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Abstract. The critical group of a graph is defined as the torsion subgroup of
the co-kernel of the Laplacian matrix of the graph. In this paper, we investi-
gated the critical groups of two classes of unitary circulant graphs, which are
Cayley graphs on the group of integers modulo n, with connecting set being
the set of units modulo n. The explicit group structure of such graphs when n
is product of two distinct primes and when n is a prime power, are computed
using Ramanujan Sums. Furthermore, we investigated the critical groups of
circulant graphs with fixed connecting sets, and expressed one of the compo-
nents of the group as the greatest common divisor of real and imaginary parts
of Chebyshev Polynomials.
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1. Introduction and Main Results

The notion of the critical group of a graph, also known as the Jacobian group, the
sandpile group or the Picard group, has been independently discussed by many
authors [2][3][5]. It is an important algebraic invariant of a finite graph.

In this paper, we only consider finite simple graphs G with no loops and at most
one edge between any two vertices. Let V (G) and E(G) denote the vertex set and
the edge set of G. We can view this group from a combinatorial perspective via
the chip-firing game, first discussed by Biggs [3] (see also the survey by Glass and
Kaplan [5]). It is defined informally as follows: for a graph G, assign an integer
number of chips to every vertex. We are allowed to perform chip-firing moves (also
known as the toppling rule) on any vertex except one. When we perform a chip-
firing move on a vertex v ∈ V (G), the number assigned to v is subtracted by the
degree of v, and the number assigned to each neighbour of v is increased by 1.
Writing this in mathematical terms, define a divisor by a function f : V (G) → Z.
Any divisor on V (G) is an element of Z|V (G)|. The degree of each divisor is f

defined by deg(f) =
󰁛

v∈G

f(v), and we can further define addition in this sense by

(f + g)(v) = f(v) + g(v). Notice that every chip-firing move preserves the degree.
In fact, the set of all divisors of G with the same degree forms a free abelian group
with |V (G)| − 1 generators. In this context, we focus on the group Div0(G) of
all divisors on G with degree 0. For each function f ∈ Div0(G), we treat it as a

column vector in Z|V (G)|. Whenever we perform a chip-firing move, it is equivalent
to subtracting a column of L(G) from this vector. The chip-firing game is closely
related to the abelian sandpile model, introduced by Bak et al. in [1]. It has also
been discussed by Baker and Norine [2]. This allows us to visualise critical groups
of graphs, but we are going to define it in another way for easier computation.

The second way to define the critical group K(G) of graph G is to make use
of its relation with the Laplacian matrix of G, L(G). For two given vertices
u, v ∈ V (G), denote auv the number of edges between u and v. The matrix
A = A(G) = {auv}u,v∈V (G) is called the adjacency matrix of the graph G. The

degree d(v) of a vertex v ∈ V (G) is defined by d(v) =
󰁛

u∈V (G)

auv. Consider

D = D(G) diagonal matrix indexed by the elements of V (G) with duv = d(v).
Then L(G) = D−A is called the Laplacian matrix, or simply the Laplacian of the
graph G.
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We also define the cokernel of the Laplacian by coker(L(G)) = Z|V (G)|/ im(L(G)).
This is a finitely generated abelian group. Since the Laplacian has the kernel
generated by the column vector (1, 1, . . . , 1)T , its rank is |V (G)|− 1. This implies

coker(L(G)) ∼=

󰀳

󰁃
|V (G)|−1󰁐

i=1

Z/diZ

󰀴

󰁄⊕ Z, with d1 | d2 | · · · | d|V (G)|−1.

Such di are invariant factors of L(G), and the prime power factors of invariant
factors are known as elementary divisors. We define K(G) by the torsion subgroup

of Z|V (G)|/ im(L(G)), so that it is a finite abelian group. Thus,

K(G) ∼=
|V (G)|−1󰁐

i=1

Z/diZ, with d1 | d2 | · · · | d|V (G)|−1.

We can compute the critical group K(G) by finding the Smith Normal Form of the
Laplacian L(G). Indeed, by considering n× n integer matrices P and Q such that
det(P) = det(Q) = ±1 and PL(G)Q = D, where D = diag(d1, . . . , d|V (G)|−1, 0) is

a diagonal matrix, we have coker(L(G)) ∼= coker(D) ∼=
|V (G)|−1󰁐

i=1

Z/diZ. This means

we can determine K(G) directly from the SNF of L(G).

In this paper, we focus on the critical groups of Cayley graphs of abelian groups. In
general, for a Cayley graph G built from an abelian group H with connection set
S ⊂ H such that the identity element of H is not in S, each v ∈ V (G) is associated
to a unique element hv ∈ H. Then for all x, y ∈ G, there is an edge between x, y if
and only if hxh

−1
y ∈ S. Even though the set-up looks simple, critical groups of Cay-

ley graphs are not completely solved. For instance, the explicit group structures
of the Cayley graphs of Fn

2 (even hypercubes) are still unknown. In our case, we
are going to focus on Cayley graphs built from Z/nZ. By identifying each vertex
of V (G) with a unique integer from the set {1, 2, . . . , n}, consider some non-empty
connection set S ⊂ Z/nZ. Then, for all x, y satisfying 1 ≤ x < y ≤ n, xy ∈ E(G)
if and only if y − x ∈ S. This is what is known as circulant graphs.

Our calculations are focused on two types of graphs. The first type is Unitary
Circulant Graphs (UCG), which are Cayley graphs constructed from Z/nZ with
connection set {1 ≤ a < n : (a, n) = 1}, i.e. set of units modulo n. We completely
solve the critical group of UCG when n = pq, where p < q are primes, as well as
when n = pk, where p is prime and k ∈ N. To achieve this, we make use of the
fact that the p-adic valuation of eigenvalues of the Laplacian can be transferred to
that of invariant factors for Cayley graphs of abelian groups and p not dividing n.
Here the eigenvalues can be written in terms of Ramanujan Sums. Furthermore,
in particular for UCG, we handle the cases when such p divides the size of the
graph as well. The second type is circulant graphs with fixed jumps. This was
inspired by a suggested research project in Glass and Kaplan [5]. To be precise,

let s1, s2, . . . , sk be integers such that 1 ≤ s1 < s2 < · · · < sk <
n

2
. The graph
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Cn(s1, s2, . . . , sk) with n vertices 0, 1, 2, . . . , n − 1 is defined by connecting each
vertex i, where 0 ≤ i ≤ n−1 to the vertices i±s1, i±s2, . . . , i±sk (mod n). Given
that the critical group is isomorphic to a direct sum of finite abelian groups, we
found an expression for the size of the smallest non-trivial component for graphs
Cn(1, 3), Cn(2, 3) and Cn(1, 2, 3) for all n ≥ 7 as the greatest common divisor
(GCD) of real and imaginary parts of the two kinds of Chebyshev Polynomials
Tn, Un and Un−1. This is made possible by using the fact that entries of the Smith
Normal Form are related to the GCD of all m × m minors of the matrix, where
1 ≤ m < n. To be precise, we have the following results:

Theorem 1. For primes p < q, if d is the largest common factor of p − 1, q − 1

satisfying

󰀕
d,

p− 1

d

󰀖
=

󰀕
d,

q − 1

d

󰀖
= 1,

K(UCG(pq))

∼= (Z/(pq − p− q)Z)pq−2p−2q+3 ⊕ (Z/(d(pq − p− q)Z))p−1

⊕ Z/((p− 1)(pq − p− q))Z⊕ (Z/(q(p− 1)(pq − p− q))Z)q−p−1

⊕ Z
󰀡

q(p− 1)(q − 1)(pq − p− q)

d
Z⊕

󰀕
Z
󰀡

pq(p− 1)(q − 1)(pq − p− q)

d
Z
󰀖p−2

.

Theorem 2. When k ≥ 2,

K(UCG(pk)) ∼= Z/ (p− 1)Z⊕ (Z/(p− 1)pk−1Z)p
k−2p ⊕ Z/(p− 1)p2k−2Z

⊕ (Z/(p− 1)p2k−1Z)p−2.

Theorem 3. For n ≥ 7, the smallest non-trivial component of K(Cn(2, 3)) has
size

1

52
gcd(52d,−2sn + 12tn − 11un + vn − 4n, 2un + 14vn − 4n),

where sn, tn, un, vn ∈ Z, d = gcd(n, sn, tn, un, vn), sn+i
√
3tn = 4Tn

󰀣
−3 + i

√
3

4

󰀤
−

4 and un + i
√
3vn = 2Un−1

󰀣
−3 + i

√
3

4

󰀤
.

Theorem 4. For n ≥ 7, the smallest non-trivial component of K(Cn(1, 3)) has
size

1

20
gcd(20d, 2un + 6vn + 18n, sn + 3tn + 10vn, 10tn + 10n),

where sn, tn, un, vn ∈ Z, d = gcd(n, sn, tn, un, vn), sn + itn = 2Tn

󰀕
1 + i

2

󰀖
− 2 and

un + ivn = 2Un−1

󰀕
1 + i

2

󰀖
.
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Theorem 5. For n ≥ 7, the smallest non-trivial component of K(Cn(1, 2, 3)) has
size

1

56
gcd(56d, 2un + 14vn + 52n, sn + 7tn + 28vn, 28tn + 28vn + 28n)

where sn, tn, un, vn ∈ Z, d = gcd(n, sn, tn, un, vn), sn+i
√
7tn = 4Tn

󰀣
−3 + i

√
7

4

󰀤
−

4 and un + i
√
7vn = 2Un

󰀣
−3 + i

√
7

4

󰀤
.

2. Definitions and Prerequisites

Here are definitions of some key terms and standard results that we need for our
work that has not yet been mentioned in the previous section.

Definition (Euler Totient Function). For n ∈ N, the Euler totient function ϕ(n)
is defined to be the number of positive integers between 1 and n (inclusive), that
is coprime with n. Formally,

ϕ(n) :=
󰁜

p|n

󰀕
1− 1

p

󰀖
.

Definition (Möbius Function). For n ∈ N, the Möbius function µ(n) is defined to
be the sum of primitive n-th roots of unity. In fact,

µ(n) =

󰀻
󰁁󰀿

󰁁󰀽

+1 n is square-free with even number of prime factors,

−1 n is square-free with odd number of prime factors,

0 n is not square-free.

Definition (p-adic valuation). The p-adic valuation of n ∈ N is the maximum
r ∈ Z such that pr | n. It is denoted νp(n).

Definition (Coset). For a subgroup H of a group G and an element x of G, define
xH to be the set {xh : h ∈ H} and Hx to be the set {hx : h ∈ H}. A subset of G
of the form xH for some x in G is said to be a left coset of H and a subset of the
form Hx is said to be a right coset of H.

Definition (Quotient Group). For a group G and a normal subgroup N of G, the
quotient group of N in G, written as G/N , is the set of cosets of N in G. To define
a binary operation on the set of cosets G/N , for each aN and bN in G/N , the
product of aN and bN , (aN)(bN) is (ab)N .

Definition (Cokernel). The cokernel of a group homomorphism f : A → B be-
tween abelian groups is the quotient group B/ Im(f).

Definition (p-Sylow Subgroup). For a finite abelian group Γ and a prime p that
divides |Γ|, the p-Sylow subgroup of Γ is the maximal subgroup of Γ where its size
is a power of p.

Remark. In our cases, the p-Sylow subgroups of K(G) are the direct sum of Z/mZ
where m is an elementary divisor of the group that is a power of p.
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Definition (Characters of Finite Abelian Groups). A character χ of a finite abelian
group G is a homomorphism χ : G → S1 = {z ∈ C : |z| = 1}.

Theorem (Kirchoff’s Matrix Tree Theorem). [5, Theorem 5 and Corollary 3]
For a given connected graph G with n labeled vertices, let λi, where 1 ≤ i ≤ n− 1,
be the non-zero eigenvalues of its Laplacian matrix. Then the order of K(G) is

1

n

n−1󰁜

i=1

λi.

Definition (Characteristic Equation). Suppose (an)n∈N is an integer sequence
with the linear recurrence relation ckan+k + ck−1an+k−1 + · · · + c1an+1 + c0an =
0. Then, the recurrence relation has a characteristic equation defined to be the
equation ckx

k + ck−1x
k−1 + · · ·+ c1x+ c0 = 0.

Definition (Chebyshev Polynomials). Chebyshev polynomials of the first kind Tn

are defined by Tn(cos θ) = cos(nθ), while Chebyshev polynomials of the second kind
Un are defined by Un(cos θ) sin θ = sin

󰀃
(n+ 1)θ

󰀄
.

3. Critical Groups of Unitary Circulant Graphs

Here we determine the critical groups of some integral circulant graphs. They are
defined as follows:

Definition (Integral Circulant Graphs). A circulant graph G is integral if all
eigenvalues of the adjacency matrix of G are integers.

A criterion on whether a circulant graph is integral has been determined by So in
[9]. Before we cite the criterion, define Gn(d) = {1 ≤ k ≤ n−1 : (k, n) = d}, where
d is a divisor of n. Then, we have the following:

Proposition 1. Let G be a circulant graph on n vertices with symbol S(G). Then
G is integral if and only if S(G) is a union of the Gn(d).

Proof. See [9]. 󰃈

We wish to focus on connected circulant graphs, and we can guarantee so if S(G)
consists of Gn(1), as such graph would then include a cycle. Therefore, in this
paper, we study a class of integral circulant graphs, which are graphs G with
S(G) = Gn(1). We call them Unitary Circulant Graphs (UCG), as the distance
between connected vertices are all units modulo n. Such graphs are defined as
follows:

Definition (Unitary Circulant Graphs). The unitary circulant graph with n ver-
tices
G = UCG(n) is a circulant graph such that if V (G) = {1, 2, 3, . . . , n}, then
∀x, y ∈ V (G), xy ∈ E(G) if and only if (|x− y|, n) = 1.

In this paper, we determine the critical group of UCG(n) when n = pq and n = pk,
where p < q are primes and k ∈ N. Firstly, on the case n = pq. As mentioned
in the Introduction, the critical group of UCG(n) can be uniquely determined
with the SNF of the Laplacian. To determine so, we need the eigenvalues of the
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Laplacian. Ducey and Jalil showed that the eigenvalues of the adjacency matrix
Apq are actually sums of irreducible characters in [4]. In our case, as the graphs
are built on Z/nZ, the characters are functions from Z/nZ to the unit circle, i.e.
{z ∈ C : |z| = 1}.

Lemma 1. All irreducible characters of Z/nZ are given by χr(s) = e
2πirs

n , where
1 ≤ r, s ≤ n.

Proof. By definition, for any character χ : Z/nZ → S1, χ(a + b) = χ(a) · χ(b). In
particular, χ(0) = 1. Notice that

χ(n · 1) = χ(n)

χ(1)n = χ(0)

χ(1)n = 1.

This implies that for any character of Z/nZ, χ(1) is always a n-th root of unity.
We then consider some ω that ωn = 1 and ωm ∕= 1 for all 1 ≤ m < n. Then
all the characters are χ1,χ2, . . . ,χn, where for any 1 ≤ r ≤ n, χr(1) = ωr, and
χr(s) = χr(1)

s = ωrs. 󰃈

From Lemma 1, we know that sums of irreducible characters are actually sums
of n-th roots of unity, which is also called Ramanujan sums. With this fact, So
explicitly computed the spectra of some integral circulant graphs, in particular
UCG(n).

Lemma 2. Let G be a circulant graph on n vertices with symbol S(G) = Gn(1)
where d is a proper divisor of n. With the convention (0, n) = n,ϕ(1) = µ(1) = 1,

the eigenvalues of the adjacency matrix Apq are λt(G) =

ϕ(n)µ

󰀕
n

(t, n)

󰀖

ϕ

󰀕
n

(t, n)

󰀖 , where

0 ≤ t ≤ n− 1.

Lemma 3. The Laplacian matrix Lpq of UCG(pq) has eigenvalues pq− p− q with
multiplicity (p−1)(q−1), (p−1)q with multiplicity q−1, (q−1)p with multiplicity
p− 1 and 0 with multiplicity 1.

Proof. For 0 ≤ t ≤ pq − 1,

(t, pq) =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

pq t = 0

p t ≡ 0 (mod p)

q t ≡ 0 (mod q)

1 otherwise

When (t, pq) = pq, there is only 1 possible value of t (which is 0), and

λt(UCG(pq)) =
ϕ(pq)µ(1)

ϕ(1)
= ϕ(pq) with multiplicity 1;
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when (t, pq) = p, there are q − 1 possible values of t (which are kp where 1 ≤ k ≤
q − 1), and

λt(UCG(pq)) =
ϕ(pq)µ(q)

ϕ(q)
= 1− p with multiplicity q − 1;

when (t, pq) = q, there are p− 1 possible values of t (which are kq where 1 ≤ k ≤
p− 1), and

λt(UCG(pq)) =
ϕ(pq)µ(p)

ϕ(p)
= 1− q with multiplicity p− 1;

when (t, pq) = 1, there are ϕ(pq) = (p− 1)(q − 1) possible values of t, and

λt(UCG(pq)) =
ϕ(pq)µ(pq)

ϕ(pq)
= 1 with multiplicity (p− 1)(q − 1).

Since the degree of UCG(pq) is ϕ(pq) = (p − 1)(q − 1), the Laplacian Lpq =
ϕ(pq)I−Apq, the eigenvalues of Lpq are exactly (p− 1)(q − 1) minus that of Apq,
with multiplicities remain unchanged. Hence we are done. 󰃈

It follows immediately from the Kirchoff’s Matrix Tree Theorem that the order of
the critical group of UCG(pq) equals product of all non-zero eigenvalues (with mul-

tiplicities) divided by pq, which is (pq−p−q)(p−1)(q−1)(p−1)q−1(q−1)p−1pp−2qq−2.
Ducey and Jabel related the multiplicity of prime powers as an elementary divisor
of Apq and the number of eigenvalues of Apq exactly divisible by the prime powers
in [4]. In particular, this remains true for Lpq, since it is a linear combination of
Apq. To apply that into our case, we have the following:

Lemma 4. For a prime r that does not divide n, k ∈ N, the multiplicity of rk as an
invariant factor of Lpq equals the number of eigenvalues of Lpq with r-adic valuation
equal to k. Furthermore, the r-Sylow subgroup of K(UCG(pq)) is isomorphic to

the r-Sylow subgroup of

pq−1󰁐

i=1

(Z/λiZ).

An example of the above result is that for any prime factor r of pq − p − q,
the r-Sylow subgroup of K(UCG(pq)) is isomorphic to the r-Sylow subgroup of

(Z/(pq − p− q)Z)(p−1)(q−1)
. Furthermore, Rushanan deduced that all components

of the SNF of any diagonalisable matrix divdes the product of all non-zero dis-
tinct eigenvalues (ignoring multiplicities) in [8]. In particular, this holds for our
Laplacian matrix Lpq. Precisely,

Lemma 5. IfK(UCG(pq)) ∼= (Z/s1Z)⊕(Z/s2Z)⊕. . . (Z/srZ) with s1 | s2 | · · · | sr,
then

sr | (pq − p− q)(p− 1)(q − 1)pq.

With the help of Lemmas 4 and 5, we can first decompose K(UCG(pq)) into direct
sum of coprime components for certain values of p and q.



STRUCTURE OF CRITICAL GROUPS OF CIRCULANT GRAPHS 161

Proposition 2. If q ∕≡ 1 (mod p), then for d the largest common factor of p−1, q−1

such that

󰀕
d,

p− 1

d

󰀖
=

󰀕
d,

q − 1

d

󰀖
= 1,

K(UCG(pq)) ∼= (Z/pq − p− qZ)(p−1)(q−1) ⊕ (Z/dZ)p+q−2 ⊕
󰀕
Z/

󰀕
p− 1

d

󰀖
Z
󰀖q−1

⊕
󰀕
Z/

󰀕
q − 1

d

󰀖
Z
󰀖p−1

⊕ (Z/pZ)p−2 ⊕ (Z/qZ)q−2.

Proof. Let p − 1 = dP and q − 1 = dQ. Note that for d to satisfy the above
condition, for all prime factors t of d, νt(p) = νt(q). Now let K(UCG(pq)) ∼=
(Z/d1Z)u1⊕(Z/d2Z)u2⊕· · ·⊕(Z/drZ)ur , where d1, d2, . . . , dr are powers of distinct
primes. Then by Lemma 5, di divides sr for each 1 ≤ i ≤ r, so di divdes (pq − p−
q)(p− 1)(q − 1)pq. It is clear that pq − p− q, p− 1, q − 1 are each coprime with p
and q, and since pq − p− q = (p− 1)(q − 1)− 1, it is also coprime with p− 1 and
q− 1. Hence, by Lemma 5, this implies di either equals p or q, or is a prime power
factor of pq−p− q, d, P or Q. By Lemma 4, we can deduce that for each 1 ≤ i ≤ r,
if di divides pq − p − q, ui = (p − 1)(q − 1). Similarly, if di = p, ui = p − 2; if

di = q, ui = q − 2; if di =
p− 1

d
, ui = q − 1; if di =

q − 1

d
, ui = p− 1. Finally, if di

divides d, ui = p− 1+ q− 1 = p+ q− 2, taking the multiplicities from (Z/pZ) and
(Z/qZ) together. Combining everything together, we have the desired result. 󰃈

The proof above is unable to help with the case when q ≡ 1 (mod p) because q− 1
would also contain factors of p, and if νp(q− 1) > 1, we might have components of

the form (Z/p2Z) or even higher powers of p. So we need one more result before
coming back to the case when q ≡ 1 (mod p).

Lemma 6. If q ≡ 1 (mod p), there are exactly p−1 invariant factors inK(UCG(pq))
that are divisible by p.

Proof. We know that the number of invariant factors that are not congruent to 0
(mod p) is equal to the rank of Lpq over Fp, the finite field of order p. So the number
of invariant factors that are congruent to 0 (mod p) is equal to pq minus the rank
of Lpq over Fp. Next, consider the matrix Lpq − pI. Since we are working over
Fp, the rank remains unchanged after the transformation, and all eigenvalues are
subtracted by p. Now we look at the eigenvalues of Lpq−pI that are multiples of p.
They are p(q−1)−p = p(q−2) with multiplicity p−1, and −p with multiplicity 1.
This means νp(det(Lpq − pI)) = p. Hence, there are at most p elementary factors
in Lpq − pI that are divisible by p, and so so there are at most p invariant factors
in Lpq − pI that are divisible by p.
On the other hand, we claim that there are at least p invariant factors in Lpq − pI

that are divisible by p. Indeed, recall that det(Lpq) = (pq − p − q)(p−1)(q−1)(p −
1)q−1(q − 1)p−1pp−2qq−2, which means

νp(det(Lpq)) = (p− 1)νp(q − 1) + p− 2.

By Lemma 5, for each invariant factor si, 1 ≤ i ≤ r, νp(si) ≤ νp(q − 1) + 1.
We cannot have fewer than p − 1 invariant factors that are divisible by p, then
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their total p-adic valuation would be at most (p − 2)νp(q − 1) + p − 2, which is
strictly smaller than what we have. Therefore, we must have at least p−1 non-zero
invariant factors that are divisible by p. Going back to Lpq−pI, there are at least p
invariant factors that are divisible by p. This implies there are exactly p invariant
factors in Lpq − pI that are divisible by p. Since the ranks of Lpq − pI and Lpq are
equal, we know there are exactly p − 1 (not including the 0) invariant factors in
the critical group that are divisible by p. 󰃈

With this lemma, we are ready to determine the critical group of UCG(pq) com-
pletely.

Theorem 1. For primes p < q, if d the largest common factor of p− 1, q − 1 such

that

󰀕
d,

p− 1

d

󰀖
=

󰀕
d,

q − 1

d

󰀖
= 1,

K(UCG(pq))

∼= (Z/pq − p− qZ)pq−2p−2q+3 ⊕ (Z/d(pq − p− q)Z)p−1

⊕ Z/(p− 1)(pq − p− q)Z⊕ (Z/q(p− 1)(pq − p− q)Z)q−p−1

⊕ Z/
q(p− 1)(q − 1)(pq − p− q)

d
Z⊕ (Z/

pq(p− 1)(q − 1)(pq − p− q)

d
Z)p−2.

Proof. From Proposition and Lemma, we know that for all primes p < q,

K(UCG(pq)) ∼= (Z/(pq − p− q)Z)(p−1)(q−1) ⊕ (Z/dZ)p+q−2 ⊕ (Z/
p− 1

d
Z)q−1

⊕ (Z/
q − 1

d
Z)p−1 ⊕ (Z/pZ)p−2 ⊕ (Z/qZ)q−2.

ForK(UCG(pq)) to be isomorphic to the form (Z/s1Z)u1⊕(Z/s2Z)u2⊕(Z/s3Z)u3⊕
(Z/s4Z)u4⊕(Z/s5Z)u5⊕(Z/s6Z)u6 , with s1 | s2 | · · · | s6, consider the multiplicities
of invariant factors in descending order. We have (p−1)(q−1) > p+q−2 > q−1 >
q − 2 > p − 1 > p − 2. Then following this order, we know that for 1 ≤ i ≤ 6, ui

satisfy

u1 + u2 + u3 + u4 + u5 + u6 = (p− 1)(q − 1)

u2 + u3 + u4 + u5 + u6 = p+ q − 2

u3 + u4 + u5 + u6 = q − 1

u4 + u5 + u6 = q − 2

u5 + u6 = p− 1

u6 = p− 2

Solving, we have u1 = pq − 2p − 2q + 3, s2 = p − 1, s3 = 1, s4 = q − p − 1, s5 =
1, s6 = p− 2. Also, we have

s1 = pq − p− q

s2 = d(pq − p− q)

s3 = (p− 1)(pq − p− q)

s4 = q(p− 1)(pq − p− q)
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s5 =
q(p− 1)(q − 1)(pq − p− q)

d

s6 =
pq(p− 1)(q − 1)(pq − p− q)

d
Putting them together we get the desired result. 󰃈
Example. When n = 2p, where p ≥ 3 is a prime,

K(UCG(n)) ∼= Z/ (p− 2)Z⊕ (Z/p(p− 2)Z)p−3 ⊕ Z/ (p(p− 1)(p− 2))Z.

Example. When n = 3p, where p ≥ 5 is a prime,

K(UCG(n)) ∼= (Z/2p− 3Z)p−3 ⊕ (Z/2(2p− 3)Z)3 ⊕ (Z/2p(2p− 3)Z)p−4

⊕ Z/ (p(p− 1)(2p− 3))Z⊕ Z/ (3p(p− 1)(2p− 3))Z.

Example. When n = 5p, where p ≥ 7 is a prime,

if p ≡ 1 (mod 4),K(UCG(n)) ∼=(Z/4p− 5Z)3p−7 ⊕ (Z/4(4p− 5))Z)5

⊕ (Z/4p(4p− 5)Z)p−6 ⊕ Z/ (p(p− 1)(4p− 5))Z
⊕ (Z/5p(p− 1)(4p− 5)Z)3;

if p ≡ 3 (mod 4),K(UCG(n)) ∼=(Z/4p− 5Z)3p−7 ⊕ (Z/2(4p− 5))Z)4

⊕ Z/ (4(4p− 5))Z⊕ (Z/4p(4p− 5)Z)p−6

⊕ Z/ (2p(p− 1)(4p− 5))Z
⊕ (Z/10p(p− 1)(4p− 5)Z)3.
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Next, we determine the decomposition of the critical group of UCG(n) when n = pk,
where p is a prime, and k ∈ N. Proposition 3 settles the case when k = 1.

Proposition 3.
K(UCG(p)) ∼= (Z/pZ)p−2.

Proof. By definition, the Laplacian matrix Lp of the complete graph is
󰀳

󰁅󰁅󰁅󰁃

p− 1 −1 −1 . . . −1
−1 p− 1 −1 . . . −1
...

...
. . .

...
−1 −1 −1 . . . p− 1

󰀴

󰁆󰁆󰁆󰁄

Let the SNF of the matrix be diag(s1, s2, . . . , sp−1, 0), with s1 | s2 | · · · | sp−1.

Then for ur =

r󰁜

i=1

si, where 1 ≤ r ≤ p − 1, ur is the greatest common divisor of

all r × r minors of the Laplacian matrix. First, it is clear that u1 = 1, so s1 = 1.
Next, note that the 2× 2 submatrices must be one of the following forms:

󰀕
p− 1 −1
−1 p− 1

󰀖
,

󰀕
p− 1 −1
−1 −1

󰀖
,

󰀕
−1 p− 1
−1 −1

󰀖
,

󰀕
−1 −1
p− 1 −1

󰀖
,

󰀕
−1 −1
−1 p− 1

󰀖
,

󰀕
−1 −1
−1 −1

󰀖
.

Then the 2× 2 minors must be either p2 − 2p, p,−p or 0, and their GCD is p. So
s1s2 = p, i.e. s2 = p. Since s2 | sj , for all 3 ≤ j ≤ p− 1, sj ≥ p. This implies the

GCD of all (p − 1) × (p − 1) minors is at least pp−2. On the other hand, for the
(p− 1)× (p− 1) submatrix M of Lp, notice that by subtracting each of rows 1 to
p − 2 by row p − 1, and then adding each of columns 1 to p − 2 to row p − 1, we
have

det(M) =

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

p 0 0 . . . 0 −p
0 p 0 . . . 0 −p
...

...
. . .

...
...

0 0 0 . . . p −p
−1 −1 −1 . . . −1 p− 1

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

=

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

p 0 0 . . . 0 0
0 p 0 . . . 0 0
...

...
. . .

...
...

0 0 0 . . . p 0
−1 −1 −1 . . . −1 1

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

= pp−2

Therefore the GCD of all (p − 1) × (p − 1) minors is exactly pp−2, which means
sj = p for every 2 ≤ j ≤ p − 1. That means the SNF is diag(1, p, p, . . . , p, 0), and

so the critical group is isomorphic to (Z/pZ)p−2. 󰃈

Next we derive the decomposition form of K(UCG(pk)) when k ≥ 2.
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Theorem 2. When k ≥ 2,

K(UCG(pk)) ∼= Z/ (p− 1)Z⊕ (Z/(p− 1)pk−1Z)p
k−2p ⊕ Z/(p− 1)p2k−2Z

⊕ (Z/(p− 1)p2k−1Z)p−2.

Proof. Denote Lpk the Laplacian of the required graph. Consider Lpk as a Z-linear
operator L : Zpk

→ Zpk

. coker(Lpk) is an abelian group generated by elements
x1, x2, . . . , xpk , such that by defining

aqi = xpi−p+l, 1 ≤ q ≤ p, 1 ≤ i ≤ pk−1,

and a0i = api, they satisfy equations R(q, i), where 1 ≤ q ≤ p, 1 ≤ i ≤ pk−1, defined
by

R(q, i) : (p− 1)pk−1aqi =

pk−1󰁛

j=1

󰁛

1≤m≤p,m ∕=q

amj .

This holds because for each vertex v, when a chip-firing move is performed on it, its
degree decreases by deg(v) = ϕ(pk) = (p− 1)pk−1, and all neighbours of v increase
by 1. Since the critical group is the torsion part of the cokernel of the Laplacian,
the expressions arose above are equal to 0 here. To study its structure, we reduce
equations R(q, i). For each 2 ≤ r ≤ pk−1, by putting R(q, 1) into R(q, r),

(p− 1)pk−1aq1 = (p− 1)pk−1aqr =

pk−1󰁛

j=1

󰁛

1≤m≤p,m ∕=q

amj ,

so we have equations S(q, r) : (p − 1)pk−1(aq1 − aqr) = 0 for any 1 ≤ q ≤ p, 2 ≤
r ≤ pk−1.
For every 2 ≤ q ≤ p, subtracting each of R(q, 1) by R(1, 1) gives equations U(q),
defined by

U(q) : (p− 1)pk−1aq1 − (p− 1)pk−1a11 +

pk−1󰁛

j=1

(aqj − a1j) = 0

Rearranging U(q) to make aqpk−1 the subject,

aqpk−1 = (p− 1)pk−1(a11 − aq1) +

pk−1󰁛

j=1

a1j −
pk−1−1󰁛

j=1

aqj

Then we put it into S(q, pk−1), and since (p−1)pk−1(a11−a1j) = (p−1)pk−1(aq1−
aqj) = 0,
we get

(p− 1)pk−1

󰀳

󰁃aq1 − (p− 1)pk−1(a11 − aq1)−
pk−1󰁛

j=1

a1j +

pk−1−1󰁛

j=1

aqj

󰀴

󰁄 = 0

(p− 1)pk−1
󰀃
aq1 − (p− 1)pk−1(a11 − aq1)− pk−1a11 + (pk−1 − 1)aq1

󰀄
= 0

(p− 1)pk−1(aq1 − p(pk−1)a11 + (p(pk−1)− 1)aq1) = 0

(p− 1)p2k−1(aq1 − a11) = 0
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From what we have obtained above, we can rewrite K(UCG(pk)) as

coker(Lpk) ∼=〈a1i, aqr : 1 ≤ i ≤ pk−1, 2 ≤ q ≤ p, 1 ≤ r ≤ pk−1 − 1 |
(p− 1)pk−1(aq1 − aqr) = 0 : 1 ≤ q ≤ p, 2 ≤ r ≤ pk−1 − 1;

(p− 1)p2k−1 (aq1 − a11) = 0 : 2 ≤ q ≤ p;R(1, 1)〉

So it remains to work on R(1, 1). First, rewrite the equation as

(p− 1)pk−1a11 −
p󰁛

q=2

󰀳

󰁃aqpk−1 +

pk−1−1󰁛

j=1

aqj

󰀴

󰁄 = 0

Put U(q) into R(1, 1),

(p− 1)pk−1a11

−
p󰁛

q=2

󰀳

󰁃(p− 1)pk−1(a11 − aq1) +

pk−1󰁛

j=1

a1j −
pk−1−1󰁛

j=1

aqj +

pk−1−1󰁛

j=1

aqj

󰀴

󰁄 = 0

(p− 1)pk−1a11 − (p− 1)pk−1

p󰁛

q=2

(a11 − aq1)− (p− 1)

pk−1󰁛

j=1

a1j = 0

At this point, we are unable to make a1pk−1 as the subject of the equation because
there is a coefficient p− 1 that cannot be cancelled out. Here we let M be another

Z-linear operator M : Zpk−p+1 → Zpk−p+1 representing the reduced relations.
Thus coker(Lpk) = coker((p − 1)M). It suffices to determine the Smith Normal
Form of (p− 1)M. To proceed, note that coker(M) is isomorphic to

〈a1i, aqr : 1 ≤ i ≤ pk−1, 2 ≤ q ≤ p, 1 ≤ r ≤ pk−1 − 1 |
pk−1(aq1 − aqr) = 0 : 1 ≤ q ≤ p, 2 ≤ r ≤ pk−1 − 1;

p2k−1 (aq1 − a11) = 0 : 2 ≤ q ≤ p;T (1, 1)〉

where T (1, 1) is the equation

pk−1a11 − pk−1

p󰁛

q=2

(a11 − aq1)−
pk−1󰁛

j=1

a1j = 0

a1pk−1 = pk−1a11 − pk−1

p󰁛

q=2

(a11 − aq1)−
pk−1−1󰁛

r=1

a1r.

Put T (1, 1) into S(1, pk−1),

pk−1

󰀳

󰁃a11 − pk−1a11 +

p󰁛

q=2

pk−1(a11 − aq1) +

pk−1−1󰁛

r=1

a1r

󰀴

󰁄 = 0

pk−1

󰀣
(1− pk−1 + (p− 1)pk−1)a11 − pk−1

p󰁛

q=2

aq1 + (pk−1 − 1)a11

󰀤
= 0



STRUCTURE OF CRITICAL GROUPS OF CIRCULANT GRAPHS 167

(p− 1)p2k−2a11 − p2k−2

p󰁛

q=2

aq1 = 0

p2k−2

p󰁛

q=2

(a11 − aq1) = 0.

Now coker(M) becomes

〈aqr : 1 ≤ q ≤ p, 1 ≤ r ≤ pk−1 − 1 |
pk−1(aq1 − aqr) = 0 : 1 ≤ q ≤ p, 2 ≤ r ≤ pk−1 − 1;

p2k−1 (aq1 − a11) = 0 : 2 ≤ q ≤ p;

p2k−2

p󰁛

q=2

(a11 − aq1) = 0〉.

For each 2 ≤ q ≤ p, let bq = aq1 − a11. Then the torsion subgroup of coker(M) is
isomorphic to

〈a11, aqr, bi : 1 ≤ q ≤ p, 2 ≤ r ≤ pk−1 − 1, 2 ≤ i ≤ p |
pk−1(bq + a11 − aqr) = 0 : 1 ≤ q ≤ p, 2 ≤ r ≤ pk−1 − 1;

p2k−1bq = 0 : 2 ≤ q ≤ p;

p2k−2

p󰁛

q=2

bq = 0〉.

For the equations p2k−1bq = 0, 2 ≤ q ≤ p and p2k−2

p󰁛

q=2

bq = 0, note that the

sum of the first q − 1 equations implies the last equation, which means one of
the equations p2k−1bq = 0 is redundant. So, from all the equations, the torsion

subgroup of coker(M) has a subgroup that is isomorphic to (Z/pk−1Z)p(p
k−1−2) ⊕

Z/p2k−2Z⊕ (Z/p2k−1Z)p−2. But since there are pk − p generators and the rank of
the subgroup we obtained is pk − p+ 1, coker(M) is isomorphic to

Z⊕ (Z/pk−1Z)p
k−2p ⊕ Z/p2k−2Z⊕ (Z/p2k−1Z)p−2.

Thus the Smith Normal Form ofM is diag(1, pk−1, ..., pk−1, p2k−2, p2k−1, ..., p2k−1, 0)
where there are pk − 2p occurrences of pk−1 and p− 2 occurrences of p2k−1.
Now since the Smith Normal Form of (p− 1)M is (p− 1) times that of M, i.e.
diag(p−1, (p−1)pk−1, ..., (p−1)pk−1, (p−1)p2k−2, (p−1)p2k−1, ..., (p−1)p2k−1, 0),
where there are pk − 2p occurrences of (p − 1)pk−1 and p − 2 occurrences of
(p− 1)p2k−1. Thus, we have

K(UCG(pk)) ∼= Z/ (p− 1)Z⊕ (Z/(p− 1)pk−1Z)p
k−2p ⊕ Z/(p− 1)p2k−2Z

⊕ (Z/(p− 1)p2k−1Z)p−2,

as desired. 󰃈
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Example. When n = 2k, k ≥ 2,

K(UCG(2k)) ∼= (Z/2k−1Z)2
k−4 ⊕ Z/22k−2Z.

Example. When n = 3k, k ≥ 2,

K(UCG(3k)) ∼= Z/2Z⊕ (Z/2(3k−1)Z)3
k−6 ⊕ Z/2(32k−2)Z⊕ Z/2(32k−1)Z.

4. Critical Groups of Circulant Graphs with Fixed Jumps

In this section, we turn to compute the critical group for circulant graphs with fixed
jumps, i.e. the connecting set of the Cayley graph built on Z/nZ is independent of
n. Hou, Woo and Chen computed explicitly the critical group for Cn(1, 2) in [6],
which is isomorphic to

Z/(n, Fn)Z⊕ Z/FnZ⊕ Z
󰀡

nFn

(n, Fn)
Z,

where Fn is the nth Fibonacci number, and F1 = F2 = 1. In this paper, we focus
on the other circulant graphs that connect vertices with distance at most 3, which
are Cn(1, 3), Cn(2, 3) and Cn(1, 2, 3).

Consider the circulant graph Cn(2, 3), where every vertex labelled i is adjacent to
the vertices i ± 2 and i ± 3, addition taken modulo n. Here K(Cn(2, 3)) is the
quotient group of Zn by the subgroup spanned by n − 1 elements expressing the
toppling rules

xi−3 + xi−2 − 4xi + xi+2 + xi+3,

where xi ∈ Zn is a vector with entries all equal to 0 except the i-th entry. To
simplify the subgroup, choose vertex 6 as the root. Let x̄i be the image of xi in
Cn(2, 3), then x̄6 = 0 in Cn(2, 3). Applying the toppling rule to other vertices, we
have

(∗)

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

x̄1 = 4x̄n−2 − x̄n−4 − x̄n−5 − x̄n,

x̄2 = 4x̄n−1 − x̄n−3 − x̄n−4 − x̄1,

x̄3 = 4x̄n − x̄n−2 − x̄n−3 − x̄2,

x̄4 = 4x̄1 − x̄n−1 − x̄n−2 − x̄3,

x̄5 = 4x̄2 − x̄n − x̄n−1 − x̄4,

x̄i = 4x̄i−3 − x̄i−5 − x̄i−6 − x̄i−1 for each 7 ≤ i ≤ n.

From this system, we can tell there are at most 5 generators for Cn(2, 3). Indeed,
each x̄i can be expressed as a linear combination of x̄j , where 1 ≤ j ≤ 5. For
7 ≤ i ≤ n, we define Ai, Bi, Ci, Di, Ei such that

x̄i = Aix̄1 +Bix̄2 + Cix̄3 +Dix̄4 + Eix̄5,

with initial conditions

(A1, A2, A3, A4, A5, A6) = (1, 0, 0, 0, 0, 0)

(B1, B2, B3, B4, B5, B6) = (0, 1, 0, 0, 0, 0)

(C1, C2, C3, C4, C5, C6) = (0, 0, 1, 0, 0, 0)
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(D1, D2, D3, D4, D5, D6) = (0, 0, 0, 1, 0, 0)

(E1, E2, E3, E4, E5, E6) = (0, 0, 0, 0, 1, 0)

and they each satisfy the recurrence relation

Si+6 + Si+5 − 4Si+3 + Si+1 + Si = 0

where S is a placeholder for A,B,C,D and E.

Lemma 7. For all integers n ≥ 7,

Bn = An +An−1 (1)

Cn = Bn−1 = An−1 +An−2 (2)

Dn = −Bn+3 = −An+3 −An+2 (3)

En = −Bn+2 = −An+2 −An+1 (4)

6− n = An + 3An−1 + 5An−2 + 3An−3 +An−4 (5)

Proof. We will proceed with induction on n.

For (1), since

B7 = 4B4 −B6 −B2 −B1 = −1 and A7 = 4A4 −A6 −A2 −A1 = −1 and A6 = 0,

The base case is done.

For n > 6, suppose (1) holds for some positive integer k. Then, for n = k + 1,

Bk+1 = 4Bk−2 −Bk −Bk−4 −Bk−5

= 4(Ak−2 +Ak−3)− (Ak +Ak−1)− (Ak−4 +Ak−5)− (Ak−5 +Ak−6)

= −Ak −Ak−1 + 4Ak−2 + 4Ak−3 −Ak−4 − 2Ak−5 −Ak−6

= −(Ak +Ak−1 − 4Ak−3 +Ak−5 +Ak−6) + 4Ak−2 − 4Ak−4 −Ak−5

= 0− (Ak+1 +Ak − 4Ak−2 +Ak−4 +Ak−5) +Ak+1 +Ak

= Ak+1 +Ak

Therefore by induction, (1) holds for all natural numbers n ≥ 7.

For (2), since by calculation

C7 = 4C4 − C6 − C2 − C1 = 0, C8 = 4C5 − C7 − C3 − C2 = −1,

and
A6 = 4A3 −A5 −A1 −A0 = 0, A7 = 4A4 −A6 −A2 −A1 = −1,

A8 = 4A5 −A7 −A3 −A2 = 1

The base case is done.

For n > 6, suppose (2) holds for some positive integer k. Then, for n = k + 1,

Ck+1 = 4Ck−2 − Ck − Ck−4 − Ck−5

= 4Bk−3 −Bk−1 −Bk−5 −Bk−6

= Bk = B(k+1)−1
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Therefore by induction, (2) holds for all n ∈ N.
For (3), since

B8 = 4B5 −B7 −B3 −B2 = 0, B9 = 4B6 −B8 −B4 −B3 = 0,

The base case is done.

For n > 6, suppose (3) holds for some positive integer k. Then, for n = k + 1,

Dk+1 = 4Dk−2 −Dk −Dk−4 −Dk−5

= 4(−Bk+1)− (−Bk+3)− (−Bk−1)− (−Bk−2)

= −(4Bk+1 −Bk+3 −Bk−1 −Bk−2)

= Bk+4 = B(k+1)+3

Therefore by induction, (3) holds for all n ∈ N.

For (4), since

B7 = 4B4 −B6 −B2 −B1 = −1 and A7 = 4A4 −A6 −A2 −A1 = −1

and A6 = 0,

The base case is done.

For n > 6, suppose (4) holds for some positive integer k. Then, for n = k + 1,

Ek+1 = 4Ek−2 − Ek − Ek−4 − Ek−5

= 4(−Bk)− (−Bk+2)− (−Bk−2)− (−Bk−3)

= −(4Bk −Bk+2 −Bk−2 −Bk−3)

= Bk+3 = B(k+1)+2

Therefore by induction, (4) holds for all n ∈ N.

For (5), it is easy to see that it holds for n = 7. The base case is done.

For n > 7, Suppose (5) holds for some positive integer k. Then, for n = k + 1,

An+1 + 3An + 5An−1 + 3An−2 +An−3

= (4Ak−2 −Ak −Ak−4 −Ak−5) + 3An + 5An−1 + 3An−2 +An−3

= 2Ak + 5Ak−1 + 7Ak−2 +Ak−3 −Ak−4 −Ak−5

= 2(Ak + 3Ak−1 + 5Ak−2 + 3Ak−3 +Ak−4)

− (Ak−1 + 3Ak−2 + 5Ak−3 + 3Ak−4 +Ak−5)

= 2(6− n)− (6− (n− 1)) = 6− (n+ 1)

Therefore by induction, (5) holds for all n ∈ N. Hence we are all done. 󰃈
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From (∗), iterating the relations to x̄n+i = x̄i, where 1 ≤ i ≤ 5, we can build a new
system between generators x̄i

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

x̄1 = An+1x̄1 +Bn+1x̄2 + Cn+1x̄3 +Dn+1x̄4 + En+1x̄5

x̄2 = An+2x̄1 +Bn+2x̄2 + Cn+2x̄3 +Dn+2x̄4 + En+2x̄5

x̄3 = An+3x̄1 +Bn+3x̄2 + Cn+3x̄3 +Dn+3x̄4 + En+3x̄5

x̄4 = An+4x̄1 +Bn+4x̄2 + Cn+4x̄3 +Dn+4x̄4 + En+4x̄5

x̄5 = An+5x̄1 +Bn+5x̄2 + Cn+5x̄3 +Dn+5x̄4 + En+5x̄5

Hence we have a relation matrix M(2, 3) between generators x̄i, 1 ≤ i ≤ 5. By row
and column reductions,

M(2, 3)

=

󰀵

󰀹󰀹󰀹󰀹󰀷

An+1 − 1 Bn+1 Cn+1 Dn+1 En+1

An+2 Bn+2 − 1 Cn+2 Dn+2 En+2

An+3 Bn+3 Cn+3 − 1 Dn+3 En+3

An+4 Bn+4 Cn+4 Dn+4 − 1 En+4

An+5 Bn+5 Cn+5 Dn+5 En+5 − 1

󰀶

󰀺󰀺󰀺󰀺󰀸

∼

󰀵

󰀹󰀹󰀹󰀹󰀷

An+1 − 1 Bn+1 Bn −Bn+4 −Bn+3

An+2 Bn+2 − 1 Bn+1 −Bn+5 −Bn+4

An+3 Bn+3 Bn+2 − 1 −Bn+6 −Bn+5

An+4 Bn+4 Bn+3 −Bn+7 − 1 −Bn+6

An+5 Bn+5 Bn+4 −Bn+8 −Bn+7 − 1

󰀶

󰀺󰀺󰀺󰀺󰀸

∼

󰀵

󰀹󰀹󰀹󰀹󰀷

An+1 − 1 An + 1 Bn −Bn+4 −Bn+3

An+2 An+1 − 1 Bn+1 −Bn+5 −Bn+4

An+3 An+2 Bn+2 − 1 −Bn+6 −Bn+5

An+4 An+3 Bn+3 −Bn+7 − 1 −Bn+6

An+5 An+4 Bn+4 −Bn+8 −Bn+7 − 1

󰀶

󰀺󰀺󰀺󰀺󰀸
C2→C2−C1

∼

󰀵

󰀹󰀹󰀹󰀹󰀷

An+1 − 1 An + 1 An−1 − 1 Bn+4 Bn+3

An+2 An+1 − 1 An + 1 Bn+5 Bn+4

An+3 An+2 An+1 − 1 Bn+6 Bn+5

An+4 An+3 An+2 Bn+7 + 1 Bn+6

An+5 An+4 An+3 Bn+8 Bn+7 + 1

󰀶

󰀺󰀺󰀺󰀺󰀸

C3→C3−C2

C4→−C4

C5→−C5

∼

󰀵

󰀹󰀹󰀹󰀹󰀷

An+1 − 1 An + 1 An−1 − 1 Bn+3 Bn+4

An+2 An+1 − 1 An + 1 Bn+4 Bn+5

An+3 An+2 An+1 − 1 Bn+5 Bn+6

An+4 An+3 An+2 Bn+6 Bn+7 + 1
An+5 An+4 An+3 Bn+7 + 1 Bn+8

󰀶

󰀺󰀺󰀺󰀺󰀸
C4↔C5

∼

󰀵

󰀹󰀹󰀹󰀹󰀷

An+1 − 1 An + 1 An−1 − 1 Bn+3 3An+2 + n
An+2 An+1 − 1 An + 1 Bn+4 3An+3 + n
An+3 An+2 An+1 − 1 Bn+5 3An+4 + n
An+4 An+3 An+2 Bn+6 3An+5 + n
An+5 An+4 An+3 Bn+7 + 1 3An+6 + n

󰀶

󰀺󰀺󰀺󰀺󰀸
C5→C5+2C4+3C1+C2

C5→−C5
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∼

󰀵

󰀹󰀹󰀹󰀹󰀷

An+1 − 1 An + 1 An−1 − 1 An+2 3An+2 + n
An+2 An+1 − 1 An + 1 An+3 3An+3 + n
An+3 An+2 An+1 − 1 An+4 3An+4 + n
An+4 An+3 An+2 An+5 3An+5 + n
An+5 An+4 An+3 An+6 3An+6 + n

󰀶

󰀺󰀺󰀺󰀺󰀸
C4→C4+C3+3C2+5C1+C5

∼

󰀵

󰀹󰀹󰀹󰀹󰀷

An+1 − 1 An + 1 An−1 − 1 An+2 n
An+2 An+1 − 1 An + 1 An+3 n
An+3 An+2 An+1 − 1 An+4 n
An+4 An+3 An+2 An+5 n
An+5 An+4 An+3 An+6 n

󰀶

󰀺󰀺󰀺󰀺󰀸
C5→C5−3C4

∼

󰀵

󰀹󰀹󰀹󰀹󰀷

An+2 An+1 − 1 An + 1 An−1 − 1 n
An+3 An+2 An+1 − 1 An + 1 n
An+4 An+3 An+2 An+1 − 1 n
An+5 An+4 An+3 An+2 n
An+6 An+5 An+4 An+3 n

󰀶

󰀺󰀺󰀺󰀺󰀸

C4↔C3

C3↔C2

C2↔C1

∼

󰀵

󰀹󰀹󰀹󰀹󰀷

An+2 An+1 − 1 An + 1 An−1 − 1 n
An+3 An+2 An+1 − 1 An + 1 n
An+4 An+3 An+2 An+1 − 1 n
An+5 An+4 An+3 An+2 n
n n n n −13n

󰀶

󰀺󰀺󰀺󰀺󰀸
R5→R5+3R4+5R3+3R2+R1

R5→−R5

To further solve for An, from the recurrence relation, we obtain the characteristic
equation

λ6 + λ5 − 4λ3 + λ+ 1 = 0 (6)

(λ− 1)2(λ4 + 3λ3 + 5λ2 + 3λ+ 1) = 0

λ2 + 2 +
1

λ2
+ 3(λ+

1

λ
) + 5− 2 = 0

Let k = λ+
1

λ
, we have

k2 + 3k + 3 = 0

k =
−3± i

√
3

2
.

Consider the equation

(∗) λ4 + 3λ3 + 5λ2 + 3λ+ 1 = 0.

Note that if the z is a root of (∗), then the roots of (∗) are z,
1

z
, z,

1

z
.

Then, for k1, k2, k3, k4, k5, k6 ∈ C, all solutions to the recurrence equation are in
the form

k1z
n + k2z

−n + k3z
n + k4z

−n + k5n+ k6.

Now take z such that z + z−1 =
−3 + i

√
3

2
. Let z = eiθ, where θ ∈ C.
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Then z + z−1 = 2 cos θ, so cos θ =
−3 + i

√
3

4
. Denote

−3 + i
√
3

4
= α.

zn + z−n = 2 cosnθ

= 2Tn(cos θ)

= 2Tn

󰀣
−3 + i

√
3

4

󰀤

= 2Tn(α)

z − z−1 = 2i sin θ. Then,

zn − z−n = 2i sinnθ

= 2i sin θUn−1(cos θ)

= (z − z−1)Un−1(α)

Similarly, z + z−1 =
−3− i

√
3

4
= α. Then,

zn + z−n = 2Tn(α)

zn − z−n = (z − z−1)Un−1(α)

Now note that

Tn(α) = Tn(α) and Un−1(α) = Un−1(α),

and for any w ∈ C,

Re(w) =
w + w

2
and Im(w) =

w − w

2i
.

We define sn, tn, un, vn the numbers satisfying sn + i
√
3tn = 4Tn(α)− 4 and

un + i
√
3vn = 2Un−1(α). Then,

sn = 4Re(Tn(α))− 4

= 4(
Tn(α) + Tn(α)

2
)− 4

= 4(
zn + z−n

4
+

zn + z−n

4
)− 4

= zn + z−n + zn + z−n − 4

tn =
4√
3
Im(Tn(α)

=
4√
3
(
Tn(α)− Tn(α)

2i
)

=
2√
3
(
zn + z−n − zn − z−n

2
)

=
zn + z−n − zn − z−n

i
√
3
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un = 2Re(Un−1(α)

= 2(
Un−1(α) + Un−1(α)

2
)

=
zn − z−n

z − z−1
+

zn − z−n

z − z−1

vn =
2√
3
(Im(Un−1(α)))

=
2√
3
(
Un−1(α)− Un−1(α)

2i
)

=
1

i
√
3
(
zn − z−n

z − z−1
+

zn − z−n

z − z−1 )

Therefore sn, tn, un, vn can be expressed in the form k1z
n+k2z

−n+k3z
n+k4z

−n+
k5n+ k6, i.e. they satisfy the recurrence relation

Si+6 + Si+5 − 4Si+3 + Si+1 + Si = 0.

Lemma 8. For all n ∈ N, sn, tn, un, vn are all integers.

Proof. We prove this by induction on n. For 0 ≤ n ≤ 5, we observe the following.

(s0, s1, s2, s3, s4, s5) = (0,−7,−5, 5,−21, 8)

(t0, t1, t2, t3, t4, t5) = (0, 1,−3, 3, 3,−16)

(u0, u1, u2, u3, u4, u5) = (0, 2,−3, 1, 6,−16)

(v0, v1, v2, v3, v4, v5) = (0, 0, 1,−3, 4, 0).

For n ≥ 6, we use the recurrence relation, xn + xn+1 − 4xn+3 + xn+5 + xn+6 = 0,
i.e.

xn = −xn−1 + 4xn−3 − xn−5 − xn−6.

By induction, we proved that sn, tn, un, vn are integers for all n. 󰃈

To compute the sizes of non-trivial components of K(Cn(2, 3)), we look at the
greatest common divisor (GCD) of minors of the relation matrix M(2, 3). In par-
ticular, the size of the smallest non-trivial component is simply the GCD of all
entries of the relation matrix. With the help of Sage, we obtained that for all
n ∈ N,

52An+2 = −2sn + 12tn − 11un + vn − 4n

52An+3 = −sn − 7tn + 2un − 12vn − 4n

52An+4 = 2un + 14vn − 4n

52An+5 = sn + 7tn + 2un − 12vn − 4n

52(An+1 − 1) = 10sn − 8tn + 15un + 27vn − 4n

52(An + 1) = −17sn − 15tn + 2un − 64vn − 4n

52(An−1 − 1) = 8sn + 56tn − 50un + 66vn − 4n
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Let dn(2, 3) be the required GCD. Then we have

dn(2, 3)

= gcd(An+2, An+3, An+4, An+5, An+1 − 1, An + 1, An−1 − 1, n,−13n)

=
1

52
gcd(52An+2, 52An+3, 52An+4, 52An+5,

52(An+1 − 1), 52(An + 1), 52(An−1 − 1), 52n)

Proposition 4. For dn = gcd(sn, tn, un, vn, n),

dn(2, 3) =
1

52
gcd(52dn,−2sn + 12tn − 11un + vn − 4n, 2un + 14vn − 4n).

Proof. Note that

52(An−1 − 1) + 2(52n) + 12(52An+3) + 9(52An+4) + 4(52An+5) = 0

52(An + 1)− 2(52n)− 4(52An+2)− 12(52An+3)− 8(52An+4)− 3(52An+5) = 0

52(An+1 − 1) + 3(52An+2) + 5(52An+3) + 3(52An+4) + (52An+5) + 52n = 0

Therefore 52(An−1 − 1), 52(An + 1) and 52(An+1 − 1) can be ignored. Also,

3(52An+5) + 10(52An+3)− 3(52(An + 1))− 5(52An+4)

−(52(An+1 − 1))− 5(52An+2) + 52(An−1 − 1) = 52sn

52(An+1 − 1) + 5(52An+2)− 6(52An+3)

−52An+4 − 52(An−1 − 1) + 2(52An+5) = 52tn

3(52An+5)− 5(52An+3) + 3(52An+4)− 52(An−1 − 1) = 52un

2(52An+4)− 52An+3 − 52An+5 = 52vn

Then we are done. 󰃈

Next, we consider the circulant graph Cn(1, 3), where every vertex labelled i is
adjacent to the vertices i±1 and i±3, addition taken modulo n. Here K(Cn(2, 3))
is the quotient group of Zn by the subgroup spanned by n− 1 elements expressing
the toppling rules

xi−3 + xi−1 − 4xi + xi+1 + xi+3,

where xi ∈ Zn is a vector with entries all equal to 0 except the i-th entry. Using
a similar argument to what we did on Cn(2, 3), we have at most 5 generators x̄i,
1 ≤ i ≤ 5.
For 7 ≤ i ≤ n, we define Ai, Bi, Ci, Di, Ei such that

x̄i = Aix̄1 +Bix̄2 + Cix̄3 +Dix̄4 + Eix̄5.

Using a similar induction argument, for all n ∈ N, we know that

Bn = An−1 (7)

Cn = An +An−2 (8)

Dn = −Cn+3 = −An+3 −An+1 (9)

En = −Bn+3 = −An+2 (10)
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Then we can construct another relation matrix M(1, 3), similar to M(2, 3) for
Cn(2, 3), on generators x̄i, 1 ≤ i ≤ 5 here. By row and column reductions,

M(1, 3)

=

󰀵

󰀹󰀹󰀹󰀹󰀷

An+1 − 1 Bn+1 Cn+1 Dn+1 En+1

An+2 Bn+2 − 1 Cn+2 Dn+2 En+2

An+3 Bn+3 Cn+3 − 1 Dn+3 En+3

An+4 Bn+4 Cn+4 Dn+4 − 1 En+4

An+5 Bn+5 Cn+5 Dn+5 En+5 − 1

󰀶

󰀺󰀺󰀺󰀺󰀸

∼

󰀵

󰀹󰀹󰀹󰀹󰀷

An+1 − 1 An An+1 +An−1 −An+4 −An+2 −An+3

An+2 An+1 − 1 An+2 +An −An+5 −An+3 −An+4

An+3 An+2 An+3 +An+1 − 1 −An+6 −An+4 −An+5

An+4 An+3 An+4 +An+2 −An+7 −An+5 − 1 −An+6

An+5 An+4 An+5 +An+3 −An+8 −An+6 −An+7 − 1

󰀶

󰀺󰀺󰀺󰀺󰀸

∼

󰀵

󰀹󰀹󰀹󰀹󰀷

An+2 An+1 − 1 An An−1 + 1 n
An+3 An+2 An+1 − 1 An n
An+4 An+3 An+2 An+1 − 1 n
An+5 An+4 An+3 An+2 n
n n n n −10n

󰀶

󰀺󰀺󰀺󰀺󰀸

From the recurrence relation, we obtain the characteristic equation

(11) λ6 + λ4 − 4λ3 + λ2 + 1 = 0.

Let k = λ+
1

λ
, we have

λ6 + λ4 − 4λ3 + λ2 + 1 = 0

(λ− 1)2(λ4 + 2λ3 + 4λ2 + 2λ+ 1) = 0

λ2 + 2 +
1

λ2
+ 2(λ+

1

λ
) + 4− 2 = 0

k2 + 2k + 2 = 0

k = −1± i

By a similar argument to the graph Cn(2, 3), we define sn+itn = 2Tn

󰀕
−1 + i

2

󰀖
−2

and un + ivn = Un−1

󰀕
−1 + i

2

󰀖
, where sn, tn, un, vn ∈ Z. Then, using a similar

computation method, we know

20An+5 = sn + 3tn + 2un − 4vn − 2n

20An+4 = 2un + 6vn − 2n

20An+3 = −sn − 3tn + 2un − 4vn − 2n

20An+2 = −2sn + 4tn − 8un − 4vn − 2n

20(An+1 − 1) = 7sn + tn + 2un + 16vn − 2n

20(An + 1) = −4sn − 12tn + 22un − 14vn − 2n

20(An−1 + 1) = −15sn + 15tn − 38un − 24vn − 2n
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Let dn(1, 3) be the required GCD in this case. Again, using a similar argument,
we have

dn(1, 3) = gcd(An+2, An+3, An+4, An+5, An+1 − 1, An + 1, An−1 + 1, n,−10n)

=
1

20
gcd(20An+2, 20An+3, 20An+4, 20An+5,

20(An+1 − 1), 20(An + 1), 20(An−1 − 1), 20n)

Proposition 5. For dn = gcd(sn, tn, un, vn, n),

dn(1, 3) =
1

20
gcd(20dn, 2un + 6vn + 18n, sn + 3tn + 10vn, 10tn + 10n)

Proof. Note that

20(An + 1)− 20n− 2(20An+5)− 3(20An+4)− 6(20An+3) = 0

20(An−1 + 1)− 20n− 2(20An+4)− 3(20An+3)− 6(20An+2) = 0

20(An+1 − 1) + 20n+ (20An+5) + 2(20An+4) + 4(20An+3) + 2(20An+2) = 0

Hence, 20(An + 1), 20(An−1 + 1) and 20(An+1 − 1) can be ignored. Also,

−3(20n)− 2(20An+5)− 12(20An+4)− 10(20An+3)− 6(20An+2) = 20sn

20n+ 4(20An+5) + 4(20An+4) + 2(20An+2) = 20tn

20n+ 3(20An+5) + 4(20An+4) + 3(20An+3) = 20un

−20An+5 + 2(20An+4)− 20An+3 = 20vn

20n+ 20An+4 = 2un + 6vn + 18n

20An+4 − 20An+3 = sn + 3tn + 10vn

20n+ 2(20An+5) + 2(20An+4) + 20An+2 = 10tn + 10n

Then we are done. 󰃈

Finally, we consider the circulant graph Cn(1, 2, 3), where every vertex labelled i
is adjacent to the vertices i ± 1, i ± 2 and i ± 3, addition taken modulo n. Here
K(Cn(1, 2, 3)) is the quotient group of Zn by the subgroup spanned by n − 1
elements expressing the toppling rules

xi−3 + xi−2 + xi−1 − 6xi + xi+1 + xi+2 + xi+3,

where xi ∈ Zn is a vector with entries all equal to 0 except the i-th entry. Using
a similar argument to what we did on Cn(2, 3), we have at most 5 generators x̄i,
1 ≤ i ≤ 5. For 7 ≤ i ≤ n, we define Ai, Bi, Ci, Di, Ei such that

x̄i = Aix̄1 +Bix̄2 + Cix̄3 +Dix̄4 + Eix̄5.

Using a similar induction argument, for all n ∈ N, We have

Bn = An +An−1 (12)

Cn = An +An−1 +An−2 (13)

Dn = −Cn+3 = −An+3 −An+2 −An+1 (14)

En = −Bn+2 = −An+2 −An+1 (15)
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Then we can construct another relation matrix M(1, 2, 3), similar to M(2, 3) for
Cn(2, 3), on generators x̄i, 1 ≤ i ≤ 5 here. By row and column reductions,

M(1, 2, 3) =

󰀵

󰀹󰀹󰀹󰀹󰀷

An+1 − 1 Bn+1 Cn+1 Dn+1 En+1

An+2 Bn+2 − 1 Cn+2 Dn+2 En+2

An+3 Bn+3 Cn+3 − 1 Dn+3 En+3

An+4 Bn+4 Cn+4 Dn+4 − 1 En+4

An+5 Bn+5 Cn+5 Dn+5 En+5 − 1

󰀶

󰀺󰀺󰀺󰀺󰀸

∼

󰀵

󰀹󰀹󰀹󰀹󰀷

An+1 − 1 An + 1 Cn+1 Dn+1 En+1

An+2 An+1 − 1 Cn+2 Dn+2 En+2

An+3 An+2 Cn+3 − 1 Dn+3 En+3

An+4 An+3 Cn+4 Dn+4 − 1 En+4

An+5 An+4 Cn+5 Dn+5 En+5 − 1

󰀶

󰀺󰀺󰀺󰀺󰀸

∼

󰀵

󰀹󰀹󰀹󰀹󰀷

An+2 An+1 − 1 An + 1 An−1 n
An+3 An+2 An+1 − 1 An + 1 n
An+4 An+3 An+2 An+1 − 1 n
An+5 An+4 An+3 An+2 n
n n n n −14n

󰀶

󰀺󰀺󰀺󰀺󰀸

From the recurrence relation, we obtain the characteristic equation

(16) λ6 + λ5 + λ4 − 6λ3 + λ2 + λ+ 1 = 0.

Let k = λ+
1

λ
, we have

λ6 + λ5 + λ4 − 6λ3 + λ2 + λ+ 1 = 0

(λ− 1)2(λ4 + 3λ3 + 6λ2 + 3λ+ 1) = 0

λ2 +
1

λ2
+ 3(λ+

1

λ
) + 6 = 0

k2 + 3k + 4 = 0

k =
−3± i

√
7

2

By a similar argument to the graph Cn(2, 3), we define

sn + i
√
7tn = 4Tn

󰀣
−3 + i

√
7

4

󰀤
− 4

and

un + i
√
7vn = 2Un

󰀣
−3 + i

√
7

4

󰀤

, where sn, tn, un, vn are integers. Then, using a similar computation method, we
know that

56An+5 = sn + 7tn + 2un − 14vn − 4n

56An+4 = 2un + 14vn − 4n

56An+3 = −sn − 7tn + 2un − 14vn − 4n
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56An+2 = −2sn + 14tn − 12un − 4n

56(An+1 − 1) = 11sn − 7tn + 16un − 56vn − 4n

56(An + 1) = −18sn − 42tn + 16un − 140vn − 4n

56(An−1) = −5sn + 133tn − 110un + 98vn − 4n

Let dn(1, 2, 3) be the required GCD in this case. Again, using a similar argument,
we have

dn(1, 2, 3)

= gcd(An+2, An+3, An+4, An+5, An+1 − 1, An + 1, An−1, n,−14n)

=
1

56
gcd(56An+2, 56An+3, 56An+4, 56An+5, 56(An+1 − 1), 56(An + 1), 56An−1, 56n)

=
1

56
gcd(−2sn + 14tn − 12un − 4n,−sn − 7tn + 2un − 14vn − 4n, 2un + 14vn − 4n,

sn + 7tn + 2un − 14vn − 4n, 11sn − 7tn + 16un − 56vn − 4n,

− 18sn − 42tn + 16un − 140vn − 4n,−5sn + 133tn − 110un + 98vn − 4n, 56n).

Proposition 6. For dn = gcd(sn, tn, un, vn, n),

dn(1, 2, 3) =
1

56
gcd(56dn, 2un + 14vn + 52n, sn + 7tn + 28vn, 28tn + 28vn + 28n)

Proof. Note that

56(An−1)− 56(An + 1) + 56(An+1 − 1) + 4(56n)

+7(56An+5) + 17(56An+4) + 31(56An+3) = 0

56(An + 1)− 2(56n)− 3(56An+5)− 8(56An+4)− 15(56An+3)− 3(56An+2) = 0

56(An+1 − 1) + 56n+ 56An+5 + 3(56An+4) + 6(56An+3) + 3(56An+2) = 0

Hence 56(An+1 − 1), 56(An + 1) and 56(An−1) can be ignored. Also,

−7(56n)− 7(56An+5)− 42(56An+4

−35(56An+3)− 14(56An+2) = 56sn

56n+ 5(56An+5) + 6(56An+4) + 56An+3 + 2(56An+2) = 56tn

2(56n) + 7(56An+5) + 14(56An+4) + 7(56An+3) = 56un

2(56An+4)− 56An+5 − 56An+3 = 56vn

56n+ 56An+4 = 2un + 14vn + 52n

56An+4 − 56An+3 = sn + 7tn + 28vn

56n+ 2(56An+5) + 4(56An+4) + 56An+2 = 28tn + 28vn + 28n

Hence we are done. 󰃈

5. Discussion

The p-adic approach used to compute K(UCG(pq)) is actually supposed to work
for abelian Cayley graphs in general, even it is not integral. However, the com-
putation of p-adic valuation on non-integral eigenvalues (mostly not real numbers)
is highly technical, and so we tried other methods to determine the critical group
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for circulant graphs with fixed jumps. In fact, Mednykh suggested much simpler
expressions for the first few non-trivial components of K(Cn(1, 3)),K(Cn(2, 3))
and K(Cn(1, 2, 3)) in [7]. However, we could not find a complete proof in it, and
obtained another expression instead. Nevertheless, we have tried to compute the
actual values of the GCDs with a computer, and the numerical values obtained
from our expressions matched those computed using the expressions Mednykh
stated. (see Appendix). Hence, we believe one final step to completely obtain
Mednykh’s results is to prove that the two GCDs are actually equal with rigor-
ous mathematical arguments. For n ∈ N, sn, tn, un, vn ∈ Z defined as above, let
d = gcd(sn, tn, un, vn, n). Then we conjecture the following:

Conjecture 1. For dn = gcd(sn, tn, un, vn, n),

gcd(52dn,−2sn + 12tn − 11un + vn − 4n, 2un + 14vn − 4n) = 52dn.

Conjecture 2.

• If 4 ∤ n, gcd(20dn, 2un + 6vn + 18n, sn + 3tn + 10vn, 10tn + 10n) = 20dn.
• If 4 | n and 8 ∤ n, gcd(20dn, 2un+6vn+18n, sn+3tn+10vn, 10tn+10n) =
5dn.

• If 8 | n, gcd(20dn, 2un + 6vn + 18n, sn + 3tn + 10vn, 10tn + 10n) = 10dn.

Conjecture 3.

• If 6 ∤ n, gcd(56dn, 2un+14vn+52n, sn+7tn+28vn, 28tn+28vn+28n) = 56dn
• If 6 | n, gcd(56dn, 2un+14vn+52n, sn+7tn+28vn, 28tn+28vn+28n) = 28dn

From the results of our computation, we are actually quite close to a much simpler
expression. In fact, we are also able to prove that they are equal for some values of
n. Indeed, for Conjecture 1, it suffices to prove that 52dn | −2sn + 12tn − 11un +
vn − 4n = 52An+2 and 52dn | 2un + 14vn − 4n = 52An+4. If (dn, 52) = 1, we
are done because by definition, 52 divides 52An+2 and 52An+4, and dn divides
sn, tn, un, vn, n because it is their GCD. With this we can already show that for all
n ∈ N with (n, 52) = 1, i.e. n ≡ ±1,±3,±5,±7,±9,±11 (mod 26), Conjecture 1
is true. This is because if n does not share any prime factor with 52, none of its
divisors will either. Using a similar argument, we can also show that Conjecture 2
is true for all n that is coprime with 20, i.e. n ≡ ±1,±3 (mod 10), and Conjecture
3 is true for all n that is coprime with 56, i.e. n ≡ ±1,±3,±5 (mod 14).
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Appendix

Cn(2, 3)

n d R1 R2 gcd(d,R1, R2) d(2, 3)
7 1 10 14 1 1
8 1 -17 -39 1 1
9 1 8 68 1 1
10 2 32 -12 2 2
11 1 -96 -147 1 1
12 3 120 396 3 3
13 1 15 -419 1 1
14 1 -390 -198 1 1
15 1 830 1726 1 1
16 1 -706 -3243 1 1
17 1 -878 2202 1 1
18 1 4063 4725 1 1
19 1 -6512 -17080 1 1
20 4 2560 24360 4 4
21 1 13568 -3943 1 1
22 1 -38032 -63336 1 1
23 1 45087 153849 1 1
24 3 11634 -157266 3 3
25 1 -159810 -103358 1 1
26 1 324030 698337 1 1
27 1 -253030 -1260122 1 1
28 1 -393265 756177 1 1
29 1 1632664 2040588 1 1
30 2 -2496608 -6820452 2 2

Where

R1 =
1

52
(sn + 7tn + 26vn)

R2 =
1

52
(26tn + un + 33vn + 24n)
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Cn(1, 3)

n d R3 R4 R5 gcd(d,R3, R4, R5) d(1, 3)
7 1 7 4 24 1 1
8 8 16 8 -12 4 4
9 1 -7 -24 -31 1 1
10 1 6 12 104 1 1
11 1 58 51 -39 1 1
12 4 -52 -111 -214 1 1
13 1 -34 17 462 1 1
14 1 262 295 -34 1 1
15 1 -225 -488 -1248 1 1
16 16 -352 -128 1992 8 8
17 1 1249 1600 689 1 1
18 1 -758 -2008 -6736 1 1
19 1 -2398 -1641 8065 1 1
20 4 5844 8241 7534 1 1
21 1 -1658 -7503 -34450 1 1
22 1 -14326 -12669 29470 1 1
23 1 26183 40508 55832 1 1
24 8 2608 -23576 -168068 4 4
25 1 -79431 -82040 88433 1 1
26 1 110606 190036 354392 1 1
27 1 65338 -45269 -782087 1 1
28 4 -416612 -481951 137938 1 1
29 1 430334 846945 2055390 1 1
30 15 564750 134415 -3452610 15 15

Where

R3 =
1

20
(2un + 6vn + 18n)

R4 =
1

20
(sn + 3tn + 10vn)

R5 =
1

20
(10tn + 10n)
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Cn(1, 2, 3)

n d R6 R7 R8 gcd(d,R6, R7, R8) d(1, 2, 3)
7 7 21 21 49 7 7
8 1 1 -21 -125 1 1
9 1 -40 -42 119 1 1
10 1 156 195 295 1 1
11 1 -135 -292 -1210 1 1
12 4 -282 -148 1698 2 2
13 1 1371 1652 1239 1 1
14 7 -2016 -3388 -10486 7 7
15 1 -1028 987 20231 1 1
16 1 11531 12558 -3094 1 1
17 1 -23553 -35085 -81780 1 1
18 2 6781 30333 213809 1 1
19 1 87631 80849 -161577 1 1
20 1 -244217 -331849 -549563 1 1
21 7 210322 454538 2058637 7 7
22 1 564922 354599 -2607471 1 1
23 1 -2311405 -2876328 -2718996 1 1
24 24 3158220 5469624 18175620 12 12
25 1 2488981 -669240 -32448947 1 1
26 1 -20046658 -22535640 -942252 1 1
27 1 38043158 58089815 145712749 1 1
28 7 -4474351 -42517510 -352313332 7 7
29 1 -157184551 -152710201 217939394 1 1
30 2 404317307 561501857 1023866011 1 1

Where

R6 =
1

56
(2un + 14vn + 52n)

R7 =
1

56
(sn + 7tn + 28vn)

R8 =
1

56
(28tn + 28vn + 28n)
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Code Appendix. All codes are compiled on https://sagecell.sagemath.org/

Code for calculating sn, tn, un, vn of the graph Cn(2, 3)

1 s=[0,-7,-5,5,-21,8]

2 t=[0,1,-3,3,3,-16]

3 u=[0,2,-3,1,6,-16]

4 v=[0,0,1,-3,4,0]

5 for i in range (6 ,1000):

6 s.append (4*s[i-3]-s[i-5]-s[i-6]-s[i-1])

7 t.append (4*t[i-3]-t[i-5]-t[i-6]-t[i-1])

8 u.append (4*u[i-3]-u[i-5]-u[i-6]-u[i-1])

9 v.append (4*v[i-3]-v[i-5]-v[i-6]-v[i-1])

10

11 for i in range (0 ,1000):

12 print(i,s[i],t[i],u[i],v[i])

Code for calculating sn, tn, un, vn of the graph Cn(1, 3)

1 s=[0,-3,-4,3,-4,-13]

2 t=[0,1,-2,-1,8,-9]

3 u=[0,1,-1,-1,4,-3]

4 v=[0,0,1,-2,0,6]

5 for i in range (6 ,1000):

6 s.append (4*s[i-3]-s[i-4]-s[i-6]-s[i-2])

7 t.append (4*t[i-3]-t[i-4]-t[i-6]-t[i-2])

8 u.append (4*u[i-3]-u[i-4]-u[i-6]-u[i-2])

9 v.append (4*v[i-3]-v[i-4]-v[i-6]-v[i-2])

10

11 for i in range (0 ,1000):

12 print(i,s[i],t[i],u[i],v[i])

Code for calculating sn, tn, un, vn of the graph Cn(1, 2, 3)

1 s=[0,-7,-7,14,-35,-7]

2 t=[0,1,-3,2,9,-31]

3 u=[0,2,-3,-1,15,-32]

4 v=[0,0,1,-3,3,6]

5 for i in range (6 ,1000):

6 s.append (6*s[i-3]-s[i-4]-s[i-6]-s[i-2]-s[i-5]-s[i-1])

7 t.append (6*t[i-3]-t[i-4]-t[i-6]-t[i-2]-t[i-5]-t[i-1])

8 u.append (6*u[i-3]-u[i-4]-u[i-6]-u[i-2]-u[i-5]-u[i-1])

9 v.append (6*v[i-3]-v[i-4]-v[i-6]-v[i-2]-v[i-5]-v[i-1])

10

11 for i in range (0 ,1000):

12 print(i,s[i],t[i],u[i],v[i])

Code for calculating SNF of UCG(n)

1 def comp(n):

2 a = [];

3 for i in range(1,ceil(n/2)):

4 if(gcd(i,n)==1):

5 a.append(i)
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6 k = len(a)

7 sk = 2*a[k-1]

8 A = matrix(sk)

9 A[sk -1,sk/2] = 2*k

10 for i in range(0,sk -1):

11 A[i,i+1] = 1

12 for i in range(0,k):

13 A[sk -1,sk/2-a[i]] = -1

14 if(sk/2+a[i]<sk):

15 A[sk -1,sk/2+a[i]] = -1

16 S = A^n - matrix.identity(sk)

17 return(S.smith_form ()[0])

18 for i in range (3 ,139):

19 print(i,comp(i),sep=’\n’)

Code for calculating reduced SNF of UCG(n), i.e. the n-th integer in the SNF is
the product of the first n integers in the reduced SNF

1 def comp(n):

2 a = [];

3 for i in range(1,ceil(n/2)):

4 if(gcd(i,n)==1):

5 a.append(i)

6 k = len(a)

7 sk = 2*a[k-1]

8 A = matrix(sk)

9 A[sk -1,sk/2] = 2*k

10 for i in range(0,sk -1):

11 A[i,i+1] = 1

12 for i in range(0,k):

13 A[sk -1,sk/2-a[i]] = -1

14 if(sk/2+a[i]<sk):

15 A[sk -1,sk/2+a[i]] = -1

16 S = (A^n - matrix.identity(sk)).smith_form ()[0]

17 b = [S[0][0]]

18 for i in range(1,sk):

19 b.append(S[i][i]/S[i-1][i-1])

20 return(b)

21 for i in range (3 ,139):

22 print(i,comp(i),’\n’,sep=’\n’)



REVIEWERS’ COMMENTS

This paper studies the intriguing subject of the critical group of a graph, a con-
cept rooted in algebraic graph theory which establishes a link between the analysis
of graphs and the exploration of abelian groups. It aims to explicitly determine
the structure of such a group in two types: unitary circulant graphs, and circulant
graphs of fixed jumps. The first type is broken into two cases: n = pq and n = pk

for primes p, q with p < q. The proof techniques here rely on computations using
the Laplacian and applying Kirchoff’s Matrix Tree Theorem. For the second case
the authors consider three families of circulant graphs, each with the property that
vertices with distance at most 3 are connected. The proof techniques here rely on
direct computation, considering each of the three cases separately.

The paper generally receives good review from referees. Some suggested editorial
improvement to explain what computations were being done and why they were
done in such a way.
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