x2 + 1) = (z2 + y2)(x2 + 1) = (zx− y)2 + (yx+ z)2.

So x4−1 is also the sum of two squares. Therefore (z2+y2, x2+02, x2+12) induces
the 1, 2-triple ((zx− y)2 + (yx+ z)2, x4 + 02, x4 + 12). [6]

2.4. Missing solutions

This Putnam problem may be the easiest one in the 61st competition5, and there
are many ways to give an infinite set of 1,2-triples. Many proofs are available on
the internet, but these proofs are quite different and there are many 1,2-triples not
covered by any one of the proofs. We used an Excel VBA program to test all non-
negative integers up to 4,800,000 and found that there are 977,896 of these integers
which can be written as the sum of two perfect squares. Among these integers,
12,095 1,2-triples are found.

While it is not difficult to solve the problem, all those solutions on the internet
missed most of the triples found by our computation. Among the first 12,095 1,2-
triples, only 107 of them have the middle numbers being perfect squares (0.88%).
6

3. More about 1,2-triples

3.1. Properties of 1,2-triples

Theorem 3. An 1,2-triple always starts with a multiple of 8.

Proof. Let x = 4n+ k, where n ∈ Z and k ∈ {0, 1, 2, 3}. Then

x2 = 8(2n2 + kn) + k2.

So we can find all possible values of x2 modulo 8 by considering 02, 12 and 32, as
shown in TABLE 1. So for x, y ∈ Z, only possible values of x2 + y2 modulo 8 are

x (mod 4) 0 1 2 3

x2 (mod 8) 0 1 4 1

Table 1. All possible values of x2 (mod 8)

0,1,2,4 and 5, as shown in TABLE 2. [See reviewer’s comment (3)]

5150 of the top 195 contestants scored full mark in this problem. [7]
6We later refine our algorithm and find 3,008,296 1,2-triples, only 1,388 of them have the

middle number being perfect squares (0.046%).
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x2 + y2 (mod 8)
x2 (mod 8)

0 1 4

y2 (mod 8)

0 0 1 4

1 1 2 5

4 4 5 0

Table 2. All possible values of x2 + y2 (mod 8)

Therefore, the starting number of an 1,2-triple can only be a multiple of 8.

Theorem 4. There are no four consecutive integers such that all of them can be
written as the sums of two perfect squares.

Proof. Direct from TABLE 2.

Theorem 5. If (n, n+ 1, n+ 2) is an 1, 2-triple, then n ≡ 0, 8 or 16 (mod 72).

Proof. All the possible values of x2 modulo 9 are shown in TABLE 3.

x (mod 9) 0 1 2 3 4 5 6 7 8

x2 (mod 9) 0 1 4 0 7 7 0 4 1

Table 3. All possible values of x2 (mod 9)

So for x, y ∈ Z, only possible values of x2 + y2 modulo 9 are 0, 1, 2, 4, 5, 7 and 8,
as shown in TABLE 4.

x2 + y2 (mod 9)
x2 (mod 9)

0 1 4 7

y2 (mod 9)

0 0 1 4 7

1 1 2 5 8

4 4 5 8 2

7 7 8 2 5

Table 4. All possible values of x2 + y2 (mod 9)
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Therefore, as the starting number of an 1, 2-triple,

n ≡ 7, 8 or 0 (mod 9).

By Theorem 3, n ≡ 0 (mod 8).
By Chinese Remainder Theorem7, the simultaneous linear congruence can be solved
and we have

n ≡ 0, 8 or 16 (mod 72).

Theorem 6. There is no 1, 2-triple in the form of (x2 − 2, x2 − 1, x2).

Proof. By Theorem 3, x2−2 is a multiple of 8 and therefore x2 ≡ 2 (mod 8), which
is impossible (See TABLE 1).

3.2. Consecutive 1, 2-triples

Theorem 3 implies that starting numbers of two 1, 2-triples differ by at least 8. We
say that two 1, 2-triples are consecutive if their starting numbers differ by 8. There
are infinitely many pairs of consecutive 1, 2-triples. [See reviewer’s comment (4)]

Theorem 7. There are infinitely many integers n such that al of n, n+ 1, n+ 2,
n+ 8, n+ 9 and n+ 10 are sums of two perfect squares. 8 9

Proof. The quadratic Diophantine equation b2 − 2a2 = 9 has infinitely many solu-
tions10. If (a, b) satisfies the relation, then

2a2 = a2 + a2

2a2 + 2 = (a+ 1)2 + (a− 1)2

2a2 + 8 = (a+ 2)2 + (a− 2)2

2a2 + 9 = b2 + 02

2a2 + 10 = b2 + 12.

If 2a2 + 1 can be written as the sum of two perfect squares, then we have infinitely
many integers n such that all of n, n+ 1, n+ 2, n+ 8, n+ 9 and n+ 10 are sums
of two perfect squares. Note that

2a2 + 1 =
16a2 + 2a2 + 9

9

7Theorem 13
8The first 4 values of n having this property are 0, 8, 72 and 576.
9Theorem 7 was proposed and proved by T. Cochrane, R.E. Dressler. [3] The first 4 values of

n given in their proof are 0, 1088 and 39350528 and 1480604673600.
10Let (a0, b0) = (0, 3) and an+1 = 3an + 2bn, bn+1 = 4an + 3bn for all nonnegative integers

n. Then b2n − 2a2n = 9 for all nonnegative integers n.
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=
16a2 + b2

9

=

(
4a

3

)2

+

(
b

3

)2

.

All we need to prove is that both a and b are multiples of 3.
Note that b2 = 2a2 + 9 ≡ 2a2 (mod 3).
If a is not a multiple of 3, then a ≡ −1 or 1 (mod 3) and hence 2a2 ≡ 2 (mod 3)..
It is impossible as b2 can only be congruent to 0 or 1 modulo 3.
Therefore, a is a multiple of 3 and hence b2 = 2a2 + 9 is a multiple of 9. So b is
also a multiple of 3.11

Theorem 5 suggests that it is impossible to have four consecutive 1, 2-triples. T.
Cochrane, R.E. Dressler pointed out that there are integers k such that 72k, 72k+1,
72k+ 2, 72k+ 8, 72k+ 9, 72k+ 10, 72k+ 16, 72k+ 17 and 72k+ 18 are all sums of
two squares. It is unknown that whether there are infinitely many such values of k.
But up to 10200, the only values of k having this property are 0, 2216 and 3872. [3]
From the results of our computations, we notice that a k with such property must
be a multiple of 8.

Theorem 8. If n, n + 1, n + 2, n + 8, n + 9, n + 10, n + 16, n + 17 and n + 18
are all sum of two squares, then n is a multiple of 576.

Proof. By Theorem 3, n is a multiple of 8. Refer to TABLE 1 and 2, n = a2 + b2

for some even integers a and b.
We can write a = 2(4k + θ) for some integer k and θ ∈ {0, 1, 2, 3}.
Then a2 = 4(16k2 + 8kθ + θ2) ≡ 4θ2 (mod 32).

a (mod 8) 0 2 4 6

a2 (mod 32) 0 4 16 4

Table 5. All possible values of a2 (mod 32)

So a2 ≡ 0, 4 or 16 (mod 32).. Similarly, b2 ≡ 0, 4 or 16 (mod 32). and thus as a
multiple of n = a2 + b2 ≡ 0, 8 or 16 (mod 32).

Since n+ 8 and n+ 16 are also multiples of 8, we also have
{
n+ 8 ≡ 0, 8, 16 (mod 32)

n+ 16 ≡ 0, 8, 16 (mod 32)
.

Therefore, n must be a multiple of 32 and hence both a and b are multiples of 8.
So, n is a multiple of 64.

11The first 4 values of n given in this proof are 0, 72 and 2592 and 88200.
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a2 + b2 (mod 32)
a2 (mod 32)

0 4 16

b2 (mod 32)

0 0 impossible 16

4 impossible 8 impossible

16 16 impossible 0

Table 6. All possible values of a2 + b2 (mod 32)

As shown in the proof of Theorem 5, n ≡ 7, 8, 0 (mod 9). This implies that n+ 8 ≡
76, , 8 (mod 9) and n + 16 ≡ 5, 6, 7 (mod 9). But as n + 8 and n + 16 are also
starting numbers of 1, 2-triples, they are both congruent to 7, 8 or 0 modulo 9. So
the only possibility is that n is a multiple of 9.
Therefore, n is a multiple of 576.

While it is unknown whether there exist infinitely many sets of three consecutive
1, 2-triples, we use an Excel VBA program12 to find all 1, 2-triples with numbers
in the triples not exceeding 2, 147, 483, 647. We find 3, 008, 296 1, 2-triples and
they form 58, 450 pairs of consecutive 1, 2-triples and 244 sets of three consecutive
1, 2-triples.

4. a2 + 2 as the sum of two squares

In Chapter 2, we have a method to find all 1, 2-triples (n, n+ 1, n+ 2) with n+ 1
being a perfect square. It is proved in Chapter 3 that there is no 1, 2-triple with
n+ 2 being a perfect square. [See reviewer’s comment (5)] In this chapter, we will
give all 1, 2-triples starting with perfect squares n. If n = a2 + 02 for some integer
a, then n + 1 = a2 + 12. We only need to find ways to express a2 + 2 as the sum
of two squares. This leads to our study of the equation a2 + 2 = (a− l)2 + b2. We
notice that the solutions to this equation have some patterns. Among all positive
integers under 100, only possible values of l are 1, 7, 17, 23, 31, 41, 47, 49, 71, 73,
79, 89, 97. Except 1 and 49, all of these values are prime numbers of forms 8n+ 1
or 8n − 1. We find a necessary and sufficient condition on l for the existence of
solutions to the equation and give the general solution to it.

4.1. Linear congruence

Definition 9 (Least positive residue). Let a and m be integers such that m ≥ 2
and a is not divisible by m. The least positive residue of a modulo m is the integer
r such that 1 ≤ r ≤ m− 1 and a ≡ r (modm).

12We use the Sum of Two Squares Theorem [19] [1] in our algorithm.
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Remark 10. By Division Algorithm, the least positive residue is well-defined.

Theorem 11. Let p be a prime and a be an integer not divisible by p. If R
is the set of all least positive residues of {a, 2a, 3a, . . . , (p − 1)a} modulo p, then
R = {1, 2, 3, . . . , (p− 1)}.

Proof. Obviously, R ⊂ {1, 2, 3, . . . , p− 1}.
Let ra, rs ∈ {a, 2a, 3a, . . . , (p−1)a} with r ≥ s. If ra ≡ sa (mod p), then (r−s)a =
ra−sa = np for some integer n. Since a is not divisible by p, r−s must be divisible
by p. [See reviewer’s comment (6)]
As 0 ≤ r − s < p, r = s. Therefore, for any two distinct elements of the set
{a, 2a, 3a, . . . , (p− 1)a}, their least positive residues modulo p are different.
So, |R| = p− 1 and hence the set of all least positive residues of {a, 2a, 3a, . . . , (p−
1)a} is {1, 2, 3, . . . , (p− 1)}.
Theorem 12. Let p be a prime and a, b be integers not divisible by p. There exist
a unique x ∈ {1, 2, 3, . . . , (p− 1)} such that ax ≡ b (mod p).

Proof. By Division Algorithm, there exists a unique least positive residue b0 of b
modulo p. By Theorem 11, there exists exactly one element of the set of all least
positive residues of {a, 2a, 3a, . . . , (p− 1)a} which is equal to b0. Hence there exists
a unique x ∈ {1, 2, 3, . . . , (p− 1)} such that ax ≡ b0 ≡ b (mod p).

Theorem 13 (Chinese Remainder Theorem). [13] Suppose that n1, . . . , nk are k
positive integers that are pairwise coprime. Then, for any given sequence of integers
a1, . . . , ak, there exists an integer x solving the following system of simultaneous
congruence. 




x ≡ a1 (modn1)
...

x ≡ ak (modnk)

.

Furthermore, any two solutions of this system are congruent modulo N = n1 · · ·nk.

Proof. Let S = {0, 1, 2, . . . , N − 1} and

T = {(t1, t2, . . . , tk)|ti ∈ {0, 1, . . . , ni − 1} for i = 1, 2, . . . , k}.
Define f : S → T by f(x) = (x1, x2, . . . , xk), where x ≡ xi (modni) for i =
1, 2, . . . , k.
If x, y ∈ S and f(x) = f(y) = (y1, y2, . . . , yk), then xi = yi for i = 1, 2, . . . , k. This
implies that x ≡ y (modni) for i = 1, 2, . . . , k.
x− y is divisible by ni for i = 1, 2, . . . , k. Since n1, n2, . . . , nk are pairwise coprime,
x− y is divisible by N = n1 · · ·nk. So x = y.
Note that |S| = N = |T |. f is a bijection.
For any (a1, a2, . . . , ak) ∈ T , there exist a unique x such that f(x) = (a1, a2, . . . , ak).
For this x, x ≡ ai (modnk) for i = 1, 2, . . . , k.
If x′is a solution of the simultaneous congruence, x′ − x is divisible by all of



172 K.I. MONG, C.M. LAI, S.H. MAK

n1, n2, . . . , nk and hence is divisible by N = n1 · · ·nk.
Therefore, x′ ≡ x (modN)

Theorem 14 ((Fermats Little Theorem). [14] Let p be a prime and a be an integer
not divisible by p. Then ap−1 ≡ 1 (mod p).

Proof. By Theorem 11,

a · 2a · 3a · . . . · (p− 1)a ≡ 1 · 2 · 3 · . . . · (p− 1) (mod p)

(p− 1)!ap−1 ≡ (p− 1)! (mod p)

Since (p− 1)! is not divisible by p,

ap−1 ≡ 1 (mod p)

Theorem 15 (Wilsons Theorem). [15] Let p be prime. Then (p− 1)! ≡ 1 (mod p).

Proof. By Theorem 12, for any a ∈ {1, 2, 3, . . . , (p − 1)}, there exist a unique x in
the set {1, 2, 3, . . . , (p− 1)} such that ax ≡ 1 (mod p).
Note that x = a if and only if a2 − 1 = (a + 1)(a − 1) is divisible by p. So 1 and
p− 1 are the only values of a such that x = a.
For other values of a, a 6= x. Therefore, the elements of {2, 3, 4, . . . , p − 2} can be
grouped into pairs of distinct a and x such that ax ≡ 1 (mod p). [See reviewer’s
comment (7)]
So

(p− 1)! = 1 · 2 · 3 · . . . · (p− 2) · (p− 1)

≡ 1 · (p− 1) (mod p)

≡ −1 (mod p)

4.2. Quadratic residues

Definition 16 (Quadratic residue). [16] Let n ≥ 2 be an integer. An integer q is
called a quadratic residue of n if there exist an integer x such that x2 ≡ q (modn).
Otherwise, q is called a quadratic nonresidue of n.

Remark 17. 0 and 1 are quadratic residue of n for all n ≥ 2.

Theorem 18. Let a be a quadratic residue of p, where p is an odd prime and a is
not divisible by p. Then for any positive integer n, a is a quadratic residue of pn.

Proof. Let k be a positive integer. Suppose that a ≡ x2 (mod pk) for some integer
x. Then x2 = tpk + a for some integer t. So for any integer s,

(x+ spk)2 = x2 + 2xspk + s2p2k
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= a+ pk(t+ 2xs+ s2pk)

≡ a+ pk(t+ 2xs) (mod pk+1)

Since p is prime and 2x is not divisible by p, by Theorem 12, there exists an integer
λ such that (2x)(λ) ≡ 1 (mod p). Take s = −λt. Then t+ 2xs = t− 2xλt ≡ t− t ≡
0 (mod p) and hence

(x+ spk)2 ≡ a+ pk(t+ 2xs) ≡ a (mod pk+1).

a is a quadratic residue of pk+1. By the principle of mathematical induction, a is a
quadratic residue of pn for all positive integers n.

Remark 19. Theorem 18 does not hold for p = 2. Note that 3 is a quadratic
residue of 2 but is a quadratic nonresidue of 4.

Theorem 20. Let a be an odd integer which is a quadratic residue of 8. Then for
all integers n > 3, a is a quadratic residue of 2n.

Proof. Let k ≥ 3 be an integer. Suppose that a ≡ x2 (mod 2k) for some integer x.
Then x2 = 2kt+ a for some integer t. So for any integer s,

(x+ s · 2k−1)2 = x2 + 2kxs+ 22k−2s2

= a+ 2kxs+ s2(2k+1)(2k−3)

= a+ 2k(t+ xs) (mod 2k+1).

Note that x is odd. Take s =

{
0 if t is even

1 if t is odd
. Then t + xs is even and hence

2k(t+ xs) ≡ 0 (mod 2k+1). So (x+ s · 2k−1)2 ≡ a (mod 2k+1).
a is a quadratic residue of 2k+1. By the principle of mathematical induction, a is a
quadratic residue of 2n for n > 3.

Theorem 21. Let γ be a non-zero integer, p be a prime and λ be a non-negative
integer such that pλ divides λ but pλ+1 does not. Suppose that α is a non-negative
integer.

(1) When λ is odd, γ is a quadratic residue of pα if and only if α ≤ λ.

(2) When p = 2, λ is even and
γ

2λ
≡ 3 (mod 4), γ is a quadratic residue of pα if

and only if α ≤ λ+ 1.

(3) When p = 2, λ is even and
γ

2λ
≡ 5 (mod 8), γ is a quadratic residue of pα if

and only if α ≤ λ+ 2.

(4) When p = 2, λ is even and
γ

2λ
≡ 1 (mod 8), γ is a quadratic residue of pα for

any α.

(5) When p > 2, λ is even and
γ

pλ
is quadratic nonresidue of p, γ is a quadratic

residue of pα if and only if α ≤ λ.
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(6) When p > 2, λ is even and
γ

pλ
is quadratic residue of p, γ is a quadratic

residue of pα for any α.

Proof. When α ≤ λ, γ ≡ 0 ≡ (0)2 (mod pα) and hence γ is a quadratic residue of
pα.

Suppose that x2 ≡ γ (mod pα).
When λ is odd and α ≥ λ + 1, x2 ≡ γ (mod pλ+1). Since x2 is divisible by pλ and

λ is odd, x is divisible by p
λ+1
2 . So we have

γ ≡ pλ+1

(
x

p
λ+1
2

)2

(mod pλ+1)

γ

pλ
≡ p

(
x

p
λ+1
2

)2

≡ 0 (mod p)

which is not true as pλ+1 does not divide γ. This proves (1).
When λ is even and α ≥ λ + 1. Since x2 is divisible by pλ and λ is even, x is

divisible by p
λ
2 . So

x

p
λ
2

is an integer and pλ
(
x

p
λ
2

)2

= x2 ≡ γ (mod pα) is equivalent

to

(
x

p
λ
2

)2

≡ γ

pλ
(mod pα−λ). γ is a quadratic residue of pα if and only if

γ

pλ
is a

quadratic residue of pα−λ.

Now suppose that p = 2. Note that
γ

2λ
≡ 1 ≡ (1)2 (mod 2).

Since any perfect square is congruent to 0 or 1 modulo 4, if
γ

2λ
≡ 3 (mod 4), then

γ

2λ
is a quadratic nonresidue of 4 and therefore α− λ ≤ 1. This proves (2).

If
γ

2λ
≡ 5 (mod 8), them

γ

2λ
≡ 1 ≡ (1)2 (mod 4).

Since 12, 32, 52 and 72 are all congruent to 1 modulo 8, 5 is a quadratic nonresidue
of 8. So α− λ ≤ 2 and this proves (3).

If
γ

2λ
≡ 1 (mod 8), then

γ

2λ
is a quadratic residue of 8. By Theorem 20,

γ

2λ
is a

quadratic residue of 2α−λ and thus λ is a quadratic residue of 2α. This proves (4).

When p > 2, α ≥ λ+ 1 and λ is even, γ is a quadratic residue of pα if and only if
γ

pλ
is a quadratic residue of pα−λ.

By Theorem 18, if
γ

pλ
is a quadratic residue of p, then

γ

pλ
is a quadratic residue of

pα−λ. The converse is obviously true.
This proves (5) and (6).
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Theorem 22 (Euler’s Criterion). [9] Let p be an odd prime and a be an integer

coprime to p. Then a
p−1
2 ≡ 1 (mod p) if and only if a is a quadratic residue of p,

and a
p−1
2 ≡ −1 (mod p) if and only if a is a quadratic nonresidue of p.

Proof. We will prove the theorem in three steps.

(1) a
p−1
2 ≡ −1 (mod p) if a is a quadratic nonresidue of p.

(2) a
p−1
2 ≡ 1 (mod p) if a is a quadratic residue of p.

(3) a is a quadratic residue of p if a
p−1
2 ≡ 1 (mod p) and a is a nonquadratic

residue of p if a
p−1
2 ≡ −11 (mod p).

Suppose that a is a quadratic nonresidue of p. Let b ∈ {1, 2 . . . , p1}. By Theorem
12, there exists a unique b′ ∈ {1, 2, 3, . . . , p1} such that b · · · b′ ≡ a (mod p). Note
that b′ 6= b, as otherwise, b2 ≡ a (mod p) and a will be a quadratic residue of p.
So the elements of {1, 2 . . . , p1} can be divided into pairs of distinct b, b′ such
thatb · · · b′ ≡ a (mod p).
Therefore

(p− 1)! = 1 · · · 2 · · · 3 . . . · · · (p− 1) ≡ a p−1
2 (mod p).

By Wilsons Theorem (Theorem 15),

(p− 1)! ≡ −1 (mod p).

Therefore a
p−1
2 ≡ −1 (mod p).

Now suppose that a is a quadratic residue of p. Then there exists an integer
c such that c2 ≡ a (mod p). Let c0 be the least positive residue of c modulo p.
Then c20 ≡ c2 ≡ a (mod p). Let y(6= c0) be an integer such that 1 ≤ y ≤ p1 and
y2 ≡ a (mod p). Then, we have c20 − y2 ≡ 0 (mod p) and thus (c0 + y(c0 − y) is a
multiple of p. So at least one among c0 + y and c0− y is a multiple of p. As 1 ≤ c0,
y ≤ p− 1, c0 − y cannot be a multiple of p. So c0 + y must be a multiple of p and
thus c0 +y = p. Note that c0 6= p− c0 asp is odd. Among {1, 2 . . . , p−1}, there are
exactly two integers c0 and p − c0 satisfying the congruence x2 ≡ a (mod p). The
remaining p − 3 integers in the set{1, 2 . . . , p − 1} form pairs of distinct b, b′ such
that b · · · b′ ≡ a (mod p). [See revewer’s comment (8)] Therefore

(p− 1)! = 1 · · · 2 . . . · · · c0 · · · . . . · · · (p− c0) · · · . . . · · · (p− 1)

≡ a p−3
2 · · · c0 · · · (p− c0) (mod p)

≡ a p−3
2 · · · c0 · · · (−c0) (mod p)

≡ a p−3
2 · · · (−s) (mod p)

≡ −a p−1
2 (mod p).

By Wilsons Theorem (Theorem 15), (p− 1)! ≡ −1(mod p). So

−1 ≡ −a p−1
2 (mod p)
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a
p−1
2 ≡ 1 (mod p).

By Fermat’s Little Theorem (Theorem 14), ap−1−1 is divisible by p. As ap−1−1 =(
a
p−1
2 − 1

)(
a
p−1
2 + 1

)
, at least one among a

p−1
2 − 1 and a

p−1
2 + 1 is divisible by

p. Therefore, a
p−1
2 ≡ 1 or −1 (mod p).

Suppose that a
p−1
2 ≡ 1 (mod p). If a is a quadratic nonresidue of p, then by (1),

a
p−1
2 ≡ −1 (mod p) and leads to a contradiction.

So a is a quadratic residue of p if a
p−1
2 ≡ 1 (mod p).

Now suppose thata
p−1
2 ≡ −1 (mod p). If a is a quadratic residue of p, then by

(2), a
p−1
2 ≡ 1 (mod p) and leads to a contradiction. Therefore a is a nonquadratic

residue of p if a
p−1
2 ≡ −1 (mod p).

Definition 23 (Legendre Symbol). [17] Let p be an odd prime number and a be
an integer. The Legendre symbol is a function of a and p defined as

(
a

p

)
=





1 if a is a quadratic residue of p and a is not divisible by p

−1 if a is a quadratic nonresidue of p

0 if a is divisible by p

Remark 24. Theorem 22 (Eulers Criterion) can be reformulated as

(
a

p

)
≡ a p−1

2

(mod p). Note that when a is divisible by p,

(
a

p

)
≡ 0 ≡ a p−1

2 (mod p)

Theorem 25.

(
ab

p

)
=

(
a

p

)(
b

p

)
.[18]

Proof.

(
ab

p

)
≡ (ab)

p−1
2 ≡ a p−1

2 b
p−1
2 ≡

(
a

p

)(
b

p

)
(mod p)

Theorem 26 (Gauss Lemma). [10] Let p be an odd prime and a be a positive integer

coprime to p. Let S =

{
a, 2a, 3a, . . . ,

p− 1

2
a

}
and n be the number of elements of

S whose least positive residue modulo p is greater than
p

2
. Then

(
a

p

)
= (−1)n.

Proof. By Theorem 11, the least positive residue of the elements of S are mutually
different.
Let S′ be the set of the least positive residue of the elements of S modulo p. We
arrange S′ in ascending order.

S′ = {b1, b2, . . . , bm, c1, c2, . . . , cn} where bm <
p

2
< c1 and m + n =

p− 1

2
. Let

S” = {b1, b2, . . . , bm, p− c1, p− c2, . . . , p− cn}.
Obviously, all elements of S” are positive and smaller than

p

2
. So
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S” ⊂
{

1, 2, 3, . . . ,
p− 1

2

}
.

We will prove that S” =

{
1, 2, 3, . . . ,

p− 1

2

}
.

By Theorem 11, b1, b2, . . . , bm are mutually distinct and c1, c2, . . . , cn are mutually
distinct. If bi = o− cj for some positive integers i, j, let bi = ra and cj = sa, where

1 ≤ r, s ≤ p− 1

2
. Then

(r + s)a = ra+ sa = bi + cj = p.

This is impossible as 2 ≤ r + s ≤ p− 1 and therefore r + s cannot be a factor of p.
So for any i ∈ {1, 2, 3, . . . ,m} and j ∈ {1, 2, 3, . . . , n}, bi 6= p−cj . b1, b2, . . . , bm, p−
c1, p− c2, . . . , p− cn are mutually distinct and so |S” = m+ n =

p− 1

2
. Therefore

S” =

{
1, 2, 3, . . . ,

p− 1

2

}
.

Hence, we have

1 · 2 · 3 · . . . · p− 1

2
= b1 · b2 · b3 · . . . · bm · (p− c1) · (p− c2) · . . . · (p− cn)

(
p− 1

2

)
! ≡ b1 · b2 · b3 · . . . · bm · (−c1) · (−c2) · . . . · (−cn) (mod p)

≡ (−1)n · b1 · b2 · b3 · . . . · bm · c1 · c2 · . . . · cn (mod p)

≡ (−1)n · a · 2a · 3a · . . . ·
(
p− 1

2
a

)
(mod p)

(
p− 1

2

)
! ≡ (−1)n · a p−1

2 ·
(
p− 1

2

)
! (mod p)

As

(
p− 1

2

)
! is not divisible by p, 1 ≡ (−1)n · a p−1

2 ·
(
p− 1

2

)
! (mod p). By Eulers

Criterion (Theorem 22),

(
a

p

)
= (−1)n.

Theorem 27. Let p, q be distinct odd primes and R = {2, 4, . . . , p − 1}. Then
(
q

p

)
= (−1)

∑
u∈R

⌊
uq

p

⌋

. [See reviewer’s comment (9)]
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Proof. Let S =

{
q, 2q, 3q, . . . ,

p− 1

2
q

}
and n be the number of S whose least

positive residue modulo p is greater that
p

2
. Then by Gauss Lemma (Theorem 26),

(
q

p

)
= (−1)n.

If u ∈ R, then
uq

2
∈ S. Let θ be the least positive residue of

uq

2
modulo p. Then

uq

2
= tp+ θ for some t ∈ mathbfZ. Note that θ 6= p

2
.

If 0 < θ <
p

2
,
uq

p
= 2t+

2θ

p
∈ (2t, 2t+ 1) and hence

⌊
uq

p

⌋
= 2t.

If
p

2
< θ < p,

uq

p
= 2t+

2θ

p
∈ (2t+ 1, 2t+ 2) and hence

⌊
uq

p

⌋
= 2t+ 1.

Therefore,

⌊
uq

p

⌋
is odd if and only if θ >

p

2
.

∑
u∈R

⌊
uq

p

⌋
≡ n (mod 2) and hence

(
q

p

)
= (−1)

∑
u∈R

⌊
uq

p

⌋

.

Theorem 28 (Law of Quadratic Reciprocity). Let p and q be distinct odd primes.

Then

(
p

q

)(
q

p

)
= (−1)

(p−1)(q−1)
4 .[18]

Proof. Let R = {2, 4, . . . , p − 1}, R1 =
{
x ∈ R|x < p

2

}
, T = 1, 3, . . . , p− 2 and

T1 =
{
x ∈ T |x < p

2

}
.

Note that u ∈ R \R1 if and only if p− u ∈ T1.
Therefore,

∑

u∈R\R1

⌊
uq

p

⌋
=
∑

u∈T1

⌊
(p− u)q

p

⌋
=
∑

u∈T1

⌊
q − uq

p

⌋
=
∑

u∈R

(
q − 1−

⌊
uq

p

⌋)

and hence

∑

u∈R

⌊
uq

p

⌋
=
∑

u∈R1

⌊
uq

p

⌋
+

∑

u∈R\R1

⌊
uq

p

⌋

=
∑

u∈R1

⌊
uq

p

⌋
+
∑

u∈R

(
q − 1−

⌊
uq

p

⌋)

=
∑

u∈R1

⌊
uq

p

⌋
+
∑

u∈T1

⌊
uq

p

⌋
+
∑

u∈R

(
q − 1− 2

⌊
uq

p

⌋)

=

p−1
2∑

u=1

⌊
uq

p

⌋
+
∑

u∈R

(
q − 1− 2

⌊
uq

p

⌋)
.
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Since q − 1 is even,
∑
u∈R

⌊
uq

p

⌋
≡

p−1
2∑

u=1

⌊
uq

p

⌋
(mod 2).

By Theorem 27,

(
q

p

)
= (−1)

p−1
2∑

u=1

⌊
uq

p

⌋

.

Take four points O(0, 0), A
(p

2
, 0
)

, B
(p

2
,
q

2

)
and C

(
0,
q

2

)
on a rectangular coor-

dinate plane. The equation of the line segment OB is y =
q

p
x. Note that there is no

lattice point on the line segment OB. For u = 1, 2, . . . ,
p− 1

2
,

⌊
uq

p

⌋
is the number

of lattice points between the x-axis and the line OB with x-coordinate equals u.

So,

p−1
2∑

u=1

⌊
uq

p

⌋
is equal to the number of lattice points in the interior of 4OAB.

By symmetry,

(
p

q

)
= (−1)

q−1
2∑

u=1

⌊
up

q

⌋

, and

q−1
2∑

u=1

⌊
up

q

⌋
is equal to the number of lat-

tice points in the interior of 4OBC.
If σ is the number of lattice points in the interior of OABC, then

(
p

q

)(
q

p

)
= (−1)

q−1
2∑

u=1

⌊
up

q

⌋

(−1)

p−1
2∑

u=1

⌊
uq

p

⌋

= (−1)

q−1
2∑

u=1

⌊
up

q

⌋
+

p−1
2∑

u=1

⌊
uq

p

⌋

= (−1)σ

= (−1)(
p−1
2 )( q−1

2 )
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= (−1)
(p−1)(q−1)

4

Theorem 29 (First Supplement to the Law of Quadratic Reciprocity). Let p be a
prime. −1 is a quadratic residue of p if and only if p ≡ 1 (mod 4). [18]

Proof. By By Eulers Criterion (Theorem 22),

(−1

p

)
= (−1)

p−1
2 . So 1 is a quadratic

residue of p if and only if
p− 1

2
≡ 0 (mod 2), i.e. p ≡ 1 (mod 4).

Theorem 30 (Second Supplement to the Law of Quadratic Reciprocity). [11] Let
p be an odd prime. 2 is a quadratic residue of p if and only if p ≡ ±1 (mod 8).

Proof. Let S =

{
2 · 1, 2 · 2, 2 · 3, . . . , 2 · p− 1

2

}
= {2, 4, 6, . . . , p− 1}.

Let n be the number of elements of S whose least positive residue modulo p is

greater than
p

2
and k be the number of elements of S whose least positive residue

modulo p is smaller than
p

2
. As all elements of S are less that p, n is the number

of elements of S which are greater than
p

2
. Since 2x ≤ p

2
if and only if x ≤ p

4
,

k =
⌊p

4

⌋
.

So n =
p− 1

2
−
⌊p

4

⌋
. There are four possible cases.

(1) p = 8r + 1, where r is some positive integer.

Then n =
8r + 1− 1

2
−
⌊

8r + 1

4

⌋
= 4r − 2r = 2r.

(2) p = 8r + 3, where r is some positive integer.

Then n =
8r + 3− 1

2
−
⌊

8r + 3

4

⌋
= 4r + 1− 2r = 2r + 1.

(3) p = 8r + 5, where r is some positive integer.

Then n =
8r + 5− 1

2
−
⌊

8r + 5

4

⌋
= 4r + 2− (2r + 1) = 2r + 1.

(4) p = 8r + 7, where r is some positive integer.

Then n =
8r + 7− 1

2
−
⌊

8r + 7

4

⌋
= 4r + 3− (2r + 1) = 2r + 2.

So n is even when p ≡ ±1 (mod 8).
By Gauss Lemma (Theorem 26), 2 is a quadratic residue of p if and only if n is
even, i.e. p ≡ ±1 (mod 8).

Theorem 31. Suppose n1, n2, . . . , nk are positive integers that are pairwise co-
prime, and a is a quadratic residue of nj for all j = 1, 2, . . . , k. Then a is a
quadratic residue of n1n2 · · ·nk.
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Proof. Let x1, x2, . . . , xk be integers such that x2i ≡ a (modnj) for j = 1, 2, . . . , k.
By Chinese Remainder Theorem (Theorem 13), there exists an integer x such that
x ≡ xj (modnj) for all j = 1, 2, . . . , k. So for all j, x2 ≡ x2i ≡ a (modnj). Therefore,
x2 − a is divisible by all of n1, n2, . . . , nk. As n1, n2, . . . , nk are pairwise coprime,
x2 − a is divisible by n1n2 · · ·nk. So a is a quadratic residue of n1n2 · · ·nk.

4.3. When a2 + 2 is the sum of two squares

Theorem 32. Let l > 1 be an odd integer. 2 is a quadratic residue of l if and only
if there exist integers a and b such that a2 + 2 = (a− l)2 + b2.

Proof. Suppose there exist integers a and b such that a2 + 2 = (a− l)2 + b2. Then

b2 = a2 − (a− l)2 + 2 = 2al − l2 + 2 ≡ 2 (mod l)

So 2 is a quadratic residue of l.
Conversely, suppose that 2 is a quadratic residue of l. Let x be an integer such that
1 ≤ x < l and x2 ≡ 2 (mod l). Then x2 = lt+ 2 for some integer t.

If t is odd, let a =
l + t

2
. Then a is an integer and

a2 + 2− (a− l)2 = l(2a− l) + 2 = lt+ 2 = x2.

Take b = x and we have a2 + 2 = (a− l)2 + b2.

If t is even, let a = l + x+
t

2
. Then a is an integer and

a2 + 2− (a− l)2 = l(2a− l) + 2 = lt+ 2 = x2

= l(l + 2x+ t) + 2

= l2 + 2lx+ x2

= (l + x)2

Take b = l + x and we have a2 + 2 = (a− l)2 + b2.

Theorem 33. Let l > 1 be an integer. There exist integers a and b such that
a2 + 2 = (a− l)2 + b2 if and only if all prime factors of l are in the form of 8k± 1.

Proof. Suppose there exist integers a and b such that a2 + 2 = (a− l)2 + b2.
If l is even, a2 − (a − l)2 + 2 = 2al − l2 + 2 ≡ 2 (mod 4) and cannot be a perfect
square. So l is an odd integer.
b2 − 2 = 2al − l2 is divisible by l and hence is divisible by p. Therefore, 2 is a
quadratic residue of p. By the Second Supplement to the Law of Quadratic Reci-
procity (Theorem 30), p ≡ ±1 (mod 8).
Any prime factor of l is in the form of 8k ± 1.
Conversely, suppose that l = pk11 p

k2
2 . . . pknn , where p1, p2, . . . , pn are mutually dis-

tinct odd primes, all in the form of 8k ± 1, and k1, k2, . . . , kn are positive integers.
By the Second Supplement to the Law of Quadratic Reciprocity (Theorem 30), 2
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is a quadratic residue of pi for i = 1, 2, . . . , n. So Theorem 18 implies that 2 is a
quadratic residue of l = pk11 p

k2
2 . . . pknn . By Theorem 32 ,there exist integers a and

b such that a2 + 2 = (a− l)2 + b2.

5. Begin with squares

With the results of Chapter 4, we can now construct 1, 2-triples beginning with
perfect squares. We will first find the square roots of 2 modulo l for those values
of l satisfying the condition stated in Theorem 33. Then we can give the general
form of such kind of 1, 2-triples corresponding to l.

5.1. Square roots of 2 modulo pk

As shown in the proof of Eulers Criterion (Theorem 22), x2 ≡ 2 (mod p) have
exactly two distinct solutions for 1 ≤ x ≤ p− 1, and the sum of these two solutions
is p. As p− x ≡ −x (mod p), the square roots of 2 modulo p can be written as ±x.
The square roots of 2 modulo p for the first few prime p of the form n ± 18 are
listed in TABLE 7.

p 7 17 23 31 41 47 71 73 79 89

square roots of 2 ±3 ±6 ±5 ±8 ±17 ±7 ±12 ±32 ±9 ±25

Table 7. The square roots of 2 modulo p

When we have the square roots of 2 modulo p, square roots of 2 modulo p2 can be
found by the following method. Take p2 = 72 = 49 as an example.
If x2 ≡ 2 (mod 49), then x2 ≡ 2 (mod 7). As shown in TABLE 7, x = 7n ± 3 for
some integer n. Therefore (7n± 3)≡2 (mod 49).

49n2 ± 42n+ 9 ≡ 2 (mod 49)

±42n ≡ −7 (mod 49)

±6n ≡ −1 (mod 7)

By Theorem 12, both 6n ≡ −1 (mod 7) and −6n ≡ −1 (mod 7) have unique solu-
tions modulo 7.
When 6n ≡ −1 (mod 7), n ≡ 1 (mod 7).
When −6n ≡ −1 (mod 7), n ≡ −1 (mod 7).
The square of 2 modulo 49 are therefore ±10.
The case for higher powers of p is similar.
[See reviewer’s comment (10)]
If x2 ≡ 2 (mod pm+1), x2 ≡ 2 (mod pm). So x = pmn+ k for some integers n and k
such that k2 ≡ 2 (mod pm).

(pmn+ k)2 ≡ 2 (mod pm+1)
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p 7 17 23 31 41 47

square roots of 2 modulo p ±3 ±6 ±5 ±8 ±17 ±7

square roots of 2 modulo p2 ±10 ±45 ±156 ±116 ±58 ±477

square roots of 2 modulo p3 ±108 ±623 ±156 ±2767 ±20230 ±8359

Table 8. The square roots of 2 modulo pm

p2mn2 = 2pmnk + k2 ≡ 2 (mod pm+1)

2pmnk ≡ 2− k2 (mod pm+1)

(2k)n ≡ 2− k2
pm

(mod p)

Since
2− k2
pm

is an integer, by Theorem 12, there exists a unique n modulo p satis-

fying the linear congruence (2k)n ≡ 2− k2
pm

(mod p). Given all the square roots of

2 modulo pm, we can find all square roots of 2 modulo pm+1.

5.2. Square roots of 2 modulo l

Let 1 > l be an odd integer such that all prime factors of l are in the form of
8k± 1. By Theorem 30 (Second Supplement to the Law of Quadratic Reciprocity)
and Theorem 31, the square roots of 2 modulo l exist.

Example 34. Let l = 7 ·17 = 119. As shown un TABLE 7, (±3)2 ≡ 2 (mod 7) and
(±6)2 ≡ 2 (mod 17). By Chinese Remainder Theorem (Theorem 13), four square
roots of 2 modulo 119 can be found. We will first focus on the case combining
x ≡ 3 (mod 7) and x ≡ 6 (mod 17).
Note that 5 · 17 ≡ 1 (mod 7) and 5 · 7 ≡ 1 (mod 17).
Let y = 3 · 5 · 17 + 6 · 5 · 7 = 465 ≡ −11 (mod 119).
Then y = 3 · 5 · 17 ≡ 3 · 1 ≡ 3 (mod 7) and y = 6 · 5 · 7 ≡ 6 · 1 ≡ 6 (mod 17).
Thus −11 is a solution to the simultaneous congruence and hence is a square root
of 2 modulo 119.
By using this method in all cases, the square roots of 2 modulo 119 are ±11 and
±45.

Example 35. Let l = 7 · 17 · 232 = 62951. As l has three distinct prime factors
od the form 8k ± 1, there are totally 8 square roots of 2 modulo l. By Example
34 and TABLE 8, ) ± 11)2 ≡ 2 (mod 119), (±45)2 ≡ 2 (mod 119) and (±156)2 ≡
2 (mod 232).
Note that 9 · 232 ≡ 1 (mod 119) and 489 · 119 ≡ 1 (mod 232).
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t (a, b) 1, 2-triples

0 (4,±3) (16, 17, 18)

1 (12, 11), (24, 17) (144, 145, 146), (576, 577, 578)

2 (48, 25), (72, 31) (2304, 2305, 2306), (5184, 5185, 5186)

3 (112, 39), (148, 45) (12544, 12545, 12546), (21904, 21905, 21906)

Table 9. 1, 2-triples (a2, a2 + 1, a2 + 2) with a = 14t2 ± 6t+ 4

Let y = 11 · 9 · 232 + 156 · 489 · 119 = 9130167 ≡ 2272 (mod 62951). Then

y ≡ 11 · 9 · 529 ≡ 11 · 1 ≡ 11 (mod 119)

and

y = 156 · 489 · 119 ≡ 156 · 1 ≡ 156 (mod 529)

Thus 2272 is a solution to the simultaneous congruence and hence is a square root
of 2 modulo 62951. By using this method in all cases, the square roots of 2 modulo
62951 are ±2272, ±12540, ±23432 and ±24707.

5.3. Sequence of 1, 2-triples

Knowing the square roots of 2 modulo l, we can find a formula generating 1, 2-
triples. We first start with the case l = 7. Considering a2 + 2 = (a− 7)2 + b2,

a2 + 2 = 22 − 14a+ 49 + b2

14a− 49 = b2 − 2

So b2 ≡ 2 (mod 7). As the square roots of 2 modulo 7 are ±3, let b = 7n± 3. Then

14a− 49 = (7n± 3)2 − 2

49n2 ± 42n+ 7

2a = 7n2 ± 6n+ 8

Since both 2a and ±6n+ 8 are even, n2 is even and so is n.
Let n = 2t. Then

2a = 7(2t)2 ± 6(2t) + 8

a = 14t2 ± 6t+ 4

(a2, a2 + 1, a2 + 2) is an 1,2-triple and a2 + 2 = (14t2 ± 6t− 3)2 + (14t± 3)2. Note
that this gives the general formula for the 1, 2-triples of form (a2, a2 + 1, a2 + 2)
with a2 + 2 = (a− 7)2 + b2 for some integer b.
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5.4. 1, 2-triples beginning with perfect squares

For general 1 > l such that all prime factors of l are in the form of 8k ± 1, the
corresponding 1, 2-triples of form (a2, a2 + 1, a2 + 2) can be found if we know the
square roots of 2 modulo l.

Let a2 + 2 = (a− l)2 + b2. Then

a2 + 2 = a2 − 2al + l2 + b2

2al − l2 = b2 − 2

We have b2 ≡ 2 (mod l)13.
Let θ2 ≡ 2 (mod l) and b = nl + θ for some integer n. Then

2al − l2 = (nl + θ)2 − 2 = n2l2 + 2nlθ + θ2 − 2

Since θ2 ≡ 2 (mod l),
θ2 − 2

l
is an integer.

Therefore,

2a− l = n2l + 2nθ +
θ2 − 2

l

2a = (n2 + 1)l + 2nθ +
θ2 − 2

l

If
θ2 − 2

l
is odd, n2 is even and son is n. [See reviewer’s comment (11)] Let n = 2t.

Then,

2a = ((2t)2 + 1)l + 2(2t)θ +
θ2 − 2

l

a = 2lt2 + 2tθ +
θ2 − 2

2l
+
l

2

(a2, a2 + 1, a2 + 2) is an 1, 2-triples and

a2 + 2 =

(
2lt2 + 2tθ +

θ2 − 2

2l
+
l

2

)2

+ (2lt+ θ)2.

Note that if
θ2 − 2

l
is even,

(θ − l)2 − 2

l
=
l2 − 2lθ + θ2 − 2

l
= l − 2θ +

θ2 − 2

l
is

odd. [See reviewer’s comment (12)] As θ ≡ θ − l (mod l), we can always replace
a square root of 2 modulo l with a θ0 congruence to that root modulo l so that
θ20 − 2

l
is odd.

13In the case when l = 1, we have b2 = 2a+ 1 and hence b is an odd integer.

(a, b) = (2t2 + 2t, 2t+ 1) for some integer t.
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l (a, b)

1 (2t2 ± 2t, 2t± 1)

7 (14t2 ± 6t+ 4, 14t± 3)

17 (34t2 ± 22t+ 12, 34t± 11)

119 (238t2 ± 22t+ 60, 238t± 11), (238t2 ± 90t+ 68, 238t± 45)

62951

(125902t2 ± 49414t+ 36324, 125902t± 24707),

(125902t2 ± 79038t+ 43880, 125902t± 39519),

(125902t2 ± 100822t+ 51660, 125902t± 50411),

(125902t2 ± 121358t+ 60720, 125902t± 60679)

Table 10. Solutions of a2 + 2 = (a− l)2 + b2 for some values of l

6. Littlewood’s Problem

6.1. Quadratic residues

It was shown in Chapter 5 that if 2 is a quadratic residue of l, then we can find all
integers a such that a2 +2 = (a− l)2 +b2 for some integers b. Similarly, we can give
solutions to a2 + k = (a− l)2 + b2 if k is a quadratic residue of l. So it is natural to
ask a question: Given an integer k, for what integer l is k a quadratic residue of l?

Example 36. [See reviewer’s comment (13)] Find all odd primes p such that(
3

p

)
= 1.

By the Law of Quadratic of Reciprocity (Theorem 28),(
3

p

)(
p

3

)
= (−1)

(3−1)(p−1)
4 = (−1)

p−1
2 .

If p ≡ 1 (mod 3),

(
p

3

)
=

(
1

3

)
= 1 and therefore

(
3

p

)
= (−1)

p−1
2 .

So in this case,

(
3

p

)
= 1 if and only if

p− 1

2
is even, i.e. p ≡ 1 (mod 4).

By the Second Supplement to the Law of Quadratic Reciprocity (Theorem 30),(
2

3

)
= −1.

If p ≡ −1 (mod 3),

(
p

3

)
=

(
2

3

)
= −1 and therefore

(
3

p

)
= −(−1)

p−1
2 .

So in this case,

(
3

p

)
= 1 if and only if

p− 1

2
is odd, i.e. p ≡ −1 (mod 4).
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Therefore,

(
3

p

)
= 1 if and only if

{
p ≡ 1 (mod 3)

p ≡ 1 (mod 4)
or

{
p ≡ −1 (mod 3)

p ≡ −1 (mod 4)
, i.e.

p ≡ ±1 (mod 12). [See reviewer’s comment (14)]

Example 37. Find all odd primes p such that

(
5

p

)
= 1.

By the Law of Quadratic of Reciprocity (Theorem 28),(
5

p

)(
p

5

)
= (−1)

(5−1)(p−1)
4 = 1 for all odd prime p. So we have

(
5

p

)
=

(
p

5

)
.

If p ≡ 1 (mod 5),

(
5

p

)
=

(
p

5

)
=

(
1

5

)
= 1.

If p ≡ −1 (mod 5),

(
5

p

)
=

(
p

5

)
=

(
4

5

)
=

(
2

5

)2

= 1.

If p ≡ 2 (mod 5),

(
5

p

)
=

(
p

5

)
=

(
2

5

)
= −1.14

If p ≡ −2 (mod 5),

(
5

p

)
=

(
p

5

)
=

(
3

5

)
=

(
5

3

)
=

(
2

3

)
= −1.

Therefore,

(
5

p

)
= 1 if and only if p ≡ ±1 (mod 5).

Example 38. Find all odd primes p such that

(
6

p

)
= 1. Note that

(
6

p

)
=

(
3

p

)(
2

p

)
.

(
6

p

)
= 1 if and only if

(
3

p

)
=

(
2

p

)
.

If

(
3

p

)
=

(
2

p

)
= 1,

{
p ≡ ±1 (mod 12)

p ≡ ±1 (mod 8)
and therefore p ≡ ±1 (mod 24).

If

(
3

p

)
=

(
2

p

)
= −1,

{
p ≡ ±5 (mod 12)

p ≡ ±5 (mod 8)
and therefore p ≡ ±5 (mod 24).

(
6

p

)
= 1 if and only if p ≡ ±1 or ±5 (mod 24). [See reviewer’s comment (15)]

a

(
a

p

)
= 1 if and only if a

(
a

p

)
= 1 if and only if

1 p is any prime -1 p ≡ 1 (mod 4)

2 p ≡ ±1 (mod 8) −2 p ≡ 1, 3 (mod 8)

3 p ≡ ±1 (mod 13) −3 p ≡ 1 (mod 3)

4 p is any prime −4 p ≡ 1 (mod 4)

14It is due to the Second Supplement to the Law of Quadratic Reciprocity (Theorem 30).
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5 p ≡ ±1 (mod 5) −5 p ≡ 1, 3, 7, 9 (mod 20)

6 p ≡ ±1,±5 (mod 24) −6 p ≡ 1, 5, 7, 11 (mod 24)

7 p ≡ ±1,±3,±9 (mod 28) −7 p ≡ 1, 2, 4 (mod 7)

8 p ≡ ±1 (mod 8) −8 p ≡ 1, 3 (mod 8)

9 p is any prime −9 p ≡ 1 (mod 4)

10 p ≡ ±1,±3,±9,±13 (mod 40) −10 p ≡ 1, 7, 9, 11, 13, 19, 23, 37
(mod 40)

11 p ≡ ±1,±5,±7,±9,±19
(mod 44)

−11 p ≡ 1, 3, 4, 5, 9 (mod 11)

12 p ≡ ±1 (mod 12) −12 p ≡ 1 (mod 3)

Table 11. Conditions that a is a quadratic residue of p (odd prime
not dividing a) [16]

6.2. Littlewoods Problem

J. E. Littlewood has raised the question of whether for given unequal positive
numbers h, k there exist infinitely many numbers n for which n, n+h, n+k are all
sums of two squares.[4]15 This is equivalent to ask whether there exists infinitely
many h, k-triples.
Obviously, the answer to Littlewoods Problem is affirmative when both h and k
are perfect squares, as n, n+ h, n+ k are all sums of two squares when n itself is
a perfect square. The 2000 Putnam Problem is the special case when h = 1 and
k = 2.

Note that if (a, b, c) = (a, a+h, a+k), then (a, c, b) = (a, a+k, a+h), (b, a, c) = (b, b+
(−h), b+(k−h)), (b, c, a) = (b, b+(k−h), b+(−h)), (c, a, b) = (c, c+(−k), c+(h−k))
and (c, b, a) = (c, c+ (h− k), c+ (−k)).
So if there are infinitely many h, k-triples, there are infinitely many k, h-triples,
(−h), (k − h)-triples, etc.
By the method used in Chapter 5, we can show that if at least one among |h|, |k|, |h−
k| is a perfect square, then there exist infinitely many h, k-triples.
[See reviewer’s comment (16)] Without loss of generality, let h = λ2. Let n = a2.
Then n+ h = a2 + λ2.
Consider a2 + k = (a− l)2 + b2.

b2 = 2al − l2 + k ≡ k (mod l)

15This was solved in 1973 by C. Hooley. [4]
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If there is a pair of b and l satisfying the above quadratic congruence, we can
generate infinitely many sets of h, k-triples using a method which is similar to that
used in Chapter 5. [See reviewer’s comment (17)]

Example 39. Prove that there are infinitely many 4, 5-triples. Find all 4, 5-triples
of the form (a2, a2 + 4, a2 + 5).

We need b2 ≡ 5 (mod l).
For example, 62 ≡ 5 (mod 31). The pair (b, l) = (6, 31) generates the 4, 5-triples

(
(62t2 ± 12t+ 16)2, (62t2 ± 12t+ 16)2 + 4, (62t2 ± 12t+ 16)2 + 5

)
.

Here (62t2 ± 12t+ 16)2 + 4 = (62t2 ± 12t+ 16)2 + 22 and

(62t2 ± 12t+ 16)2 + 5 = (62t2 ± 12t− 15)2 + (62t+ 6)2.

This proves that there are infinitely many 4, 5-triples.
In general, a 4, 5-triples with n being a perfect square has the form16

((
lt2

2
+ tθ +

θ2 − 5

2l
+
l

2

)2

,

(
lt2

2
+ tθ +

θ2 − 5

2l
+
l

2

)2

+ 4,

(
lt2

2
+ tθ +

θ2 − 5

2l
+
l

2

)2

+ 5

)
.

Note that (1)2 ≡ 5 (mod 4), (0)2 ≡ 5 (mod 5) but 5 is neither a quadratic residue
of 8 nor a quadratic residue of 25. By Example 37, for odd prime p other than 5,(

5

p

)
= 1 if and only if p ± 1 (mod 5). By Theorem 18 and Theorem 31. 5 is a

quadratic residue of l if and if l = 2λ5µβ, where λ ∈ {0, 1, 2}, µ ∈ {0, 1} and all
prime factor of β are of the form 5n± 1. But if λ = 2, then l is divisible by 4 and
a2 + 5− (a− l)2 = 2al − l2 ≡ 5 (mod 8), and cannot be a perfect square.
If l = 2β and θ2 ≡ 5 (mod l), then θ is odd and hence θ2 − 5 is divisible by 4.
Note that θ2 − 5 is also divisible by l = 2β. So θ2 − 5 is divisible 2l = 4β. Thus
lt2

2
+ tθ +

theta2 − 5

2l
+
l

2
is an integer for all integers t.

If l = β and θ2 ≡ 5 (mod l), then
θ2 − 5

l
is an integer. If furthermore

θ2 − 5

l
is

odd, then
lt2

2
+ tθ +

θ2 − 5

2l
+
l

2
is an integer for all even integers t. If

θ2 − 5

l
is

even, then
(θ − l)2 − 5

l
=
θ2 − 5

l
− 2θ + l is odd. Since θ ≡ θ − l (mod l), we can

replace θ by θ − l. So we can assume that
θ2 − 5

2l
+
l

2
is an integer. We have

(
lt2

2
+ tθ +

θ2 − 5

2l
+
l

2

)2

+ 5 =

(
lt2

2
+ tθ +

θ2 − 5

2l
− l

2

)2

+ 4

(
lt2

2
+ tθ +

θ2 − 5

2l

)(
l

2

)
+ 5

=

(
lt2

2
+ tθ +

θ2 − 5

2l
− l

2

)2

+ l2t2 + 2ltθ + θ2

16If 1=l, we can generate the solution (a, b) = (2t2 − 2, 2t).
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− 5 + 5

=

(
lt2

2
+ tθ +

θ2 − 5

2l
− l

2

)2

+ (lt+ θ)2

So

(
lt2

2
+ tθ +

θ2 − 5

2l
+
l

2

)2

starts a 4, 5-triple if it is an integer.

Example 40. Find all 6, 9-triples of the form (a2, a2 + 6, a2 + 9).

We need b2 ≡ 6 (mod l).

By Example 38, for odd prime p other than 3,

(
6

p

)
= 1 if and only if p ≡

±1,±5 (mod 24). By Theorem 21 and Theorem 31, 6 is a quadratic residue of l
if and only if l = 2λ3µβ where λ, µ ∈ {0, 1} and all prime factors of β are congru-
ent to ±1 or ±5 modulo 24.
If λ = 1, then l is even and a2 + 6− (a− l)2 = 2al− l2 + 6 ≡ 2 (mod 4), and cannot
be a perfect square. Therefore, λ = 0 and hence l is odd.

If θ2 ≡ 6 (mod l), then
θ2 − 6

l
is an integer. If furthermore

θ2 − 6

l
is odd,

θ2 − 6

2l
+
l

2

is an integer. If
θ2 − 6

l
is even, then

(θ − l)2 − 6

l
=
θ − 6

l
− 2θ + l is odd. Since

θ ≡ θ−l (mod l)., we can replace θ by θ−l. So we can always assume that
θ2 − 6

2l
+
l

2
is an integer. We have
(

2lt2 + 2tθ +
θ2 − 6

2l
+
l

2

)2

+ 6 =

(
2lt2 + 2tθ +

θ2 − 6

2l
− l

2

)2

+ 4

(
2lt2 + 2tθ +

θ2 − 6

2l

)(
l

2

)
+ 6

=

(
2lt2 + 2tθ +

θ2 − 6

2l
− l

2

)2

+ 4l2t2 + 4ltθ + θ2

− 6 + 6

=

(
2lt2 + 2tθ +

θ2 − 6

2l
− l

2

)2

+ (2lt+ θ)2

So

(
2lt2 + 2tθ +

θ2 − 6

2l
+
l

2

)2

starts a 6, 9-triple.

Note that

(
2lt2 + 2tθ +

θ2 − 6

2l
+
l

2

)2

+ 9 =

(
2lt2 + 2tθ +

θ2 − 6

2l
+
l

2

)2

+ 32.

In general, a 6, 9-triple starting with a perfect square has the form17

((
2lt

2
+ 2tθ +

θ2 − 6

2l
+
l

2

)2

,

(
2lt

2
+ 2tθ +

θ2 − 6

2l
+
l

2

)2

+ 6,

(
2lt

2
+ 2tθ +

θ2 − 6

2l
+
l

2

)2

+ 9

)

17If l = 1, we can generate the solution (a, b) = (2t2 − 2t− 2, 2t− 1).
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6.3. Possible values of l

The key to solve a2 + k = (a − l)2 + b2 is to find all possible values of l such that
k is a quadratic residue of l.18 With the help of Theorem 31, we can do it by first
finding all possible prime powers that can be a factor of l. [See reviewer’s comment
(18)]
Denote the i-th prime by pi (so p1 = 2, p2 = 3, p3 = 5, . . .). Suppose that

k =
∏
pλii , where λi’s are non-negative integers. Let ki =

∏
i6=j

pλii .

If a2 + k = (a− 2α1)
2

+ b2, then b2 = a2 − (a− 2α1)
2

+ k = 2α1+1a − 22α1 + k.
So if α1 ≥ 1, k is a quadratic residue of 2α1+1. By Theorem 21, when λ1 is odd,
k is a quadratic residue of 2α1+1 if and only if α1 ≤ λ1 − 1. If λ1 is even, then
the highest power of 2 as a factor depends on both λ1 and k1. When λ1 is even
and k1 ≡ 3 (mod 4), k is a quadratic residue of 2α1+1 if and only if α1 ≤ λ1. When
λ1 is even and k1 ≡ 5 (mod 8), k is a quadratic residue of 2α1+1 if and only if
α1 ≤ λ1 + 1. When λ1 is even and k1 ≡ 1 (mod 8), k is a quadratic residue of 2α1+1

for all non-negative integers α1.

If i > 1 and a2 + k = (a− pαii )
2

+ b2, then

b2 = a2 − (a− pαii ) + k = 2pαii a− p2αii + k

and hence k is a quadratic residue of pαii . By Theorem 21, when λi is odd or ki is
a quadratic nonresidue of pi, k is a quadratic residue of pαii if and only if αi ≤ λi.
When λi is even (including the case when λi = 0, i.e. when k is not divisible by pi)
and ki is a quadratic residue of pi, k is quadratic residue of pαii for all non-negative
integers αi.

So for each prime pi, we can find an upper bound (may be infinity) for αi’s such
that pαii is a possible value of l. By Theorem 31,

∏
pαii is a possible value of l if all

αi’s do not exceed the abovementioned upper bounds. For each possible values of
l, k is a quadratic residue of l. So we can find square roots of k modulo l. Let θ be
one of the square roots. If b = lu+ θ, then

a2 + k = (a− l)2 + (lu+ θ)2

= a2 − 2al + l2 + l2u2 + 2luθ + θ2

2al = l2
(
1 + u2

)
+ 2luθ + θ2 − k

a =
l(1 + u2)

2
+ uθ +

θ2 − k
2l

This give a solution to the equation if a is an integer. Note that
θ2 − k
l

is an

integer.

18Here we consider positive l only. As a2 = (−a)2 and (a − l)2 = (−a − (−l))2, solutions for

negative l can be generate from solutions with positive l.
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If both l and
θ2 − k
l

are even, then u can be any integer.

If both l and
θ2 − k
l

are odd, then u can be any even integer. Take u = 2t.

a =
l(1 + 4t2)

2
+ 2tθ +

θ2 − k
2l

= 2lt2 + 2tθ +
l

2
+
θ2 − k

2l

If l is odd and
θ2 − k
l

is even, then u can be any odd integer. Take u = 2t+ 1.

a =
l(2 + 4t+ 4t2)

2
+ (2t+ 1)θ +

theta2 − k
2l

= 2lt2 + 2(l + θ)t+ l + θ +
θ2 − k

2l

If l is even and
θ2 − k
l

is odd , then a is impossible to be an integer.
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l
θ2 − k
l

Corresponding solution (a, b)

odd even

(
2lt2 + 2(l + θ)t+ l + θ +

θ2 − k
2l

, 2lt+ l + θ

)

odd odd

(
2lt2 + 2tθ +

l

2
+
θ2 − k

2l
, 2lt+ θ

)

even even

(
lt2

2
+ tθ +

l

2
+
θ2 − k

2l
, lt+ θ

)

even odd no corresponding solution

Table 12. Solutions of a2 + k = (a − l)2 + b2 corresponding to
square root θ of k module l

Example 41. Solve a2 − 180 = (a− l)2 + b2.

Take k = −180 = −1 · 22 · 32 · 51.

Since λ1 = 2 is even and k1 =
−180

22
= −45 ≡ 3 (mod 4), α1 ≤ λ1 = 2.

Since λ2 = 2 is even and k2 =
−180

9
= −20,

(
k2
p2

)
=

(−20

3

)
=

(
1

3

)
= 1. α2

can be any positive integer.
Since λ3 = 1 is odd, α3 ≤ λ3 = 1.
Note that (

k

pi

)
=

(
2

pi

)2(
3

pi

)2(−5

pi

)
=

(−5

pi

)

With reference to TABLE 11,

(
k

pi

)
= 1 if and only if pi ≡ 1, 3, 7, 9 (mod 20).

So for i 6= 1, 2, 3, αi can be any non-negative integer if and only if pi ≡ 1, 3, 7, 9
(mod 20).
Possible l are those of the form

∏
pαii , where αi are non-negative integers such that

α1 ≤ 2, α3 ≤ 1, and αi = 0 if i 6= 1, 3 and pi is not congruent to 1, 3, 7, 9 modulo
20.
All possible values of l under 100 are 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 15, 18, 20,
21, 23, 27, 28, 29, 30, 35, 36, 41, 42, 43, 45, 46, 47, 49, 54, 58, 60, 61, 63, 67, 69,
70, 81, 82, 83, 84, 86, 87, 89, 90, 92, 94, 98.
For example, take l = 21. If θ2 ≡ −180 ≡ 9 (mod 21), θ ≡ ±3 (mod 21). The
corresponding solution is (a, b, l) = (42t2 ± 6t+ 15, 42t± 3, 21).
Take l = 23. If θ2 ≡ −180 ≡ 4 (mod 23), then θ ≡ ±21 (mod 23). The correspond-
ing solution is (a, b, l) = (46t2 ± 42t+ 25, 46t± 21, 23).
Take l = 28. If θ2 ≡ −180 ≡ 16 (mod 28), then θ ≡ ±4,±10 (mod 23). The corre-
sponding solution is (a, b, l) = (14t2 ± 10t+ 19, 28t± 10, 28).
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As l = 28 is even and
θ2 − k
l

=
(±4)2 − (−180)

28
= 7 is odd, θ = ±4 do not

correspond to any solution.

7. Conclusion

When h is a perfect square and k is an arbitrary integer, we can find all h, k-triples
of form (a2, a2 + h, a2 + k) by solving a2 + k = (a − l)2 + b2. For any solution of
the equation, k is a quadratic residue of l. Given a particular k, we can use the
method in Chapter 6 to find all possible factors of l.

If p is a prime number and pλ is (but pλ+1 is not) a factor of k, then p can be
a factor of l, and the highest power of p as a factor of k is determined by two

components, the parity of λ and the value of
k

pλ
. If λ is odd, then the highest

power is λ (or λ− 1 if p = 2). If p = 2 and λ is even, the highest power is decided

by the remainder when
k

pλ
is divided by 8. When the remainder is 1, any power

of 2 is a possible factor of l. If p is an odd prime and λ is even, the highest power
of p as a factor of l is λ if and only if k is a quadratic nonresidue of p. When k
is a quadratic residue of p, any power of p is a possible factor of l. If q is a prime
number that is not a factor of k, then q (and any power of q) is a possible factor of
l if and only if q is a quadratic residue of p.

We can use the abovementioned method to find all possible values of l. For a
particular l, k is a quadratic residue of l and we can find square roots of k modulo
l.[See reviewer’s comment (19)] All possible values of a and b corresponding to this
l can be found in terms of the square roots.

The following tables show all possible prime factors (and its maximum possible
power) of l for some values of k.
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k possible prime factors of l (maxi-
mum possible power in bracket)

prime q (and all its powers) that can
be a factor of l

1 all primes

2 q ≡ ±1 (mod 8)

3 3(1) q ≡ ±1 (mod 12)

4 all primes

5 2(1), 5(1) q ≡ ±1 (mod 5)

6 3(1) q ≡ ±1,±5 (mod 24)

7 7(1) q ≡ ±1,±3,±9 (mod 28)

8 2(2) q ≡ ±1 (mod 8)

9 all primes

10 5(1) q ≡ ±1,±3,±9,±13 (mod 40)

11 11(1) q ≡ ±1,±5,±7,±9,±19 (mod 44)

12 2(2), 3(1) q ≡ ±1 (mod 12)

13 2(1), 13(1) q ≡ ±1,±3,±4 (mod 13)

14 7(1) q ≡ ±1,±5,±9,±11,±13,±25
(mod 56)

15 3(1), 5(1) q ≡ ±1,±7,±11,±17 (mod 60)

16 all primes

17 17(1) q ≡ ±1,±2,±4,±8 (mod 17)

18 3(2) q ≡ ±1 (mod 8)

19 19(1) q ≡ ±1,±3,±5,±9,±15,±17,±25,
± 27,±31 (mod 76)

20 2(3), 5(1) q ≡ ±1 (mod 5)

Table 13. Possible factors of l for positive k
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k possible prime factors of l (maxi-
mum possible power in bracket)

prime q (and all its powers) that
can be a factor of l

−1 q ≡ 1 (mod 4)

−2 q ≡ 1, 3 (mod 8)

−3 2(1), 3(1) q ≡ 1 (mod 3)

−4 2(2) q ≡ 1 (mod 4)

−5 5(1) q ≡ 1, 3, 7, 9 (mod 20)

−6 3(1) q ≡ 1, 5, 7, 11 (mod 24)

−7 7(1) q ≡ 1, 2, 4 (mod 7)

−8 2(2) q ≡ 1, 3 (mod 8)

−9 3(2) q ≡ 1 (mod 4)

−10 5(1) q ≡ 1, 7, 9, 11, 13, 19, 23, 37
(mod 40)

−11 2(1), 11(1) q ≡ 1, 3, 4, 5, 9 (mod 11)

−12 2(3), 3(1) q ≡ 1 (mod 3)

−13 13(1) q ≡ 1, 7, 9, 11, 15, 17, 19, 25, 29, 31,
47, 49 (mod 52)

−14 7(1) q ≡ 1, 3, 5, 9, 13, 15, 19, 23, 25, 27,
39, 45 (mod 56)

−15 3(1), 5(1) q ≡ 1, 2, 4, 8 (mod 15)

−16 2(4) q ≡ 1 (mod 4)

−17 17(1) q ≡ 1, 3, 7, 9, 11, 13, 21, 23, 25, 27,
31, 33, 39, 49, 53, 63 (mod 68)

−18 q ≡ 1, 3 (mod 8)

−19 2(1), 19(1) q ≡ 1, 5, 7, 9, 11, 17, 19, 23, 25, 35,
39, 43, 45, 47, 49, 55, 61, 63, 73
(mod 76)

−20 2(2), 5(1) q ≡ 1, 3, 7, 9 (mod 20)

Table 14. Possible factors of l for negative k
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Appendix

The following table shows the distribution of 1, 2-triples and consecutive 1, 2-triples.
f(n) is the number of non-negative integers m not exceeding n such that m is the
first number of an 1, 2-triple. g(n) is the number of non-negative integers m not
exceeding n such that both m and m+ 8 are the first numbers of 1, 2-triples. h(n)
is the number of non-negative integers m not exceeding n such that m, m+ 8 and
m+ 16 are the first numbers of three 1, 2-triples.

n f(n) g(n) h(n)

10 2 2 1

100 5 3 1

1000 14 5 1

10000 66 11 1

100000 446 30 1

1000000 3083 138 3

10000000 23140 767 7

100000000 183099 4635 21

1000000000 1490691 30865 144

2147483647 3008296 58450 244

Table 15
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Reviewer’s Comments

General Comments

The flow of this report was generally well. The report first explained the history,
and then presented the findings. The organization of the report was not very good.
One needs some clarifications at certain parts.

The writing was good. Most of the sentences were grammatically correct.

In the abstract, the second result should be stated in a clearer way.

The beginning was introduction. The linkage between sections was missed. One
expects that the aim of each chapter is stated in the introduction and also at the
beginning of each chapter. Especially Chapter 4 contained a lot of technical details.
The readers may get lost until they read Chapter 4.3. Some important equations
should not be stated along without any elaboration. For instance, on page 164,
a2 + k = (a− l)2 + b2 this important equation appeared without any explanation.
There is a strange comment on page 164 (lines 3): ‘Many solutions... solutions.’
The authors may want to say that the results haven’t existed in the literature.

One would be better if the authors add some elaboration on each theorem rather
than just state the theorem. General audience is not familiar with the definition of
square root of 2 modulo l where l is a positive integer. The authors may include
the definition in the report.

The explanations in proofs were adequate and detailed. Some isolated equations
in the proofs without explaining the logical relationship between them were found.
One should pay more attention on Theorem 21 as in its proof the organization
was unsatisfactory. Theorem 21 consisted of six statements, but the proof was not
divided into six self-contained parts. The strategies of six proofs were similar, so
one suggests that the authors explain the idea first, and then keep on applying to
each statement. In this report a lot of equations were used repeatedly. One suggests
that a label should be given to some commonly used equations.

In Section 5.1, what are the purposes of Examples 34 & 35? In Chapter 6.1, what are
the purpose of those examples? How do we get Tables 10, 11, 13 & 14? In Section
6.3, symbol

∏
appeared several times.

∏
can be viewed as an infinite product but

in the report we believe that the product is restricted as a finite product. Please
pay some attention on Example 41.
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In Example 41, it is demonstrated to solve a diophantine equation. However in its
solution, it seems that a completed solution was not found. In Tables 13 & 14, the
discussion about prime 2 did not appear. What is the reason?

In Chapter 6, the authors aimed to show Littlewood’s problem in general. The
report gave a theoretical solution but this solution heavily depends on the choices
of l. It seems that the practical use of solution was not enough.

The citation was generally well. It would be better if the citing source is included
in the sentence. One finds that a lot of citing sources in the report were put beyond
the fullstops. A similar problem was also find when using the foot-note. Please
check these throughout the report.

1,2-triple used the article ‘an’ instead of ‘a’. Is it true?

For a report of such large number of pages, some typographical and minor mistakes
are unavoidable. In the next section some spotted mistakes/ comments will be
marked.

Mistakes

1. change ‘has solutions’ to ‘is solvable’ (?)
2. change ‘as otherwise’ to ‘otherwise’ (?)
3. change ‘only possible’ to ‘all possible’ (?)
4. ‘There are ... 1,2-triples.’ trivial or known (?)
5. change ‘It is proved in Chapter 3 that’ to ‘Theorem 6 tells us that’ (?)
6. ‘r − s must be divisible by p’ how can this achieve?
7. when p = 3, {2, 3, 4, . . . , p− 2} =?
8. what if p = 3?

9. What does
⌊
uq
p

⌋
mean?

10. insert ‘Now we proceed to the discussion of prime powers.’ (?)
11. change ‘n2’ to ‘then n2’ (?)

12. change ‘ (θ−l)
2−2
l ’ to ‘then (θ−l)2−2

l ’ (?)

13. we should handle it by cases: Case I:
(

3
p

)
= 1 & Case II:

(
3
p

)
= −1

14. by LCM? by Chinese Remainder Theorem?
15. by hand?
16. insert ‘Let us prove this result.’ (?)
17. insert ‘Let us explain this through Examples 39 & 40.’(?)
18. change ‘first ... l’ to ‘considering the prime powers factor of l’ (?)
19. change ‘find square’ to ‘find all the square’ (?)




