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Abstract. In the paper, we generalize the process of cutting a Möbius strip
and similar strips to a larger extent than Möbius, Listing, Ball-Coxeter and

Fatehi’s papers. We generalize the object from a strip to a “twisted solid torus”

(which we abbreviate to tst) and consider the result after cutting it. The
Argand diagram, together with the usage of complex numbers, has been used

to describe the lines in the cross section of tst. In our derivation, we have used a

technique of checking the concurrence of lines defined by parametric equations
by applying the concept of pole-polar duality from inversive geometry. Euler’s

celebrated formula on graphs has also been employed. Then we study the

resultant objects formed from the cutting process and call them “knotted tst”.
We then deduce a general formula for the number of different knotted tsts.

After that, we consider the links that are formed from the cutting of tsts,

which we call “tst links”. General forms of their braid words, Seifert matrices
and Alexander polynomials are then deduced. Then we generalize the results

further and consider cutting a tst in the form of a non-trivial knot and study
the resultant links. Finally, we study the cutting of combinations of more than

one tsts in the form of virtual knots, which we call “tst products”, and derive

a general formula for the result.

Index of Notations

d(τ) a chosen positive denominator for the twist turn of the tst before cut (τ)

D(τ) denominator of the simplest expression of τ(D(τ) =
d(τ)

g(τ)
)

∆ one-half of the chosen denominator for the twist turn of tst

before cut (∆ =
d(τ)

2
)

g(τ) the greatest common divisor of the chosen d(τ) and corresponding n(τ)

G partial tst of a tst Γ

25
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γ integral curves satisfying the slope field equation for a tst

Γ tst; i.e. set of integral curves satisfying conditions on the initial value

I number of type I knotted tst(s) in the knotted tst sum Φ(n(τ), d(τ),M)

l(s) a line in Λ(n(τ), d(τ),M), the cross section of the tst at t = 0 after cutting

L set of sets of lines resultant from the cutting of a tst (l)

Λ cross section of tst at t = 0 after cutting

m one-half of the number of portion(s) a given tst is cut into (m =
M

2
)

M number of portion(s) a given tst is cut into

µ order of multiple cutting

n(τ) numerator of the twist turn of tst before cut under the chosen

denominator (n(τ) = τd(τ))

N(τ) numerator of the simplest expression of the twist turn of tst

before cut (N(τ) =
n(τ)

g(τ)
)

P number of type II knotted tst(s) in the knotted tst sum Φ(n(τ), d(τ),M)

Φ resultant knotted tst sum of after Φ-cutting

σ surface resultant from cutting

t the real variable specifying the position along tst

τ twist turn of tst before cut

<τ> tst with twist turn τ

θ twisting function used to define a tst for a given twist turn

z the complex variable specifying position in the cross section of tst

i, k, r, C, s, u integral- or real-valued parameters

Convention

The sign conventions for knot or link crossings in our paper are as follows:

Positive Negative
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1. Introduction

The Möbius strip was discovered by Möbius which was announced in 1858. It is
formed by joining two edges of a rectangle with a half-twist, in either the clockwise
or anticlockwise directions. It now becomes a well-known fact that when it is cut
into half, it gives only 1 loop but not 2.

[Image taken from haggisthesheep.wordpress.com]

Listing and Tait generalized this idea in their book [5] in 1847 and the same idea
appears in Ball-Coxeter’s paper [1] in 1987. Instead of one half-twist, two or more
half-twists are given to the strip. When these strips are cut along one-half, one-
third, and one-quarter of the width, the results contain a pattern that depends on
whether the number of half-twists given is odd or even. An example is given below:
giving the strip three half twist, and then cut along half the width.
Here is the appearance of the strip before cut:

And its appearance after cut:

[Image taken from mathcraft.wonderhowto.com]
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The knot formed is exactly the trefoil knot.

Considerations beyond the Möbius strip were made by Fatehi [3] in 2010. He
considered a generalized version of strips with polygonal cross sections. His results,
however, are incomplete. He only presents the cross section after cutting, but the
“angles of twist”, in addition to the number of different strips of the resultant
object, are not evaluated. An example is given below: first fix one end of a cuboid

and then twist the other end by
π

2
radians in the direction as defined below, and

then cut along one-third of the width:

The two A’s originally do not have the same orientation, but after we fix the left
end and then rotate the right end, we can make their orientation agree:

Then we can connect the right end to the left end. For easy visualization, we do
not draw it in this paper, but the reader is reminded that the two ends are actually
joined.
We can then insert our blade onto the left end, and then cut the “twisted cuboid”
while rotating the blade:

Because the right end is connected to the left, we are brought back to where we
have started:
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Then we continue this process and eventually we get an object with its cross section
same as what is described in Fatehi’s paper as a “3×3 matrix”:

Although the cutting process separates the twisted cuboid into nine partitions, in
reality there are only three connected portions linked to each other.
For the sake of simplicity, we first shrink the nine partitions to nine curves. As an
example, we have shrunk two of the partitions into two blue curves:

Then recalling the fact that the left and right ends of the twisted cuboid are con-
nected to each other, we join the nine curves suitably according to how they are
connected. After a series of continuous deformation, we would obtain:

We can see that there are exactly three closed curves in the above diagram. These
three curves represent precisely objects that can be individually deformed to twisted
cuboids.
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In our project, we make an attempt at generalizing the above results to cutting
other similar objects. As the boundary of any d-sided polygon is homeomorphic
to S1, we generalize the idea of cutting a twisted prism to cutting a “twisted solid
torus”. A twisted solid torus is basically the same as a cylinder with one end
twisted, then having its two ends joined together. In this way, we can allow the
“angle of twist” to be α = 2πτ where τ is any arbitrary real number.
For example, the process of cutting the “twisted cuboid” illustrated above can be
transformed corresponding into cutting a twisted solid torus as illustrated below:

Note that the left end is fixed, the right end is rotated by
π

2
radians (i.e. τ =

1

4
)

in the direction such that the two A’s are in the same orientation after rotation,
and then the two ends are connected. After cutting, one of the “nine partitions”
are isolated and given below:

We go on considering the results of such cutting, and deduce general formulae to
represent the results that are laid out in this paper.

After that, we study the link formed by cutting these twisted solid tori, and deduce
a general form of their braid words, Seifert matrices and Alexander polynomial.
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Next we study the result of cutting a further generalized version of these objects,
namely combining more than one twisted solid tori to form a virtual knot.

2. Twisted solid torus

Notation 1. f(1−) is used to denote lim
h→1−

f(h) provided that it exists.

We first choose the interval [0, 1) as the representative class of elements in the group
R�Z so as to define a twisted solid torus in C× [0, 1):

Definition 2. <τ>= {(γ(t), t) : γ(t) = γ(0) exp[2πiθ(t)] and |γ(0)| ≤ 1}, where
θ(t) : [0, 1)→ R is some function which has a continuous derivative with θ(0) = 0
and θ(1−) = τ , is called a twisted solid torus (tst).

Definition 3. The function θ(t) in the definition of the tst < τ > is called its
twisting function.

Definition 4. The number τ is called the twist turn of <τ>.

First we consider a coordinate system (z, t) in C × [0, 1) : (A cylinder drawn
notwithstanding, the reader is reminded that the left and right ends are connected
to form a torus)

Illustration 1. A coordinate system for a tst.

Note that in fact for the function γ(t) = γ(0) exp[2πiθ(t)],

γ′(t) = 2πiθ′(t)γ(0) exp[2πiθ(t)] = 2πiθ′(t)γ(t)

So it is a solution to the following differential equation:

dz

dt
= 2πiθ′(t)z
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In differential form, this is the same as:

dz = 2πiθ′(t)zdt

If we plot this as a vector field, we obtain what is shown in the following illustration:

Illustration 2. Visualizing the vector field.

Therefore, the solution to the differential equation, i.e. the integral curves, can be
thought as curves that rotate about the line z = 0. From t = 0 to t → 1−, these
curves rotate by 2π(θ(1−)− θ(0)) = 2πτ .
Hence, the twist turn τ of a tst represents the amount of twisting in it.
Hence, <τ> is a set of the following curves in C × [0, 1) : choose a point γ(0) on
or inside the unit circle at t = 0. Then the curve (γ(t), t) is a spiral that has its
starting point at (γ(0), 0) and for t ∈ [0, 1), it winds around the line z = 0. From
t = 0 to t→ 1−, it winds by 2πτ radians anticlockwise in total.
The illustration below shows a curve in the tst <τ>.

The following are two concrete examples that give an intuitive idea of a tst:
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Example 5. Two curves (in red and blue) in the tst

〈
1

2

〉
are shown below. They

both rotate about the center line z = 0 (in green) by 2π · 1

2
= π radians:

Example 6. Two curves (one in red and the other in blue) in the tst

〈
7

2

〉
are

shown below. They both rotate about the center line z = 0 (in green) by 2π · 7
2

= 7π

radians:

Besides, we define the equality of tsts as below:

Definition 7. Two tsts <τ1> and <τ2> are equal ⇔ τ1 = τ2. We denote equality
by the usual “=” sign.

3. Mathematical Formulation of Cuts

Here is how we define “cutting a tst into M parts”.
We first consider τ ∈ Q, so that for any given τ , we can choose any denominator
d(τ) > 0. We let the corresponding numerator n(τ), such that n(τ) = d(τ)τ .
Insert the following set of (M − 1) parallel lines to the cross section at t = 0.

L0 =





exp
πi(2q −M)

2M
+ s if d(τ) = 1

q = 1, 2, 3, · · · ,M − 1, s ∈ R

exp
2πiq

Md(τ)
+ is

(
exp

2πi

d(τ)
− 1

)
if d(τ) > 1





Then these (M −1) lines divide the arc from 1 to exp
2πi

d(τ)
into M parts with equal

arclengths.
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We define l0,q(s) =





exp
πi(2q −M)

M
+ s if d(τ) = 1

exp
2πiq

Md(τ)
+ is

(
exp

2πi

d(τ)
− 1

)
if d(τ) > 1

for a partic-

ular q, so that in fact

L0 = {l0,1(s), l0,2(s), l0,3(s), . . . , l0,M−1(s)}
This is shown in the following illustration:

Illustration 3. Inserting the lines in the set L0.

Then each of the lines l0,q(s) are perpendicular to the vector from 1 to exp
2πi

d(τ)

and the line l0,q(s) passes through the point exp
2πiq

Md(τ)
.

These lines can be thought as “blades”. When one of the “blades”, l0,q(s) (shown
in blue), say, cuts along the tst, the blade rotates about the line z = 0 while going
through the tst. As it rotates continuously, a surface is formed:
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The blade eventually arrives at t→ 1−:

The surface σ0,q(s, t) can then be represented by the following equation:

σ0,q(s, t) = l0,q(s) exp [2πiθ(t)]

This means that it is the line lp,q(s) rotating along the z = 0 line that forms the
surface.
If we consider the (M − 1) lines in L0, i.e. the lines l0,1(s), l0,2(s), l0,3(s), . . .,
l0,M−1(s) rotating at the same time, we obtain one surface for each line, so we have
(M − 1) surfaces in total.
The surface σ0,q(s, t) intersects the cross section at t → 1− of the tst in a line
(shown in red)
Similarly, each surface σ0,q(s, t), where q = 1, 2, 3, . . . ,M − 1, intersects the cross
section at t→ 1− of the tst at exactly one line. We can find the line by evaluating
t→ 1− in the function σ0,q(s, t):

σ0,q(s, 1−) = l0,q(s) exp [2πiθ(1−)] = l0,q(s) exp (2πiτ)

We denote this line by l1,q(s).

l1,q(s) = l0,q(s) exp (2πiτ)

The line is exactly what is obtained by rotating all points lying on l0,q(s) about 0
by 2πτ radians in the anti-clockwise direction.
If we let the blades keep going in the positive t direction (with their orientation
unchanged), they then arrive at the position where t = 1.
But since 1 + Z = 0 + Z, the plane t = 1 is the same as that at t = 0. In other
words, the blades are now back to the position where t = 0.
We then define L1 = {l1,1(s), l1,2(s), l1,3(s), . . . , l1,M−1(s)} = L0 exp (2πiτ).
Keeping the process going on, we can obtain L2, L3, . . .,
where lp+1,q = lp,q exp (2πiτ) and Lp = {lp,q | q = 1, 2, 3, . . . ,M − 1}.
We can then prove the following proposition by induction:

Proposition 8. Lp = L0 exp (2πiτp) for nonnegative integers p = 0, 1, 2, 3, . . .
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Proof. We prove it by induction. When p = 0, this is obviously true, since
exp [2πiτ(0)] = 1. Assume Lp = L0 exp (2πiτp). Consider Lp+1 = Lp exp (2πiτ) =
L0 exp [2πiτ(p+ 1)]. The result therefore holds by the principle of induction.

We observe that after several times of rotation, the lines in the set L0 returns to
original position. When this occurs, we stop rotating the lines and end this cutting
process.
In other words, we stop the cutting when we find some positive integer p such that
z 7→ z exp 2πiτ(p+ 1) is the identity map, as this gives Lp+1 = L0.

Lemma 9 (Least Rotations to Original). For the equation z = z exp 2πiτr,

the smallest positive integral solution is r =
d(τ)

g(τ)
where g(τ) ≡ gcd(|n(τ)|, d(τ)).

Proof. To solve exp 2πiτr = 1, we have:

τr ∈ Z

⇔ n(τ)

d(τ)
r ∈ Z, since p > 0

⇔ d(τ) | (n(τ)r)

⇔ n(τ)r ≡ 0 (mod d(τ))

⇔ r
n(τ)

g(τ)
≡ 0

(
mod

d(τ)

g(τ)

)
, where g(τ) ≡ gcd (|n(τ)|, d(τ)) as defined.

⇔ r ≡ 0

(
mod

d(τ)

g(τ)

)
since

n(τ)

g(τ)
and

d(τ)

g(τ)
are coprime to each other

Hence, the smallest positive integral solution is

r = min
k∈Z+

(
d(τ)

g(τ)
k

)
=
d(τ)

g(τ)
.

With this Least Rotations to Original Lemma, in order to consider the result of

cutting process, we only need the sets L0, L1, L2, . . . , LD(τ)−1, where D(τ) =
d(τ)

g(τ)
.

From now on, we focus on the cross section of the tst at t = 0 and put the cross
section in a plane.
Then we introduce a set defined as follows:

{L0, L1, L2, . . . , LD(τ)−1}
We use the notation Λ(n(τ), d(τ),M) to denote a graph with the lines in these sets
together with the unit circle |z| = 1. Note that this is exactly the same as the cross
section at t = 0 of the tst after cut.
This set contains the lines in the set L0 rotated about the point 0 by 2πτp radians
anticlockwise, where p is an integer between 0 and D(τ)− 1 inclusive.
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Writing explicitly, the lines contained in the sets L0, L1, L2, . . . , Lp−1 have the fol-
lowing form:

lp,q(s) = exp
2πi(pn(τ)M + q)

Md(τ)
+ is[exp (2πiτp)]

(
exp

2πi

d(τ)
− 1

)

where 0 ≤ p ≤ d(τ)− 1 and 1 ≤ q ≤M − 1 and p, q are integers.

Example 10. This is how Λ(1, 6, 3) is constructed step by step:
We first draw the circle |z| = 1:

Illustration 4. The unit circle |z| = 1.

Then we divide the arc from the point 1 to exp
2πi

d(τ)
= exp

2πi

6
into 3 parts with

equal arclengths:

Illustration 5. Dividing the arc into 3 parts.
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Then we calculate the number of blades, which is M −1 = 3−1 = 2, and insert the
lines in the set L0:

Illustration 6. Inserting the lines from the set L0.

Afterwards, we rotate the lines in the set L0 about 0 by 2πτ radians, where τ =
n(τ)

d(τ)
=

1

6
. So we rotate the lines by

π

3
radians to obtain the set of lines L1:

Illustration 7. Inserting the lines from the set L1.
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If we continue the above process, we can obtain the set L3, L4 and L5. As D(τ)−1 =
6− 1 = 5, we can stop the cutting process and obtain the following diagram, which
is exactly Λ(1, 6, 3):

Illustration 8. Λ(1, 6, 3).

Example 11. Λ(3, 5, 4) can be obtained in the same manner and it appears in the
following form:

Illustration 9. Λ(3, 5, 4).

4. Studying the Result of Cutting

In this section we will present our approach to study the result of cutting. Firstly
we make more definitions on the cross section Λ(n(τ), d(τ),M):

Definition 12 (Graph of Λ(n(τ), d(τ),M)). The graph of Λ(n(τ), d(τ),M) is

Λ(n(τ), d(τ), M) with all points and line segments outside the unit circle discarded.
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Definition 13 (Vertex, edge, face). On the graph of Λ(n(τ), d(τ),M):
A vertex is an intersection point of a line lp1,q1 with the unit circle |z| = 1 or with
another line lp2,q2, where lp1,q1 and lp2,q2 are distinct lines;
an edge is a line segment or arc that connects only two vertices; and
a face is a simply connected region bounded by edges in which there are no other
edges or vertices.

For example, the graph of Λ(1, 6, 3) is:

Illustration 10. Graph of Λ(1, 6, 3).

In the graph above, each vertex is marked with a cross (x), and each edge is a line
segment or arc connecting two vertices with no other vertices on it, and an example
of the 19 faces is indicated above. We then consider the resultant mathematical

object from cutting a tst. Shown below is the example of cutting the tst

〈
1

4

〉
with

the chosen denominator d(τ) to be 4:

Illustration 11. Partial tsts are formed after cutting.
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Definition 14. For a face D in the graph of Λ(n(τ), d(τ),M), the partial tst G(D)
is the set of all curves (γ(t), t) in the tst <τ> where γ(t) is a curve in <τ> and
γ(0) ∈ D.

After that, we observe that some partial tsts are connected to each other (since
the plane at t → 1− is connected to the plane at t = 0), as seen in the following
illustration:

Denote the red and blue faces by DR and DB respectively. Then we observe that
the partial tsts G(DR) and G(DB) are connected to each other. Moreover, DR

is obtained by rotating the face DB by 2πτ radians about the origin.This thus
motivates us to define “connected” tsts:

Definition 15. The partial tst G(D1) is said to be connected to the partial tst
G(D2) if D1 and D2 are on the same Λ(n(τ), d(τ),M) and the face D2 is obtained
by rotating the face D1 by 2πτ radians about the point 0.

We also note that some collection of partial tsts are connected to one another and
no any others. If they are isolated, they can be taken as a whole to give a closed
object as explained in the following:
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If we denote the blue, red, yellow and green faces on the left by DB , DR, DY and
DG respectively, then G(DB) is connected to G(DR), G(DR) to G(DY ), G(DY ) to
G(DG) and, finally, G(DG) to G(DR), because the faces DR, DY and DG and DB

is obtained after successively rotating the face DB by 2πτ radians about 0. Hence
these mutually connected partial tsts form a closed object.

From this example, we can see that from Λ(n(τ), d(τ),M), we must be able to
obtain a finite sequence of k partial tsts G(D1), G(D2), G(D3), . . . , G(Dk) from a
tst such that, for example, G(D1) is connected to G(D2), and the last partial tst
G(Dk) is connected to the first one G(D1). We are thus motivated to define the
following:

Definition 16. A knotted tst is a sequence of distinct partial tsts G(D1), G(D2),
G(D3), . . ., G(Dk) where for each r satisfying 1 ≤ r ≤ k − 1, G(Dr) is connected
to G(Dr+1) and G(Dk) is connected to G(D1).

We can now define the twist turn for a knotted tst. To deduce its formula, we
first consider how we can deduce the twist turn of a given tst Γ with its twisting
function θ(t) found.
Recall that all the curves (γ(t), t) ∈ Γ share the same twisting function θ(t). There-
fore we can consider only one instead of all the curves (γ(t), t). Take a particular
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γ(t) which has γ(0) 6= 0, and then the twist turn τ is given by:

τ = τ − 0

= θ(1−)− θ(0)

= lim
h→1−

∫ h

0

θ′(t)dt

=

∫ θ(1−)

θ(0)

γ · 2πidθ
2πiγ

=

∫ γ(1−)

γ(0)

dγ

2πiγ

=
1

2πi

∫

γ[0,1)

dγ

γ

We now analogously define the twist turn of a partial tst by:

Definition 17. The twist turn of a partial tst G(D) is twt G(D) =
1

2πi

∫

γ[0,1)

dγ

γ

where (γ(t), t) is a curve in G(D) with γ(0) 6= 0.

Note that “twt” is short for “twist turn”.
We also define the twist turn of a knotted tst as the sum of twist turns of all its
constituent partial tsts:

Definition 18. The twist turn of a knotted tst ΓK = G(D1), G(D2), G(D3), . . .,
G(DK) is twt ΓK =twt G(D1)+twt G(D2)+twt G(D3) + . . .+twt G(Dk)

We will also use the following notation to symbolize a knotted tst with twist turn
τ :

Notation 19. A knotted tst with twist turn τ is denoted by <τ>K .

The subscript K is used to distinguish between knotted tsts and tsts.

We are then using the number of different knotted tsts, in addition to each of their
twist turns, to present the result of cutting a general tst.
In general, cutting a tst may give more than one knotted tsts. We could have
studied the finite set that contains them, but this is not a satisfactory construction,
since in some cases more than one of them have the same twist turn. Counting the
number of knotted tsts (instead of different knotted tsts) formed is not the same
as the cardinality of the set.
For example, {<2>K , <2>K , <1>K} = {<2>K , <1>K} is a set with cardinality
2. However, if we cut some tst and obtain 2 knotted tsts being <2>K and 1 tst
being <1>K , we have obtained 3 knotted tsts instead of 2. To resolve this problem,
we consider a multiset that contains all the knotted tsts formed and use notations
from the paper [7] to make the following definitions:
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Definition 20. τ1>K + <τ2>K≡ [<τ1>K <τ2>K ] is the multiset that contains
<τ1>K and <τ2>K , called the sum of the two knotted tsts.

Sums can be added to form new multisets, i.e. for the multisets A and B, A+B is
a multiset C satisfying

mA(x) +mB(x) = mC(x)

for all elements x in A and B, where mD(x) is the multiplicity of the element x
in some multiset D, i.e. the number of times x appears in D. For example, the
multiplicity of 3 in the multiset D = [3 3 3 5 2 1 7 3] is mD(3) = 4.

Proposition 21. If S1 and S2 are two knotted tst sums, then

S1 + S2 = S2 + S1 and (S1 + S2) + S3 = S1 + (S2 + S3).

Proof. This follows from the commutativity and associativity of addition of positive
integers.

Notation 22. We write a knotted tst sum S =

[
〈
τ
〉
K

〈
τ
〉
K

〈
τ
〉
K
· · ·

〈
τ
〉
K︸ ︷︷ ︸

k times

]
as

k <τ>K .

This notion of knotted tst sums allows us to express the result of tst-cutting more
clearly and simply, as it is obvious that cutting a tst gives us a knotted tst sum.
Hence, we define:

Notation 23. Φ(n(τ), d(τ),M) denotes the knotted tst sum resultant from cutting

a tst <τ> represented as

〈
n(τ)

d(τ)

〉
in M parts.

The careful reader may observe that taking the result of cutting a tst as a knotted
tst sum is not enough to determine how the knotted tsts are linked to each other.
This is discussed in the section on tst links. We also notice that there is a close
relationship between the tst sums Φ(n(τ), d(τ),M) and Φ(−n(τ), d(τ),M), so we
make the following definitions.

Definition 24. The conjugate of a knotted tst <τ>K is <−τ>K and is denoted
by (<τ>K)∗,.

The conjugate of a knotted tst sum is then defined (inductively) as:

Definition 25. If S =
k∑

i=1

〈
τi
〉
K

, then its conjugate is S∗ =
k∑

i=1

(
〈
τi
〉
K

)∗.

Definition 26. The conjugate of the sum of knotted tst sums S1 and S2 is defined
by (S1 + S2)∗ = S1

∗ + S2
∗.
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Example 27. The conjugate of (2 < 0.25>K +15 < 0.5>K)∗ = (2 < 0.25>K
)∗ + (15 <0.5>K)∗ = 2 <−0.25>K +15 <−0.5>K .

This conjugate notion will be useful as soon as we develop the “Basis Formula” in
the next section.

5. The twist turns of knotted tsts in Φ(n(τ), d(τ),M)

First we notice the following fact:

Theorem 28 (Twist turn of knotted tst). If the number of partial tsts in a knotted
tst ΓK in the sum Φ(n(τ), d(τ),M) is r, then twt ΓK = rτ .

Proof. Recall from definition that the twist turn of a knotted tst is the sum of the
twist turns of its partial tsts. But as these partial tsts are from the same tst <τ>,
they share the same twisting function θ(t) for which θ(1−)− θ(0) = τ .
Hence each of the partial tsts in the knotted tst has a twist turn of τ .
In other words, twt ΓK = τ + τ + τ + · · ·+ τ︸ ︷︷ ︸

r τ ′s

, so the stated result follows.

Therefore, we can now suppose the number of partial tsts in the knotted tst is k.
Then we recall the fact that if G(D1) is connected G(D2), D2 can be obtained by
rotating D1 by 2πτ radians about the point 0. Hence, if we name the partial tsts
in the knotted tst by G(D1), G(D2), . . . , G(DK), then D2, D3, . . . , Dk are in fact
the faces obtained after successive rotations of the face D1 by 2πτ radians about
the point 0. Since all of them are distinct, k is the smallest number of rotations
required for the face to return to its original position, and our mission is to find
out the value of k.
Before we go deep into the derivation, we recall that for a point z in the graph
Λ(n(τ), d(τ),M), there is a curve (γ(t), t) in the tst <τ> where γ(0) = z. If we
trace along the curve and consider the point where it intersects the plane t→ 1−,
we would be at the point (γ(1−), 1−) = (γ(0) exp 2πiθ(1−), 1−) = (z exp 2πiτ, 1−).
Note that z exp 2πiτ is exactly obtained by rotating the point z 2πiτ radians about
the point 0. If we trace instead a face D, then the curve (γ(t), t) would be replaced
by the partial tst G(D). Then the partial tst G(D) intersects the plane at t→ 1−

in the face D′ where D′ is obtained by rotating the point z 2πiτ radians about
the point 0. Since the plane at t → 1− is connected to the one at t = 0, the
face D′ would appear in the graph of Λ(n(τ), d(τ),M), and by definition, G(D) is
connected to G(D′).
With this idea in mind, we separately consider two cases to find the value of k:

Case I The face D contains the point 0.
Observing the following illustration gives us the proposition that follows.
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Illustration 12. An example of a face in the containing 0 in the
graph of Λ(n(τ), d(τ),M) being not rotational symmetric of order
being a multiple of d(τ)/g(τ).

Proposition 29. If there is a face that contains 0 in the graph of Λ(n(τ), d(τ),M),

then it is rotational symmetric of order being a multiple of
d(τ)

g(τ)
, where g(τ) =

gcd( |n(τ)|, d(τ) ).

Proof. Assume that D (in blue) is a face that contains the point 0 and that D is

not rotational symmetric of order a multiple of
d(τ)

g(τ)
. Then D′ (in red), the face

obtained by rotating D by 2πτ radians about the point 0, also appears in the graph
of Λ(n(τ), d(τ),M), according to the reasoning above. But since D is not rotational

symmetric of order a multiple of
d(τ)

g(τ)
, the faces D and D′ are not the same and

D ∩ D′ (in green) is a region bounded by edges. Therefore there are edges in D
and D′, making D not a face. This contradicts to our initial assumption that D
is a face. Hence, if D is a face that contains the point 0, D must be rotational

symmetric of order a multiple of
d(τ)

g(τ)
.

Since D is rotational symmetric of order
d(τ)

g(τ)
, rotating D by 2πτ radians about

the point 0 once gives the same face D. Hence, for the face D containing 0, the
smallest number k of rotations by 2πτ radians about the point 0 for it to return to
its original position is 1.
Therefore, for faces in Case I, the partial tst G(D) is connected to itself and forms
a knotted tst individually, whose twist turn is τ . Therefore, each of these faces
corresponds to one knotted tst in the knotted tst sum, namely <τ>K .
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Case II The face D does not contain the point 0.
We first claim the following propositions:

Proposition 30. In Λ(n(τ), d(τ),M), let the smallest number of rotations by 2πτ
rad about the point 0 for a point to return to its original position be k > 0. Then
for every non-zero point in the graph of Λ(n(τ), d(τ),M), the least positive integral
value of such k is the same.

Proof. k is the smallest integer that satisfies the equation z exp(2πiτk) = z. This
reduces to exp(2πiτk) = 1 if z 6= 0. Hence k is the smallest positive integer
satisfying exp(2πiτk) = 1. This argument is independent of z, so it is true for all
z 6= 0.

Proposition 31. In Λ(n(τ), d(τ),M), let the smallest number of rotations by 2πτ
rad about the point 0 for a face to return to its original position be k > 0. Then
for every region not containing 0, the least positive integral value of such k is the
same.

Proof. By the last proposition, consider all points in the face not containing 0.
They have the same k.

By the Least Rotations to Original lemma in Section 3, the smallest positive integral

solution to the equation exp(2πiτk) = 1 is k =
d(τ)

g(τ)
, where g(τ) ≡ gcd(|n(τ)|, d(τ)).

Therefore, for a face D in Case II, the partial tst G(D) does not individually become
a knotted tst; however, every D(τ) such partial tsts belong to one knotted tst ΓK ,

whose twist turn is twt ΓK = τ
d(τ)

g(τ)
=
n(τ)

d(τ)

d(τ)

g(τ)
=
n(τ)

g(τ)
. Therefore, for each face

D in this case, G(D) is an element of some knotted tst

〈
n(τ)

g(τ)

〉

K

.

From the above reasoning, we can now conclude that there are only two types of
knotted tst in the knotted tst sum Φ(n(τ), d(τ),M), namely:

Type I A knotted tst with only one partial tst G(D), where D is a face in
Λ(n(τ), d(τ),M) containing the point 0.

Type II Any other knotted tsts in the sum.

We denote the number of type I and II knotted tsts in Φ(n(τ), d(τ),M) by I and
P respectively.
Under this classification, the twist turns of type I and II knotted tsts are respec-
tively:

I.
n(τ)

d(τ)
= τ II.

n(τ)

g(τ)
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In this way, we can take

〈
n(τ)

d(τ)

〉

K

and

〈
n(τ)

g(τ)

〉

K

as “basic elements” for the

knotted tst sum and we have the following theorem:

Theorem 32 (Basis Formula). For all n(τ), d(τ),M ∈ Z, d(τ) > 0,

Φ(n(τ), d(τ),M) = I

〈
n(τ)

d(τ)

〉

K

+ P

〈
n(τ)

g(τ)

〉

K

, where I and P are the respective

multiplicity of the two elements in the knotted tst sum.

Proof. Use the fact that

〈
n(τ)

d(τ)

〉

K

and

〈
n(τ)

g(τ)

〉

K

are the only types of elements

in the knotted tst sum.

Theorem 33 (Conjugate Cutting). Φ(−n(τ), d(τ),M) = [Φ(n(τ), d(τ),M ]∗.

Proof. The tst <−τ > can be obtained by taking the conjugate of the tst <τ>.
After cutting <−τ>, by the Basis Formula, each resultant tst is either <−τ>K or〈
− n(τ)

g(τ)

〉

K

, each of which is the conjugate of the strips formed from Φ-cutting

<τ>, with the multiplicity of each knotted tst unchanged.

Example 34. If Φ(1, 2, 3) = P <1>K +I <0.5>K , then Φ(−1, 2, 3) = [Φ(1, 2, 3)]∗

= (P <1>K +I <0.5>K)∗ = P <−1>K +I <−0.5>K .

This allows us to consider only the case with τ > 0 and then use the Conjugate
Cutting Theorem to deduce the result for τ < 0.

6. Deducing a Formula for Multiplicity I of <τ> in Sum Φ(n(τ), d(τ),M)

For simplicity, from now on, we are going to use the following notation:

Notation 35. N(τ) =
n(τ)

g(τ)
and D(τ) =

d(τ)

g(τ)

Observe the graphs Λ(1, 6, 3) and Λ(3, 5, 4). Notice that the region containing 0 is
found in the graph when M is odd. Besides, some lines lp,q intersect at the point
0 when M is even.

Lemma 36 (Lines through center). In Λ(n(τ), d(τ),M), there are some lines pass-
ing through 0 iff M is even.

Proof. For 1 ≤ q ≤M − 1, the line lp,q is given by the equation

lp,q(s) = exp
(2πi(pn(τ)M + q)

Md(τ)

)
+ is

[
exp

(2πipn(τ)

d(τ)

)][
exp

( 2πi

d(τ)

)
− 1
]

= exp
(2πi(pn(τ)M + q)

Md(τ)

)
− is

[
exp

(2πipn(τ)

d(τ)

)][
1− exp

( 2πi

d(τ)

)]
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We now have to solve the equation lp,q(s) = 0.

Rearranging gives exp
(2πi(pn(τ)M + q)

Md(τ)

)
= is

[
exp

(2πipn(τ)

d(τ)

)][
1− exp

( 2πi

d(τ)

)]
.

Multiplying both sides by exp
(2πi(−pn(τ))

d(τ)

)
, gives

exp
[2πi(pn(τ)M + q)

Md(τ)
− 2πipn(τ)

d(τ)

]
= is

[
1− exp

( 2πi

d(τ)

)]

Simplifying gives:

exp
( 2πiq

Md(τ)

)
= is

[
1−exp

( 2πi

d(τ)

)]
−−−−−−−−−− (∗)

Observe that the left hand side has a modulus 1 but i
[
1 − exp

( 2πi

d(τ)

)]
does

not. Given that s is any arbitrary real number, we can scale the number i
[
1 −

exp
( 2πi

d(τ)

)]
to have modulus 1, i.e. we can solve the equation i

[
1−exp

( 2πi

d(τ)

)]
=

s′i exp(2πiζ) for some ζ, and s′ is the modulus of i
[
1− exp

( 2πi

d(τ)

)]
. Then we note

that after canceling the i’s on both sides, the right hand side is exactly the polar
form of a complex number. It follows that

s′2 =
∣∣∣1− exp

( 2πi

d(τ)

)∣∣∣
2

=
[
1− exp

( 2πi

d(τ)

)][
1− exp

( 2πi

d(τ)

)]

=
[
1− exp

( 2πi

d(τ)

)][
1− exp

(
− 2πi

d(τ)

)]
= 1−

[
exp

( 2πi

d(τ)

)
+ exp

(
− 2πi

d(τ)

)]
+ 1

= 2
(

1− cos
2π

d(τ)

)
= 4 sin2 2π

2d(τ)

Since s′ ≥ 0, we take s′ = 2 sin
2π

2d(τ)
, since d(τ) > 0. By division, we have

exp (2πiζ) =
[
1− exp

( 2πi

d(τ)

)](1

2
csc

2π

2d(τ)

)

exp (2πiζ) =
[(

1− cos
2π

d(τ)

)
− i sin

2π

d(τ)

](1

2
csc

2π

2d(τ)

)

exp (2πiζ) =
(1− cos 2π

d(τ)

2 sin 2π
2d(τ)

)
− i

sin 2π
d(τ)

2 sin 2π
2d(τ)

=
2 sin2 2π

2d(τ)

2 sin 2π
2d(τ)

− i
2 sin 2π

2d(τ) cos 2π
2d(τ)

2 sin 2π
2d(τ)

= sin
2π

2d(τ)
− i cos

2π

2d(τ)
=

1

i

(
cos

2π

2d(τ)
+ sin

2π

2d(τ)

)

=
1

i
exp

( 2πi

2d(τ)

)

Hence, we have i exp(2πiζ) = exp
( 2πi

2d(τ)

)
. Substitution into (∗)

gives exp
( 2πiq

Md(τ)

)
= ss′ exp

( 2πi

2d(τ)

)
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However, note that the left hand side of the equation has modulus one, while that on

the right hand side is ss′. Hence we have exp
( 2πiq

Md(τ)

)
= exp

( 2πi

2d(τ)

)
. Therefore:

In Λ(n(τ), d(τ),M), there are some lines passing through 0

⇔ exp
( 2πiq

Md(τ)

)
= exp

( 2πi

2d(τ)

)
for some integers q such that 1 ≤ q ≤M − 1

⇔ exp
(

2πi
q

Md(τ)
− 2πi

1

2d(τ)

)
= 1 for some integers q such that 1 ≤ q ≤M − 1

⇔ 2q −M
2Md(τ)

∈ Z for some integers q such that 1 ≤ q ≤M − 1

⇔ 2q −M = k(2Md(τ)), where k is an integer for some integers q such that

1 ≤ q ≤M − 1

Since M < 2q −M < M and right hand side is a multiple of 2M , we must have
k = 0

∴ There are some lines passing through 0

⇔ 0 = 2q −M for some integers q such that 1 ≤ q ≤M − 1

⇔M is even.

Now, we have gathered enough information to deduce a general formula for the
multiplicity of < τ >K in the sum Φ(n(τ), d(τ),M), which we recall to be the
number of <τ>K formed after cutting <τ> into M parts.

Theorem 37. The multiplicity of < τ > in the sum Φ(n(τ), d(τ),M) is I =
1− (−1)M

2
.

Proof. The point 0 can only either be exactly a vertex, where I = 0, or inside one
face, where I = 1. The former case is found when M is even, and the latter when
M is odd.

Hence I =

{
1 if M is odd
0 if M is even

, which can be combined to give
1− (−1)M

2
.

7. More Properties of Λ(n(τ), d(τ),M)

Next we are going to calculate P , or the multiplicity of <N(τ)>K in the sum
Φ(n(τ), d(τ),M). In order to do so, we have to investigate more properties of
Λ(n(τ), d(τ),M).
Recall that we can discard every point, line segment and region outside the unit
circle of Λ(n(τ), d(τ),M) to obtain the graph of Λ(n(τ), d(τ),M). Besides, we have
defined a vertex, an edge and a face.
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So we can deduce, from the graph of Λ(1, 6, 3), the numbers of vertices, edges and
faces.

Illustration 13. Graph of Λ(1, 6, 3). (Revisited)

There are 24 vertices, 42 edges and 19 faces (excluding the exterior of the unit
circle).

Theorem 38 (Face-multiplicity). The number of faces in the graph of Λ(n(τ), d(τ),
M) is F = PD(τ) + I, where I and P are the number of type I and II knotted tsts
in the sum Φ(n(τ), d(τ),M) respectively.

Proof. Recall that each partial tst comes from a face in Λ(n(τ), d(τ),M). The
number of faces in the graph of Λ(n(τ), d(τ),M) is equal to the number of partial
tsts. Since each of the P knotted tsts <N(τ)>K produced from cutting contains
D(τ) partial tsts and <τ>K (if produced) contains one partial tst, the total number
of partial tsts, and hence that of faces in the graph of Λ(n(τ), d(τ),M), is PD(τ) +
I.

In the following discussion, we first assumed that n(τ) = 1 for the sake of con-
venience. We would later drop this assumption and consider the case for other
n(τ)’s.
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7.1. When are three lines lp1,q1, lp2,q2, lp3,q3 in Λ(n(τ), d(τ),M) concurrent?

Next we consider when three lines lp1,q1, lp2,q2, lp3,q3 in Λ(n(τ), d(τ),M) are con-
current.
For convenience, we introduce the following notation:

Notation 39.

|p1,q1;p2,q2;p3,q3|≡

∣∣∣∣∣∣∣∣∣∣∣

[lp1,q1(0), l̂′p1,q1(s)] [lp2,q2(0), l̂′p2,q2(s)] [lp3,q3(0), l̂′p3,q3(s)]

l̂′p1,q1(s) l̂′p2,q2(s) l̂′p3,q3(s)

l̂′p1,q1(s) l̂′p2,q2(s) l̂′p3,q3(s)

∣∣∣∣∣∣∣∣∣∣∣

where [a, b] =
1

2
(āb − ab̄) for any complex numbers a and b, and and l̂′(s) is the

normalized derivative of l(s) with respect to s, i.e. l̂′(s) =
l′(s)
|l′(s)| .

This is the determinant that checks concurrence, in which we have considered the
specific three lines lp1,q1(s1), lp2,q2(s2) and lp3,q3(s3) in Λ(n(τ), d(τ),M) and sub-
stituted the suitable values. The reader is referred to the Appendix A for its
derivation.

Theorem 40.

|p1, q1; p2, q2; p3, q3| = 4[sin(πf1) sin(πf2) sin(πf3)− sin(πf4) sin(πf5) sin(πf6)]

, where

f1 =
(p1 − p3 + ∆)M − (M − q1 − q3)

Md(τ)
, f4 =

(p2 − p1)M + (q2 − q1)

Md(τ)

f2 =
(p3 − p2)M + (q3 − q2)

Md(τ)
, f5 =

(p1 − p3 + ∆)M + (M − q1 − q3)

Md(τ)

f3 =
(p2 − p1)M + (q1 − q2)

Md(τ)
, f6 =

(p3 − p2)M + (q2 − q3)

Md(τ)

and ∆ =
d(τ)

2

Proof. Note that we have l′p,q(s) = i
(

exp
2πi

d(τ)
− 1
)

exp
2πip

d(τ)
From the proof of the Lines through Center Lemma, we have:

i
(

exp
2πi

d(τ)
− 1
)

exp
2πip

d(τ)
= −i

(
1− exp

2πi

d(τ)

)
exp

2πip

d(τ)
= −s′ exp

2πip

d(τ)
exp

πi

d(τ)

where s′ = 2 sin
2π

2d(τ)
> 0

Hence, l̂′p,q(s) =
l′p,q(s)

|l′p,q(s)|
= − exp

πi(2p+ 1)

d(τ)
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Consider that [lp,q(0), l̂′p,q(s)]

=
[

exp
2πi(pM + q)

Md(τ)
,− exp

πi(2p+ 1)

d(τ)

]

=
[

exp
πi(2p+ 1)

d(τ)
, exp

2πi(pM + q)

Md(τ)

]

= i Im
[
exp

πi(2p+ 1)

d(τ)
exp

2πi(pM + q)

Md(τ)

]

= i Im
[

exp
−πi(2p+ 1)

d(τ)
exp

2πi(pM + q)

Md(τ)

]

= i Im
πi(2q −M)

Md(τ)

= i sin
(2q −M)π

Md(τ)

Hence, |p1, q1; p2, q2; p3, q3|

=

∣∣∣∣∣∣∣∣∣∣∣

i sin
(2q1 −M)π

Md(τ)
i sin

(2q2 −M)π

Md(τ)
i sin

(2q3 −M)π

Md(τ)

exp
πi(2p1 + 1)

d(τ)
exp

πi(2p2 + 1)

d(τ)
exp

πi(2p3 + 1)

d(τ)

exp
−πi(2p1 + 1)

d(τ)
exp
−πi(2p2 + 1)

d(τ)
exp
−πi(2p3 + 1)

d(τ)

∣∣∣∣∣∣∣∣∣∣∣

= i sin
(2q1 −M)π

Md(τ)

[
exp

2πi(p2 − p3)

d(τ)
− exp

−2πi(p2 − p3)

d(τ)

]

+ i sin
(2q2 −M)π

Md(τ)

[
exp

2πi(p3 − p1)

d(τ)
− exp

−2πi(p3 − p1)

d(τ)

]

+ i sin
(2q3 −M)π

Md(τ)

[
exp

2πi(p1 − p2)

d(τ)
− exp

−2πi(p1 − p2)

d(τ)

]

= i sin
(2q1 −M)π

Md(τ)

[
2i sin

2π(p2 − p3)

d(τ)

]

+ i sin
(2q2 −M)π

Md(τ)

[
2i sin

2π(p3 − p1)

d(τ)

]

+ i sin
(2q3 −M)π

Md(τ)

[
2i sin

2π(p1 − p2)

d(τ)

]

= −2 sin
(2q1 −M)π

Md(τ)
sin

2π(p2 − p3)

d(τ)
− 2 sin

(2q2 −M)π

Md(τ)
sin

2π(p3 − p1)

d(τ)

− 2 sin
(2q3 −M)π

Md(τ)
sin

2π(p1 − p2)

d(τ)



54 K.L. CHAN, T.N. CHAN, H.Y. LAU, K.S. MOK, Y.S. WONG

= cos
2π[(p2 − p3)M + (q1 −m)]

Md(τ)
− cos

2π[(p2 − p3)M − (q1 −m)]

Md(τ)

+ cos
2π[(p3 − p1)M + (q2 −m)]

Md(τ)
− cos

2π[(p3 − p1)M − (q2 −m)]

Md(τ)

+ cos
2π[(p1 − p2)M + (q3 −m)]

Md(τ)
− cos

2π[(p1 − p2)M − (q3 −m)]

Md(τ)

Now 4[sin(πf1) sin(πf2) sin(πf3)− sin(πf4) sin(πf5) sin(πf6)]

= 2{cos[π(f1 − f2)]} sin(πf3)− 2{cos[π(f1 + f2)]} sin(πf3)

− 2{cos[π(f4 − f5)]} sin(πf6) + 2{cos[π(f4 + f5)]} sin(πf6)

= 2 cos
π[(p1 + p2 − 2p3 + ∆)M + q1 + q2 −M ]

Md(τ)
sin(πf3)

− 2 cos
π[(p1 − p2 + ∆)M + q1 − q2 + 2q3 −M ]

Md(τ)
sin(πf3)

− 2 cos
π[(−2p1 + p2 + p3 −∆)M + q2 + q3 −M ]

Md(τ)
sin(πf6)

+ 2 cos
π[(p2 − p3 + ∆)M − 2q1 + q2 − q3 +M ]

Md(τ)
sin(πf6)

= −2 sin
π[(p1 + p2 − 2p3)M + q1 + q2 −M ]

Md(τ)
sin

π[(p2 − p1)M + (q1 − q2)]

Md(τ)

+ 2 sin
π[(p1 − p2)M + q1 − q2 + 2q3 −M ]

Md(τ)
sin

π[(p2 − p1)M + (q1 − q2)]

Md(τ)

− 2 sin
π[(−2p1 + p2 + p3)M + q2 + q3 −M ]

Md(τ)
sin

π[(p3 − p2)M + (q2 − q3)]

Md(τ)

− 2 sin
π[(p2 − p3)M − 2q1 + q2 − q3 +M ]

Md(τ)
sin

π[(p3 − p2)M + (q2 − q3)]

Md(τ)

= − cos
2π[(p3 − p1)M − (q2 −m)]

Md(τ)
+ cos

2π[(p2 − p3)M + (q1 −m)]

Md(τ)

+ cos
2π[(p1 − p2)M + (q3 −m)]

Md(τ)
− cos

2π(q1 − q2 + q3 −m)

Md(τ)

− cos
2π[(p1 − p2)M − (q3 −m)]

Md(τ)
+ cos

2π[(p3 − p1)M + (q2 −m)]

Md(τ)

− cos
2π[(p2 − p3)M − (q1 −m)]

Md(τ)
+ cos

2π(q1 − q2 + q3 −m)

Md(τ)

= cos
2π[(p2 − p3)M + (q1 −m)]

Md(τ)
− cos

2π[(p2 − p3)M − (q1 −m)]

Md(τ)

+ cos
2π[(p3 − p1)M + (q2 −m)]

Md(τ)
− cos

2π[(p3 − p1)M − (q2 −m)]

Md(τ)

+ cos
2π[(p1 − p2)M + (q3 −m)]

Md(τ)
− cos

2π[(p1 − p2)M − (q3 −m)]

Md(τ)
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= |p1, q1; p2, q2; p3, q3|

In the following discussion, we expand use of the notation of lp,q(s) in Λ(n(τ), d(τ),
M) from 0 ≤ p ≤ D(τ) − 1 to all integral values of p. This means that for any
integer k, lp+d(τ)k,q(s) represents the same line.

Illustration 14. lp,q with various integral values of p

Illustration 15. la+b,m+c and la−b,m−c are symmetrical about
the line la,m
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By careful observation, we can find that the lines la+b,m+c and la−b,m−c are sym-
metrical about the line la,m. This is proven below. We call this configuration of
three lines “Config I”.

Lemma 41. In Λ(n(τ), d(τ), 2m), the lines la+b,m+c, la,m and la−b,m−c are concur-

rent, where lp,q is the line lp,q(s) = exp
2πi(pM + q)

Md(τ)
+ is[exp (2πiτp)]

(
exp

2πi

d(τ)
−

1
)

.

Proof. Applying a theorem proven in the Appendix A, the lines lp1,q1(s1), lp2,q2(s2)
and lp3,q3(s3) are concurrent

⇔ |p1, q1; p2, q2; p3, q3| = 0

⇔
0 = −2 sin

(2q1 −M)π

Md(τ)
sin

2π(p2 − p3)

d(τ)
− 2 sin

(2q2 −M)π

Md(τ)
sin

2π(p3 − p1)

d(τ)

− 2 sin
(2q3 −M)π

Md(τ)
sin

2π(p1 − p2)

d(τ)

which is proven in the last Theorem.
Let d(τ) = 2∆, so that we have:

−2 sin
(2m+ 2c− 2m)π

2m(2∆)
sin

2πb

2∆
− 2 sin

(2m− 2m)π

2m(2∆)
sin

2π(−2b)

2∆

− 2 sin
(2m− 2c− 2m)π

2m(2∆)
sin

2πb

2∆

=− 2 sin
cπ

2m∆
sin

bπ

∆
− 2 sin 0 sin

−2πb

∆
− 2 sin

−cπ
2m∆

sin
bπ

∆

=− 2 sin
cπ

2m∆
sin

bπ

∆
− 0 + 2 sin

cπ

2m∆
sin

bπ

∆
=0

∴ la+b,m+c, la,m and la−b,m−c are concurrent.

We then go on and figure out other configurations of three lines in Λ(1, d(τ),M)
such that they concur. Except the above one, it is obvious that any three lines
passing through the origin are concurrent, which can be found only when M is
even. We call this configuration of lines “Config II”
In the following discussion, for the sake of simplicity, we write d(τ) = 2∆ and
M = 2m.
We consider the following fact: for d(τ) ≤ 2, we cannot find three nonparallel lines
in Λ(1, d(τ),M) from its definition. Hence, we assume that d(τ) ≥ 2, i.e. ∆ > 1.
Moreover, we also note that if d(τ) = 4, there are only two families of parallel lines,
so it is known that d(τ) is even, we assume that d(τ) ≥ 6, i.e. ∆ ≥ 3.
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Proposition 42. A line represented by lp+∆,M−q(s) is the same as the line repre-
sented by lp,q(s).

Proof. We notice that in fact the line lp+∆,M−q(s) takes the equation:

exp
2πi[(p+ ∆)M + (M − q)]

Md(τ)
+ is exp

2πi(p+ ∆)

d(τ)

(
exp

2πi

d(τ)
− 1
)

= − exp
2πi[(p+ 1)M − q]

Md(τ)
exp

2πi

d(τ)
− is exp

2πip

d(τ)

(
exp

2πi

d(τ)
− 1
)

But note that, from the proof of the Line through Center Lemma, we know that

l′p+∆,M−q(s) = −i exp
2πip

d(τ)

(
exp

2πi

d(τ)
− 1
)

Moreover, since

[exp(2πiζ1) + exp(2πiζ2), exp
2πi(ζ1 + ζ2)

2
]

=iIm{[exp(−2πiζ1) + exp(−2πiζ2)] exp
2πi(ζ1 + ζ2)

2
}

=iIm
[

exp
2πi(ζ2 − ζ1)

2
+ exp

−2πi(ζ2 − ζ1)

2

]

=iIm
[
2 cos

2π(ζ2 − ζ1)

2

]

=i(0) = 0,

the number exp(2πiζ1) + exp(2πiζ2) is parallel to exp
2πi(ζ1 + ζ2)

2
and this allows

us to write exp(2πiζ1) + exp(2πiζ2) = r exp
2πi(ζ1 + ζ2)

2
where r is a real number.

Therefore we have:

exp
2πi(pM + q)

Md(τ)
− lp+∆,M−q(0)

l′p+∆,M−q(s)

=

exp
2πi(pM + q)

Md(τ)
−
[
− exp

2πi[(p+ 1)M − q]
Md(τ)

]

−i exp
2πip

d(τ)

(
exp

2πi

d(τ)
− 1
)

=

exp
2πip

d(τ)

[
exp

2πiq

Md(τ)
+ exp

2πi(M − q)
Md(τ)

]

−s′ exp
2πip

d(τ)
exp

2πi

2d(τ)



58 K.L. CHAN, T.N. CHAN, H.Y. LAU, K.S. MOK, Y.S. WONG

=

exp
2πiq

Md(τ)
+ exp

2πi(M − q)
Md(τ)

−s′ exp
2πi

2d(τ)

=
r exp

2πiq

Md(τ)
+

2πi(M − q)
Md(τ)

2

−s′ exp
2πi

2d(τ)

=

r exp
2πi

2d(τ)

−s′ exp
2πi

2d(τ)

= − r
s′

∈ R

Hence, the point exp
2πi(pM + q)

Md(τ)
lies on the line lp+∆,M−q.

This shows that we can choose another parametrization for the same line:

lp+∆,M−q(s∗) = exp
2πi(pM + q)

Md(τ)
− is∗ exp

2πip

d(τ)

(
exp

2πi

d(τ)
− 1
)

And by considering

lp+∆,M−q(−s∗) = exp
2πi(pM + q)

Md(τ)
+ is∗ exp

2πip

d(τ)

(
exp

2πi

d(τ)
− 1
)

we recover all the points on the line lp,q(s).

This above proposition allows us to restrict, for any three lines under consideration,
the p1, p2 and p3 such that 0 ≤ p1, p2, p3 < ∆.
The following diagram illustrates the use of this proposition on Λ(1, 5, 4) where we
have, for some lines lp,q(s), p is not an integer but 2p is:
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To find out other configurations, we note that the lines lp1,q1, lp2,q2 and lp3,q3 are
concurrent if and only if the following equation holds: 4[sin(πf1) sin(πf2) sin(πf3)−
sin(πf4) sin(πf5) sin(πf6)] = 0,

i.e. sin(πf1) sin(πf2) sin(πf3) = sin(πf4) sin(πf5) sin(πf6),−−−−−−−− (C)

where:

f1 =
(p1 − p3 + ∆)M − (M − q1 − q3)

Md(τ)
, f4 =

(p2 − p1)M + (q2 − q1)

Md(τ)

f2 =
(p3 − p2)M + (q3 − q2)

Md(τ)
, f5 =

(p1 − p3 + ∆)M + (M − q1 − q3)

Md(τ)

f3 =
(p2 − p1)M + (q1 − q2)

Md(τ)
, f6 =

(p3 − p2)M + (q2 − q3)

Md(τ)

and ∆ =
d(τ)

2
.

We note that f1 + f2 + f3 + f4 + f5 + f6 = 1, so that we can follow the paper [6]
for all rational solutions to the equation (C), which lists all possible f1, f2, . . . , f6

such that equation (C) is satisfied. We start with the following matrix equation for
f1, f2, . . . , f6 in terms of p1, p2, p3, q1, q2, q3 as follows:

Md(τ)




f1

f2

f3

f4

f5

f6




=




∆M −M
0
0
0

∆M +M
0




+




M 0 −M 1 0 1
0 −M M 0 −1 1
−M M 0 1 −1 0
−M M 0 −1 1 0
M 0 −M −1 0 −1
0 −M M 0 1 −1







p1

p2

p3

q1

q2

q3




We denote the column vector (f1 f2 f3 f4 f5 f6)T by f.
Performing elementary row operation, we obtain:




M 0 −M 1 0 1 1
0 −M M 0 −1 1 1
−M M 0 1 −1 0 1
−M M 0 −1 1 0 1
M 0 −M −1 0 −1 1
0 −M M 0 1 −1 1




∼




2M 0 −2M 0 0 0 1 0 0 0 1 0
0 −2M 2M 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 1 0 0 1�4 −1�4

1�4 −1�4 −1�4
1�4

0 0 0 0 1 0 1�4 −1�4 −1�4
1�4 −1�4

1�4

0 0 0 0 0 1 1�4
1�4 −1�4

1�4 −1�4 −1�4



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From this result we can then solve for the p’s and the q’s.
The q’s can be solved directly:


q1

q2

q3


 =

Md(τ)

4




1 −1 1 −1 −1 1
1 −1 −1 1 −1 1
1 1 −1 1 −1 −1


 f +



m
m
m




= m∆




2 0 2 0 0 2
2 0 0 2 0 2
2 2 0 2 0 0


 f−m∆




1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1


 f +



m
m
m




= m∆




2 0 2 0 0 2
2 0 0 2 0 2
2 2 0 2 0 0


 f +



m−m∆
m−m∆
m−m∆




Here we have used the fact that (1 1 1 1 1 1)f = 1. Then we consider the p’s.
Since Λ(n(τ), d(τ),M) is rotational symmetric, we can first assume that p1 = 0. We
also further restrict that p2 < p3. In combined form, this is 0 = p1 < p2 < p3 < ∆.
We therefore have:

2M




1 0 −1
0 −1 1
1 0 0





p1

p2

p3


 = ∆




1 0 0 0 1 0
0 1 0 0 0 1
0 0 0 0 0 0


 f +



−2∆M

0
0




Then we can then solve for p2 and p3, which are:
(
p2
p3

)
= ∆

(
−1 −1 0 0 −1 −1

−1 0 0 0 −1 0

)
f +

(
∆

∆

)
= ∆

(
0 0 1 1 0 0

−1 0 0 0 −1 0

)
f +

(
0

∆

)

Here we have also used (1 1 1 1 1 1)f = 1.
According to the paper [6], there are three types of solutions to the equation (C): the
trivial solutions, where f4, f5, f6 is a permutation of f1, f2, f3, four families of one-
parameter infinite solutions, and sixty-five sporadic solutions. We can substitute
f1, f2, f3 and so on into the solutions listed in the paper [6] and then find whether
there are some reasonable configurations of the three lines besides Config. I and II.
Details of the consideration can be found in Appendix IV.

Case A The “trivial” solutions.

These are the solutions with f1+f2+f3 = f4+f5+f6 =
1

2
and f4, f5, f6 is a permu-

tation of f1, f2, f3. In other words, we have six subcases:





f1 = f4

f2 = f5

f3 = f6

,





f1 = f6

f2 = f4

f3 = f5

,





f1 = f5

f2 = f6

f3 = f4

,





f1 = f4

f2 = f6

f3 = f5

,





f1 = f5

f2 = f4

f3 = f6

and





f1 = f6

f2 = f5

f3 = f4

.

Case B One-parameter infinite solutions
In order to reduce the number of cases, by symmetry of Λ(n(τ), d(τ),M) and sub-
stitute the value of U only into f1 in each of the subcases. We consider twelve
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permutation matrices as below (with every unspecified entry zero):

P1 =




1
1

1

1
1

1



, P2 =




1
1

1

1
1

1



, P3 =




1
1

1

1
1

1



,

P4 =




1
1

1
1

1

1



, P5 =




1
1

1

1
1

1



, P6 =




1
1

1

1
1

1



,

P7 =




1

1

1
1

1

1



, P8 =




1

1

1
1

1

1



, P9 =




1

1

1
1

1
1



,

P10 =




1

1
1

1

1
1



, P11 =




1

1
1

1

1
1



, P12 =




1

1
1

1

1
1




From the paper [6], we can form four column vectors for the solutions:

s1 =




1

6

t

1

3
− 2t

1

3
+ t

t

1

6
− t




, s2 =




1

6
1

2
− 3t

t

1

6
− t

2t

1

6
+ t




,both for 0 < t <
1

6
; and

s3 =




1

6
1

6
− 2t

2t

1

6
− 2t

t

1

2
+ t




, s4 =




1

3
− 4t

t

1

3
+ t

1

6
− 2t

3t

1

6
+ t




,both for 0 < t <
1

12
.
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Then in Appendix IV, in the subcase “B i.j”, we substitute f = Pjsi where i =
1, 2, 3, 4 and j = 1, 2, 3, . . . , 12 and then deduce the range of values of p1, p2, p3, q1, q2

and q3 if the case is not rejected.

Case C Sporadic solutions
The paper [6] provides 65 sets of exact values satisfying the equation (C). We
consider this case using a Scilab program. Program codes can be found in Appendix
B.

Combining all the logical arguments in the above analysis, we see that the solutions
to equation (C) other than those giving Config I and II are as follows: for k ∈ Z+,

In Λ(1, 5, 12k), |0, 3k; 0.5, k; 1, k| = 0 (B1.3)

|0, k; 0.5, k; 1, 3k| = 0 (B1.11)

|0, k; 0.5, 3k; 1.5, 9k| = 0 (B2.2)

|0, 9k; 0.5, 6k; 1.5, k| = 0 (B2.7)

|0, 9k; 1, 3k; 1.5, k| = 0 (B2.10)

|0, 11k; 1.5, 6k; 2, 3k| = 0 (B4.3)

|0, 3k; 1.5, 6k; 2, 11k| = 0 (B4.11)

In Λ(1, 7, 12k), |0, 3k; 0.5, 5k; 2.5, 11k| = 0 (B2.5)

|0, 11k; 2, 5k; 2.5, 3k| = 0 (B2.9)

For solutions in Λ(1, 5, 12k), we can know that the lines involved are included by
Λ(1, 5, 12) (since the values of ‘q’s are all multiples of k). As both Λ(1, 5, 12k)
and Λ(1, 5, 12) are 10-fold rotational symmetric about the origin, all concurrence
in Λ(1, 5, 12k) derived from the solutions also appear in Λ(1, 5, 12). By studying
Λ(1, 5, 12) directly, we can know that there are 10 pencils of 5 concurrent lines in
Λ(1, 5, 12k). Similarly, there are 28 pencils of 3 concurrent lines in Λ(1, 7, 12k).
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Illustration 16. Λ(1, 7, 12) and a part of it

Illustration 17. Λ(1, 5, 12)
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7.2. When do lines lp1,q1, lp2,q2 intersect outside the unit circle?

We next consider the problem as in the title and propose the following theorem to
answer the above captioned question.

Proposition 43. If d(τ) ≥ 3 is an integer, and p1 and p2 satisfy the inequality
1

2
≤ |p1 − p2| < ∆ =

d(τ)

2
, then 0 < sin

2π|p1 − p2|
d(τ)

≤ 1.

Proof. Through division by d(τ) ≥ 3, we have
1

2d(τ)
≤ |p1 − p2|

d(τ)
<

1

2
.

This yields 0 <
2π

2d(τ)
≤ 2π|p1 − p2|

d(τ)
<

2π

2
.

The stated result thus follows.

Proposition 44. If d(τ) is even, then no lines intersect outside the unit circle.

Proof. Because d(τ) is even, for any two non-parallel lines lp1,q1(s) and lp2,q2(s)
under consideration, we can restrict that 1 ≤ p2 − p1 ≤ ∆ − 1 and note that we
also have 0 ≤ |q1 − q2| ≤M − 2. Then by solving lp1,q1(s1) = lp2,q2(s2), i.e.

exp(2πi
p1M + q1

Md(τ)
) + s1i exp

2πip1

d(τ)
(exp

2πi

d(τ)
− 1)

= exp(2πi
p2M + q2

Md(τ)
) + s2i exp

2πip2

d(τ)
(exp

2πi

d(τ)
− 1).

We now find a condition on s such that the point lp,q(s) lies outside the unit circle.
In other words, we solve |lp,q(s)| > 1, or |lp,q(s)|2 > 1, i.e.

| exp(2πi
pM + q

Md(τ)
)− si exp

2πip

d(τ)
(1− exp

2πi

d(τ)
)|2 > 1

[
exp

(
2πi

pM + q

Md(τ)

)
− si exp

2πip

d(τ)

(
1− exp

2πi

d(τ)

)][
exp

(
− 2πi

pM + q

Md(τ)

)

+ si exp
−2πip

d(τ)

(
1− exp

−2πi

d(τ)

)]
> 1

s2
[

exp
2πip

d(τ)

(
1− exp

2πi

d(τ)

)][
exp
−2πip

d(τ)

(
1− exp

−2πi

d(τ)

)]

− is
[(

1− exp
2πi

d(τ)

)
exp

(
2πi

−q
Md(τ)

)
− (1− exp

−2πi

d(τ)

)
exp

(
2πi

q

Md(τ)

)]
> 0

Using the fact that

[
exp

2πip

d(τ)

(
1− exp

2πi

d(τ)

)][
exp
−2πip

d(τ)

(
1− exp

−2πi

d(τ)

)]

=
∣∣∣ exp

2πip

d(τ)

(
1− exp

2πi

d(τ)

)∣∣∣
2

= 4 sin2 π

d(τ)
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and that
(

1− exp
2πi

d(τ)

)
exp

(
2πi

−q
Md(τ)

)
−
(

1− exp
−2πi

d(τ)

)
exp

(
2πi

q

Md(τ)

)

= exp
(

2πi
−q

Md(τ)

)
− exp

2πi(M − q)
Md(τ)

− exp
(

2πi
q

Md(τ)

)
+ exp

−2πi(M − q)
Md(τ)

= −2i sin
2πq

Md(τ)
− 2i sin

2π(M − q)
Md(τ)

= −4i sin
π

d(τ)
cos

2π(q −m)

Md(τ)
, where M = 2m,

the inequality becomes

4s2 sin2 π

d(τ)
− 4s sin

π

d(τ)
cos

2π(q −m)

Md(τ)
> 0

s
(
s sin

π

d(τ)
− cos

2π(q −m)

Md(τ)

)
> 0

Since d(τ) is an even integer, 0 ≤
∣∣∣ q −m
Md(τ)

∣∣∣ ≤ m− 1

Md(τ)
<

1

4
, cos

2π(q −m)

Md(τ)
> 0.

In addition, we have sin
π

d(τ)
> 0. Hence, we have;

s < 0 or s >
cos 2π(q−m)

Md(τ)

sin
π

d(τ)

> 0.

But if the intersection point of any two lines lp1,q1(s1) and lp2,q2(s2) is outside the
unit circle and s1 < 0 at the intersection point, we can change the parametrization
of the line lp1,q1(s1) to lp1+∆,M−q1(s1

∗) such that s1
∗ is now positive.
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Hence we can take s1 < 0 as a necessary condition for the two lines to intersect
outside the unit circle. Now we deduce the formula for s1 in terms of the p’s and
the q’s. We introduce two new variables s̃1 and s̃2 such that

s̃1 exp(πi
2p1 + 1

d(τ)
) = s1i exp

2πip1

d(τ)
(exp

2πi

d(τ)
− 1) and

s̃2 exp(πi
2p2 + 1

d(τ)
) = s2i exp

2πip2

d(τ)
(exp

2πi

d(τ)
− 1)

Here s̃1 and s̃2 are apparently real, since

π(2p+ 1)

d(τ)
= arg

[
i
(

exp
2πip

d(τ)

)(
exp

2πi

d(τ)
− 1
)]

Then we have s = − 1

2 sin π
d(τ)

s̃ and the condition s < 0 becomes s̃ > 0

Rearrangement from lp1,q1(s̃1) = lp2,q2(s̃2) gives

s̃1 exp(πi
2p1 + 1

d(τ)
)− s̃2 exp(πi

2p2 + 1

d(τ)
) = − exp(2πi

p1M + q1

Md(τ)
)+exp(2πi

p2M + q2

Md(τ)
)

We note that for the following equation:
s̃1z1 + s̃2z2 = z3 where z1, z2 and z3 are complex numbers, we can have
{
s̃1Re(z1) + s̃2Re(z2) = Re(z3)
s̃1Im(z1) + s̃2Im(z2) = Im(z3)

Cramer’s Rule yields

s̃1 =

∣∣∣∣
Re(z3) Re(z2)
Im(z3) Im(z2)

∣∣∣∣
∣∣∣∣

Re(z1) Re(z2)
Im(z1) Im(z2)

∣∣∣∣
=

∣∣∣∣
Re(z3)− Im(z3) Re(z2)− Im(z2)

2Im(z3) 2Im(z2)

∣∣∣∣
∣∣∣∣

Re(z1)− Im(z1) Re(z2)− Im(z2)
2Im(z1) 2Im(z2)

∣∣∣∣

=

∣∣∣∣
Re(z3)− Im(z3) Re(z2)− Im(z2)
Re(z3) + Im(z3) Re(z2) + Im(z2)

∣∣∣∣
∣∣∣∣

Re(z1)− Im(z1) Re(z2)− Im(z2)
Re(z1) + Im(z1) Re(z2) + Im(z2)

∣∣∣∣
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=

∣∣∣∣
z3 z2

z3 z2

∣∣∣∣
∣∣∣∣
z1 z2

z1 z2

∣∣∣∣
=
z3z2 − z3z2

z1z2 − z1z2
=

2i Im(z3z2)

2i Im(z1z2)

=
[z3, z2]

[z1, z2]

where [a, b] = iIm(ab) is the complex bracket for any complex numbers a and b.
Therefore, we have

s̃1 =

[
− exp

(
2πi

p1M + q1

Md(τ)

)
+ exp

(
2πi

p2M + q2

Md(τ)

)
,− exp

πi(2p2 + 1)

d(τ)

]

[
exp

πi(2p1 + 1)

d(τ)
,− exp

πi(2p2 + 1)

d(τ)

]

where [a, b] = iIm(ab) is the complex bracket for any complex numbers a and b.

The denominator is:
[

exp
πi(2p1 + 1)

d(τ)
,− exp

πi(2p2 + 1)

d(τ)

]
=
[

exp
πi(2p2 + 1)

d(τ)
, exp

πi(2p1 + 1)

d(τ)

]

= iIm exp
[
πi
(2p2 + 1

d(τ)
− 2p1 + 1

d(τ)

)]
= −i sin 2π

p2 − p1

d(τ)

Note that 1 ≤ p2− p1 ≤ ∆− 1 < ∆ so we can use the previous propositions to give

−1 ≤ −2 sin 2π
p2 − p1

d(τ)
< 0.

Similarly, we can show that the numerator is equivalent to

[
− exp

(
2πi

p1M + q1

Md(τ)

)
+ exp

(
2πi

p2M + q2

Md(τ)

)
,− exp

πi(2p2 + 1)

d(τ)

]

= 2i sin 2π
(p2 − p1

2d(τ)
+

q2 − q1

2Md(τ)

)
cos 2π

(p2 − p1 − 1

2d(τ)
+

q1 + q2

2Md(τ)

)

Using the fact that 1 ≤ p2 − p1 ≤ ∆− 1 and 0 ≤ |q1 − q2| ≤M − 2, we have

1

2d(τ)
+

2−M
2Md(τ)

≤ p2 − p1

2d(τ)
+

q2 − q1

2Md(τ)
≤ ∆

2d(τ)
+

M − 2

2Md(τ)

The boundaries can be loosened to give:

1

2d(τ)
− M

2Md(τ)
<
p2 − p1

2d(τ)
+

q2 − q1

2Md(τ)
<

1

4
+

M

2Md(τ)

0 <
p2 − p1

2d(τ)
+

q2 − q1

2Md(τ)
<

1

4
+

1

2d(τ)
<

1

2

Hence 0 < sin 2π
(p2 − p1

2d(τ)
+

q2 − q1

2Md(τ)

)
≤ 1

Using the fact 1 ≤ p2 − p1 ≤ ∆− 1 and 0 ≤ q1, q2 ≤M − 1, we have
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0 ≤ p2 − p1 − 1

2d(τ)
+

q1 + q2

2Md(τ)
≤ ∆− 2

2d(τ)
+

2M − 2

2Md(τ)
=

1

4
− 2

2Md(τ)
<

1

4

Hence we have 0 < cos 2π
(p2 − p1 − 1

2d(τ)
+

q1 + q2

2Md(τ)

)
≤ 1.

Therefore, in the expression of s̃1, after canceling the i’s, the numerator is positive
and the denominator is negative, giving s̃1 < 0.
The stated result follows.

Therefore, for the lines in Λ(1, d(τ),M) to intersect outside the unit circle, we must
have d(τ) odd. However, this condition is not sufficient. The following proposition
deals with this fact.

Theorem 45 (Intersection outside the unit circle). In Λ(1, d(τ),M) with d(τ) an
odd integer, the nonparallel lines lp1,q1(s1) and lp2,q2(s2) intersect outside the unit

circle only if the angle between them is
π

d(τ)
.

Proof. If d(τ) = 1, then there is only one family of parallel lines, so there is nothing
to consider. Now suppose d(τ) ≥ 3.
For any two lines lp1,q1(s1) and lp2,q2(s2) under consideration, choose p1 and p2

such that they satisfy
1

2
≤ |p1 − p2| < ∆ =

d(τ)

2
, which is always possible for any

two lines.
From the proof in the previous proposition, we know that

s̃1 = −2 sin 2π
(p2 − p1

2d(τ)
+

q2 − q1

2Md(τ)

)
cos 2π

(p2 − p1 − 1

2d(τ)
+

q1 + q2

2Md(τ)

)
csc 2π

p2 − p1

d(τ)
.

Assume that p2 > p1, then csc 2π
p2 − p1

d(τ)
= csc 2π

|p2 − p1|
d(τ)

> 0 by the previous

proposition.

Now we consider the sign of cos 2π
(p2 − p1 − 1

2d(τ)
+

q1 + q2

2Md(τ)

)
and sin 2π

(p2 − p1

2d(τ)
+

q2 − q1

2Md(τ)

)
.

Case I p2 − p1 =
1

2
Note that since 0 ≤ |q2 − q1| ≤ (M − 1)− 1 = M − 2, we have:

1

Md(τ)
− 1

4d(τ)
≤ p2 − p1

2d(τ)
+
q2 − q1
2Md(τ)

≤ 3

4d(τ)
− 1

Md(τ)

i.e.
4−M

4Md(τ)
≤ p2 − p1

2d(τ)
+
q2 − q1
2Md(τ)

≤ 3

4d(τ)
− 1

Md(τ)
<

3

4d(τ)
≤ 1

4

and

− 1

4
<

1

Md(τ)
− 1

4d(τ)
≤ p2 − p1 − 1

2d(τ)
+
q2 + q1

2Md(τ)
≤ −1

4d(τ)
+

2M − 2

2Md(τ)
=

3

4d(τ)
− 1

Md(τ)
<

1

4
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so we have cos 2π
(p2 − p1 − 1

2d(τ)
+

q1 + q2

2Md(τ)

)
> 0

Noting the left hand side of the first inequality may be positive or negative, de-
pending on the value of M , we consider two cases.

(a)M ≤ 4

0 ≤ 4−M
4Md(τ)

≤
(p2 − p1

2d(τ)
+

q2 − q1

2Md(τ)

)
≤ 1

4
, so sin 2π

(p2 − p1

2d(τ)
+

q2 − q1

2Md(τ)

)
≥ 0

Hence s̃1 < 0.

(b)M > 4

Let m =
M

2
, then for sin 2π

(p2 − p1

2d(τ)
+

q2 − q1

2Md(τ)

)
< 0, we have

0 <
p2 − p1 − 1

2d(τ)
+

q2 + q1

2Md(τ)
<

1

2
and hence m < q1 − q2 ≤M − 2.

Thus, s̃1 < 0 except for m < q1 − q2 < M .

Case II 1 ≤ p2 − p1 < ∆− 1

M + (2−M)

2Md(τ)
≤ p2 − p1

2d(τ)
+

q2 − q1

2Md(τ)
≤ ∆M −M +M − 2

2Md(τ)

0 <
p2 − p1

2d(τ)
+

q2 − q1

2Md(τ)
<

1

2

so sin 2π
(p2 − p1

2d(τ)
+

q2 − q1

2Md(τ)

)
> 0.

1

Md(τ)
≤ p2 − p1 − 1

2d(τ)
+

q1 + q2

2Md(τ)
≤ ∆M − 2M + 2M − 2

2Md(τ)

1

15
≤ p2 − p1 − 1

2d(τ)
+

q1 + q2

2Md(τ)
<

1

4

so we have cos 2π
(p2 − p1 − 1

2d(τ)
+

q1 + q2

2Md(τ)

)
> 0 and hence s̃1 < 0.

Case IIIp2 − p1 = ∆− 1

2

∆M − M
2 + (2−M)

2Md(τ)
≤ p2 − p1

2d(τ)
+

q2 − q1

2Md(τ)
≤ ∆M − M

2 +M − 2

2Md(τ)

∆− 3
2

2d(τ)
+

1

Md(τ)
≤ p2 − p1

2d(τ)
+

q2 − q1

2Md(τ)
<

1

4
+

1

4d(τ)

0 <
p2 − p1

2d(τ)
+

q2 − q1

2Md(τ)
<

1

2
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so sin 2π
(p2 − p1

2d(τ)
+

q2 − q1

2Md(τ)

)
> 0.

For cos 2π
(p2 − p1 − 1

2d(τ)
+

q1 + q2

2Md(τ)

)
< 0, we have

p2 − p1 − 1

2d(τ)
+

q2 + q1

2Md(τ)
< −1

4
or

p2 − p1 − 1

2d(τ)
+

q2 + q1

2Md(τ)
>

1

4

and hence q1 + q2 < −M
(
d(τ)− 3

2

)
< 0 (rejected) or

3M

2
< q1 + q2.

Thus, s̃1 < 0 except for 3m ≤ q1 + q2 ≤ 4m− 2.

In conclusion, for any two lines intersecting outside the unit circle, we must have

either (A)p2 − p1 =
1

2
and m < q1 − q2 < M or

(B)p2 − p1 = ∆− 1

2
and 3m ≤ q1 + q2 < 4m− 2.

In (A), obviously the two lines are from adjacent families of parallel lines and the

angle between them is
π

d(τ)
. In (B), note that in fact |p2 − (p1 + ∆)| = 1

2
, so the

same deduction shows that the stated relation holds.

7.3. Relations between different Λ(n(τ), d(τ),M)’s

Next, we notice the following relation between Λ(n(τ), d(τ),M) of two different τ ’s
with the same D(τ). This allows to compute the multiplicity P of <N(τ)>K in
Φ(n(τ), d(τ),M) from another sum.

Proposition 46. Λ(n(τ), d(τ),M) for any n(τ) is the same as Λ(1, d(τ),M) if
g(τ) = 1.

Proof. The set Λ(n(τ), d(τ),M) consists of the unit circle and the lp,q(s) which
takes the equation

lp,q(s) = exp
2πi(pn(τ)M + q)

Md(τ)
+ is(exp 2πiτp)

(
exp

2πi

d(τ)
− 1
)

for 1 ≤ q ≤M − 1 and 0 ≤ p ≤ d(τ)− 1.
if g(τ) = 1, we can choose a unique integer p′ for each p such that
p′ ≡ pn(τ) (mod d(τ)) and 0 ≤ p′ ≤ d(τ)− 1.

Then we can write exp
(

2πi
pn(τ)M

Md(τ)

)
= exp

(
2πi

p′M
Md(τ)

)
and

exp 2πiτp = exp
(

2πi
pn(τ)

d(τ)

)
= exp

(
2πi

p′

d(τ)

)

Hence we can convert every line lp,q(s) to lp′,q(s
′) which is defined as:

lp′,q(s
′) = exp

2πi(p′M + q)

Md(τ)
+ is′

(
exp

2πip′

d(τ)

)(
exp

2πi

d(τ)
− 1
)
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which is a line in Λ(1, d(τ),M).
Note that the conversion map f : Zd(τ) → Zd(τ) defined by
p 7→ p′ = pn(τ) (mod d(τ)) is bijective:
Injectivity:p1n(τ) ≡ p2n(τ) (mod d(τ))⇔ (p1 − p2)n(τ) ≡ 0 (mod d(τ))
⇔ d(τ) | (p1 − p2)n(τ). Since g(τ) = 1, d(τ) | (p1 − p2).
But since 0 ≤ p1, p2 ≤ d(τ)−1, 0 ≤ |p1−p2| ≤ d(τ)−1, so we must have p1−p2 = 0,
which means that p1 = p2.
Surjectivity: For p1 6= p2, |p1−p2| is never a positive multiple of d(τ), the conversion
map is obviously onto.
Because one value of p corresponds to exactly one line, the conversion map
g : {Lp|p = 0, 1, 2, . . . , D(τ)− 1} from Λ(1, d(τ),M)→ {Lp′ |p′ = 0, 1, 2, . . . , D(τ)− 1}
from Λ(n(τ), d(τ),M) defined by lp,q(s) 7→ lp′,q(s

′) is bijective, so the stated result
follows.

Now, observe the following pairs of graphs: Λ(1, 3, 3) and Λ(3, 9, 3):

Illustration 18. Λ(1, 3, 3). Illustration 19. Λ(3, 9, 3).

We note that Λ(1, 3, 3) and Λ(3, 9, 3) are similar in several aspects. Generalizing
the result, we can prove the following proposition.

Proposition 47. For any given rational τ , Λ(n1(τ), d1(τ),M) and Λ(n2(τ), d2(τ),
M) have the same number of lines and the angle between adjacent families of parallel
lines is the same.

Proof. Note that for Λ(n1(τ), d1(τ),M) where g1(τ) 6= 1, the number of families of

parallel lines in the graph is





D(τ)

2
if D(τ) is even

D(τ) if D(τ) is odd
, and the angle between
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each adjacent family of parallel lines is therefore





2π

D(τ)
if D(τ) is even

π

D(τ)
if D(τ) is odd

, where

D(τ) =
d(τ)

g(τ)
.

Then from our observation of Λ(1, 3, 3) and Λ(1, 9, 3), we notice the following.

Illustration 20. Λ(1, 9, 3).

Proposition 48. Suppose g(τ) > 1. Then Λ(n(τ), d(τ),M) is in fact the lines
lp,q(s), where p = 0, g(τ), 2g(τ), . . . , d(τ)− g(τ), in Λ(1, d(τ),M) together with the
unit circle.

Proof. Note that lp,q(0) = exp 2πi
pM + q

Md(τ)
and lp,q

′(s) = expπi
2p+ 1

d(τ)
completely

determine the line lp,q(s).

In Λ(n(τ), d(τ),M), lr,q(0) = exp 2πi
rn(τ)M + q

Md(τ)
and

lr,q
′(s) = expπi

2rn(τ) + 1

d(τ)
. But for 0 ≤ r ≤ d(τ)− 1,

lr+D(τ),q(0) = exp 2πi
rn(τ)M + rD(τ)M + q

Md(τ)
= exp 2πi

(rn(τ)M + q

Md(τ)
+ rg(τ)

)

Since rg(τ) is an integer, lr+D(τ),q(0) = lr,q(0).

Similarly, lr+D(τ),q
′(s) = expπi

(2rn(τ) + 1

d(τ)
+ 2rg(τ)

)
= lr,q

′(s).

Therefore, lr+D(τ),q(s) is in fact the same line as lr,q(s) for all 0 ≤ r ≤ d(τ)− 1−
D(τ).
Hence, we are allowed to restrict 0 ≤ r ≤ D(τ)− 1 in considering all lines lr,q(s) in
Λ(n(τ), d(τ),M)

In Λ(1, d(τ),M), lkg(τ),q(0) = exp 2πi
g(τ)kM + q

Md(τ)
,
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lkg(τ),q
′(s) = expπi

2kg(τ) + 1

d(τ)
.

Set k ≡ rN(τ) (mod D(τ)), where 0 ≤ k ≤ D(τ)− 1.
Then kg(τ) ≡ rn(τ) (mod D(τ)).
Hence, we can assign a unique k to each r where 0 ≤ r ≤ D(τ) − 1 such that the
line lr,q(s) in Λ(n(τ), d(τ),M) is the same as lkg(τ),q(s) in Λ(1, d(τ),M).
Hence, the mapping f : {Lp|p = 0, g(τ), 2g(τ), . . . , d(τ)− g(τ)} in Λ(1, d(τ),M)→
{Lp|p = 0, 1, 2, . . . , D(τ)− 1} defined by
f : lr,q(s) 7→ lkg(τ),q(s) is bijective. Therefore, the stated result follows.

Proposition 49. In Λ(n(τ), d(τ),M) with g(τ) > 1, no two lines intersect outside
the unit circle.

Proof. The fact follows from the last proposition. With g(τ) > 1, the difference

in the values of p of any two lines is at least
g(τ)

2
>

1

2
, also allowing ourselves to

change p to p + ∆ or p − ∆. The angle between any families of parallel lines is

therefore at least
2π

D(τ)
if D(τ) is even and

π

D(τ)
if D(τ) is odd.

If D(τ) is even, d(τ) = D(τ)g(τ) must be even, so by a previous proposition, the
stated result follows.
If D(τ) is odd, then for even g(τ), d(τ) = D(τ)g(τ) is even, so the stated result

follows. If g(τ) is odd, then g(τ) ≥ 3, and hence
π

d(τ)
=

π

D(τ)
g(τ) ≥ 3π

D(τ)
>

2π

D(τ)
.

Therefore, by the Intersection outside the unit circle Theorem, the stated result
follows.

8. Deducing a Formula for Multiplicity P of <N(τ)> in Sum Φ(n(τ), d(τ),M)

After claiming different propositions in the last section, we are now capable of
calculating P . Here we use two main results:

1. Euler’s formula for graphs: V − E + (F + 1) = 2, where V,E and F are the
number of vertices, edges and faces (excluding the exterior of the unit circle)
respectively.
In other words, we have F = 1 + E − V .

2. The Face-multiplicity Theorem: F = PD(τ) + I, where I =
1− (−1)M

2
as

proven.

In other words, we have P =
1 + E − V − I

D(τ)
.

We first consider the case where M = 2.

Theorem 50. The multiplicity P of <N(τ)>K in Φ(1, d(τ), 2)

is P =

{
1 if D(τ) is even
2 if D(τ) is odd

.
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Proof. It is easy to see that F =

{
D(τ) if D(τ) is even
2D(τ) if D(τ) is odd

when M = 2. There-

fore,

P =





D(τ)

D(τ)
= 1 if D(τ) is even

2D(τ)

D(τ)
= 2 if D(τ) is odd

.

Then we calculate the value of P in the tst sum Φ(1, D(τ),M), where D(τ) is an
even integer, for which we write D(τ) = 2∆ such that ∆ is an integer. After that
we do the same for odd d(τ) where g(τ) = 1. Then, the result is generalized to
cases of Φ(n(τ), d(τ),M) with g(τ) = 1 and then to cases where g(τ) 6= 1.

Theorem 51. If d(τ) is even, the multiplicity P of <N(τ)>K in Φ(1, 2∆,M) is

P =
1

4
(M − 1)[(∆− 1)(M − 1) + 2] if M is odd,

P =





1

4
[(M − 2)(M∆− 3M −∆− 2) + 2(M2 +M − 4)] if ∆ is even

1

4
(M − 2)(M∆ + ∆ + 2) if ∆ is odd

if M is even and M 6= 2.

Proof. Note that if M is odd, the number of vertices in the graph is

V = ∆(M − 1)
[1

2
(∆− 1)(M − 1) + 2

]
and that of edges is

E = ∆(M − 1)[(∆− 1)(M − 1) + 3].

If M is even and M 6= 2, the numbers of vertices (V ) and edges (E) are respectively

V =[∆C2(M − 1)2 − 2∆(M − 2)(
∆

2
− 1)− ∆C2 + 1] + 2∆(M − 1),

E =∆{[∆− 2

2
(M − 2) + (M − 1) + 1] + [(∆− 2)(M − 2) + (M − 1) + 1](M − 2)}

+ 2∆(M − 1)

if ∆ is even; and

V = ∆C2(M − 1)2 − 2∆(∆− 1)(M − 2)− ∆C2 + 1] + 2∆(M − 1),

E = ∆{[∆− 1

2
(M − 2) + 1 + 1] + [(∆− 1)(M − 2) + 1](M − 2)}+ 2∆(M − 1)

if ∆ is odd.

Hence the number of faces is F = 1 + ∆(M − 1)
[1

2
(∆− 1)(M − 1) + 1

]
if M is odd,

and
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F =





∆

2
(M − 2)(M∆− 3M −∆− 2) + ∆(M2 +M − 4) if ∆ is even

∆

4
(M − 2)(M∆−M + ∆ + 1) if ∆ is odd

if M is even and M 6= 2, where ∆ is an integer.
The result thus follows.

Now we are calculating P for odd d(τ). Note that we have assumed g(τ) = 1. For
the sake of simplicity, we introduce the following notation:

Notation 52. δm(n) =

{
1 if m | n
0 otherwise

This is also used in the paper [6] to which we have referred in our derivation.

Theorem 53. If d(τ) is odd and d(τ) 6= 5 and 7, the multiplicity P of <N(τ)>K
in Φ(1, d(τ),M) is

P =





1

4
[(2d(τ)− 3)(M − 1) + 6d(τ)](M − 1) if M is odd

1

4
[2(d(τ)− 1)(M − 2)(M + 1)−M(M − 6)] if M is even

where M 6= 2.

If d(τ) = 5, P =





1

4
[(2d(τ)− 3)(M − 1) + 6d(τ)](M − 1) if M is odd

1

4
[2(d(τ)− 1)(M − 2)(M + 1)−M(M − 6)]− 8δ12(M) if M is even

If d(τ) = 7, P =





1

4
[(2d(τ)− 3)(M − 1) + 6d(τ)](M − 1) if M is odd

1

4
[2(d(τ)− 1)(M − 2)(M + 1)−M(M − 6)]− 4δ12(M) if M is even

Proof. Note that besides that there are some three-line concurrence not of Config
I or II in the case of d(τ) = 5 and 7, we also have to consider that there are some
lines intersecting at some point outside the unit circle.
Hence, we first consider the entire Λ(n(τ), d(τ),M), assuming that there are no
three-line concurrences other than Config I and II. Having calculated the number
of faces in Λ(n(τ), d(τ),M), we then subtract from this formula the number of faces
outside the unit circle. Afterwards, we making the adjustment for d(τ) = 5 and 7
due to the other configurations for 3-line concurrences.
If M is odd, in Λ(n(τ), d(τ),M), i.e. the graph of Λ(n(τ), d(τ),M) together with
the exterior of the unit circle, the total number of edges is:

E = (M − 1)[(d(τ)− 1)(M − 1) + 1− 2d(τ)]
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The number of vertices is

V = (d(τ)C2)(M − 1)2 − 2d(τ)(M − 1)

But the number of faces outside the unit circle is

1

2

(M − 1

2

)(M − 1

2
− 1
)

2d(τ) =
1

4
[(M − 1)2d(τ)− (M − 1)d(τ)].

Similarly, when M is even and M 6= 2, we have

V = d(τ)C2(M − 1)2 − d(τ)(M − 2)(d(τ)− 1)− d(τ)C2 + 1 + 2d(τ)

The formula for E is as follows. If M = 4, we have:

E = d(τ){(d(τ)− 1)(M − 2)/2 + 1 + 1}+ [(d(τ)− 1)(M − 2)− 1](M − 2)}
+ 2(M − 2)d(τ)

and for M ≥ 6, we have:

E = d(τ){(d(τ)− 1)(M − 2)
(1

2

)
+ 1 + 1}+ [(d(τ)− 1)(M − 2)− 1](M − 2)}

+ 2(M − 2)d(τ)− 2d(τ)
(M

2
− 2
)
.

However, after we apply Euler’s formula for graphs, we can combine the two cases
to give one single formula for the number of faces in the graph of Λ(n(τ), d(τ),M)
is:

F =





d(τ)

4
(M − 1)[(M − 1)(2d(τ)− 3) + 6d(τ)] + 1 if M is odd

d(τ)

4
[2(d(τ)− 1)(M − 2)(M + 1)−M(M − 6)] if M is even

where M 6= 2 and d(τ) is an odd integer not equal to 5 and 7.
For d(τ) = 5,

F =





d(τ)

4
(M − 1)[(M − 1)(2d(τ)− 3) + 6d(τ)] + 1 if M is odd

d(τ)

4
[2(d(τ)− 1)(M − 2)(M + 1)−M(M − 6)]− 40δ12(M) if M is even

For d(τ) = 7,

F =





d(τ)

4
(M − 1)[(M − 1)(2d(τ)− 3) + 6d(τ)] + 1 if M is odd

d(τ)

4
[2(d(τ)− 1)(M − 2)(M + 1)−M(M − 6)]− 28δ12(M) if M is even

where those δ-terms are to compensate for the pencils of concurrence lines.
The result thus follows.
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Now we consider the case where g(τ) > 1. We first consider the case for N(τ) = 1,
i.e. n(τ) = g(τ).

Theorem 54. If D(τ) is even, the multiplicity P of <N(τ)>K in Φ(g(τ), d(τ),M)

is P =
1

4

[(D(τ)

2
− 1
)

(M − 1) + 2
]
(M − 1) if M is odd,

P =





1

4
[(M − 2)(M∆− 3M −∆− 2) + 2(M2 +M − 4)] if ∆ is even

1

4
(M − 2)(M∆ + ∆ + 2) if ∆ is odd

where D(τ) = 2∆.

Proof. From the propositions and theorems from the previous section, we see that
if d(τ) is even, in the graph of Φ(1(τ), D(τ),M), no lines intersect outside the unit
circle. Therefore, changing d(τ) to D(τ) would give the stated result.

Theorem 55. If D(τ) is odd and D(τ) 6= 5, 7, the multiplicity P of <N(τ)>K in
Φ(g(τ), d(τ),M), where g(τ) > 1, is

P =

{
D(τ)(M − 1)(3MD(τ)−M +D(τ)) if M is odd
1

2
[(D(τ)− 1)(M − 2)(M + 1) + 2M ] if M is even and M 6= 2

.

If D(τ) = 5,

P =

{
D(τ)(M − 1)(3MD(τ)−M +D(τ)) if M is odd
1

2
[(D(τ)− 1)(M − 2)(M + 1) + 2M ]− 8δ12(M) if M is even and M 6= 2

If D(τ) = 7,

P =

{
D(τ)(M − 1)(3MD(τ)−M +D(τ)) if M is odd
1

2
[(D(τ)− 1)(M − 2)(M + 1) + 2M ]− 4δ12(M) if M is even and M 6= 2

Proof. Use the formula of P for Φ(1, d(τ),M) where d(τ) is odd. As no lines
intersect outside the unit circle when g(τ) ≥ 3, we subtract from the formula the
number of regions outside the unit circle divided by d(τ). Changing d(τ) to D(τ)
would give the stated result.

Finally, we consider the case where N(τ) 6= 1.

Theorem 56. mΦ(n(τ),d(τ),M)(<τ>) = mΦ(g(τ),d(τ),M)(<τ>).

Proof. Using a proposition from the previous section, we know that the graphs
Λ(n(τ), d(τ),M) is the same as Λ(g(τ), d(τ),M). Hence, the stated result follows.
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9. Irrational Twist turns

We now extend our discussion to consider tsts with irrational twist turns, i.e. τ ∈
R\Q.

We first consider the former case. As τ ∈ R\Q, it is impossible to calculate
d(τ)

g(τ)
directly. However, we have a fact that for any given real number τ , there exists a
rational sequence of {an} such that limn→∞{an} = τ . Thus, we have to consider

the rational sequence
{d(τn)

g(τn)

}
to find an approximation in the deduction of the

result for Φ(n(τ).
Repeated (or continued) fractions are used to generate the sequence {an},
i.e. τ = b0 +

1

b1 +
1

b2 +
1

b3 +
.. .

≡ [b0; b1, b2, b3, . . .] where b0, b1, b2, . . . are integers.

If the representation is periodic, an over-bar is used to denote infinite repetition.
If we define τn = [b0; b1, b2, . . . , bn] to be a truncated expression, then τn is rational,
and we can thus calculate D(τ).

Notation 57. Denote ΦM <τ>≈n Φ(n(τn), d(τn),M) where τn is the n-th term
in the sequence of approximation using continued fractions.

Example 58.

58.1 Since
√

2 = [1; 2], so
√

23 = 1 +
1

2 +
1

2 +
1

2

=
17

12
and

√
24 = 1 +

1

2 +
1

2 +
1

2 +
1

2

=
41

29
,

ΦM

〈√
2

〉
≈3 Φ(17, 12,M) and ΦM

〈√
2

〉
≈4 Φ(41, 29,M).

58.2 π = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, . . .], so ΦM <π>≈3 Φ(355, 133,M).

Remarks: Note that in different approximations, the
d(τ)

g(τ)
may be different in even-

odd property. Hence, we have to use a ≈ sign to indicate that only a truncated
representation is chosen.

Theorem 59. If τ is irrational, ΦM <τ>=∞ <∞>K +I <τ>K

Proof. Observe that as n→∞, D(τ)→∞ and N(τ)→∞. Regardless of even-odd
property, we have P →∞.
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To visualize the result of cutting <τ>, we can consider the terms in the sequence
{an}, whose limit is τ , and see how Λ(N(an), D(an),M) looks like. If n is large
enough, the graph of Λ(N(an), D(an),M) is generally of the following form:

As n grows larger, the graph of Λ(N(an), D(an),M) becomes:

As n tends to infinity, D(an) tends to infinity as well, so does the number of vertices,
edges and, thus, faces. Therefore, P tends to infinity.
However, I does not depend on D(an), thus not on n; it depends only on the
even-odd property of M .

10. Cutting with More Blades

In this section we consider a new way of cutting tsts, called multiple cutting, which
we used to define for the sake of discussion in the later sections.
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Consider Λ(1, 4, 3) as shown below:

Illustration 21. Λ(1, 4, 3)

When we evaluate the twist turn of each of the tsts represented in Λ(n(τ), d(τ),M),

we have considered only the tst being

〈
1

4

〉
. However, we can in fact consider this

way of cutting to a tst

〈
1

2

〉
, by starting with four blades instead of two and then

insert the blades at the position such that after insertion, the cross section at t = 0
of the tst becomes the one in the above illustration. If we continue the process like
the usual cutting method, i.e. allowing the blades to rotate along the tst, and see
how this surface formed from rotation intersect the plane t → 1−, keeping on the
rotation until the blades return to its original positions, then we can obtain new
results from this new method of cutting, in the process of which more blades have
to be inserted. This motivates us to the following definition.

Definition 60. For a positive integer µ, the graph Λµ(n(τ), d(τ),M) = Λ(n(τ),
µd(τ),M) is the cross section at t = 0 of the tst <τ> after Φµ-cutting it into M
parts.

Note that in Φµ-cutting a tst into M parts, µ(M − 1) blades are inserted. Besides,
we also define:

Notation 61. For a positive integer µ, the graph Λµ(n(τ), d(τ),M) = Λ(n(τ),
µd(τ), M) is the cross section at t = 0 of the tst <τ> after Φµ-cutting it into M
parts.

The relation of multiple cuts with cuts defined previously is established by the
following theorem:

Theorem 62. Φµ(n(τ), d(τ),M) = µP < N(τ) >K +I < τ >K , where P =
mΦ(n(τ),µd(τ),M)(<N(τ)>K) is the multiplicity of <N(τ)>K in the knotted tst
sum Φ(n(τ), µd(τ),M).
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Proof. Consider first Φ(n(τ), µd(τ),M) but for the 2 twist turns, evaluate with the

twist turn τ instead of
τ

µ
. Then the number of regions in Λµ(n(τ), d(τ),M) =

Λ(n(τ), µd(τ),M) is µD(τ)P + I from the previous section, where P is the multi-
plicity of <N(τ)>K in the sum Φ(N(τ), µD(τ),M). If we set the multiplicity of
<N(τ)>K in the knotted tst sum Φµ(n(τ), d(τ),M) to be P ′, then the number of
regions is also D(τ)P ′ + I. Equating gives P ′ = µP .

Corollary 63. Φ1(n(τ), d(τ),M) = Φ(n(τ), d(τ),M)

Proof. Use the above theorem, and substitute µ = 1.

This notion of “cutting with more blades” will become very useful when we develop
our theory of tst links in later sections.

11. Links from Tst cutting and the General Form of Their Braid Words

After cutting different tsts into M parts, knotted tsts of the same twist turn may
be formed, although they may be of different form of links. For example, one may
be in the form of a trivial knot, while the other in a trefoil. This motivates us to
the think of the knotted tsts as links or knots.

Definition 64. The resultant knot/link obtained from Φ-cutting a tst <τ> in the
form of a trivial knot into M parts by µ times is called the tst link of Φµ(n(τ), d(τ),
M) and is denoted by [Φµ(n(τ), d(τ),M)].

We are now constructing the tst link [Φµ(n(τ), d(τ),M)].
Consider the tst sum Φµ(n(τ), d(τ),M) = µP <N(τ)> +I <τ> where P is the
multiplicity of <N(τ)> in the tst sum Φ(n(τ), µd(τ),M) for µ ≥ 1. Using this
result, we can deduce the general form of the tst link [Φµ(n(τ), d(τ),M)]. We first
consider the case for n(τ) > 0.

Theorem 65. If M is even and n(τ) > 0, then the tst link [Φµ(n(τ), d(τ),M)] is
equivalent to the (−µPN(τ), µPD(τ))-torus link.

Proof. We claim that each of the tsts <N(τ)> individually forms a (−N(τ), D(τ))-
torus knot. Extract the centers of mass of all the D(τ) regions which the tst
<N(τ)> intersects the cross section of the original tst at t = 0:
Shown below is the example of Λ(1, 4, 4), where the faces whose partial tsts con-
tribute to the same knotted tst are shaded in red and have their centers of mass
marked with a red cross.
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Illustration 22

Then dilate the D(τ) vectors from the origin to the centers of mass, such that it is of
length one, and mark the terminal point of the dilated vectors on the circumference,
forming D(τ) points:

Illustration 23

Let these D(τ) points take coordinates (exp 2πi
k

D(τ)
, 0) where k = 0, 1, 2, . . .,

D(τ)− 1. Connect these D(τ) points to the D(τ) points with coordinates

(exp 2πi
k

D(τ)
, 1−) with line segments:



CUTTING TWISTED SOLID TORI (TSTS) 83

Illustration 24

Now fix the left end and rotate the right end by τ turn(s) as viewed from the point
(0,0):

Illustration 25

Next, we identify (z, 0) with (z, 1−). Note that this agrees exactly with the defi-

nition of a (q, r)-torus knot. Here r = D(τ) and q satisfies the equation
q

r
= −τ

(we are using a left-handed system in our definitions but the standard one is right-
handed, so there is a minus sign). Solving gives q = −N(τ). We can check that
this is a knot (or a one-component link) by noticing that gcd(−N(τ), D(τ)) must
be 1.
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Now, consider the µP tsts put on the same cylinder as shown:

Illustration 26

Extract the centers of mass of all the regions (except the one that contains (0, 0),
if any) and project them to the nearest point on the circumference:

Illustration 27

Some points may coincide after projection. In that case, we allow slight sideway
movement of the points in such a way that if one of the projected center of mass
of a region from one tst is adjusted clockwisely, the other projected centers of mass
of regions from the same tst is adjusted in the same way, and vice versa.
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Similar to the argument above, by definition, this is a (−µPN(τ), µPD(τ))-torus
link.

From the theory on torus links, we can deduce the following:

(1) The tst link [Φµ(n(τ), d(τ),M)] has gcd(−µPN(τ), µPD(τ)) = µP compo-
nents, which obviously agree with our expectation.

(2) From the theory on torus links, we know that the braid word of the tst link
[Φµ(n(τ), d(τ),M)] is (σ−1

1 σ−1
2 σ−1

3 . . . σµPD(τ)−1
−1)µPN(τ)

If M is odd, I = 1, so we have to proceed with the tst <τ>. If we individually
consider the knot formed by this tst, we get a trivial knot as shown:

Illustration 28

If we consider this trivial knot together with the torus link formed by the P tsts
<N(τ)>, we obtain the following:

Theorem 66. If M is odd and n(τ) > 0, the tst link [Φµ(n(τ), d(τ),M)] has a
braid word of:

(σ−2
1 σ−1

2 σ−1
3 σ−1

4 . . . σµPD(τ)
−1)µPN(τ).

Proof. To find the braid word for this link, we first notice that there is a repetitive
pattern in it, similar to the case when M is even. The pattern is exactly the braid
word obtained from the case with N(τ) = 1, and repeats itself for µPN(τ) times.
Put the tst <τ> together with the P tsts <N(τ)> to the same cylinder.
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We can shrink the tst <τ > to a line segment passing through (z, t) = (0, 0) as
shown:

Illustration 29

We have used the tst link [Φ(1, 6, 3)] as an example
Then project this line segment of <τ> onto the circumference in a way shown in
the following illustration:

Illustration 30
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If we lie the curved surface flat, we obtain the following:

Similar to the example illustrated above, the braid word for the general tst link
[Φµ(n(τ), d(τ),M)] where N(τ) = 1 is:σ−2

1 σ−1
2 σ−1

3 σ−1
4 . . . σµPD(τ)

−1

and that for the general N(τ) is therefore the above braid word repeated µPN(τ)
times: (σ−2

1 σ−1
2 σ−1

3 σ−1
4 . . . σµPD(τ)

−1)µPN(τ).

Next we consider the tst link for n(τ) < 0. Similar to previous construction, we
obtain the general form of the braid word as follows:
If M is even and n(τ) < 0, then the tst link [Φµ(n(τ), d(τ),M)] is equivalent to
the (µPN(τ), µPD(τ))-torus link and has the braid word (σµPD(τ)−1σµPD(τ)−2 . . .

σ2σ1)µPN(τ).
If M is odd and n(τ) < 0, the braid for the tst link [Φµ(n(τ), d(τ),M)] is in fact
the mirror image of that for the tst link [Φµ(|n(τ)|, d(τ),M)] along the bottom line.
Therefore, the braid word will be
[(σ−2

1 σ−1
2 σ−1

3 σ−1
4 . . . σµPD(τ)

−1)µP |N(τ)|]−1 = (σµPD(τ)σµPD(τ)−1 . . . σ3σ2σ1
2)µP |N(τ)|
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braid word for [Φµ(|n(τ)|, d(τ),M)]:
(σ−2

1 σ−1
2 σ−1

3 σ−1
4 . . . σµPD(τ)

−1)µP |N(τ)|

Reflecting along this line

braid word for [Φµ(n(τ), d(τ),M)]:
σµPD(τ)σµPD(τ)−1 . . . σ3σ2σ1

2)µP |N(τ)|

12. General Form of the Seifert Matrices and Alexander Polynomials of
Tst Links

In this section, we establish links between the class of links we have discovered (i.e.
tst links) and the common knot theory.
In the first part, we present the result for [Φµ(n(τ), d(τ),M)] where n(τ) > 0. In
the second, we would present the part for n(τ) ≤ 0.

Notation 67. The Seifert matrix of the link [Φµ(n(τ), d(τ),M)] is denoted by
V µ(n(τ), d(τ),M).
The Alexander polynomial of the link [Φµ(n(τ), d(τ),M)] is denoted by
[∆µ(n(τ), d(τ),M)](t).

Using the following notation allows us to express the general form of V µ(n(τ), d(τ),
M), more easily.

Notation 68. Br =




−1
1 −1

1 −1
. . .

. . .

. . . −1
1 −1




with zeros in the unspecified

entries.

Theorem 69. If M is even, then V µ(n(τ), d(τ),M) =
S
BµPD(τ)−1 ⊗ (−BµPN(τ)−1

T ).

If M is odd, then V µ(n(τ), d(τ),M) =
S

[
−B2µPN(τ)−1

T 0

A BµPD(τ)−1 ⊗ (−BµPN(τ)−1
T )

]

, where A is the following matrix block:
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


0 −1 0 1 0 0 0 · · · · · · 0 0 0 0
0 0 0 −1 0 1 0 0 0 0 0

0 0 0 0 0 −1 0
. . .

... 0

0
. . . 0

...
...

...
...

...
...

...
... 1

... 0
...

−1 1
0 0 0 0 0 0 0 · · · · · · 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
...

...
...

...
... · · · · · · · · ·

...
...

0 0 0 0 0 · · · · · · · · · 0 0




[(µPN(τ)−1)(µPD(τ)−1)]
×(2µPN(τ)−1)

0 denotes a (2µPN(τ)− 1)× (µPN(τ)− 1)(µPD(τ)− 1) matrix block of zeros.
and the S below the equality sign denotes “Seifert equivalent to”.

Proof. We use facts from the theory of torus links.
As pointed out in the previous section, if M is even, the tst links [Φµ(n(τ), d(τ),M)]
is exactly a (−µPN(τ), µPD(τ))-torus link. The result follows directly from the
theory of torus links.
If M is odd, we note that we can in fact determine the Seifert matrix using the
following rules: (Here we have assumed that n(τ) is positive)

1. The “central-central” configuration:

lk(αi, α
#
i ) = 1.

2. The “north-south” configuration:

lk(αi, αi+1
#) = −1 and lk(αi+1, α

#
i ) = 0
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3. The “east-west” configuration:

lk(αi, α
#
j ) = lk(αj , α

#
i ) = 0

4. The “northwest-southeast” configuration:

lk(αi, α
#
j ) = 0 and lk(αj , α

#
i ) = −1

5. The “northeast-southwest” configuration:

lk(αi, α
#
j ) = 0 and lk(αj , α

#
i ) = 1

6. Otherwise

Any other configurations would give lk(αi, α
#
j ) = 0.

Then using the braid word found from the last section, we can obtain the stated
result.

Next, we shift our focus from Seifert matrices to the associated Alexander polyno-
mial.

Theorem 70. If M is even, then
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[∆µ(n(τ), d(τ),M)](t) = (−1)µP−1 (1− t)(1− tµPN(τ)D(τ))µP

(1− tµPN(τ))(1− tµPD(τ))
t−

(µPN(τ)−1)(µPD(τ)−1)
2

Proof. The result follows directly from the formula of Alexander polynomials for
torus links that if K(q, r) is a (−q, r)-torus link, then from the book [4], its Alexan-
der polynomial is:

∆(−q, r) = (−1)d−1 (1− t)(1− tl)d
(1− tq)(1− tr) t

− (q−1)(r−1)
2 , where d = gcd(q, r) and l = lcm(q, r).

We then substitute q = µPN(τ), and r = µPD(τ).
Then d = gcd(µPN(τ), µPD(τ)) = µP gcd(N(τ), D(τ)) = µP .
Also, we have l = lcm(µPN(τ), µPD(τ)) = µPN(τ)D(τ).

Next we calculate the Alexander polynomial of tst links where M is odd.
Here we consider some special cases, namely where µPN(τ) and µPD(τ) are 0 or
1.

Case I µPN(τ) = 0.
We then have µ = 0 (rejected) or P = 0 or N(τ) = 0.

Subcase I.1 P = 0.
Here we have µPD(τ) = 0 and that M = 1. Therefore, the resultant knotted tst
after cutting is the same as that before cut. In other words, the resultant knotted
tst is in the form of a trivial knot and therefore has an Alexander polynomial of 1.

Subcase I.2 N(τ) = 0.
Here we have τ = 0, with D(τ) = 1. Hence we have µPD(τ) = µP . The
braid word for the link [Φµ(n(τ), d(τ),M)] is therefore (σ−1

1 σ−1
2 σ−1

3 . . . σµP
−1)0

= (σ−1
1 σ−1

2 σ−1
3 . . . σµP

−1)(σ−1
1 σ−1

2 σ−1
3 . . . σµP

−1)−1 = eµP , where eµP is the trivial
braid of µP strings. Hence the link [Φ(n(τ), d(τ),M)] is the µP -component unlink,
which has Alexander polynomial 0.

Case II µPD(τ) = 0.
Since D(τ) > 0, we must have µP = 0 and therefore µPN(τ) = 0, so the result
follows from Case I.

Case III µPN(τ) = 1
Since µ, P and N(τ) are nonnegative integers, we have µ = P = N(τ) = 1. Hence,
we have µPD(τ) = D(τ). The braid word of the link [Φ(n(τ), d(τ),M)] is σ−2

1 which
is Markov equivalent to that of a Hopf link. Hence, the Alexander polynomial is

[∆µ(n(τ), d(τ),M)](t) = t
−1
2 (1− t).

Case IV µPD(τ) = 1
Similar to the above case, we have µ = P = D(τ) = 1.



92 K.L. CHAN, T.N. CHAN, H.Y. LAU, K.S. MOK, Y.S. WONG

The Seifert matrix V µ(n(τ), d(τ),M) is then −B2N(τ)−1
T, which is Seifert equiva-

lent to that of a (2, 2N(τ)− 1)-torus link, so the Alexander polynomial

is t−(N(τ)−1) (1− t)[1− t2(2N(τ)−1)]

(1− t2)(1− t2N(τ)−1)
.

Tabulated in Appendix III is a calculation result by Scilab for 2 ≤ µPN(τ) ≤ 10
and 2 ≤ µPD(τ) ≤ 10.
Although some of the links may not exist, we put them here so as to guess a general
pattern for their Alexander polynomial.
We find that the following statement holds for 2 ≤ µPN(τ) ≤ 10 and 2 ≤
µPD(τ) ≤ 10, but unfortunately we are unable to prove it in general, so we con-
jecture that the following result holds for all integers µPN(τ) and µPD(τ).

Conjecture 71. If M is odd, then the Alexander polynomial of the tst link
[∆µ(n(τ), d(τ),M)](t) is:

[∆µ(n(τ), d(τ),M ](t) = t
−[(µPN(τ)−1)(µPD(τ)+1)+1]

2
[1− t(µPD(τ)+1)N(τ)]µP (1− t)

1− tµPD(τ)+1
.

13. Tst links and Torus links

In this section we are studying the relationship between the set of tst links and that
of torus links.
We denote the set of all links by L, set of torus links by T and set of tst links by
S. We shall state and prove some propositions on T and S.

Lemma 72. There are some links that are both tst links and torus links, i.e. S ∩
T 6= {}.

Proof. Note that for M is even, the tst link [Φ(n(τ), d(τ),M)]
is a (−µPN(τ), µPD(τ))-torus link∈ T . Hence the stated result follows.

Lemma 73. Not all tst links are torus links, i.e. ∃s ∈ S, s 6∈ T .

Proof. Consider the tst link [Φ(1, 4, 3)]. Here we have µPN(τ) = 1(2)(1) = 2 and
µPD(τ) = 1(2)(4) = 8. Using the result from a Scilab calculation tabulated in

Appendix III, its Alexander polynomial is t
−9
2 (1− t)(1− t8) which is obviously not

the same as that of any torus link. Hence we have [Φ(1, 4, 3)] 6∈ T and the result
therefore follows.

However, we are not able to deduce whether all torus links are tst links. We can
only prove the following proposition:

Proposition 74. If D(τ) is odd, then the multiplicity P of <N(τ)> in the tst sum
[Φ(n(τ), d(τ),M)] is even.
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Proof. If M = 2, P = 2 which is even.
Then we suppose M > 2 and consider two cases. In the first, g(τ) = 1, and the
other, g(τ) > 2. Write D(τ) = 2r + 1.
For g(τ) = 1, recall the formula for P is:

P =





1

4
[(2D(τ)− 3)(M − 1) + 6D(τ)](M − 1) if M is odd

1

4
[2(D(τ)− 1)(M − 2)(M + 1)−M(M − 6)] if M is even

.

where d(τ) 6= 5, 7.
However, even when d(τ) = 5 or 7, adding the term −4δ12(M) and −8δ12(M),
which must be even, does not affect the even-odd property of P . Therefore we can
neglect them in proving our result and write

P ′ =





1

4
[(2D(τ)− 3)(M − 1) + 6D(τ)](M − 1) if M is odd

1

4
[2(D(τ)− 1)(M − 2)(M + 1)−M(M − 6)] if M is even

for all odd d(τ).

If M is odd, write M = 2k + 1, Then P ′ is

1

4
[(4k + 2− 3)(2r + 1− 1) + 6(2k + 1)](2r + 1− 1)

= r(4kr − r + 6k + 3)

For simplicity, we switch to modulus language:

If r ≡ 1(mod 2), then P ≡ P ′ ≡ 1(4k − 1 + 6k + 3) ≡ 0 (mod 2)
If r ≡ 0(mod 2), then P ≡ P ≡ 0[4k(0)− 0 + 6k + 3] ≡ 0 (mod 2)

In both cases we see that P is even.
If M is even, write M = 2m, Then P ′ is

1

4
[2(2k + 1− 1)(2m− 2)(2m+ 1)− 2m(2m− 6)]

= 2k(m− 1)(2m+ 1)−m(m− 3)

If m ≡ 1 (mod 2), then P ≡ P ′ ≡ 2k(1− 1)[2(1) + 1]− 1(1− 3) ≡ −2 ≡ 0 (mod 2)
If m ≡ 0 (mod 2), then P ≡ P ′ ≡ 2k(0− 1)[2(0) + 1]− 0(0− 3) ≡ −2k ≡ 0 (mod 2)
Therefore, P is even when D(τ) is odd and g(τ) = 1.

Now for g(τ) > 1, similarly we write:

P ′ =





D(τ)(M − 1)(3MD(τ)−M +D(τ)) if M is odd

1

2
[(D(τ)− 1)(M − 2)(M + 1) + 2M ] if M is even and M 6= 2
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Writing D(τ) = 2k + 1 and M =

{
2r + 1 if M is odd
2m if M is even

, we have:

P ′ =





(2k + 1)(2r + 1− 1)[3(2r + 1)(2k + 1)− (2r + 1) + (2k + 1)] if M is odd

1

2
[(2k + 1− 1)(2m− 2)(2m+ 1) + 2(2m)] if M is even

=

{
2r(2k + 1)(12rk + 4r + 8k + 3) if M is odd

2[k(m− 1)(2m+ 1) +m] if M is even

which is obviously even and is thus P .
Hence, the result follows.

If the conjecture in the previous section is true, then some (q, r)-torus links, where
q and r are odd, are not tst links. In that case we conjecture that the following
Venn diagram shows the relationship between S, T and L.

14. Cutting a Tst in the Form of a Nontrivial Knot or Link

Now, let us consider the result of cutting a tst in the form of a nontrivial knot or
link. In fact, it can be derived from the result of cutting a tst by taking solid knots
as a set of twisted curves. Instead of joining the cross sections at t = 0 and t→ 1−

directly, we let the cylinder form a tangle before having its two ends joined.
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To apply a specific twist turn on a knot, we combine all twisting part of the curves
into a short cylinder and insert it into a solid knot we set to have no twist turn.

When cutting an “untwisted” knot into two parts, we should make two copies of
the original knot. It is natural for us to set the two boundaries as two of the
“untwisted” curves of the knot.

Illustration 31. An “untwisted” trefoil cut into halves

However, Reidemeister type 1 moves can produce twist turn without changing the
knot. If we perform Reidemeister type 1 moves before we cut the tst, (start from a
different knot graph of the same knot,) the cutting result will be different.
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To specify which knot graph we are using, we present the knot in braid words. By
smoothly deforming the knot, we can set the left boundary of each string as the
curves in an untwisted knot.

Illustration 32. Conversion from regular diagram of a trefoil to braid
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Then we can now insert the twisted short cylinder into the knot. For convenience,
we put the cylinder just on top of the leftmost string.

Illustration 33. braid with twist turn inserted

For a tst link, we twist and cut each component once. Braid word can also be
used but since we have applied twist turn k times to a k-component link, twisted
cylinder should be inserted on top of the leftmost string of each component.

Illustration 34. Conversion from regular diagram of a hopf link
to braid with twist turn

We note that for every braid, there is a unique braid permutation. For example,

the braid permutation of the braid σ2σ1σ4 is permutation

(
1 2 3 4 5
2 3 1 5 4

)
, or,
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in disjoint cycle notation, (1 2 3)(4 5) = (3 1 2)(4 5) = (5 4)(2 3 1), as illustrated
below:

(1→ 2, 2→ 3, 3→ 1, 4→ 5, 5→ 4)

As the disjoint cycle representation of a permutation is not unique, we choose to use
the disjoint cycle notation where the first number of each cycle is the smallest among
all numbers in that cycle, and the first numbers in the cycles from left to right are
in ascending order. We call this more restricted disjoint cycle representation the
“component formula” of the braid.

Definition 75. The component formula of a r-braid is the its permutation in dis-

joint cycle form in which every number from 1 to r appears once and the jth number
from the left in the ith cycle from the left is denoted by xi,j, with xi,1 < xi,2 < xi,3 <
. . . and x1,1 < x2,1 < x3,1 < . . . .

Apparently x1,1 is smaller than every other number in the component formula, so
x1,1 = 1.
Moreover, the number of disjoint cycles in the component formula is exactly the
number of components in the link L formed by closing the braid, denoted by µ(L).
To know where the leftmost string of each component is, we consider the “compo-
nent formula”.
The component formula can show which strings in a braid are in the same link
component:
(1, x1,2, x1,3, x1,4, . . . , x1,y1

), (x2,1, x2,2, x2,3, x2,4, . . . , x2,y2
), (x3,1, x3,2, . . . , x3,y2

),
. . ., (xµ(L),1, xµ(L),2, . . . , xµ(L),yµ(L)

), where the integers xi,j in a bracket represent
the positions of strings in the same link component.
When a process similar to cutting the tst <τ > into M parts is applied on a k-
component link as the closed form of a braid, each component is cut into (PD(τ)+I)
partial tsts so there will be k(PD(τ) + I) partial tsts in total. Then we extract
the centre of mass of the cross section at t = 0 of each partial tst, project them to
k(PD(τ)+I) distinct points on the circumference with the aid of sideway movement
and present the partial tsts with the curves starting from these points. Next, we
lies the curved surface flat. The twisted parts will give standard braid words from
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cutting a tst. In the tangle part, each crossing in the original braid will become
(PD(τ) + I) strings covering another (PD(τ) + I) strings.

To clearly present the braid of the resultant link, we develop the idea of braids on
braids.

Definition 76 (link on link). If two links L1 and L2 have chosen braid words B(L1)

and B(L2) respectively, where B(L1) =

k1∏

s=1

σas
ms ∈ Bp1

and B(L2) =

k2∏

t=1

σbt
nt ∈

Bp2
and the number of components in the link L is µ(L), then we define the braid

word of “B(L2) on B(L1)” to be:

( µ(L1)∏

u=1

k2∏

t=1

σ(xu,1−1)p2+bt
nt
) k1∏

s=1

( r=asp2∐

(as−1)p2+1

r+p2−1∏

q=r

σsgn(ms)
q

)|ms|

where
n∏

i=1

σi = σ1σ2σ3 · · ·σn and
i=n∐

1

σi = σnσn−1σn−2 · · ·σ1.

The closure of this braid is denoted as L2L1(B(L2),B(L1)).

When both L1 and L2 are tst links and their standard braids are used, without
ambiguity, we can write L2L1(B(L2),B(L1)) as L2L1 only.
Obviously the resultant link depends on the chosen braid words B(L1) and B(L2).
From this definition, B(L2L1(B(L2),B(L1))) is actually replacing each string in
B(L1) with p2 strings and putting B(L2) on top of the strings originated from the
leftmost string of each component in L1. The first two product signs represent
B(L2) inserted in the braid. From the component formula, the leftmost strings
of the link components in B(L1) are numbered x1,1, x2,1, x3,1 xµ(L),1 respectively.
Since the string with number xu,1 in B(L1) will be changed to p2 strings numbered
(xu,1 − 1)p2 + 1, (xu,1 − 1)p2 + 2, (xu,1 − 1)p2 + 3, . . . , xu,1p2, the B(L2) inserted
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there will become

k2∏

t=1

σ(xu,1−1)p2+bt
nt . To present the µ(L1)B(L2) inserted, another

product sign is used.

The leftmost strings of the
components in L1 are dark-
ened.

Illustration 35. B(L2) put on p2 strings coming from xu,1

The last two product signs show the crossings in B(L2L1(B(L2),B(L1))) resulted
from one crossing in B(L1). The direction of the crossing will be unchanged in
the conversion. A crossing in B(L1), σ∗u where ∗ = 1 or -1, will be changed to
r=up2∐

(u−1)p2+1

r+p2−1∏

q=r

σ∗q and σmsu will be changed to
( r=up2∐

(u−1)p2+1

r+p2−1∏

q=r

σsgn(ms)
q

)ms
. To

convert the whole B(L1), one more product sign is used.
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σ
−1
u →

(σ
−1
up2

σ
−1
up2+1σ

−1
up2+2 · · ·σ

−1
(u+1)p2−1

)(σ
−1
up2−1σ

−1
up2

σ
−1
up2+1 · · ·σ

−1
(u+1)p2−2

)

· · · (σ−1
(u−1)p2+1

σ
−1
(u−1)p2+2

σ
−1
(u−1)p2+3

· · ·σ−1
up2

)

=

r=up2∐

(u−1)p2+1

(σ
−1
r σ

−1
r+1σ

−1
r+2 · · ·σ

−1
r+p2−1) =

r=up2∐

(u−1)p2+1

r+p2−1∏

q=r

σ
−1
q

σu →
(σup2

σup2+1σup2+2 · · ·σ(u+1)p2−1)(σup2−1σup2
σup2+1 · · ·σ(u+1)p2−2)

· · · (σ(u−1)p2+1σ(u−1)p2+2σ(u−1)p2+3 · · ·σ−1
up2

)

=

r=up2∐

(u−1)p2+1

(σrσr+1σr+2 · · ·σr+p2−1)

=

r=up2∐

(u−1)p2+1

r+p2−1∏

q=r

σq

Illustration 36. A+1 crossing and a-1 crossing converted into
a set of crossings
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For example, standard braid word of [Φ(1, 4, 2)] on trefoil (with braid word σ−3
1 ) is

:

B(L2L1(σ−1
1 σ−1

2 σ−1
3 , σ−3

1 ))

=
( 3∏

t=1

σ−1
t

)( r=4∐

1

r+3∏

q=r

σ−1
q

)3

standard braid word of [Φ(2, 2, 3)] on Hopf link (with braid word σ1
2) is

B(L2L1((σ−2
1 σ−1

2 )2, σ1
2))

=
( 2∏

u=1

(
σ3u−2

−2σ3u−1
−1
)2)( r=3∐

1

r+2∏

q=r

σq

)2

We also discover some other properties of links on links. The first one is the relation
between the numbers of components µ(L1), µ(L2) and µ(L2L1(B(L2), B(L1))).
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Theorem 77 (multiplicative property of the number of components). Let µ(L) de-
note the number of components in the link L. Then we have µ(L2L1(B(L2),B(L1)))
= µ(L1)µ(L2).

Proof. Recall that the number of components in a link L is equal to the number of
disjoint cycles in the component formula of its braid form B(L).
Let the component formula of the links L1 be

(
1 x1,2 x1,3 x1,4 . . . x1,m1

) (
x2,1 x2,2 x2,3 x2,4 . . . x2,m2

)
(
x3,1 x3,2 . . . x2,m2

)
. . .
(
xµ(L1),1 xµ(L1),2 . . . xµ(L1),mµ(L)

)

and that of L2 be

(
1 y1,2 y1,3 y1,4 . . . y1,n1

) (
y2,1 y2,2 y2,3 y2,4 . . . y2,n2

)
(
y3,1 y3,2 . . . y2,n2

)
. . .
(
yµ(L2),1 yµ(L2),2 . . . yµ(L2),yµ(L)

)

Then we write the component formula of L1L2 in terms of the two formulae above.
We introduce the notation |B(L1)| = max{1, x1,2, . . . , x1,m1

, x2,1, . . . , xµ(L1),mµ(L)
},

which is in fact the number of strings in the braid B(L1), and, for the sake of brevity,
we use Xi,j,k to denote the sequence

|B(L1)|(yk,2 − 1) + xi,j |B(L1)|(yk,3 − 1) + xi,j |B(L1)|(yk,3 − 1) + xi,j . . .
|B(L1)|(y2,n2

− 1) + xi,j |B(L1)|(yk,1 − 1) + xi,j .

Then the component formula of L1L2 is composed of all cycles in the form

(
Xi,1,k Xi,2,k Xi,3,k . . . Xi,mi,k

)

As i ranges from 1 to µ(L1) and k ranges from 1 to µ(L2), the number of cycles in
the component formula is µ(L1)µ(L2) and the result therefore follows.

Next, we find that if we take (L1, L2) 7→ L1L2 as a binary operation on the knots
L1 and L2, then this operation is associative:
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Theorem 78 (associativity). (L1L2)L3 = L1(L2L3) for the same B(L1),B(L2)
and B(L3) on both sides.

Proof. We notice that the braid of the link on the right hand side is Markov equiv-
alent to:

which is equivalent to

Here we have used a bracket to denote a braid replicated.
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That of the one on the left hand side is Markov equivalent to:

which is equivalent to:

As the braid on the two sides on the equation are Markov equivalent to the same
braid, by Markov’s Theorem, the stated result follows.

Now, we may consider cutting links that are resulted from cutting a tst. Since we
have already obtained the standard braid word of a tst link, we can use the above
formula to find the general form of braid words of “tst links on tst links”.
Let the standard braid words for [Φµ1(n1(τ1), d1(τ1),M1)] and
[Φµ2(n2(τ2), d2(τ2),M2)] be α1 and α2 respectively. The number of strings in α is
denoted as |α| so we have |α| = PD(τ)+I. The strings numbered 1, 2, 3, . . . , (P+I)
are the leftmost strings of link components of the closed form of α. We consider
the braid word of α2 on α1 in the following cases.

Case I Both M1 and M2 are even
The braid word of “α2 on α1” is :
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P1∏

i=1

( |α2|−1∏

j=1

σ−1
(i−1)|α2|+j

)µ2P2N2(τ2)[ |α1|−1∏

i=1

( j=|α2|∐

1

j+|α2|−1∏

k=j

σ−1
(i−1)|α2|+k

)]µ1P1N1(τ1)

Since there is far commutative property in braids, we may simplify the above braid
word a bit to have:
P1∏

i=1

( |α2|−1∏

j=1

σ−1
(i−1)|α2|+j

)µ2P2N2(τ2)[ j=|α2|∐

1

( i+(|α1|−1)|α2|+1∏

j=i

σ−1
j

)]µ1P1N1(τ1)

Illustration 37. Simplification of braid word

Case II M1 is odd and M2 is even
The braid word of “α2 on α1” is:

P1+1∏

i=1

( |α2|−1∏

j=1

σ
−1
(i−1)|α2|+j

)µ2P2N2(τ2)

×
[ i=|α2|∐

1

i+|α2|−1∏

j=i

σ
−1
j

|α1|−1∏

i=1

( j=|α2|∐

1

j+|α2|−1∏

k=j

σ
−1
(i−1)|α2|+k

)]µ1P1N1(τ1)

=

P1+1∏

i=1

( |α2|−1∏

j=1

σ
−1
(i−1)|α2|+j

)µ2P2N2(τ2)

×
[ i=|α2|∐

1

i+|α2|−1∏

j=1

σ
−1
j

j=|α2|∐

1

( i+(|α1|−1)|α2|+1∏

j=1

σ
−1
j

)]µ1P1N1(τ1)
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Case III M1 is even and M2 is odd
The braid word of “α2 on α1” is:

P1∏

i=1

(
σ(i−1)|α2|+1

|α2|−1∏

j=1

σ
−1
(i−1)|α2|+j

)µ2P2N2(τ2)[ |α1|−1∏

i=1

( j=|α2|∐

1

j+|α2|−1∏

k=j

σ
−1
(i−1)|α2|+k

)]µ1P1N1(τ1)

=

P1∏

i=1

(
σ(i−1)|α2|+1

|α2|−1∏

j=1

σ
−1
(i−1)|α2|+j

)µ2P2N2(τ2)[ j=|α2|∐

1

( i+(|α1|−1)|α2|+1∏

j=i

σ
−1
j

)]µ1P1N1(τ1)

Case IV Both M1 and M2 are odd
The braid word of “α2 on α1” is:

P1+1∏

i=1

(
σ(i−1)|α2|+1

|α2|−1∏

j=1

σ
−1
(i−1)|α2|+j

)µ2P2N2(τ2)

×
[ i=|α2|∐

1

i+|α2|−1∏

j=i

σ
−1
j

|α1|−1∏

i=1

( j=|α2|∐

1

j+|α2|−1∏

k=j

σ
−1
(i−1)|α2|+k

)]µ1P1N1(τ1)

=

P1+1∏

i=1

(
σ(i−1)|α2|+1

|α2|−1∏

j=1

σ
−1
(i−1)|α2|+j

)µ2P2N2(τ2)

×
[ i=|α2|∐

1

i+|α2|−1∏

j=i

σ
−1
j

j=|α2|∐

1

( i+(|α1|−1)|α2|+1∏

j=i

σ
−1
j

)]µ1P1N1(τ1)

Note that the twist turn in the tst link is reset before the link is cut again. There-
fore, B([Φµ(n(τ), d(τ),M)]) is different from B([Φ(0, d(τ), µ)][Φ(n(τ), d(τ),M)]).
For example, B([Φ2(2, 4, 2)]) is the same as B([Φ(4, 4, 2)][Φ(2, 4, 2)]) instead of
B([Φ(0, 4, 2)][Φ(2, 4, 2)]).

B([Φ(0, 4, 2)][Φ(2, 4, 2)]) = σ−1
2 σ−1

3 σ−1
1 σ−1

2

=
M
σ1σ

−1
1 σ−1

2 σ−1
3 σ−1

1 σ−1
2 σ−1

3 σ3

=
M

(σ−1
1 σ−1

2 σ−1
3 )2σ2

3
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B([Φ(4, 4, 2)][Φ(2, 4, 2)])

=(σ−1
1 σ−1

3 )(σ−1
2 σ−1

3 σ−1
1 σ−1

2 )

=
M

(σ−1
1 σ−1

2 σ−1
3 )2

In fact, we can cut the resultant link and get an even more complicated link. With
the concept of links on links, we can cut a tst again and again. Now, we would like
to consider the sets of more and more complicated link after applying a number of
cuttings.

15. The Tst Link Hierarchy

We have considered cutting tst links as “tst links on tst links”. Similarly, we can
get the result of cutting these new links by considering “links on ‘links on links’ ”.
To study different sets of links obtained by cutting a tst different numbers of times,
we have the following notation.

Notation 79. S0 is the singleton containing the trivial knot. Moreover, the set of
links that can be written as L1L2 where L1 ∈ S and L2 ∈ Sk−1 is denoted by Sk.

Obviously, we can write S1 as S. Then S2 represents the set of “tst links on tst
links” and cutting a tst in the form of a link in S2 gives a link in S3

It is obvious that S0 is a proper subset of S1, since, for example, the tst link
[Φ(3, 2, 2)] is a trefoil which is different from a trivial knot. Next, we consider the
relationship between S and S2.

Theorem 80. S is a proper subset of S2.

Proof. First, we will show that S ⊆ S2. We note that if L1 = [Φ(0, 1, 1)] ∈ S, which
is a trivial knot, and L2 ∈ S, then L1L2 is by definition contained in S2; however,
L1L2 is also equivalent to L2. Then we will find an element in S2 which is not a tst
link. Consider the braid word of [Φ(1, 2, 2)] on [Φ(3, 2, 2)]: σ−1

1 (σ−1
3 σ−1

2 σ−1
1 σ−1

2 )3
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Its Seifert matrix is




1 −1 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
−1 1 0 1 −1 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 −1 1 0 0 1 −1 0 0 0
0 0 0 0 0 0 1 −1 0 0
0 0 −1 0 0 0 0 1 0 0
0 0 0 −1 0 1 0 0 1 −1
0 0 0 0 0 −1 0 1 0 1




and its Alexander polynomial is

t−5(1 − t + t4 − t5 + t6 − t9 + t10) = t−5 (1− t)(1− t12)(1− t14)

(1− t4)(1− t6)(1− t7)
which is not the

same as that of any tst link. Therefore, the link [Φ(1, 2, 2)] on [Φ(3, 2, 2)] belongs
to S2, but not to S and hence the result follows.

The following statement is likely to be true although we are unable to prove it.

Conjecture 81. Sk is a proper subset of Sk+1 for any nonnegative integers k.

We are able only to prove the case for k = 0, 1 and we conjecture that it holds for
all nonnegative integers k. If this statement is found true, then we would have a
infinitely extending hierarchy of tst links, for which we also conjecture that S∞ = L,
where L is the set of all links. We believe that this could open up new directions
in researching what hierarchies of links “diverge” to give L.
If this statement is found false, then note that Sk must be a subset of Sk+1: we can
consider the link [Φ1(0, 1, 1)] on each link in Sk, then by definition [Φ1(0, 1, 1)]L ∈
Sk+1, but [Φ1(0, 1, 1)]L = L for every link L in Sk. Therefore, there must be some

terminating set Sk such that Sn = Sk for every n ≥ k, i.e. Sk is an improper
subset of Sk+1. This could arouse attention in researching what hierarchies of links
“converge” to some set of links.

16. Unknotting a Knotted Tst to Give Additional Twist Turns

We are motivated to think about this topic because of the difference in the context
of the 1937 and 1987 [1] versions of W. Ball’s mathematical essays. The earlier
version points out that, when switched to our language, if k is odd and positive,
then Φ(k, 2, 2) =<k>K , which agrees with our result, while the latter claims that
Φ(k, 2, 2) =<k + 1>K . After our observation, we discovered that this one additional
twist turn results from unwinding the knotted tst <k>K using a type I Reidemeister
move, as we shall prove below:
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Lemma 82. If a Reidemeister move is applied to a given knotted tst <τ>K , then
it becomes <τ + 1>K :

Conversely, if the following Reidemeister move is applied to <τ>K , then it becomes
<τ − 1>K :

Proof. We consider a portion of the knotted tst that we would apply a Reidemeister
move to eliminate the crossing, and then see how this affects the curling of the curve
inside a the knotted tst.
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After rotation, this becomes:

Hence, the twist turn of the knotted tst increases by 1 after the application of such
a Reidemeister move.

A similar operation on the knotted tst gives:

Hence, the twist turn of the knotted tst decreases by 1.
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For this reason, we denote the move that adds one twist turn to the knotted tst
by Ω+ and the other by Ω−. In the light of this observation, we search for similar
situation for other tst links. For the link [Φ(1, d(τ), 2)], where d(τ) is even, we
found that using some number of Ω+ moves can “unknot” it to give a circle, i.e. a
knot with no crossings, as shown below:

d(τ) = 2:

d(τ) = 4:

d(τ) = 6:
This situation is the same for any link [Φ(g(τ), g(τ)D(τ), 2)] for any g(τ) ∈ N,
since for any such g(τ), the standard braid word for the link [Φ(g(τ), g(τ)D(τ), 2)]
is determined by µ = 1, P = 1, N(τ) = 1 and the same D(τ) and given by:
(σ−1

1 σ−1
2 σ−1

3 . . . σD(τ)−1
−1)1 = σ−1

1 σ−1
2 σ−1

3 . . . σD(τ)−1
−1 ∼

M
σ−1
1 σ−1

2 σ−1
3 . . . σD(τ)−2

−1

∼
M
. . . ∼

M
σ−1

1 ∼
M
e1, where e1 is the identity braid with only one string.

Since the closure of e1 is a trivial knot, the links [Φ(g(τ), g(τ)D(τ), 2)] are equivalent
to the trivial knot. Here each cancelling of the σ−1

i ’s requires one Ω+ move. As
each such move produces one additional positive twist turn in the knotted tst, we
can hence state the following theorem:
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Theorem 83. If k is even, the additional twist turn produced by eliminating all
the crossings of the closure of the standard braid word of the link [Φ(g(τ), g(τ)k, 2)]
is k − 1.

Proof. See above derivation.

Similarly, (k − 1)Ω− moves are used to eliminate the crossings in the link
[Φ(−g(τ), g(τ)k, 2)] to give an unknotted circle, so the resultant twist turn produced
on the knotted tst is −(k − 1).

Hence the result of the later version of W. Ball’s essay is correct only when k = 1,
since for larger positive odd k’s, the link [Φ(k, 2, 2)] is not equivalent to the trivial
knot and applying type I Reidemeister moves does not give any particularly pleasant
form of the link.

17. Cutting Tst Products

We are motivated by an online source [2] to think of the cutting of combinations of
tsts.
We call such a combination “tst product”, which is defined below:
In previous section, we define a tst in C × [0, 1), where [0, 1) is a representative

class of elements in the group R�Z so that the two ends of the tst are joined.
To construct a “tst product”, i.e. two tsts merged together, we first lengthen the
tsts so that they now have height 3, leaving room to insert another tst. The heights
are identified with the t1 and t2 coordinates, both of which in the interval [−1, 2),

our chosen representative class of elements in the group R�3Z.

We now define a tst product in R3, using two coordinate systems: (z1, t1) and
(z2, t2), where in 3-space, they are depicted with (Re z1, Im z1, t1) = (Re z2, t2,
−Im z2)
Note that both systems are left-handed.
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Now we can define a “tst product” as follows.

Definition 84. <τ1><τ2>= {(γ1(u), 3u− 1), (γ2(u), 3u− 1):

γk(u) =

{
zk,0 0 ≤ u < 2

3
zk,0 exp [2πiθk(3u− 2)] 2

3 ≤ u < 1
for u ∈ [0, 1) and |zk,0| ≤ 1 for

k = 1, 2},
where θk(t) : [0, 1) → R is a function which has a continuous derivative with
θk(0) = 0 and θk(1−) = τk for k = 1, 2, and (Re z1, Im z1, t1) = (Re z2, t2,−Im z2),
is called a twisted solid torus product (tst product) or <τ1> multiplied by <τ2>.

In this case, we call <τ1> tst1 and <τ2> tst 2. The two ends of tst 1 are joined
above the t1-t2 plane while those of tst 2 are joined below.

Definition 85. Two tst products <τ1><τ2> and <τ3><τ4> are equal ⇔ (τ1, τ2) =
(τ3, τ4) or < τ1 >< τ2 > can be obtained from a series of orientation-preserving
isometries on <τ3><τ4>, We denote equality by the usual “=” sign.

We next discover the fact that the order of such tst multiplication does not matter,
as the same object is given when the order is exchanged.

Theorem 86. <τ1><τ2>=<τ2><τ1>.

Proof. We will show that <τ2><τ1> can be obtained by rotating <τ1><τ2>
(which is obviously orientation-preserving).
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The stated result thus follows.

Next we cut the tst product. We would restrict ourselves to cut the tst product
only into an even number of parts, i.e. M , the number of parts, must be even. We
also use the notation M = 2m.

Like the procedure of cutting ordinary tst, we first define where we insert the
blades. Note, however, that this insertion is different from the ordinary tsts for a
more pleasant result. We insert the blades at tk = −1 such that they would create
the following lines on the plane tk = −1:

Lk,0 = {lk,0,q(s) = exp
2πi(q −m)

Md(τ)
+ s | q = 1, 2, . . . ,M − 1}

Then we let the blades run through the heights, letting them rotate along the
way just as what we have done for ordinary tsts. Then we would have the recursive
relation Lk,p+1 = Lk,p exp (2πiτ). The graph of the sets of lines Lk,0, Lk,1, Lk,2, . . .,
Lk,D(τk)−1 together with the unit circle would be the same as the ordinary

Λ(n(τk), d(τk),M) rotated clockwise by
π

d(τk)
radians about the center of the unit

circle. For example, here is Λ(1, 4, 4) rotated by
π

4
radians about the center of the

unit circle:

Then we obtain a general picture of the result after cutting the tst products <τ1><
τ2>.
Now we consider the link resulting from the cutting first.
For simplicity, we shrink strips to ‘polygonal arcs’ (by regarding it as a knot /
link and then taking its regular diagram) for simplicity, just as we have done for
ordinary tst links. But first we introduce the following notation:

Notation 87. The link resulting from cutting the tst product <τ1><τ2> into
M parts, with the chosen denominators d(τ1) and d(τ2) respectively, is denoted by
[Φ(n(τ1), d(τ1),M)(n(τ2), d(τ2),M)]. If d(τ1) = d(τ2), we write it as
[Φ((n(τ1), n(τ2)), d(τ1),M)].
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17.1. d(τ) = 2

We would start with the simplest case, where M = 2, and d(τ1) = d(τ2) = 2 and
then deduce the general form for [Φ((a, b), 2, 2)] by employing the same algorithmic
for ordinary tst links. This is illustrated below with the example of [Φ((1, 1), 2, 2)]:

It results in the link with the general form shown below:

Illustration 38. General form of [Φ((a, b), 2, 2)]
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Here we have shortened “negative crossings” to “crossings” and used the convention
that a crossings to mean |a| positive crossings if a is a negative integer.

Lemma 88. The number of components of [Φ((a, b), 2, 2)]

is

{
1 if both a and b are odd
2 otherwise

Proof. Case I Both a and b are odd.
To compute the number of components, we fill the whole link with the smallest
number of different colors, each for one component. We start with the portion with
b crossings, red and black on the left and right respectively.

After that, we observe that when we pass through a crossing, we swap the colors
on the left and right:

Since a is odd, as each crossing swaps the colors on the left and right once, we can
see that the coloring of the lower portion would result in:
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We go on and then color the portion with b crossings:
The final result becomes:

Now we have filled the whole link with two colors, so this shows that the link has
two components.
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Case II Otherwise, i.e. at least one of a and b is even.

Note that

〈
a

2

〉〈
b

2

〉
=

〈
b

2

〉〈
a

2

〉
, so we exchanges a and b if necessary and assume

a is even.
In a similar manner we try to fill in the link with two colors. We start with the
portion with a crossings.
This results in the following:

For any integer b, odd or even, we would obtain:
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As the component filled in red is in fact the same as that in black, we can see that
this link has in fact only one component.

Afterwards, we go on and consider some other alternative forms of [Φ((a, b), 2, 2)].
In the following, we have assumed that both m and n are positive integers. Besides,
if two components are formed, we call them α and β components respectively. The
matching is completely arbitrary, i.e. one can call any one of them α and the other
β. The reader is reminded of the fact that <τ1><τ2>=<τ2><τ1>, which allows
us to exchange τ1 and τ2 if necessary, so that the tst product under consideration
fits into any one of the following seven cases.
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Case I a = 2m+ 1 and b = 2n+ 1.
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Case II a = 2m+ 1 and b = −(2n+ 1).
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Case III a = −(2m+ 1) and b = −(2n+ 1)
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Case IV (a = 2m and b = 2n+ 1) or (a = 2m and b = 2n)
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Case V (a = 2m and b = −(2n+ 1)) or (a = 2m and b = −2n)
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Case VI a = −2m and (b = −(2n+ 1) or b = −2n)



CUTTING TWISTED SOLID TORI (TSTS) 127

Case VII a = 0
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After that, we consider the twist turn of the resultant object after we cut

〈
a

2

〉〈
b

2

〉
.

We denote the object formed from cutting

〈
a

2

〉〈
b

2

〉
by Φ((a, b), 2, 2).

If we define the twist turn of each component of Φ((a, b), 2, 2) just as we have done
for knotted tsts, then the result would be as follows:

Theorem 89. If both a and b are odd, the twist turn of each of the two components

in Φ((a, b), 2, 2) is
a+ b

2
. Otherwise, the one component in Φ((a, b), 2, 2) has a twist

turn of a+ b.

Proof. If a and b are not both odd, two components are formed. We note that each
of the component comes from one-half of the original tst product before cut, and

hence the twist turn of each of the component is
a

2
+
b

2
. Otherwise, Φ((a, b), 2, 2)

has only one component. As each of the tst in the tst product is split into two, the

twist turn of that component is double the sum of the original, i.e. 2
(a

2
+
b

2

)
. The

stated result hence follows.

However, as we have done in Section 16, we can take the effect of type I Reidemeister
move and other moves that preserve ambient isotopy into consideration. We note
that, the object formed from cutting a tst product can be made into a Hopf link or
unlink constituting two trivial knots. In doing so, we would change the twist turn
of the resultant object as discussed below.

We can take, for any tst , its “strip projection”, which is defined to be the set of

curves γ(t) in it, where Im γ(0) = 0, as illustrated by an example of

〈
1

2

〉
below:
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So after performing this operation, we obtain a surface (or “strip”). The “strip
projection” of Φ((a, b), 2, 2) is two strips. Changing it to a Hopf link or unlink
of two unknots using knot moves will change its twist turn, and such change can
derived as follows. Consider the strip projection of Φ((0, 0), 2, 2):

To see the twist turn of each component, we can in fact take the linking number
of its two boundary curves. As such, it is easy to see that each of the components
form a unknot, although, in contrary to our expectation, the twist turn of each of
them is not zero. One component has a twist turn of 2 and the other has a twist
turn of -2.
Since the total twist turn does not change, if a and b are not both odd, the twist
turn of Φ((a, b), 2, 2), which has one component only, remains the same after we
use knot moves to convert it into an unknotted circle. However, in the case where
both a and b are odd, as two components are obtained, there is an increase in twist
turn by 2 in one component and a decrease by 2 in the other.



130 K.L. CHAN, T.N. CHAN, H.Y. LAU, K.S. MOK, Y.S. WONG

17.2. Even d(τ) 6= 2

Next, we consider the case for even d(τ) 6= 2, starting with the link [Φ((1, 1), d(τ), 2)]

. Here we use the notation ∆ =
d(τ)

2
. We use the method for deducing the link as

in the previous sections to derive the general form of the link [Φ((1, 1), d(τ), 2)]:
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Eventually we would be able to derive that the general form of [Φ((1, 1), d(τ), 2)] is
equivalent to:

Illustration 39. General form of Φ((1, 1), d(τ), 2).

We found that we can also use knot moves to make it into some alternative (and
more pleasant) form, following the series of knot moves below:
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Step 1 Shorten the colored strands:

Step 2 Shorten the colored strands:
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Step 3 Shorten the colored strands:

Step 4 Shorten the colored strands:
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Step 5 Shorten the strands enclosed in the red ellipse:

Step 6 Shorten the colored strands enclosed in the red ellipse:



CUTTING TWISTED SOLID TORI (TSTS) 135

We now obtain the following form of the link:

∆ is odd ∆ is even

Here, we consider the two cases separately:

Step 7 (Case I ∆ is odd) Split the two unlinked components in the link.

We call the crimson strands α component and the black strands β component, and
by observation, we found that they can be separated using knot moves:



136 K.L. CHAN, T.N. CHAN, H.Y. LAU, K.S. MOK, Y.S. WONG



CUTTING TWISTED SOLID TORI (TSTS) 137



138 K.L. CHAN, T.N. CHAN, H.Y. LAU, K.S. MOK, Y.S. WONG



CUTTING TWISTED SOLID TORI (TSTS) 139

Step 7 (Case II ∆ is even) In the following diagram, call the black strands α com-
ponent and the crimson strands β component. As the part of β component between
the two arrows are completely under α component, it can be shortened.
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As seen in the above figures, we can conclude that the number of components of
the link [Φ((1, 1), d(τ), 2)] is 2 for even integers d(τ) ≥ 4.
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Conclusions

In this paper, we have considered the cutting of a tst, our generalized version for
strips. We have studied the object formed after we cut it, which we call a “knotted
tst sum”. We have considered its twist turn and the number of each type of knotted
tsts in it. Then we consider the resultant link formed from tst cutting, and derive
the general form of their braid word. We also consider the resultant link formed
from cutting a tst in the form of a nontrivial knot. After that, we consider the
effect of applying type I Reidemeister moves to the twist turn of the knotted tst.
Finally, we consider the cutting of tst product, which is a combination of two tsts,
for some specific cases.
In this paper, we have laid down several conjectures about the properties of tst links
and their Alexander polynomials, which may help open up new research directions
in knot theory. Possible further investigations also include the combination of more-
than-two tsts.
Moreover, our result can in fact be generalized to higher dimensions, by simply
extending 2-dimensional rotations modeled by complex numbers to 3-dimensions
that can be depicted by quaternions. Research in this direction may also give new
insights to the higher-dimensional generalization of knots, i.e. knotted surfaces.

Appendix A.

We note that the checking of collinearity using complex numbers is very easy, since

the points z1, z2, z3 are collinear ⇔

∣∣∣∣∣∣

1 1 1
z1 z2 z3

z̄1 z̄2 z̄3

∣∣∣∣∣∣
= 0. However, the condition that

three lines are concurrent is not easy to check. Therefore, we employ the notion of
pole-polar duality with respect to the unit circle from inversive geometry.

Theorem 90. The dual of a line γ(t) is
γ′(t)

[γ(0), γ′(t)]
,

where [a, b] =
1

2
(ab− ab) for any complex numbers a and b.

Proof. The dual of a point z is a line that can be parametrized by

γ(t) =
z

|z|2 + izt =
1

z̄
+ izt.

Let the dual point (or pole) of the line γ(t) be z. Then we note that by definition
the segment joining the origin and z is perpendicular to the line γ. We let the
intersection of the segment Oz and the line γ(t) be w such that z = kw for some

real k > 0 and

{
iw = rγ′(t)
w = γ(0) + sγ′(t)

where r and s are real numbers.
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Rearrangement gives

{
w = −irγ′(t)
w = γ(0) + sγ′(t)

.

Subtraction gives γ(0) + (s+ ir)γ′(t) = 0.

Rearrangement yields:

{
s Re γ′(t)− r Im γ′(t) = −Re γ(0)
s Im γ′(t) + r Re γ′(t) = −Im γ(0)

Solving gives: r =

∣∣∣∣
Re γ′(t) −Re γ(0)
Im γ′(t) −Im γ(0)

∣∣∣∣
∣∣∣∣

Re γ′(t) −Im γ′(t)
Im γ′(t) Re γ′(t)

∣∣∣∣
=
−[γ′(0), γ(0)]

i|γ′(t)|2 =
i[γ′(t), γ(0)]

|γ′(t)|2

Hence w = −irγ′(t) =
[γ′(t), γ(0)]

|γ′(t)|2 γ′(t) =
[γ′(t), γ(0)]

γ′(t)
.

By definition of pole-polar duality it follows that |z||w| = (radius of circle)
2

= 1.

Hence, |k||w|2 = 1 and k =
1

|w|2 .

The result follows from z =
1

|w|2w =
1

w
=

γ′(t)
−[γ′(t), γ(0)]

.

Theorem 91. Three lines represented by γ1(t), γ2(t), γ3(t) are concurrent

⇔

∣∣∣∣∣∣∣

[γ̂′1(t), γ1(0)] [γ̂′2(t), γ2(0)] [γ̂′3(t), γ3(0)]

γ̂′1(t) γ̂′2(t) γ̂′3(t)

γ̂′1(t) γ̂′2(t) γ̂′3(t)

∣∣∣∣∣∣∣
= 0.

where γ̂′1(t), γ̂′2(t), γ̂′3(t) are unit complex numbers in the same direction as γ′1(t),
γ′2(t) and γ′3(t) respectively.

Proof. Three lines γ1, γ2, γ3 are concurrent
⇔ Duals of γ1, γ2, γ3 are collinear

⇔ γ′1(t)

[γ1(0), γ′1(t)]
,

γ′2(t)

[γ2(0), γ′2(t)]
,

γ′3(t)

[γ3(0), γ′3(t)]
are collinear
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⇔

∣∣∣∣∣∣∣∣∣

1 1 1

γ′1(t)
−[γ′1(t),γ1(0)]

γ′2(t)
−[γ′2(t),γ2(0)]

γ′3(t)
−[γ′3(t),γ3(0)]

γ′1(t)
−[γ′1(t),γ1(0)]

γ′2(t)
[γ′2(t),γ2(0)]

γ′3(t)
[γ′3(t),γ3(0)]

∣∣∣∣∣∣∣∣∣
= 0

⇔

∣∣∣∣∣∣∣

[γ′1(t), γ1(0)] [γ′2(t), γ2(0)] [γ′3(t), γ3(0)]

γ′1(t) γ′2(t) γ′3(t)

γ′1(t) γ′2(t) γ′3(t)

∣∣∣∣∣∣∣
= 0 if all of [γ′k(t), γk(0)] are nonzero.

⇔ |γ′1(t)||γ′2(t)||γ′3(t)|

∣∣∣∣∣∣∣

[γ̂′1(t), γ1(0)] [γ̂′2(t), γ2(0)] [γ̂′3(t), γ3(0)]

γ̂′1(t) γ̂′2(t) γ̂′3(t)

γ̂′1(t) γ̂′2(t) γ̂′3(t)

∣∣∣∣∣∣∣
= 0.

If one of [γ′k(t), γk(0)] is zero, then we could have worked in a complex projective
line and the above condition still holds. Note also that γ′k(t) must be nonzero, or
else γk(t) is not a line but a point. This verifies the validity of working in the
projective complex line. The stated result thus follows.

Appendix B.

We first define mZ = {mx | x ∈ Z} for m ∈ R+.
For a reasonable configuration, the values of d(τ), pi and qi for i = 1, 2, 3 should
satisfy the following conditions:

• d(τ) ≥ 3 if d(τ) is odd and d(τ) ≥ 6 if d(τ) is even so that three non-parallel

lines can be found. Therefore, ∆ =
d(τ)

2
=

3

2
,

5

2
, 3,

7

2
, 4,

9

2
, . . .

• If d(τ) is odd, p ∈ 1

2
Z and 0 ≤ p ≤ ∆− 1

2
< ∆

If d(τ) is even, p ∈ Z and 0 ≤ p ≤ ∆− 1 < ∆
• q ∈ Z and 1 ≤ q ≤M − 1 < M

The solutions to the equation (C) in Section 7 are considered below.

Case A The “trivial” solutions.

Note that
(p1 − p3 + ∆)M − (M − q1 − q3)

Md(τ)
+

(p3 − p2)M + (q3 − q2)

Md(τ)
+

(p2 − p1)M + (q1 − q2)

Md(τ)
=

1

2

implies that
Md(τ)− 2M + 4q1 − 4q2 + 4q3

2Md(τ)
=

1

2
or M − 2q1 + 2q2 − 2q3 = 0, i.e.

q1 + q3 = m+ q2.

Subcase A1





f1 = f4

f2 = f5

f3 = f6

⇒




∆M −M
−∆M −M

0


+




2M −M −M 2 −1 1
M M −2M −1 1 −2
M −2M M −1 2 −1







p1

p2

p3

q1
q2
q3




=




0
0
0



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Performing row reductions gives



M 0 −M 0 1�3 −2�3
0 M −M 0 −1�3 −1�3
0 0 0 1 −1 1







p1

p2

p3

q1
q2
q3




=




−Md(τ)−m
3

−M∆−M
3

m




Further adding the first two rows gives M(p1 + p2 − 2p3)− q3 = −M∆−m, hence
we have:
q3 = m(2p1 + 2p2 − 4p3 + d(τ) + 1) ∈ mZ, so since 0 < q3 < M = 2m, we must
have q3 = m

Similarly, the second row gives M(p2−p3)− 1

3
q2−

1

3
m =

−M∆−M
3

. We therefore

have:
q2 = m(−6p1 + 6p2 − d(τ) + 1) ∈ mZ, and hence q2 = m.
The last row gives q1 −m+m = q1 = m, so we have q1 = q2 = q3 = m (Config II).

Subcase A2





f1 = f6

f2 = f4

f3 = f5

⇒




∆M −M
0

−∆M −M


+




M M −2M 1 −1 2
M −2M M 1 −2 1
−2M M M 2 −1 1







p1

p2

p3

q1
q2
q3




=




0
0
0




Performing row reduction gives



M M −2M 0 0 1

0 M −M 0 1�3
1�3

0 0 0 1 −1 1







p1

p2

p3

q1
q2
q3




=



m−M∆
M−M∆

3
m




The first row gives q3 = m(−2p1 − 2p2 + 4p3 − d(τ) + 1) ∈ mZ, so q3 = m.

Similarly, the second row gives M(p2 − p3) +
1

3
q2 +

m

3
=
M −M∆

3
,

i.e. q2 = m(−6p2 + 6p3 − d(τ) + 1) ∈ mZ, so q2 = m. The third equation gives
q1 −m+m = q1 = m.
Hence, q1 = q2 = q3 = m (Config II).

Subcase A3





f1 = f5

f2 = f6

f3 = f4

⇒



−2M

0
0


+




0 0 0 2 0 2
0 0 0 0 −2 2
0 0 0 2 −2 0







p1

p2

p3

q1
q2
q3




=




0
0
0




Performing row reduction gives




0 0 0 1 0 1
0 0 0 0 1 −1
0 0 0 0 0 0







p1

p2

p3

q1
q2
q3




=



M
0
0




The second row gives q2 = q3 and the first row gives q1 + q3 = M . Note that we
have q1 + q3 = m+ q2 = M , so q1 = q2 = q3 = m (Config II).

Subcase A4





f1 = f4

f2 = f6

f3 = f5

⇒




∆M −M
0

−∆M −M


+




2M −M −M 2 −1 1
0 0 0 0 −2 2
−2M M M 2 −1 1







p1

p2

p3

q1
q2
q3




=




0
0
0



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Performing row reduction gives




2M −M −M 0 0 0
0 0 0 0 1 −1
0 0 0 1 0 0







p1

p2

p3

q1
q2
q3




=



−∆M

0
m




The second row gives q2 = q3 and the last row gives q1 = m. The first row gives
(2p1 − p2 − p3) = −∆. Using the assumption p1 = 0, p2 + p3 = ∆.
Hence p2 + p3 = ∆ and q2 = q3 (Config I).

Subcase A5





f1 = f5

f2 = f4

f3 = f6

⇒



−2M

0
0


+




0 0 0 2 0 2
M −2M M 1 −2 1
−M 2M −M 1 −2 1







p1

p2

p3

q1
q2
q3




=




0
0
0




Performing row reduction gives




0 0 0 1 0 1
1 −2 1 0 0 0
0 0 0 0 1 0







p1

p2

p3

q1
q2
q3




=



M
0
m




This shows that p1 + p3 = 2p2, q2 = m, and q1 + q3 = M (Config I)

Subcase A6





f1 = f6

f2 = f5

f3 = f4

⇒




∆M −M
−∆M −M

0


+



M M −2M 1 −1 2
−M −M 2M 1 −1 2

0 0 0 2 −2 0







p1

p2

p3

q1
q2
q3




=




0
0
0




Performing row reduction gives




1 1 −2 0 0 0
0 0 0 0 0 1
0 0 0 1 −1 0







p1

p2

p3

q1
q2
q3




=



−∆
m
0




The second row gives q3 = m and the last row gives q1 = q2.
The first row gives p1 + p2 − 2p3 = −∆. (Confin I)

Case B One-parameter infinite solutions

Subcase B1.1 f =

(
1

6
t

1

3
− 2t

1

3
+ t t

1

6
− t
)T

p2 = ∆
(2

3
− t
)

q1 = m+m∆
(1

3
− 6t

)

p3 = ∆
(5

6
− t
)

q2 = m+m
∆

3
q3 = m+m∆(4t)

p3 − p2 =
∆

6
⇒ d(τ)

6
= 2(p3 − p2) ∈ Z+

∴ d(τ) is even and ∆ ≥ 3
But q2 ≥ m+m = M (rejected)



CUTTING TWISTED SOLID TORI (TSTS) 147

Subcase B1.2 f =

(
1

6
t

1

3
− 2t t

1

6
− t 1

3
+ t

)T

p2 = ∆
(1

3
− t
)

q1 = m+m∆
(2

3
− 2t

)

p3 = ∆
(2

3
+ t
)

q2 = m+m∆(4t)

q3 = m+m∆
(
− 2

3
+ 4t

)

2∆
(1

3
− t
)

= 2p2 ∈ Z+

q3 = m+m
[
2∆
(1

3
− t
)]
≥ m+m = M (rejected)

Subcase B1.3 f =

(
1

6
t

1

3
− 2t

1

6
− t 1

3
+ t t

)T

p2 = ∆
(1

2
− 3t

)
q1 = m+m∆(−2t)

p3 = ∆
(1

2
− t
)

q2 = m+m∆
(
− 1

3

)

q3 = m+m∆
(
− 1

3

)

p3 − p2 = 2∆t⇒ 4∆t = 2(p3 − p2) ∈ Z+

2q1 = M −m(4∆t) ∈ mZ
∵ 0 < 2q1 < M and m | 2q1

∴ 2q1 = m and 4∆t = 1
0 < q2 < M ⇒ ∆ < 3⇒ ∆ = 1.5 or ∆ = 2.5

If ∆ = 1.5, then t =
1

6
(rejected)

If ∆ = 2.5, then t =
1

10
, which gives




p2

p3

q1

q2

q3




=




1

2

1
1

4
M

1

12
M

1

12
M




∴ In Λ(1, 5, 12k), where k ∈ Z+, |0, 3k; 0.5, k; 1, k| = 0
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Subcase B1.4 f =

(
1

6
t

1

3
− 2t

1

3
+ t

1

6
− t t

)T

p2 = ∆
(2

3
− t
)

q1 = m+m∆(−2t)

p3 = ∆
(2

3
+ t
)

q2 = m+m∆(4t)

q3 = m+m∆(4t)

p3 − p2 = 2∆t⇒ 4∆t = 2(p3 − p2) ∈ Z+

q2 = m+m(4∆t) ≥ m+m = M (rejected)

Subcase B1.5 f =

(
1

6
t

1

3
− 2t t

1

3
+ t

1

6
− t
)T

p2 = ∆
(1

3
− t
)

q1 = m+m∆
(1

3
− 6t

)

p3 = ∆
(1

2
− t
)

q2 = m+m∆
(
− 1

3

)

q3 = m+m∆
(
− 2

3
+ 4t

)

p3 − p2 =
∆

6
⇒ d(τ)

6
= 2(p3 − p2) ∈ Z+

∴ d(τ) is even and ∆ ≥ 3
However, q2 ≤ m−m = 0 (rejected)

Subcase B1.6 f =

(
1

6
t

1

3
− 2t

1

6
− t t

1

3
+ t

)T

p2 = ∆
(1

2
− 3t

)
q1 = m+m∆

(2

3
− 2t

)

p3 = ∆
(5

6
− t
)

q2 = m+m∆
(1

3

)

q3 = m+m∆
(
− 1

3

)

0 < q2 < M ⇒ ∆ < 3⇒ ∆ = 1.5 or ∆ = 2.5

If ∆ = 1.5, then p2 = 0.5 and p3 = 1⇒ t =
1

18
and t =

1

6
(rejected)

If ∆ = 2.5, then

m < q1 < M ⇒ 0 < 2.5(
2

3
− 2t) < 1⇒ 1

6
<

1

3
< t <

5

6
(rejected)
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Subcase B1.7 f =

(
1

6

1

3
− 2t t

1

3
+ t t

1

6
− t
)T

p2 = ∆(
1

3
+ 2t) q1 = m+m∆(−1

3
)

p3 = ∆(
5

6
− t) q2 = m+m∆(

1

3
)

q3 = m+m∆(
2

3
− 2t)

0 < q2 < M ⇒ ∆ < 3⇒ ∆ = 1.5 or ∆ = 2.5

If ∆ = 1.5, then p2 = 0.5 and p3 = 1⇒ t =
1

3
and t =

1

6
(rejected)

If ∆ = 2.5, then

m < q1 < M ⇒ 0 < 2.5(
2

3
− 2t) < 1⇒ 1

6
<

1

3
< t <

5

6
(rejected)

Subcase B1.8 f =

(
1

6

1

3
− 2t t t

1

6
− t 1

3
+ t

)T
T

p2 = 2∆t q1 = m+m∆(4t)

p3 = ∆
(2

3
+ t
)

q2 = m+m∆(4t)

q3 = m+m∆(−2t)

4∆t = 2p2 ∈ Z+

q2 = m+m(4∆t) ≥ m+m = M (rejected)

Subcase B1.9 f =

(
1

6

1

3
− 2t t

1

6
− t 1

3
+ t t

)T

p2 =
∆

6
q1 = m+m∆

(
− 2

3
+ 4t

)

p3 = ∆(
1

2
− t) q2 = m+m∆

(
− 1

3

)

q3 = m+m∆
(1

3
− 4t

)

d(τ)

6
= 2p2 ∈ Z+

∴ d(τ) is even and ∆ ≥ 3
However, q2 ≤ m−m = 0 (rejected)
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Subcase B1.10 f =

(
1

6

1

3
− 2t t

1

3
+ t

1

6
− t t

)T

p2 = ∆(
1

3
+ 2t) q1 = m+m∆(−2

3
+ 4t)

p3 = ∆(
2

3
+ t) q2 = m+m∆(4t)

q3 = m+m∆(
2

3
− 2t)

2∆
(1

3
− t
)

= 2(p3 − p2) ∈ Z+

q3 = m+m
[
2∆
(1

3
− t
)]
≥ m+m = M (rejected)

Subcase B1.11 f =

(
1

6

1

3
− 2t t t

1

3
+ t

1

6
− t
)T

p2 = 2∆t q1 = m+m∆
(
− 1

3

)

p3 = ∆
(1

2
− t
)

q2 = m+m∆
(
− 1

3

)

q3 = m+m∆(−2t)

4∆t = 2p2 ∈ Z+

2q3 = M −m(4∆t) ∈ mZ
∵ 0 < 2q3 < M and m | 2q3

∴ q3 = m and 4∆t = 1
0 < q2 < M ⇒ ∆ < 3⇒ ∆ = 1.5 or ∆ = 2.5

If ∆ = 1.5, then t =
1

6
(rejected)

If ∆ = 2.5, then t =
1

10
, which gives




p2

p3

q1

q2

q3




=




1
2

1

1
12M

1
12M

1
4M




∴ In Λ(1, 5, 12k), where k ∈ Z+, |0, k; 0.5, k; 1, 3k| = 0

Subcase B1.12 f =

(
1

6

1

3
− 2t t

1

6
− t t

1

3
+ t

)T

p2 =
∆

6
q1 = m+m∆(4t)

p3 = ∆(
2

3
+ t) q2 = m+m∆(

1

3
)

q3 = m+m∆(
1

3
− 6t)
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d(τ)

6
= 2p2 ∈ Z+

∴ d(τ) is even and ∆ ≥ 3
However, q2 ≥ m+m = M (rejected)

Subcase B2.1 f =

(
1

6

1

2
− 3t t

1

6
− t 2t

1

6
+ t

)T

p2 =
∆

6
q1 = m+m∆

(
− 1

3
+ 4t

)

p3 = ∆
(5

6
− 2t

)
q2 = m

q3 = m+m∆
(2

3
− 8t

)

d(τ)

6
= 2p2 ∈ Z+

∴ d(τ) is even and ∆ ≥ 3
p3 = 5p2 − 12p2t ∈ Z+ ⇒ 12p2t ∈ Z
q1 = m(1− 2p2 + 24p2t) ∈ mZ
∵ 0 < q1 < M

∴ q1 = m and 1− 2p2 + 24p2t = 1⇒ t =
1

12
∴ q1 = q2 = q3 = m (Config II)

Subcase B2.2 f =

(
1

6

1

2
− 3t t 2t

1

6
+ t

1

6
− t
)T

p2 = 3∆t q1 = m+m∆
(
− 1

3

)

p3 = ∆
(2

3
− t
)

q2 = m+m∆
(
− 1

3
+ 2t

)

q3 = m+m∆
(1

3
− 2t

)

0 < q1 < M ⇒ ∆ < 3⇒ ∆ =
3

2
or ∆ =

5

2

If ∆ =
3

2
, then p2 =

1

2
and p3 = 1⇒ t =

1

9
and t = 0 (rejected)

If ∆ =
5

2
, then p2 =

15

2
t <

15

2

(1

6

)
=

5

4

∴ p2 =
1

2
or p2 = 1

When p2 =
1

2
, t =

1

15
which gives




p2

p3

q1

q2

q3




=




1
2

3
2

1
12M

1
4M

3
4M



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∴ In Λ(1, 5, 12k), where k ∈ Z+, |0, k; , 0.5, 3k; 1.5, 9k| = 0

When p2 = 1, t =
2

15
⇒ p3 =

4

3
(rejected)

Subcase B2.3 f =

(
1

6

1

2
− 3t t

1

6
+ t

1

6
− t 2t

)T

p2 = ∆
(1

6
+ 2t

)
q1 = m+m∆

(
− 2

3
+ 6t

)

p3 = ∆
(2

3
+ t
)

q2 = m+m∆
(
− 1

3
+ 6t

)

q3 = m+m∆
(2

3
− 4t

)

2p3 − p2 =
7∆

6
⇒ 7d(τ)

6
= 2(2p3 − p2) ∈ Z+

∴ d(τ) is even ⇒ ∆ ≥ 3 and ∆, p1, p2, p3 ∈ Z

4p2 − 2p3 = ∆
(
− 2

3
+ 6t

)
⇒ ∆

(
− 2

3
+ 6t

)
= 2(2p2 − p3) ∈ Z

q1 = m
[
1 + ∆

(
− 2

3
+ 6t

)]
∈ mZ+

∵ 0 < q1 < M

∴ q1 = m and 1 + ∆
(
− 2

3
+ 6t

)
= 1⇒ t =

1

9

∴ q2 = m+m∆
(1

3

)
≥ m+m = M (rejected)

Subcase B2.4 f =

(
1

6

1

2
− 3t t

1

6
− t 1

6
+ t 2t

)T

p2 =
∆

6
q1 = m+m∆

(
− 2

3
+ 6t

)

p3 = ∆
(2

3
− t
)

q2 = m+m∆
(
− 1

3
+ 2t

)

q3 = m+m∆
(2

3
− 8t

)

d(τ)

6
= 2p2 ∈ Z+

∴ d(τ) is even and ∆ ≥ 3
p3 = 4p2 − 6p2t ∈ Z+ ⇒ 6p2t ∈ Z+

q2 = m(1− 2p2 + 12p2t) ∈ mZ
∵ 0 < q2 < M

∴ q1 = m and 1− 2p2 + 12p2t = 1⇒ t =
1

6
(rejected)
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Subcase B2.5 f =

(
1

6

1

2
− 3t t 2t

1

6
− t 1

6
+ t

)T

p2 = 3∆t q1 = m+m∆
(
− 1

3
+ 4t

)

p3 = ∆
(2

3
+ t
)

q2 = m+m∆
(
− 1

3
+ 6t

)

q3 = m+m∆
(1

3
− 2t

)

Consider 0 < q2 < M and m < q3 < M

− 1 < ∆
(
− 1

3
+ 6t

)
< 1 and 0 < ∆

(1

3
− 2t

)
< 1

1

18
− 1

6∆
< t <

1

18
+

1

6∆
and

1

6
− 1

2∆
< t <

1

6
1

18
− 1

6∆
<

p2

3∆
<

1

18
+

1

6∆
and

1

6
− 1

2∆
<

p2

3∆
<

1

6
∆

6
− 1

2
< p2 <

∆

6
+

1

2
and

∆

2
− 3

2
< p2 <

∆

2

∴ ∆

2
− 3

2
<

∆

6
+

1

2
⇒ ∆ < 6

If d(τ) is even, then ∆ ≥ 3 and ∆, p1, p2, p3 ∈ Z

When ∆ = 3, 0 < p2 < 1 and 0 < p2 <
3

2
⇒ 0 < p2 < 1 (rejected)

When ∆ = 4,
1

6
< p2 <

7

6
and

1

2
< p2 < 2⇒ 1

2
< p2 <

7

6

∴ p2 = 1 and t =
1

12
which gives




p2

p3

q1

q2

q3




=




1
3
m
5
3m
5
3m




(Config I)

When ∆ = 5,
1

3
< p2 <

4

3
and 1 < p2 <

5

2
⇒ 1 < p2 <

4

3
(rejected)

If d(τ) is odd, then ∆ ≥ 1.5 and ∆, p1, p2, p3 ∈
1

2
Z

When ∆ =
3

2
, 1 < p2 <

3

4
⇒ p2 =

1

2
⇒ t =

1

9
⇒ p3 =

7

6
(rejected)

When ∆ =
5

2
, 1 < p2 <

11

12
⇒ p2 =

1

2
⇒ t =

1

15
⇒ p3 =

11

6
(rejected)

When ∆ =
7

2
,

1

4
< p2 <

13

12
⇒ p2 =

1

2
or p2 = 1
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If p2 =
1

2
, then t =

1

21
which gives




p2

p3

q1

q2

q3




=




1
2

5
2

1
4M

5
12M

11
12M




∴ In Λ(1, 7, 12k), where k ∈ Z+, |0, 3k; 0.5, 5k; 2.5, 11k| = 0

If p2 = 1, then t =
2

21
⇒ p3 =

8

3
(rejected)

When ∆ =
9

2
,

3

4
< p2 <

5

4
⇒ p2 = 1⇒ t =

2

27
⇒ p3 =

10

3
(rejected)

When ∆ =
11

2
, 1 <

5

4
< p2 <

17

12
<

3

2
(rejected)

Subcase B2.6 f =

(
1

6

1

2
− 3t t

1

6
+ t 2t

1

6
− t
)T

p2 = ∆
(1

6
+ 2t

)
q1 = m+m∆

(
− 1

3

)

p3 = ∆
(5

6
− 2t

)
q2 = m

q3 = m+m∆
(2

3
− 4t

)

2∆
(2

3
− 4t

)
= 2(p3 − p2) ∈ Z+

2q3 = m
[
2 + 2∆

(2

3
− 4t

)]
∈ mZ+

∵M < 2q3 < 2M

∴ q3 =
3

2
m and 2 + 2∆

(2

3
− 4t

)
= 3⇒ t =

1

6
− 1

8∆

0 < q3 < M ⇒ ∆ < 3⇒ ∆ =
3

2
or ∆ =

5

2

If ∆ =
3

2
, then t =

7

60
⇒ p2 = −1

6
(rejected)

If ∆ =
5

2
, then t =

1

12
, which gives




p2

p3

q1

q2

q3




=




1
2
1

1
2m
m
3
2m




(Config I)
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Subcase B2.7 f =

(
1

6
t

1

2
− 3t

1

6
− t 2t

1

6
+ t

)T

p2 = ∆
(2

3
− 4t

)
q1 = m+m∆

(2

3
− 4t

)

p3 = ∆
(5

6
− 2t

)
q2 = m

q3 = m+m∆
(
− 1

3

)

0 < q3 < M ⇒ ∆ < 3⇒ ∆ =
3

2
or ∆ =

5

2

If ∆ =
3

2
, then p2 = 1− 6t

∴ 0 < p2 < 1

But p2 ∈
1

2
Z+, ∴ p2 =

1

2
and t =

1

12

∴




p2

p3

q1

q2

q3




=




1

2
1

3

2
m

m
1

2
m




(Config I)

If ∆ =
5

2
, then p2 =

5

3
− 10t

∴ 0 < p2 <
5

3
= 1

2

3

∴ p2 =
1

2
or p2 = 1 or p2 =

3

2

When p2 =
1

2
, t =

7

60
, which gives




p2

p3

q1

q2

q3




=




1

2
3

2
3

4
M

1

2
M

1

12
M




.

∴ In Λ(1, 5, 12k), where k ∈ Z+, |0, 9k; 0.5, 6k; 1.5, k| = 0

When p2 = 1, t =
1

15
⇒ p3 =

7

4
(rejected)

When p2 =
3

2
, t =

1

60
⇒ q1 =

5

2
m > M (rejected)
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Subcase B2.8 f =

(
1

6
t

1

2
− 3t 2t

1

6
+ t

1

6
− t
)T

p2 = ∆
(1

2
− t
)

q1 = m+m∆
(2

3
− 8t

)

p3 = ∆
(2

3
− t
)

q2 = m+m∆
(
− 1

3
+ 2t

)

q3 = m+m∆
(
− 2

3
+ 6t

)

p3 − p2 =
∆

6
⇒ d(τ)

6
= 2(p3 − p2) ∈ Z+

∴ d(τ) is even ⇒ ∆ ≥ 3 and ∆, p1, p2, p3 ∈ Z+

∆ = 6(p3 − p2) and ∆t = 3p3 − 4p2 ∈ Z+

q2 = m[1− 2(p3 − p2) + 2∆t] ∈ mZ
∵ 0 < q2 < M

∴ q2 = m and ∆
(
− 1

3
+ 2t

)
= 0⇒ t =

1

6
(rejected)

Subcase B2.9 f =

(
1

6
t

1

2
− 3t

1

6
+ t

1

6
− t 2t

)T

p2 = ∆
(2

3
− 2t

)
q1 = m+m∆

(1

3
− 2t

)

p3 = ∆
(2

3
+ t
)

q2 = m+m∆
(
− 1

3
+ 6t

)

q3 = m+m∆
(
− 1

3
+ 4t

)

p3 − p2 = 3∆t and 6∆t = 2(p3 − p2) ∈ Z+

Let 6∆t = k1 ∈ Z+

Consider m < q1 < M and 0 < q2 < M

0 < ∆
(1

3
− 2t

)
< 1 and − 1 < ∆

(
− 1

3
+ 6t

)
< 1

1

6
− 1

2∆
< t <

1

6
and

1

18
− 1

6∆
< t <

1

18
+

1

6∆
1

6
− 1

2∆
<

k1

6∆
<

1

6
and

1

18
− 1

6∆
<

k1

6∆
<

1

18
+

1

6∆

∆− 3 < k1 < ∆ and
∆

3
− 1 < k1 <

∆

3
+ 1

∴ ∆− 3 <
∆

3
+ 1⇒ ∆ < 6

If d(τ) is even, then ∆ ≥ 3 and ∆, p1, p2, p3 ∈ Z
k1 = 2(p3 − p2) ∈ 2Z
When ∆ = 3, 0 < k1 < 3 and 0 < k1 < 2⇒ 0 < k1 < 2 (rejected)

When ∆ = 4,
1

3
< k1 <

7

3
and 1 < k1 < 4⇒ 1 < k1 <

7

3
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∴ k1 = 2 and t =
1

12
, which gives




p2

p3

q1

q2

q3




=




2

3
5

3
m

5

3
m

m




(Config I)

When ∆ = 5,
2

3
< k1 <

8

3
and 2 < k1 < 5⇒ 2 < k1 <

8

3
< 4 (rejected)

If d(τ) is odd, then ∆ ≥ 3

2
and ∆, p1, p2, p3 ∈

1

2
Z

When ∆ =
3

2
, 0 < k1 <

3

2
⇒ k1 = 1⇒ t =

1

9
⇒ p2 =

2

3
(rejected)

When ∆ =
5

2
, 0 < k1 <

11

6
⇒ k1 = 1⇒ t =

1

15
⇒ p2 =

4

3
(rejected)

When ∆ =
7

2
,

1

2
< k1 <

13

6
< 3⇒ k1 = 1 or k1 = 2

If k1 = 1, then t =
1

21
, which gives




p2

p3

q1

q2

q3




=




2
5

2
11

12
M

5

12
M

1

4
M




∴ In Λ(1, 7, 12k), where k ∈ Z+, |0, 11k; 2, 5k; 2.5, 3k| = 0

If k1 = 2, then t =
2

21
⇒ p2 =

5

3
(rejected)

When ∆ =
9

2
,

3

2
< k1 <

5

2
⇒ k1 = 2⇒ t =

2

27
⇒ p2 =

7

3
(rejected)

When ∆ =
11

2
, 2 <

5

2
< k1 <

17

6
< 3 (rejected)

Subcase B2.10 f =

(
1

6
t

1

2
− 3t

1

6
− t 1

6
+ t 2t

)T

p2 = ∆
(2

3
− 4t

)
q1 = m+m∆

(1

3
− 2t

)

p3 = ∆
(2

3
− t
)

q2 = m+m∆
(
− 1

3
+ 2t

)

q3 = m+m∆
(
− 1

3

)

0 < q3 < M ⇒ ∆ < 3⇒ ∆ =
3

2
or ∆ =

5

2

If ∆ =
3

2
, then p2 = 0.5 and p3 = 1⇒ t =

1

12
and t = 0 (rejected)
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If ∆ =
5

2
, then p3 =

5

3
− 5

2
t >

5

3
− 5

2

(1

6

)
=

5

4
> 1

∴ p3 =
3

2
or p3 = 2

When p3 =
3

2
, t =

1

15
, which gives




p2

p3

q1

q2

q3




=




1
3

2
3

4
M

1

4
M

1

12
M




∴ In Λ(1, 5, 12k), where k ∈ Z+, |0, 9k; , 1, 3k; 1.5, k| = 0

When p3 = 2, t =
2

15
⇒ p2 =

1

3
(rejected)

Subcase B2.11 f =

(
1

6
t

1

2
− 3t 2t

1

6
− t 1

6
+ t

)T

p2 = ∆
(1

2
− t
)

q1 = m+m∆
(2

3
− 4t

)

p3 = ∆
(2

3
+ t
)

q2 = m+m∆
(
− 1

3
+ 6t

)

q3 = m+m∆
(
− 2

3
+ 6t

)

2p3 − 4p2 = ∆
(2

3
− 4t

)
⇒ ∆

(2

3
− 4t

)
= 2(p3 − 2p2) ∈ Z

q1 = m
[
1 + ∆

(2

3
− 4t

)]
∈ mZ

∵ 0 < q1 < M

∴ q1 = m and 1 + ∆
(2

3
− 4t

)
= 1⇒ t =

1

6
(rejected)

Subcase B2.12 f =

(
1

6
t

1

2
− 3t

1

6
+ t 2t

1

6
− t
)T

p2 = ∆
(2

3
− 2t

)
q1 = m+m∆

(2

3
− 8t

)

p3 = ∆
(5

6
− 2t

)
q2 = m

q3 = m+m∆
(
− 1

3
+ 4t

)

6p3 − 8p2 = ∆
(
− 1

3
+ 4t

)
⇒ ∆

(
− 1

3
+ 4t

)
= 2(3p3 − 4p2) ∈ Z

q3 = m
[
1 + ∆

(
− 1

3
+ 4t

)]
∈ mZ

∵ 0 < q3 < M
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∴ q3 = m and 1 + ∆
(
− 1

3
+ 4t

)
= 1⇒ t =

1

12
∴ q1 = q2 = q3 = m (Config II)

Subcase B3.1 f =

(
1

6

1

6
− 2t 2t

1

6
− 2t t

1

2
+ t

)T

p2 =
∆

6
q1 = m+m∆

(1

3
+ 6t

)

p3 = ∆
(5

6
− t
)

q2 = m+m∆
(2

3
− 2t

)

q3 = m+m∆(−8t)

2p2 =
d(τ)

6
∈ Z+, so d(τ) is even and ∆ ≥ 3.

Hence q2 ≥ m+ 3m
(2

3
− 2t

)
≥ m+m = M (rejected)

Subcase B3.2 f =

(
1

6

1

6
− 2t 2t

1

2
+ t

1

6
− 2t t

)T

p2 = ∆
(1

2
+ 3t

)
q1 = m+ ∆m

(
− 2

3
+ 6t

)

p3 = ∆
(2

3
+ 2t

)
q2 = m+ ∆m

(1

3
+ 4t

)

q3 = m+ ∆m
(2

3
− 2t

)

q3 < M = 2m⇒ ∆
(2

3
− 1

3

)
< ∆

(2

3
− 2t

)
< 1⇒ ∆ < 3⇒ ∆ = 1.5 or 2.5

If ∆ = 1.5, p2 = 0.5 and p3 = 1, so t = − 1

18
and t = 0 (contradiction).

If ∆ = 2.5, q3 > m+
5

2
m
(2

3
− 1

6

)
=

9

4
m > 2m = M (rejected).

Subcase B3.3 f =

(
1

6

1

6
− 2t 2t t

1

2
+ t

1

6
− 2t

)T

p2 = 3∆t q1 = m+ ∆m
(
− 1

3

)

p3 = ∆
(1

3
− t
)

q2 = m+ ∆m
(
− 1

3
− 2t

)

q3 = m+ ∆m
(
− 1

3
− 2t

)

2(p2+p3) = d(τ)
(1

3
+2t

)
∈ Z, hence 2q2 = M−md(τ)

(1

3
+2t

)
= M−M(p2+p3) <

M(1− 0.5− 1) < −m (rejected)
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Subcase B3.4 f =

(
1

6

1

6
− 2t 2t

1

6
− 2t

1

2
+ t t

)T

p2 =
∆

6
q1 = m+ ∆m

(
− 2

3
+ 6t

)

p3 = ∆
(5

6
− t
)

q2 = m+ ∆m
(
− 2

3
− 2t

)

q3 = m+ ∆m(−8t)

2p2 =
d(τ)

6
∈ Z+, so d(τ) is even and ∆ ≥ 3

q2 < m+ 3m
(
− 2

3

)
= −m (rejected)

Subcase B3.5 f =

(
1

6

1

6
− 2t 2t t

1

6
− 2t

1

2
+ t

)T

p2 = 3∆t q1 = m+ ∆m
(1

3
+ 6t

)

p3 = ∆
(2

3
+ 3t

)
q2 = m+ ∆m

(1

3
+ 4t

)

q3 = m+ ∆m
(
− 1

3
− 2t

)

q1 < M = 2m, ∴ m+ ∆m
(1

3

)
< q1 < 2m⇒ ∆ < 3⇒ ∆ = 1.5 or 2.5.

If ∆ = 1.5, then p2 = 0.5 and p3 = 1, ∴ t =
1

9
and t = 0 (contradiction)

If ∆ = 2.5, then 2p2 = 15t ∈ Z+, ∴ 15t ≥ 1, i.e. t ≥ 1

15

∴ q1 ≥ m+m(2.5)
(1

3
+ 6
( 1

15

))
=

17

6
m > 2m = M (rejected)

Subcase B3.6 f =

(
1

6

1

6
− 2t 2t

1

2
+ t t

1

6
− 2t

)T

p2 = ∆
(1

2
+ 3t

)
q1 = m+ ∆m

(−1

3

)

p3 = ∆
(5

6
− t
)

q2 = m+ ∆m
(2

3
− 2t

)

q3 = m+ ∆m
(2

3
− 2t

)

q2 < M = 2m, ∴ 1 > ∆
(2

3
− 2t

)
> ∆

(2

3

)
⇒ ∆ < 1.5 (rejected)
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Subcase B3.7 f =

(
1

6
2t

1

6
− 2t

1

6
− 2t t

1

2
+ t

)T

p2 = ∆
(1

3
− 4t

)
q1 = m+ ∆m

(2

3
− 2t

)

p3 = ∆
(2

3
+ 2t

)
q2 = m∆m

(2

3
− 2t

)

q3 = m+ ∆m
(
− 1

3

)

q1 < M = 2m, ∴ 1 > ∆
(2

3
− 2t

)
> ∆

(2

3

)
⇒ ∆ < 1.5 (rejected)

Subcase B3.8 f =

(
1

6
2t

1

6
− 2t

1

2
+ t

1

6
− 2t t

)T

p2 = ∆
(1

3
− t
)

q1 = m+ ∆m
(
− 1

3
− 2t

)

p3 = ∆
(2

3
+ 2t

)
q2 = m+ ∆m

(1

3
+ 4t

)

q3 = m+ ∆m
(1

3
+ 3t

)

2(p3 − p2) = d(τ)
(1

3
+ 3t

)
∈ Z+, and 2q3 = M + M(p3 − p2) ∈ MZ+, and since

0 < 2q3 < 2M , we must have 2q3 = M , i.e. q3 = m.

But then
(1

3
+ 4t

)
= 0, or t = − 1

12
(rejected)

Subcase B3.9 f =

(
1

6
2t

1

6
− 2t t

1

2
+ t

1

6
− 2t

)T

p2 = ∆
(1

6
− t
)

q1 = m+ ∆m(−8t)

p3 = ∆
(1

3
− t
)

q2 = m+ ∆m
(
− 1

3
− 2t

)

q3 = m+ ∆m
(
− 2

3
− 6t

)

q2 > 0, ∴ 1 > ∆
(1

3
+ 2t

)
> ∆

(1

3

)
, or ∆ < 3, i.e. ∆ = 1.5 or 2.5.

But 2(p3 − p2) = d(τ)
(1

6

)
∈ Z+ and

1.5

6
6∈ Z+ and

2.5

6
6∈ Z+ (rejected).
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Subcase B3.10 f =

(
1

6
2t

1

6
− 2t

1

6
− 2t

1

2
+ t t

)T

p2 = ∆
(1

3
− 4t

)
q1 = m+ ∆m

(
− 1

3
− 2t

)

p3 = ∆
(1

3
− t
)

q2 = m+ ∆m
(
− 1

3
− 2t

)

q3 = m+ ∆m
(
− 1

3

)

2(p2 − 2p3) = d(τ)
(
− 1

3
− 2t

)
∈ −Z+, ∴ 2q1 = M −M(p2 − 2p3) ∈MZ and since

0 < 2q1 < 2M , we must have 2q1 = M , i.e. q1 = m. But then −1

3
− 2t = 0, or

t = −1

6
(rejected).

Subcase B3.11 f =

(
1

6
2t

1

6
− 2t t

1

6
− 2t

1

2
+ t

)T

p2 = ∆
(1

6
− t
)

q1 = m+ ∆m
(2

3
− 2t

)

p3 = ∆
(2

3
+ 2t

)
q2 = m+ ∆m

(1

3
+ 4t

)

q3 = m+ ∆m
(
− 2

3
+ 6t

)

q1 < M = 2m, ∴ 1 > ∆
(2

3
− 2t

)
>
(3

2

)
∆, i.e. ∆ <

2

3
(rejected).

Subcase B3.12 f =

(
1

6
2t

1

6
− 2t

1

2
+ t t

1

6
− 2t

)T

p2 = ∆
(2

3
− t
)

q1 = m+ ∆m(−8t)

p3 = ∆
(5

6
− t
)

q2 = m+ ∆m
(2

3
− 2t

)

q3 = m+ ∆m
(1

3
+ 4t

)

2(p3 − p2) =
d(τ)

6
∈ Z+, hence d(τ) is even and ∆ ≥ 3.

But q2 < M = 2m, ∴ 1 > ∆
(2

3
− 2t

)
> ∆

(2

3

)
, or ∆ < 1.5 (contradiction)
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Subcase B4.1 f =

(
1

3
− 4t t

1

3
+ t

1

6
− 2t 3t

1

6
+ t

)T

p2 = ∆
(1

2
− t
)

q1 = m+m∆
(2

3
− 4t

)

p3 = ∆
(2

3
+ t
)

q2 = m+m∆
(1

3
− 10t

)

q3 = m+m∆(−10t)

p2 + p3 =
7∆

6
⇒ 7d(τ)

6
= 2(p2 + p3) ∈ Z+

∴ d(τ) is even and hence ∆ ≥ 3
∴ q2 ≥ m+m(2− 12t) > m+m(2− 1) = M (rejected)

Subcase B4.2 f =

(
1

3
− 4t t

1

3
+ t 3t

1

6
+ t

1

6
− 2t

)T

p2 = ∆
(1

3
+ 4t

)
q1 = m+m∆

(2

3
− 10t

)

p3 = ∆
(1

2
+ 3t

)
q2 = m+m∆(−6t)

q3 = m+m∆
(
− 1

3

)

3p2 − 2p3 = 6∆t⇒ 12∆t = 2(3p2 − 2p3) ∈ Z+

2q2 = m(2− 12∆t) ∈ mZ
∵ 0 < 2q2 < M

∴ q2 = m and 2− 12∆t = 1⇒ t =
1

12∆

0 < q3 < M ⇒ ∆ < 3⇒ ∆ =
3

2
or ∆ =

5

2

If ∆ =
3

2
, then t =

1

18
⇒ p2 =

5

6
(rejected)

If ∆ =
5

2
, then t =

1

30
⇒ p2 =

7

6
(rejected)

Subcase B4.3 f =

(
1

3
− 4t t

1

3
+ t

1

6
+ t

1

6
− 2t 3t

)T

p2 = ∆
(1

2
+ 2t

)
q1 = m+m∆

(1

3

)

p3 = ∆
(1

2
+ 6t

)
q2 = m

q3 = m+m∆(−4t)

p3 − p2 = 4∆t⇒ 8∆t = 2(p3 − p2) ∈ Z+

2q3 = m(2− 8∆t) ∈ mZ
∵ 0 < 2q3 < M

∴ q3 = m and 2− 8∆t = 1⇒ t =
1

8∆
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0 < q2 < M ⇒ ∆ < 3⇒ ∆ =
3

2
or ∆ =

5

2

If ∆ =
3

2
, then t =

1

12
(rejected)

If ∆ =
5

2
, then t =

1

20
, which gives




p2

p3

q1

q2

q3




=




3

2

2
11

12
M

1

2
M

1

4
M




∴ In Λ(1, 5, 12k), where k ∈ Z+, |0, 11k; 1.5, 6k; 2, 3k| = 0

Subcase B4.4 f =

(
1

3
− 4t t

1

3
+ t

1

6
− 2t

1

6
+ t 3t

)T

p2 = ∆
(1

2
− t
)

q1 = m+m∆
(1

3

)

p3 = ∆
(1

2
+ 3t

)
q2 = m+m∆(−6t)

q3 = m+m∆(−10t)

p3 − p2 = 4∆t⇒ 8∆t = 2(p3 − p2) ∈ Z+ ⇒ 8∆t ≥ 1
∴ q3 = m−m(10∆t) < m−m(8∆t) ≤ m−m = 0 (rejected)

Subcase B4.5 f =

(
1

3
− 4t t

1

3
+ t 3t

1

6
− 2t

1

6
+ t

)T

p2 = ∆
(1

3
+ 4t

)
q1 = m+m∆

(2

3
− 4t

)

p3 = ∆
(1

2
+ 6t

)
q2 = m

q3 = m+m∆
(
− 1

3

)

0 < q3 < M ⇒ ∆ < 3⇒ ∆ =
3

2
or ∆ =

5

2

If ∆ =
3

2
, then p2 <

3

2

(1

3
+ 4
( 1

12

))
= 1⇒ p2 =

1

2
⇒ t = 0 (rejected)

If ∆ =
5

2
, then p2 <

5

2

(1

3
+ 4
( 1

12

))
=

5

3
⇒ p2 =

1

2
or p2 = 1 or p2 =

3

2

When p2 =
1

2
, t = − 1

30
< 0 (rejected)

When p2 = 1, t =
1

60
⇒ q1 =

5

2
m > M (rejected)

When p2 =
3

2
, t =

1

15
⇒ p3 =

9

4
(rejected)
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Subcase B4.6 f =

(
1

3
− 4t t

1

3
+ t

1

6
+ t 3t

1

6
− 2t

)T

p2 = ∆
(1

2
+ 2t

)
q1 = m+m∆

(2

3
− 4t

)

p3 = ∆
(2

3
+ t
)

q2 = m+m∆
(1

3
− 10t

)

q3 = m+m∆(−4t)

4p3 − 4p2 = ∆
(2

3
− 4t

)
⇒ ∆

(2

3
− 4t

)
= 2(2p3 − 2p2) ∈ Z

q1 = m
[
1 + ∆

(2

3
− 4t

)]
≥ m(1 + 1) = M (rejected)

Subcase B4.7 f =

(
1

3
− 4t

1

3
+ t t

1

6
− 2t 3t

1

6
+ t

)T

p2 = ∆
(1

6
− t
)

q1 = m+m∆(−4t)

p3 = ∆
(2

3
+ t
)

q2 = m+m∆
(1

3
− 10t

)

q3 = m+m∆
(2

3
− 10t

)

p2 + p3 =
5∆

6
⇒ 5d(τ)

6
= 2(p2 + p3) ∈ Z+

∴ d(τ) is even ⇒ ∆ ≥ 3 and ∆, p1, p2, p3 ∈ Z
Let ∆ = 6k1, where k1 ∈ Z+

p2 = k1 −∆t ∈ Z+ ⇒ ∆t ∈ Z+

q1 = m(1− 4∆t) ≤ m(1− 4) = −3m < 0 (rejected)

Subcase B4.8 f =

(
1

3
− 4t

1

3
+ t t 3t

1

6
+ t

1

6
− 2t

)T

p2 = 4∆t q1 = m+m∆(−10t)

p3 = ∆
(1

2
+ 3t

)
q2 = m+m∆(−6t)

q3 = m+m∆
(1

3

)

0 < q3 < M ⇒ ∆ < 3⇒ ∆ =
3

2
or ∆ =

5

2

If ∆ =
3

2
, then p2 = 6t <

1

2
(rejected)

If ∆ =
5

2
, then p2 = 10t <

5

6
⇒ p2 =

1

2

∴ t =
1

20
⇒ p3 =

13

8
(rejected)
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Subcase B4.9 f =

(
1

3
− 4t

1

3
+ t t

1

6
+ t

1

6
− 2t 3t

)T

p2 = ∆
(1

6
+ 2t

)
q1 = m+m∆

(
− 1

3

)

p3 = ∆
(1

2
+ 2t

)
q2 = m

q3 = m+m∆
(2

3
− 4t

)

0 < q1 < M ⇒ ∆ < 3⇒ ∆ =
3

2
or ∆ =

5

2

If ∆ =
3

2
, then p2 =

1

4
+ 3t <

1

2
(rejected)

If ∆ =
5

2
, then p2 =

5

12
+ 5t <

5

6
⇒ p2 =

1

2

∴ t =
1

60
⇒ p3 =

4

3
(rejected)

Subcase B4.10 f =

(
1

3
− 4t

1

3
+ t t

1

6
− 2t

1

6
+ t 3t

)T

p2 = ∆
(1

6
− t
)

q1 = m+m∆
(
− 1

3

)

p3 = ∆
(1

2
+ 3t

)
q2 = m+m∆(−6t)

q3 = m+m∆
(2

3
− 10t

)

p3 − 3p2 = 6∆t⇒ 12∆t = 2(p3 − 3p2) ∈ Z+

2q2 = m(2− 12∆t) ∈ mZ
∵ 0 < 2q3 < M

∴ q3 = m and 2− 12∆t = 1⇒ t =
1

12∆

0 < q1 < M ⇒ ∆ < 3⇒ ∆ =
3

2
or ∆ =

5

2

If ∆ =
3

2
, then t =

1

18
⇒ p2 =

1

6
<

1

2
(rejected)

If ∆ =
5

2
, then t =

1

30
⇒ p2 =

1

3
<

1

2
(rejected)

Subcase B4.11 f =

(
1

3
− 4t

1

3
+ t t 3t

1

6
− 2t

1

6
+ t

)T

p2 = 4∆t q1 = m+m∆(−4t)

p3 = ∆
(1

2
+ 6t

)
q2 = m

q3 = m+m∆
(1

3

)

2q1 = m(2− 8∆t) = m(2− 2p2) ∈ mZ
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∵ 0 < 2q3 < M

∴ q1 = m and 2− 8∆t = 1⇒ t =
1

8∆

0 < q2 < M ⇒ ∆ < 3⇒ ∆ =
3

2
or ∆ =

5

2

If ∆ =
3

2
, then t =

1

12
(rejected)

If ∆ =
5

2
, then t =

1

20
, which gives




p2

p3

q1

q2

q3




=




1

2

2
1

4
M

1

2
M

11

12
M




∴ In Λ(1, 5, 12k), where k ∈ Z+, |0, 3k; 1.5, 6k; 2, 11k| = 0

Subcase B4.12 f =

(
1

3
− 4t

1

3
+ t t

1

6
+ t 3t

1

6
− 2t

)T

p2 = ∆
(1

6
+ 2t

)
q1 = m+m∆(−10t)

p3 = ∆
(2

3
+ t
)

q2 = m+m∆
(1

3
− 10t

)

q3 = m+m∆
(2

3
− 4t

)

2p3 − p2 =
7∆

6
⇒ 7d(τ)

6
= 2(2p3 − p2) ∈ Z+

∴ d(τ) is even and hence ∆ ≥ 3
∴ q2 ≥ m+m(2− 8t) > m+m(2− 1) = M (rejected)

Case C Sporadic solutions

We wrote a Scilab program to check whether any of q1, q2 and q3 is a multiple of
m when a set of exact values is substituted. If they are, then since 1 ≤ qi ≤M − 1,
for i = 1, 2, 3, we must have qi = m. If q1, q2 and q3 are all equal to m in a
certain case, then either the lines must be in Config II, or the p’s take unreasonable
values. Hence this checking program can greatly reduce the number of cases under
consideration. After we run the program, we found that in all of the cases we must
have q1 = q2 = q3 = m and hence the sporadic solutions do not give rise to new
configurations.
Here are the source codes of the Scilab program:

c l c ;

c l e a r ;

// sporad i c so ln matrix

M=[1/10 2/15 3/10 2/15 1/6 1/6 ;

1/15 1/15 7/15 1/15 1/10 7/30 ;
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1/30 7/30 4/15 1/15 1/10 3/10 ;

1/30 1/10 7/15 1/15 1/15 4/15 ;

1/30 1/15 19/30 1/15 1/10 1/10 ;

1/15 1/6 4/15 1/10 1/10 3/10 ;

1/15 2/15 11/30 1/10 1/6 1/6 ;

1/30 1/6 13/30 1/10 2/15 2/15 ;

1/30 1/30 7/10 1/30 1/15 2/15 ;

1/30 7/30 3/10 1/15 2/15 7/30 ;

1/30 1/6 11/30 1/15 1/10 4/15 ;

1/30 1/10 13/30 1/30 2/15 4/15 ;

1/30 1/15 8/15 1/30 1/10 7/30 ;

1/14 5/42 5/14 2/21 5/42 5/21 ;

1/21 4/21 13/42 1/14 1/6 3/14 ;

1/42 3/14 5/14 1/21 1/6 4/21 ;

1/42 1/6 19/42 1/14 2/21 4/21 ;

1/42 1/6 13/42 1/21 1/14 8/21 ;

1/42 1/21 13/21 1/42 1/14 3/14 ;

1/20 1/12 29/60 1/15 1/10 13/60;

1/20 1/12 9/20 1/15 1/12 4/15 ;

1/20 1/12 5/12 1/20 1/10 3/10 ;

1/60 4/15 3/10 1/20 1/12 17/60;

1/60 13/60 9/20 1/12 1/10 2/15 ;

1/60 13/60 5/12 1/20 2/15 1/6 ;

1/12 1/6 17/60 2/15 3/20 11/60;

1/12 2/15 19/60 1/10 3/20 13/60;

1/15 11/60 13/60 1/12 1/10 7/20 ;

1/20 11/60 3/10 1/12 7/60 4/15 ;

1/20 1/10 23/60 1/15 1/12 19/60;

1/30 7/60 19/60 1/20 1/15 5/12 ;

1/30 1/12 7/12 1/15 1/10 2/15 ;

1/30 1/20 11/20 1/30 1/15 4/15 ;

1/60 3/10 7/20 1/12 7/60 2/15 ;

1/60 4/15 23/60 1/12 1/10 3/20 ;

1/60 7/30 5/12 1/15 7/60 3/20 ;

1/60 13/60 11/30 1/20 1/12 4/15 ;

1/60 1/6 31/60 1/15 1/10 2/15 ;

1/60 1/6 5/12 1/20 1/15 17/60;

1/60 2/15 9/20 1/30 1/12 17/60;

1/60 1/10 31/60 1/30 1/15 4/15 ;

1/12 3/14 19/84 11/84 13/84 4/21 ;

1/14 11/84 23/84 1/12 2/21 29/84;

1/21 13/84 23/84 1/14 1/12 31/84;

1/42 1/12 7/12 1/21 1/14 4/21 ;

1/84 25/84 5/14 5/84 1/12 4/21 ;

1/84 5/21 5/12 5/84 1/14 17/84;

1/84 3/14 37/84 1/21 1/12 17/84;

1/84 1/6 43/84 1/21 1/14 4/21 ;

1/18 13/90 7/18 11/90 2/15 7/45 ;

1/45 19/90 16/45 1/18 1/10 23/90;

1/90 23/90 31/90 2/45 1/15 5/18 ;

1/90 17/90 47/90 1/18 4/45 2/15 ;

13/120 3/20 31/120 2/15 19/120 23/120;

1/12 19/120 29/120 1/10 13/120 37/120;

1/20 23/120 29/120 1/15 13/120 41/120;

1/60 13/120 73/120 1/20 1/12 2/15 ;

1/120 7/20 43/120 7/120 11/120 2/15 ;

1/120 3/10 49/120 7/120 1/12 17/120;

1/120 4/15 53/120 1/20 11/120 17/120;

1/120 13/60 61/120 1/20 1/12 2/15 ;
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1/15 41/210 8/35 1/14 31/210 61/210;

13/210 1/10 83/210 1/14 4/35 9/35 ;

1/35 2/15 97/210 1/14 17/210 47/210;

1/210 3/14 121/210 11/210 1/15 3 / 3 5 ] ;

//M = 65x6 matrix

//Add and f i nd denominator matrix

B1 = [0 1 0 1 0 0 ;

0 1 0 0 1 0 ;

0 1 0 0 0 1 ;

0 0 1 1 0 0 ;

0 0 1 0 1 0 ;

0 0 1 0 0 1 ] ;

[ n1 , d1 ] = rat (M*B1 ’ ) ;

B2 = [1 0 0 1 0 0 ;

1 0 0 0 1 0 ;

1 0 0 0 0 1 ] ;

[ n2 , d2 ] = rat (M*B2 ’ ) ;

V1 = int32 ( d1 ) ;

V2 = int32 ( d2 ) ;

// Make lcm matrix

f o r i =1:65

C( i , 1 ) = lcm ( [ V1( i , 2 ) , V2( i , 1 ) ] ) ;

C( i , 2 ) = lcm ( [ V1( i , 3 ) , V2( i , 1 ) ] ) ;

C( i , 3 ) = lcm ( [ V1( i , 5 ) , V2( i , 1 ) ] ) ;

C( i , 4 ) = lcm ( [ V1( i , 6 ) , V2( i , 1 ) ] ) ;

C( i , 5 ) = lcm ( [ V1( i , 1 ) , V2( i , 2 ) ] ) ;

C( i , 6 ) = lcm ( [ V1( i , 3 ) , V2( i , 2 ) ] ) ;

C( i , 7 ) = lcm ( [ V1( i , 4 ) , V2( i , 2 ) ] ) ;

C( i , 8 ) = lcm ( [ V1( i , 6 ) , V2( i , 2 ) ] ) ;

C( i , 9 ) = lcm ( [ V1( i , 1 ) , V2( i , 3 ) ] ) ;

C( i , 1 0 ) = lcm ( [ V1( i , 2 ) , V2( i , 3 ) ] ) ;

C( i , 1 1 ) = lcm ( [ V1( i , 4 ) , V2( i , 3 ) ] ) ;

C( i , 1 2 ) = lcm ( [ V1( i , 5 ) , V2( i , 3 ) ] ) ;

end

// c = 65 x 12 matrix

//Make 3 cop i e s o f denominator matrix

f o r r = 1 : 3 : 3 4

f o r s = 1:65

Denom( s , r ) = C( s , ( r +2)/3)

Denom( s , r+1) = C( s , ( r +2)/3)

Denom( s , r+2) = C( s , ( r +2)/3)

end

end

//Denom = 65x36 matrix

//Choose and add s u i t a b l e f ’ s

B3 = [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 ;

2 0 0 2 0 0 0 0 2 0 0 2 2 0 0 2 0 0 0 0 2 0 0 2 2 0 0 2 0 0 0 0 2 0 0 2 ;

0 0 2 0 0 2 2 0 0 2 0 0 0 0 2 0 0 2 2 0 0 2 0 0 0 0 2 0 0 2 2 0 0 2 0 0 ;

0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 0 0 2 2 2 2 0 0 2 2 2 2 0 0 2 2 2 2 0 ;

0 2 2 2 2 0 0 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 2 2 2 2 0 0 2 2 ;

2 2 0 0 2 2 2 2 0 0 2 2 2 2 0 0 2 2 2 2 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 ]

X = M*B3

//X = 65x36 matrix

//Make product matrix o f Denom and X

f o r k = 1:65

f o r l = 1 :36

Prod (k , l ) = X(k , l ) * Denom(k , l )

end
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end

//Prod = 65x36 matrix

//Check i n t e g e r by making f l o o r matrix

Res = Prod − f l o o r ( Prod ) ;

f o r a = 1:65

f o r b = 1:36

i f ( Res (a , b) == 0) then ChecIn (a , b) = 1

e l s e ChecIn (a , b) = 0

end

end

end

//ChecIn = 65x36 matrix

f o r c = 1:65

f o r d = 1:36

i f ( ChecIn ( c , d) == 0) then p r i n t f (”%d , %d\n” , c , d )

end

end

end

p r i n t f ( ‘ ‘ end o f check\n”)

Appendix C.

Tabulated below is the output of a Scilab program which calculates the determinant
|V −tV T | where V is the Seifert matrix of the (hypothetical) tst link where µPN(τ)
and µPD(τ) are as given and M is odd. The program codes are as the follows:

t=poly (0 , ‘ t ’ )

func t i on [A]=block ( r )

A=ze ro s ( r , r )

f o r i =1: r

f o r j = 1 : r

i f i==j then A( i , j )=1

e l s e i f j==i+1 then A( i , j )=−1

end

end

end

endfunct ion

func t i on [B]= a l t z e r o s (b , a )

C=−block ( ( a−1)/2)

B=ze ro s (b , a )

f o r k=1:(a−1)/2

f o r l =2 :2 : ( a−1)

B(k , l )=C(k , (1/2) )

end

end

endfuct ion

func t i on [M]=neg tsmat (a , b)

D=block (a−1)

M=zero s ( ( a−1)* (b−1) , ( a−1)* (b−1))

f o r i =1:(b−1)

M(( a−1)* ( i −1)+1:(a−1)* i , ( a−1)* ( i −1)+1:(a−1)* i )=D

end

f o r i =1:(b−2)

M(( a−1)* i +1:(a−1)* ( i +1) , ( a−1)* ( i −1)+1:(a−1)* i )=−D
end

// p r i n t f ( ‘ ‘(−%d,%d) t o ru s knot has S e i f e r t

matrix :\n” , a , b)

endfunct ion

func t i on [E]= a l expo ly (u , s )

p r i n t f ( ‘ ‘ mil P N( tau)=%d mil P D( tau)=%d\n” ,u , s )

D=[ block (2 *u−1) z e ro s ( (2 *u−1) ,(u−1)* ( s −1)) ;

a l t z e r o s ( ( u−1)* ( s−1) ,(2 *u−1)) neg tsmat (u , s ) ]

p r i n t f ( ‘ ‘ The S e i f e r t matrix i s :\n”)

d i sp (D)

E=det (D−t *D’ )

endfunct ion
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This table has been used to guess the formula for the Alexander polynomial of the
link [Φ(n(τ), d(τ),M)] where M is odd.

PPPPPPµPD(τ)

µPN(τ)
2 3 4 5 6

2 1− t− t3 + t4 1− t+ t3 −
t4 + t6 − t7

1− t+ t3 −
t4 − t6 +
t7 − t9 + t10

1−t+t3−t4+

t6 − t7 + t9 −
t10 +t12−t13

1−t+t3−t4+

t6 − t7 − t9 +
t10 − t12 +

t13−t15 +t16

3 1− t+ t4− t5 1− t− 2t4 +

2t5 + t8 − t9
1− t+ t4 −
t5 + t8 −
t9 + t12 − t13

1−t+t4−t5+

t8−t9+t12−
t13 +t16−t17

1− t+ t4 −
t5 − 2t8 +

2t9 − 2t12 +
2t13 + t16 −
t17 +t20−t21

4 1− t− t5 + t6 1− t+ t5 −
t6 + t10 − t11

1− t− 3t5 +

3t6 + 3t10 −
3t11 − t15 +

t16

1− t+ t5 −
t6 + t10 −
t11 + t15 −
t16 +t20−t21

1− t+ t5 −
t6 + t10 −
t11 − t15 +

t16 − t20 +

t21−t25 +t26

5 1− t+ t6− t7 1− t+ t6 −
t7 + t12 − t13

1− t+ t6 −
t7 + t12 −
t13 +t18−t19

1− t− 4t6 +
4t7 + 6t12 −
6t13 − 4t18 +

4t19 + t24 −
t25

1− t+ t6 −
t7 + t12 −
t13 + t18 −
t19 + t24 −
t25 +t30−t31

6 1− t− t7 + t8 1− t− 2t7 +

2t8+t14−t15
1− t+ t7 −
t8 − t14 +

t15−t21 +t22

1− t+ t7 −
t8 + t14 −
t15 + t21 −
t22 +t28−t29

1− t− 5t7 +

5t8 + 10t14 −
10t15 −
10t21 +

10t22 +

5t28 − 5t29 −
t35 + t36

7 1− t+ t8− t9 1− t+ t8 −
t9 + t16 − t17

1− t+ t8 −
t9 + t16 −
t17 +t24−t25

1− t+ t8 −
t9 + t16 −
t17 + t24 −
t25 +t32−t33

1− t+ t8 −
t9 + t16 −
t17 + t24 −
t25 + t32 −
t33 +t40−t41

8 1−t−t9+t10 1− t+ t9 −
t10 +t18−t19

1− t− 3t9 +

3t10 + 3t18 −
3t19 − t27 +
t28

1− t+ t9 −
t10 + t18 −
t19 + t27 −
t28 +t36−t37

1− t+ t9 −
t10 + t18 −
t19 − t27 +
t28 − t36 +

t37−t45 +t46

9 1−t+t10−t11 1− t−
2t10 + 2t11 +

t20 − t21

1− t+ t10 −
t11 + t20 −
t21 +t30−t31

1− t+ t10 −
t11 + t20 −
t21 + t30 −
t31 +t40−t41

1− t+ t10 −
t11 − 2t20 +

2t21 − 2t30 +

2t31 + t40 −
t41 +t50−t51

10 1−t−t11+t12 1− t+ t11 −
t12 +t22−t23

1− t+ t11 −
t12 − t22 +
t23−t33 +t34

1− t−
4t11 + 4t12 +

6t22 − 6t23 −
4t33 + 4t34 +

t44 − t45

1− t+ t11 −
t12 + t22 −
t23 − t33 +
t34 − t44 +

t45−t55 +t56
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PPPPPPµPD(τ)

µPN(τ)
7 8 9 10

2 1− t+ t3 − t4 +
t6−t7+t9−t10+

t12 − t13 + t15 −
t16 + t18 − t19

1−t+t3−t4+t6−
t7+t9−t10−t12+

t13 − t15 + t16 −
t18+t19−t21+t22

1− t+ t3 − t4 +
t6−t7+t9−t10+

t12 − t13 + t15 −
t16 + t18 − t19 +
t21−t22+t24−t25

1− t+ t3 − t4 +
t6−t7+t9−t10+

t12 − t13 − t15 +

t16 − t18 + t19 −
t21 + t22 − t24 +

t25 − t27 + t28

3 1−t+t4−t5+t8−
t9 + t12 − t13 +
t16 − t17 + t20 −
t21 + t24 − t25

1− t+ t4 − t5 +

t8 − t9 + t12 −
t13 + t16 − t17 +

t20 − t21 + t24 −
t25 + t28 − t29

1−t+t4−t5+t8−
t9− 2t12 + 2t13−
2t16 + 2t17 −
2t20 + 2t21 +

t24 − t25 + t28 −
t29 + t32 − t33

1−t+t4−t5+t8−
t9 + t12 − t13 +
t16 − t17 + t20 −
t21 + t24 − t25 +

t28 − t29 + t32 −
t33 + t36 − t37

4 1− t+ t5 − t6 +

t10 − t11 + t15 −
t16 + t20 − t21 +
t25−t26+t30−t31

1− t+ t5 − t6 −
3t10 + 3t11 −
3t15 + 3t16 +
3t20 − 3t21 +

3t25−3t26−t30+

t31 − t35 + t36

1− t+ t5 − t6 +

t10 − t11 + t15 −
t16 + t20 − t21 +
t25 − t26 + t30 −
t31 + t35 − t36 +

t40 − t41

1− t+ t5 − t6 +

t10 − t11 + t15 −
t16 + t20 − t21 −
t25 + t26 − t30 +

t31 − t35 + t36 −
t40+t41−t45+t46

5 1− t+ t6 − t7 +
t12 − t13 + t18 −
t19 + t24 − t25 +

t30−t31+t36−t37

1− t+ t6 − t7 +
t12 − t13 + 18t−
t19 + t24 − t25 +

t30 − t31 + t36 −
t37 + t42 − t43

1− t+ t6 − t7 +
t12 − t13 + t18 −
t19 + t24 − t25 +

t30 − t31 + t36 −
t37 + t42 − t43 +

t48 − t49

1− t+ t6 − t7 −
4t12 + 4t13 −
4t18 + 4t19 +

6t24 − 6t25 +
6t30 − 6t31 −
4t36 + 4t37 −
4t42+4t43+t48−
t49 + t54 − t55

6 1− t+ t7 − t8 +

t14 − t15 + t21 −
t22 + t28 − t29 +
t35−t36+t42−t43

1− t+ t7 − t8 +

t14 − t15 + t21 −
t22 − t28 + t29 −
t35 + t36 − t42 +

t43 − t49 + t50

1− t+ t7 − t8 +

t14− t15− 2t21 +

2t22 − 2t28 +
2t29 − 2t35 +
2t36 + t42− t43 +

t49−t50+t56−t57

1− t+ t7 − t8 +

t14 − t15 + t21 −
t22 + t28 − t29 −
t35 + t36 − t42 +

t43 − t49 + t50 −
t56+t57−t63+t64

7 1− t− 6t8 +
6t9 + 15t16 −
15t17 − 20t24 +

20t25 + 15t32 −
15t33 − 6t40 +
6t41 + t48 − t49

1− t+ t8 − t9 +
t16 − t17 + t24 −
t25 + t32 − t33 +

t40 − t41 + t48 −
t49 + t56 − t57

1− t+ t8 − t9 +
t16 − t17 + t24 −
t25 + t32 − t33 +
t40 − t41 + t48 −
t49 + t56 − t57 +
t64 − t65

1− t+ t8 − t9 +
t16 − t17 + t24 −
t25 + t32 − t33 +
t40 − t41 + t48 −
t49 + t56 − t57 +
t64−t65+t72−t73

8 1− t+ t9 − t10 +
t18 − t19 + t27 −
t28 + t36 − t37 +

t45−t46+t54−t55

1− t− 7t9 +
7t10 + 21t18 −
21t19 − 35t27 +

35t28 + 35t36 −
35t37 − 21t45 +
21t46 + 7t54 −
7t55 − t63 + t64

1− t+ t9 − t10 +
t18 − t19 + t27 −
t28 + t36 − t37 +
t45 − t46 + t54 −
t55 + t63 − t64 +
t72 − t73

1− t+ t9 − t10 +
t18 − t19 + t27 −
t28 + t36 − t37 −
t45 + t46 − t54 +

t55 − t63 + t64 −
t72+t73−t81+t82
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9 1− t+ t10− t11 +

t20 − t21 + t30 −
t31 + t40 − t41 +

t50−t51+t60−t61

1− t+ t10− t11 +

t20 − t21 + t30 −
t31 + t40 − t41 +

t50 − t51 + t60 −
t61 + t70 − t71

1− t− 8t10 +

8t11 + 28t20 −
28t21 − 56t30 +

56t31 + 70t40 −
70t41 − 56t50 +
56t51 + 28t60 −
28t61 − 8t70 +

8t71 + t80 − t81

1− t+ t10− t11 +

t20 − t21 + t30 −
t31 + t40 − t41 +

t50 − t51 + t60 −
t61 + t70 − t71 +
t80−t81+t90−t91

10 1− t+ t11− t12 +
t22 − t23 + t33 −
t34 + t44 − t45 +
t55−t56+t66−t67

1− t+ t11− t12 +
t22 − t23 + t33 −
t34 − t44 + t45 −
t55 + t56 − t66 +
t67 − t77 + t78

1− t+ t11 −
t12 + t22 − t23 +

t33 − t34 + t44 −
t45 + t55 − t56 +
t66 − t67 + t77 −
t78 + t88 − t89

1− t− 9t11 +
9t12 + 36t22 −
36t23 − 84t33 +

84t34 + 126t44 −
126t45−126t55 +

126t56 + 84t66 −
84t67 − 36t77 +

36t78 + 9t88 −
9t89 − t99 + t100
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Reviewer’s Comments

In this paper, the authors generalized the well-known question of cutting a Mobius
strip in half to that of cutting a twisted solid torus in different ways. The resultant
links were studied. General forms of their braid words, Seifert matrices, Alexander
polynomials and some other results were deduced.

The paper is very rich in content and contains a lot of details. With the length
of the paper, the authors may consider stating some of the main results in the
introduction. This should help the readers to understand the paper more easily.


