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Abstract. In this paper, we look into a generalized version of the well-known
Tower of Hanoi problem. We will investigate the shortest methods of traversing

between any two valid configurations of discs in the standard problem, as well

as in some variants.

1. Introduction

1.1. Background

The Tower of Hanoi problem, also known as the Tower of Brahma or Lucas’ Tower
problem, is a well-known solitaire game. The problem was introduced by math-
ematician Édouard Lucas in 1883. Since then, there have been many variants
invented upon the standard game.

The standard Tower of Hanoi problem can be summarized as thus:

There are three upright pegs, and n cylindrical discs of distinct sizes. Each disc
has a hole in it such that it can be placed on any peg. At the start of the game,
all the discs are placed on the same peg in descending order of size, such that the
uppermost disc is the smallest. [See reviewer’s comment (2)] The goal is to move
all the discs to another peg, moving one disc at a time from one peg to another,
with the conditions that

(a) Only the top disc on each peg can be moved;
(b) A disc cannot be placed on top of a smaller disc.

The algorithm for solving this standard game, as well as the fewest number of moves
required is well-known. However, little is known about the fewest number of moves
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required to move the discs from any one valid configuration of discs to another. In
this project, we aim to solve this problem for the standard game as well as for some
of the more popular variants.

1.2. Notation and reformulation

All variables within this report are implicitly assumed to be positive integers unless
otherwise stated.

To reduce the complexity of this report, we shall reformulate the base game thusly:

Label the three pegs 0, 1 and 2, and label the n discs 1, 2, 3, . . . , n in ascending order
of size, such that the disc labelled 1 is the smallest disc. In a game with n discs, each
configuration will be represented by an n-digit ternary code with possible leading
zeros, where the m-th digit from the right represents the peg that disc m is placed
upon. The term ‘code’ refers to an n-digit ternary code.

For example, in a 4-disc game, a configuration could be represented by 1210. Here
disc 1 (the smallest disc) is placed on peg 0, discs 4 and 2 are placed on peg 1 (in
that order), and the disc 3 is placed on peg 2.

Disc m can be moved from peg P to peg Q, where m,P,Q are variables, if and only
if the rightmost (m− 1) digits of the current code do not contain P or Q. (1)

A path from configuration A to configuration B is a sequence of configurations and
the moves required such that the first configuration is configuration A and the last
configuration is configuration B, and each configuration can be achieved in one
valid move from the previous configuration. A non-repeating path is such a path
with all distinct configurations.

The shortest path is the path between two given configurations with the fewest
number of configurations involved.

The path length is the number of moves used in a given path. The shortest path
length is the path length of the shortest path between two given configurations.

If the shortest path length from configuration A to configuration B is 1, then we
consider configuration B to be adjacent to configuration A.

To traverse from configuration A to configuration B is to arrange a sequence of
moves such that configuration A can be changed to configuration B.

The base case refers to the standard rules as set out above. A variant refers to
modification of the rules in any way such that a move that would not be valid in
the base case is now valid, or a move that would be valid in the base case is now
not valid.
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The specific case for a variant of the Tower of Hanoi problem refers to the problem
of the shortest path from all discs on one peg to all discs on another peg. The
general case for a variant refers to the problem of the shortest path from any valid
configuration to another.

The notation 00 . . . 0 (m) means m ‘0’s in a row. 11 . . . 1 (m) and 22 . . . 2 (m) are
defined similarly. An expression like 12022 . . . 2 (m) means 120 followed by m ‘2’s
in a row.

1.3. Project Outline

This paper consists of six chapters.

Chapter 1 (the current chapter) is a brief introduction of our project.

In Chapter 2, we state and prove a few properties of the base game, and introduce
the specific variants we are going to discuss.

2. Preliminary Work

Proposition 1. At any time, the discs on each peg are arranged in ascending order
of size such that the top disc is the smallest.

Proof. This is evident from the condition that no disc can be put on a smaller
disc.

Proposition 2. The reformulation of the game rules in line (1) above is valid.

Proof. Line (1) is equivalent to stating that a disc can be moved if and only if

(a’) no discs with smaller labelled values are on the origin peg of the disc to be
moved; and

(b’) no discs with smaller labelled values are on the destination peg of the disc to
be moved.

Condition (a) is equivalent to stating that the disc to be moved is the smallest one
on its origin peg, according to Proposition 1. Therefore condition (a) is equivalent
to condition (a’).

Condition (b) is equivalent to stating that the disc to be moved must be smaller
than the original top disc on the destination peg. This is then equivalent to stating
that the moved disc will be the smallest disc on the destination peg once it is moved,
according to Proposition 1, which is then equivalent to condition (b’).
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Proposition 3. There is a one-one correspondence between the ternary n-digit
codes and the possible configurations of the n discs.

Proof. Since the discs must be arranged in ascending order of size with the smallest
on top, there is no ambiguity as to the configuration of discs given an n-digit code.
Thus a function exists mapping the codes to the possible configurations of discs.

Since each disc in a possible configuration is placed on exactly one peg labelled
from 0 to 2, there exists a unique code for every configuration. Thus a function
exists as well in the backwards direction, and we are done.

We shall now note some of the properties of the base game. We consider these prop-
erties characteristic of the Tower of Hanoi problem, and thus we shall investigate
variants that share these characteristics below.

Property 4. It is possible to determine the possible configurations that can be
reached in one move given the current configuration (a code).

For example, this property is not present in a variant that adds the condition ‘At
the m-th move, only odd-labelled discs can be moved if m is odd and only even-
labelled discs can be moved if m is even’, due to the added variable of the move
number.

Property 5. Each configuration is determined uniquely by a code.

For example, this property is not present in a variant that changes condition (b) to
‘A disc can be placed on another disc only if the disc to be placed is at most one
size larger than the other disc’, due to violation of Proposition 1 (which then leads
to violation of Proposition 3)

We also wish to preserve the conditions of the original Tower of Hanoi game (i.e.
each variant we consider will have additional constraints added to the base rules
instead of replacing them).

We locate the following types of modifications, which seemed the most obvious:

(a) Restricted moves. We can disallow certain types of moves.
(b) Restricted configurations. We can disallow certain configurations of discs

altogether.

Of each modification, we designed the most intuitive variants that satisfy Property
4 and Property 5 for discussion below.

(a) Directed moves. In this variant, we define the direction of pegs 0→ 1→ 2→ 0
as clockwise (and 0 → 2 → 1 → 0 as anticlockwise). We then label each
disc such that each disc can only move in one direction, either clockwise or
anticlockwise.
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(b) Restricted configurations. In this variant, we colour each disc one of black or
white, and add the constraint that a disc cannot lie on top of a disc of the
same colour.

3. The Base Case

3.1. The specific case

The specific case for the base case is well known. A unique algorithm (aside from
symmetry) for the solution of this case using the shortest path is

(1) Move disc 1 clockwise.
(2) Find the number of pegs with discs on them. If it is 2 or more, go to step 3.

Otherwise, go to step 4.
(3) Consider the second smallest top disc on the three pegs, which exists due to

step 2. Move this disc to the unique other peg that does not have disc 1 on
it. Go to step 1.

(4) The goal is reached.

Below, the ‘base case algorithm’ means the above algorithm.

It is similarly well-known that the number of moves in this algorithm is 2n − 1.

Proposition 6. The final configuration is all discs on the peg that is one step
clockwise from the original peg, if n is odd; and all discs on the peg that is one step
anticlockwise from the original peg, if n is even.

Proof. Without loss of generality assume that the starting configuration is
00 . . . 0 (n). We proceed by induction. For n = 1, the result is clear. For n > 1, note
that disc n will never be moved in the above algorithm unless all of discs 1, 2, . . . , n−
1 are on the same peg that is distinct from the peg disc n lies on (otherwise the
second smallest top disc cannot be disc n). Consider discs 1, 2, . . . , n − 1. By
the induction assumption, the first time this occurs (after 2n−1 − 1 moves) the
configuration will be 011 . . . 1 (n − 1) if n is even and 022 . . . 2 (n − 1) if n is odd.
Then the next move results in 211 . . . 1 (n− 1) if n is even and 122 . . . 2 (n− 1) if n
is odd. Again, by the induction assumption, after 2n−1−1 moves, the configuration
is 22 . . . 2 (n) if n is even and 11 . . . 1 (n) if n is odd, and we are done.

It should follow that if step (1) in the base case algorithm is modified to move
disc 1 anticlockwise (define this as the ‘inverse base case algorithm’) then the exact
opposite result will be obtained. The final configuration will be all discs on the peg
that is one step clockwise from the original peg, if n is even; and all discs on the
peg that is one step anticlockwise from the original peg, if n is odd.

This proposition will be used in the analysis of the general case below.
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3.2. The general case

For ease of discussion, we let the starting configuration be anan−1 . . . a1 and the
final configuration be bnbn−1 . . . b1, where a1, a2, . . . , an and b1, b2, . . . , bn are all
either 0, 1 or 2.

Proposition 7. The largest moving disc in a non-repeating path cannot move be-
tween the same two pegs more than once.

Proof. Let there be n discs and let the largest moving disc be disc m. Without loss
of generality let it move between pegs 0 and 1. The configurations before and after
the move must be anan−1 . . . am+1022 . . . 2 (m−1) to anan−1 . . . am+1122 . . . 2 (m−
1) in some order, given that the discs m+1,m+2, . . . , n started in the configuration
anan−1 . . . am+1. It then follows that if a move between these two pegs occurs again,
at least one configuration must repeat.

Proposition 8. The shortest path length from 00 . . . 0 (n), 11 . . . 1 (n) or
22 . . . 2 (n) to any configuration is less than or equal to 2n − 1.

Proof. We proceed by induction. For n = 1, the claim is obvious.

For n > 1, without loss of generality let the starting configuration be 00 . . . 0 (n).
Either bn = 0 or bn 6= 0. If bn = 0, we can simply choose not to move the disc n
and use the shortest path from 00 . . . 0 (n − 1) to bn−1 . . . b1, which has 2n−1 − 1
or fewer moves according to the induction assumption. Thus this case is trivially
solved.
If bn 6= 0, without loss of generality let bn = 1. Use the base case algorithm
to reach the configuration 022 . . . 2 (n − 1), using 2n−1 − 1 moves. Then we can
reach the adjacent configuration 122 . . . 2 (n − 1) using a total of 2n−1 so far.
Using the induction assumption, we can then reach 1bn−1 . . . b1 using no more than
2n−1 + 2n−1 − 1 = 2n − 1 moves.

Corollary 9. The shortest path length between any two n-digit configurations
anan−1 . . . a1 and bnbn−1 . . . b1 is no more than 2n − 1.

Proof. Choose a number from {0, 1, 2} such that it is not identical to an or bn.
Without loss of generality let it be 0. Then the distance from anan−1 . . . a1 to
an00 . . . 0 (n − 1) is at most 2n−1 − 1, the distance from an00 . . . 0 (n − 1) to
bn00 . . . 0 (n−1) is at most 1, and the distance from bn00 . . . 0 (n−1) to bnbn−1 . . . b1
is at most 2n−1−1, for a total distance of at most 2n−1−1+1+2n−1−1 = 2n−1.

Corollary 10. The shortest path between anan−1 . . . a1 and bnbn−1 . . . b1, where
some nonnegative number integer m satisfies “for all i such that n −m < i ≤ n,
we have ai = bi”, does not include any moves of discs i where n−m < i ≤ n.
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Proof. The condition means that the starting and final configuration of the largest
m discs are identical. It follows from corollary 9 that the shortest path length is
no more than 2n−m − 1.

Assume to the contrary that disc i was moved during some shortest path, for
some i satisfying n − m < i ≤ n; moreover, assume this i is the largest such i
satisfying the above condition. Without loss of generality we may assume ai =
bi = 0, and that the first move of disc i was moving from peg 0 to peg 1. The
configuration representing this must then be anan−1 . . . ai+1022 . . . 2 (i − 1) to
anan−1 . . . ai+1122 . . . 2 (i − 1), since none of the discs i + 1, i + 2, . . . , n will have
moved by the assumption that the chosen i is the largest possible.

If disc i ever moves from peg 1 to peg 0, it violates Proposition 7. Thus it cannot
be a shortest path.

Otherwise, disc i never moves from peg 1 to peg 0, so it must have moved to
peg 2 from peg 1 (since it needs to return to peg 0). The configuration repre-
senting this must be anan−1 . . . ai+1100 . . . 0 (i− 1) to anan−1 . . . ai+1200 . . . 0 (i−
1). However, the shortest distance between anan−1 . . . ai+1122 . . . 2 (i − 1) and
anan−1 . . . ai+1100 . . . 0 (i − 1) is 2i−1 − 1. Thus the number of total moves must
be at least 2i−1, adding in the move of disc i from peg 1 to peg 2. Since n−m < i,
it follows that 2n−m − 1 < 2i−1, so this path cannot be the shortest path, reaching
a final contradiction.

Corollary 11. The shortest path between anan−1 . . . a1 and bnbn−1 . . . b1, where
a1 = a2 = · · · = an 6= bn, moves disc n exactly once.

Proof. Without loss of generality assume a1 = a2 = · · · = an = 0, bn = 1. Assume
disc n was moved more than once. By Proposition 7, disc n must have moved from
peg 0 to peg 2, then to peg 1.

Then the path must include the moves 011 . . . 1 (n − 1) → 211 . . . 1 (n − 1)
and 200 . . . 0 (n − 1) to 100 . . . 0 (n − 1). However, the shortest path length
from 00 . . . 0 (n) to 011 . . . 1 (n − 1) is 2n−1 − 1, one move is needed to reach
211 . . . 1 (n− 1), the shortest path length from 211 . . . 1 (n− 1) to 200 . . . 0 (n− 1)
is 2n−1 − 1, and one more move is needed to move to 100 . . . 0 (n − 1), for a total
of at least 2n−1 − 1 + 1 + 2n−1 − 1 + 1 = 2n moves, reaching contradiction.

The algorithm for the shortest path between anan−1 . . . a1 and bnbn−1 . . . b1, where
a1 = a2 = · · · = an, is then within reach.

Case I: If an 6= bn, let cn = 3 − an − bn. cn will be the number from {0, 1, 2} not
equal to either an or bn. Then disc n moves exactly once by Corollary 11, from an
to bn. Then the move must be from ancncn . . . cn (n−1) to bncncn . . . cn (n−1), for
a total of 2n−1−1+1 = 2n−1 moves to reach bncncn . . . cn (n−1). Afterwards, disc
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n does not move, so we simply consider the shortest path from cncn . . . cn (n − 1)
to bn−1 . . . b1.

Case II: If an = bn, then by Corollary 10 disc n never moves, so simply consider
the shortest path from an−1 . . . a1 to bn−1 . . . b1.

We have a recursive algorithm. We used ci to store the current location of the i-th
disc right after the (i + 1)-th disc is put into place. Note that case II is invoked
when cm = bm−1 for some m, as can be seen from the last line of the algorithm.
Thus, we simply define cn+1 = a1 = a2 = · · · = an, and add “let cn = cn+1” to the
instructions in Case II. Then Case I is invoked only when cm+1 = bm, where m is
the number of digits in the currently considered code (i.e. the label of the largest
currently considered disc).

Also note that if we consider all numbers to be modulo 3, then “set cn ≡ −an− bn”
suffices for Case I, and if cm+1 ≡ bm, then setting cn ≡ −cn+1 − bn also works to
set cn = cn+1.

Here is the algorithm written explicitly, given an n-digit ternary code for the final
configuration and a number a from {0, 1, 2} for the starting configuration:

Step 1: Set i equal to n. Set cn+1 equal to a. Set A equal to 0. Go to Step 2.
Step 2: Is bi ≡ ci+1? If yes, go to Step 4. If no, go to Step 3.
Step 3: Add 2i−1 to A. Go to Step 4.
Step 4: Set ci ≡ −ci+1 − bi. Decrease i by 1. If i = 0, go to Step 5. If not, go to

Step 2.
Step 5: Output A as the number of moves needed.

A quick method to calculate the shortest path length is to recursively calculate cm
for each m from n to 1. Below is an example calculating the shortest path length
from 0000000 to 2022121.

i 8 7 6 5 4 3 2 1
bi N/A 2 0 2 2 1 2 1

bi = ci+1? N/A No No Yes Yes No No Yes
ci 0 1 2 2 2 0 1 1
A 0 64 96 96 96 100 102 102

The answer is 102 moves.

Now we can generalise this for any two configurations anan−1 . . . a1 and
bnbn−1 . . . b1.

We may assume an 6= bn; otherwise, by Corollary 10, disc n never moves, so it is
equivalent to considering the configurations an−1 . . . a1 and bn−1 . . . b1.

Define cn = 3− an − bn; since the largest disc cannot move between the same two
pegs twice, then either disc n moves from an to bn or from an to cn to bn.
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If disc n moves from an to bn, it must be from ancncn . . . cn (n− 1) to
bncncn . . . cn (n − 1). Using the above algorithm twice can find the number of
moves from anan−1 . . . a1 to ancncn . . . cn (n− 1), and from bncncn . . . cn (n− 1) to
bnbn−1 . . . b1. Adding one to their sum is a possible shortest path length;

If disc n moves from an to cn to bn, then the two moves involved must be from
anbnbn . . . bn (n− 1) to cnbnbn . . . bn (n− 1), and cnanan . . . an (n− 1) to
bnanan . . . an (n − 1). Using the above algorithm twice can find the number of
moves from anan−1 . . . a1 to anbnbn . . . bn (n − 1), and from bnanan . . . an (n − 1)
to bnbn−1 . . . b1. The shortest path distance from cnbnbn . . . bn (n− 1) to
cnanan . . . an (n− 1) is 2n−1 − 1.

Thus the possible shortest path length is 2n−1− 1 + 1 + 1 = 2n−1 + 1 plus the sum
of the two algorithm results.

Now, the shortest path length must be one of the two possible shortest path lengths,
so simply take the smaller result. We have a complete algorithmic method to find
the shortest path length between any two configurations.

4. The Clockwise/Anticlockwise Restriction Case

4.1. Preliminary Work

This case restricts all discs to either move in the direction 0 → 1 → 2 → 0 (clock-
wise) or 0→ 2→ 1→ 0 (anticlockwise). We colour each disc either black or white,
and add the restriction that white discs only travel clockwise while black discs only
travel anticlockwise. In this variant, if configuration A is adjacent to configuration
B, then configuration B cannot be adjacent to configuration A.

Proposition 12. There is exactly one non-repeating path from any configuration
to any other configuration, as long as the largest disc is on different pegs in the
starting and final configurations.

Proof. We proceed by induction. When n = 1, the claim is obvious.

If n > 1, let the starting configuration be anan−1 . . . a1 and the final configuration
be bnbn−1 . . . b1. Without loss of generality assume an = 0 and disc n is white.

Case I: bn = 1. Then disc n must have moved from peg 0 to peg 1. Note that since
this variant is a more stringent version of the base case, many of its properties still
hold - in particular, Proposition 7 clearly holds - thus the only move for disc n is
from peg 0 to peg 1. Then the move must be from 022 . . . 2 (n−1) to 122 . . . 2 (n−1).
There are no other moves for disc n, so the case is reduced to n − 1 discs, from
an−1 . . . a1 to 22 . . . 2 (n−1) and from 22 . . . 2 (n−1) to bn−1 . . . b1. By the induction
assumption, there is exactly one path.
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Case II: bn = 2. By Proposition 7, disc n moved from peg 0 to peg 1, then from peg
1 to peg 2. The moves must be from 022 . . . 2 (n− 1) to 122 . . . 2 (n− 1) and from
100 . . . 0 (n−1) to 200 . . . 0 (n−1). There are no other moves for disc n, so the case
is reduced to n− 1 discs, from an−1 . . . a1 to 22 . . . 2 (n− 1), from 22 . . . 2 (n− 1) to
00 . . . 0 (n−1) and from 00 . . . 0 (n−1) to bn−1 . . . b1. By the induction assumption,
there is exactly one path.

Given this proposition, we have that any non-repeating path must be the shortest
path in this variant, as long as the largest disc is on different pegs in the starting
and final configurations.

4.2. The specific case

Note that since this variant lacks reversibility, there are two different values of the
shortest path length from all discs on one given peg to all discs on another given peg,
depending on whether the discs moved one peg clockwise or one peg anticlockwise.
We define two sequences {sn} and {ln}, where si is the clockwise shortest path
length for i discs, and li is the anticlockwise shortest path length for i discs.

We start this section with a specific example, where all discs are white.

Proposition 13. If all discs are white, then sn = 2ln−1+1 and ln = 2ln−1+sn−1+1
for all n > 1. [See reviewer’s comment (3)]

Proof. Proceed by induction. Without loss of generality assume the discs start all
on peg 0. When moving disc n to peg 1, the other discs must be on peg 2, i.e. moved
one peg anticlockwise. Then the other discs are moved one peg anticlockwise from
peg 2 to peg 1 collectively to end up on the same peg as the largest disc. Thus
sn = 2ln−1 + 1.

When moving the largest disc to peg 2, it in fact moves clockwise twice. Before the
first move from peg 0 to peg 1, the other discs must be on peg 2, i.e. moved one peg
anticlockwise. Then the other discs must be moved one peg clockwise from peg 2
to peg 0 to allow disc n to move from peg 1 to peg 2. Finally, the other discs move
from peg 0 to peg 2, which is one peg anticlockwise. Thus ln = 2ln−1 + sn−1 + 1.
[See reviewer’s comment (4)]

Now we attempt to solve sn = 2ln−1 + 1 and ln = 2ln−1 + sn−1 + 1 for a general
formula. ln = 2ln−1 + sn−1 + 1 = 2ln−1 + 2ln−2 + 3; then considering the sequence
{ln+1}, we have that ln+1 = 2(ln−1+1)+2(ln−2+1). The characteristic equation

x2− 2x− 2 = 0 solves for the roots 1 +
√

3 and 1−
√

3; solving for coefficients with
the first two term l1 = 2 and l2 = 7 yields the general formula as [See reviewer’s
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comment (4)]

ln + 1 =
2
√

3 + 3

6
(1 +

√
3)n +

3− 2
√

3

6
(1−

√
3)n, so

ln =
2
√

3 + 3

6
(1 +

√
3)n +

3− 2
√

3

6
(1−

√
3)n − 1.

Solving for sn is then simple and yields sn =
√
3+3
6 (1 +

√
3)n + 3−

√
3

6 (1−
√

3)n− 1.

Other colouring methods of the discs yield a similar series of recurrence relations
that can then be solved. Of particular note is the alternate colouring scheme,
where disc m is white if m is odd and disc m is black otherwise. This solves for the
recurrence relations:

ln = 2sn−1 + 1 if n is even and ln = 2ln−1 + sn−1 + 2 otherwise;

and sn = 2ln−1 + 1 if n is odd and sn = 2sn−1 + ln−1 + 2 otherwise. Considering
the sequence {dn} where dn = sn if n is odd and dn = ln if n is even yields
the recurrence relation dn = 2dn−1 + 1, which together with d1 = 1 solves for
dn = 2n − 1. Hence, either the base case algorithm or the inverse algorithm must
in fact satisfy the restrictions of this alternating colour scheme. It is easily checked
that it is the base case algorithm that satisfies these restrictions (since the smallest
disc is white).

The remaining values are solved easily: sn = 2n+1 − 2 when n is even and ln =
2n+1 − 2 when n is odd. This can be used to prove the property that the shortest
paths from 00 . . . 0 (n) to 11 . . . 1 (n) and 11 . . . 1 (n) to 22 . . . 2 (n) in fact do
not repeat any configuration, as follows: Join the two paths to form a path from
00 . . . 0 (n) to 22 . . . 2 (n). This path must satisfy the alternate colour scheme’s
restrictions. Assume to the contrary that there is a repetition. Then by removing
the cycle from the joined path, we have a non-repeating path with less than 2 ×
(2n − 1) = 2n+1 − 2 moves. This contradicts Proposition 12’s proof that there is
only one non-repeating path.

4.3. The general case

Proposition 14. sn ≤ 2ln ≤ 4sn for any n and any colouring scheme.

Proof. Assume this is false, i.e. sn > 2ln ir ln > 2sn for some colouring scheme
and some n. Without loss of generality assume sn > 2ln. By first using the unique
non-repeating path to move all discs one peg anticlockwise, then doing so again,
we have a path that moves all discs one peg clockwise. By removing all cycles from
this path, we get a non-repeating path with at most 2ln moves. Thus sn > 2ln
cannot be true.
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Corollary 15. For any colouring scheme, the shortest path between anan−1 . . . a1
and bnbn−1 . . . b1, where some nonnegative integer m satisfies “for all i such that
n − m < i ≤ n, we have ai = bi”, does not include any moves of discs i where
n−m < i ≤ n.

Proof. The condition means that the starting and final configuration of the largest
m discs are identical.

Assume to the contrary that a disc i moves during a shortest path, where n−m <
i ≤ n.
Assume also that this i is the largest such i. Note that there may be more than
one non-repeating path, since the largest disc is on the same peg in the starting
and final configurations.

Without loss of generality assume disc i started on peg 0, and without loss of gener-
ality assume disc i moves from peg 0 to peg 1, to peg 2, and back to peg 0. Then the
moves must be from anan−1 . . . ai+1022 . . . 2 (i−1) to anan−1 . . . ai+1122 . . . 2 (i−1),
from anan−1 . . . ai+1100 . . . 0 (i − 1) to anan−1 . . . ai+1200 . . . 0 (i − 1), and finally
from anan−1 . . . ai+1211 . . . 1 (i − 1) to anan−1 . . . ai+1011 . . . 1 (i − 1). There is a
minimum of min{si−1, li−1} moves between either of anan−1 . . . ai+1122 . . . 2 (i −
1) to anan−1 . . . ai+1100 . . . 0 (i − 1) and between anan−1 . . . ai+1200 . . . 0 (i − 1)
and anan−1 . . . ai+1211 . . . 1 (i − 1). Let a moves be required to traverse from
anan−1 . . . a1 to anan−1 . . . ai+1022 . . . 2 (i − 1), and b moves be required to tra-
verse from anan−1 . . . ai+1011 . . . 1 to bnbn−1 . . . b1. Thus, there are at least 2 ×
min{si−1, li−1}+ 3 + a + b moves in this shortest path.

Now consider an alternate path, using the shortest path from anan−1 . . . a1 to
anan−1 . . . ai+1022 . . . 2 (i − 1), then to anan−1 . . . ai+1011 . . . 1 (i − 1), then fi-
nally to bnbn−1 . . . b1. The path length is at most a + b + max{si−1, li−1}. Using
Proposition 14, we have that max{si−1, li−1} < 2×min{si−1, li−1}+ 3, so we have
a shorter, possible repeating path compared to the shortest path, which is a clear
contradiction.

The algorithm for the shortest path between anan−1 . . . a1 and bnbn−1 . . . b1, where
a1 = a2 = · · · = an, is yet again within reach.

Case I: If an 6= bn, without loss of generality assume an = 0 and disc n is white.
Then if bn = 1, disc n moves exactly once, from 022 . . . 2 (n−1) to 122 . . . 2 (n−1),
for a total of ln−1 + 1 moves so far (with s0, l0 defined as 0). Afterwards, disc n
does not move, so we simply consider the shortest path from 22 . . . 2 (n − 1) to
bn−1 . . . b1. Otherwise, bn = 2, so disc n moves exactly twice, from 022 . . . 2 (n− 1)
to 122 . . . 2 (n − 1), and then from 100 . . . 0 (n − 1) to 200 . . . 0 (n − 1), for a total
of sn−1 + ln−1 + 2 moves so far. Afterwards, again, disc n does not move, so we
simply consider the shortest path from 00 . . . 0 (n− 1) to bn−1 . . . b1.
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Case II: If an = bn, then by Corollary 15 disc n never moves, so simply consider
the shortest path from an−1 . . . a1 to bn−1 . . . b1.

We have a recursive algorithm. By calculating the values of sm, lm for each m as
described in section 4.2, we can calculate the distance easily. Here we demonstrate
for the case with all discs white, using ternary system in the following algorithm,
given an n-digit ternary code for the final configuration and a number a from
{0, 1, 2} for the starting configuration. We shall use ci to store the current location
of the i-th disc right after the (i + 1)-th disc is put into place, as before.

Step 1: Set i equal to n. Set cn+1 equal to a. Set A equal to 0. Go to Step 2.
Step 2: What is bi − ci+1 congruent to? If 0, go to Step 3. If 1, go to Step 4. If 2

go to Step 5.
Step 3: Set ci ≡ ci+1. Go to Step 6.
Step 4: Set ci ≡ bi + 1. Add ln−1 + 1 to A. Go to Step 6.
Step 5: Set ci ≡ bi + 1. Add sn−1 + ln−1 + 2 to A. Go to Step 6.
Step 6: Decrease i by 1. If i = 0, go to Step 7. If not, go to Step 2.
Step 7: Output A as the number of moves needed.

As before, here is an example of traversing from 0000000 to 2012121:

i 8 7 6 5 4 3 2 1
bi N/A 2 0 1 2 1 2 1

bi − ci+1 N/A 2 0 1 0 2 0 2
ci 0 0 0 2 2 2 2 2
A 0 1223 1223 1342 1342 1363 1363 1365

The answer is 1365 moves.
Note that it is necessary to reverse the colours considered for the reverse case, i.e.
when b1 = b2 = · · · = bn, but a1 = a2 = · · · = an is not necessarily true.

Now we can generalise this for any two configurations anan−1 . . . a1 and
bnbn−1 . . . b1.

We may assume an 6= bn; otherwise, by Corollary 10, disc n never moves, so it is
equivalent to considering the configurations anan−1 . . . a1 and bnbn−1 . . . b1.

Depending on the colour, either disc n on peg an can be moved to bn in one move,
in which case sum up the results from both sides and add one; or it requires two
moves, in which case sum up the results, add two, and add sn−1 or ln−1, whichever
is appropriate. It is noted that there is only one method in this case and there is
no need to take the minimum.

Thus we have a complete algorithmic method to find the shortest path length
between any two configurations.
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5. The Black/White Restriction Case

5.1. Preliminary Work

In this case, each disc is coloured one of black and white, and no two discs of the
same colour can be stacked on top of each other.

Proposition 16. There are exactly two possible moves from any configuration.

Proof. This is easily tested by writing down all possible scenarios of topmost discs
in terms of size and colour.

Thus we have that the graph of possible moves and configurations is composed
entirely of cycles.

Note that Proposition 7 holds as before. Note also that if disc n is to move, we have
that all of discs 1, 2, . . . , n − 1 must be of alternating colours. This is easily seen
since, when disc n moves from a peg to another peg, all of the smaller discs must
be on another peg, which cannot be done if they do not have alternating colours.

Thus we will only consider the case where all discs have alternating colours. Oth-
erwise, if the alternating colour pattern fails at disc m (i.e. disc m and disc m− 1
have the same colour) then disc m + 1 can never move.

5.2. The specific and general cases

Proposition 17. The n-th move in the base case algorithm moves the disc m such
that m satisfies 2m | n and 2m+1 does not divide n.

Proof. We proceed via induction. The case for n = 1 is obvious.

For n > 1, the first 2n−1 − 1 moves cannot encounter any contradiction by the
induction assumption. On the 2n-th move, the n-th disc is moved, satisfying the
condition. At the k-th move after the 2n-th move, the m-th disc is moved where
2m | k and 2m=1 does not divide k. Then 2m | k + 2n and 2m+1 does not divide
k + 2n, since n > m. The proof is complete.

Proposition 18. All configurations encountered in the base case algorithm satisfy
the alternating colour property.

Proof. We proceed by induction.

For n = 1 and 2, the conclusion is obvious.
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For n > 2, consider the bottommost disc. It is given that the base case algorithm
satisfies that odd-numbered discs only move clockwise and even-numbered discs
only move anticlockwise, as was proved above. Without loss of generality, the
largest disc n can be assumed to be odd. Consider the first 2n−1 − 1 moves. If an
odd disc i is placed upon disc n, it has moved an number of moves that is divisible
by 3. Consider the disc i + 1. It will have moved a number of moves that is also
divisible by 3.
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Reviewer’s Comments

Grammatical mistakes and typos

1 The reviewer has comments on the wordings, which have been amended in
this paper.

2 descending → ascending
3 The formula for ln should be ln = 2ln−1 + sn−1 + 2
4 Same, the formula for ln should be ln = 2ln−1 + sn−1 + 2

Comments

The paper generalized the famous Tower of Hanoi problem. The author investigated
the numbers of moves needed to change between different arrangements of discs.
An algorithm for the computation was given. Some variations of the problem with
different sets of rules were also studied.

This research problem is interesting. The paper is well-written and the organization
of is good. A suggestion is that the uniqueness of shortest path between different
configurations in the standard game should be discussed. There are minor mistakes
in some of the statements and proofs. For instance, proposition 16 is not correct
for the configuration 12. There are also mistakes in the numbering of theorems.




