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Abstract. With the aim of finding new alternatives to resolve large Fibonacci

or Lucas numbers, we have immersed ourselves in these two sequences to find
that there are other fascinating phenomena about them. We have, in the first

part of the report, successfully discovered four new methods to resolve large

Fibonacci and Lucas numbers. From the very beginning, we have decided
to adopt the normal investigation approach: observe, hypothesize, and then

prove. The first two methods were discovered. Then we move on and try to

explore these sequences in the two dimensional world. From the tables and
triangles thereby created, we have discovered various surprising patterns which

then help us generate the third and fourth formula to resolve large Fibonacci

and Lucas numbers. In the second part of the report, we have focused on
sequences in two dimensions and discovered many amazing properties about

them.

1. Introduction

The Fibonacci and Lucas Sequences

To generate the Fibonacci sequence, start with 1 and then another 1. Af-
terwards, add up the previous two numbers to get the next. So the third
term is found by adding 1 to 1: 1 � 1 � 2; the fourth term 1 � 2 � 3,
the fifth 2 � 3 � 5. This gives the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,
89, 144, 233, . . .. In this report, we denote the Fibonacci sequence with F pnq.

The Lucas sequence, likewise, is generated by adding the last two num-
bers to get the next. The only difference with the Fibonacci sequence is
that it starts with 1 and then 3. Hence the sequence is 1, 3, 4, 7, 11, 18, 29,
47, 76, 123, . . .. In this report, we shall denote the Lucas sequence with Lpnq.

1This work is done under the supervision of the authors’ teacher, Ms. Yau-Man Sum.
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Apart from the above specific sequences, you will also find some recurrence
sequences in the project. Recurrence sequences are sequences that satisfy
the following relation: Upnq�Upn�1q � Upn�2q in which the two starting
terms are denoted by Up1q and Up2q. Therefore, F pnq and Lpnq are actually
examples of Upnq.

Note that in this project we would like to focus on Upnq with positive
integers n. Therefore, the proofs written in this project will only involve
Upnq with positive integers n. However, in certain areas, we still have to
deal with Up0q and even Upnq with negative integers n.

The History and Background of the Fibonacci and Lucas Sequences

The Fibonacci sequence is a sequence of numbers first created by Leonardo
Fibonacci in 1202. He considers the growth of an idealized (biologically
unrealistic) rabbit population, assuming that:

(1) in the first month there is just one newly-born pair,
(2) new-born pairs become fertile from their second month on each month,
(3) every fertile pair begets a new pair, and
(4) the rabbits never die.

Let the population at month n be F pnq. At this time, only rabbits which
were alive in month pn � 2q are fertile and produce offspring, so F pn � 2q
pairs are added to the current population of F pn � 1q. Thus the total is
F pnq � F pn� 1q � F pn� 2q, which gives us the definition of the Fibonacci
sequence[1].

Edouard Lucas is best known for his results in number theory: the Lu-
cas sequence is named after him[2].

Known Formulae to Solve Fibonacci and Lucas Numbers

Binet’s Formula concerning Fibonacci numbers[3]
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Successor Formula concerning Fibonacci numbers[3]

F pn� 1q �
�
F pnqp1�?

5q � 1

2

�
where rxs means the greatest integer smaller than x.

“Analog” of Binet’s Formula concerning Lucas numbers[4]
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Successor Formula concerning Lucas numbers[4]

Lpn� 1q �
�
Lpnqp1�?

5q � 1

2

�
when n ¥ 4

where rxs means the greatest integer smaller than x.

Our Aims and Objectives in Doing This Project

The spirit of Mathematics is to try, to believe and to improve. Although
there are several methods of finding the general term, there is always an al-
ternative and perhaps simpler way to find the general term. In sight of this,
we have tried and successfully found out various other methods in finding
large Fibonacci and Lucas numbers. In addition, even large numbers in a
sequence following the property of Upnq�Upn�1q � Upn�2q can be found.

Methodology

In this report, the Mathematical Induction, a useful tool for proving hy-
potheses, is commonly used.

General Organization and a Brief Summary of the Report

We have divided the report into ten sections. Here, we have mainly adopted
the normal investigation procedure: observations Ñ generalization Ñ
hypothesis Ñ proof. In the end we try to apply our findings to help us
solve large Fibonacci and Lucas numbers.

To facilitate our discussion, we have set up a naming system. It consists
of:

(1) the category the discussion belongs to
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(2) the numbering of the piece of discussion

The categories of pieces of discussion are Observation, Hypothesis, For-
mula and Application.

The numbering system consists of two parts, namely the section number
and the point number.

For example, Hypothesis 2.19 means that it is a piece of discussion related
to generalization of pattern, leading to Hypothesis. Also, 2.19 indicates
that it is the 19th piece of discussion in section 2. There is one more point
to note, in order to ensure a smooth presentation, once a Hypothesis is
proved, it becomes a Formula. In most of the cases, we have the details of
proofs for hypotheses placed in Appendix E.

In sections 2�6, we will discuss various ways to find out large Fibonacci
and Lucas numbers. We have managed to put certain patterns or findings
into tables or triangles and from these tables we have discovered a number
of surprising observations and relations. In section 7, we will discuss more
properties about the tables we have constructed in this project.

Most people tend to think that there is nothing special about these two
sequences; they are merely about addition and probably lead to exhaustion.
However, in this project, we will present to you a brand new view of these
sequences and show you the hidden magic behind the two numbers.

Why have we chosen to look into these two sequences?

Why have we chosen to look into the Fibonacci and Lucas sequences? What
leads us onto this journey of research and discovery?

It was about 10 years ago. A friend challenged Theodore, one of our team-
mates, “Let me give you an interesting mathematical problem. Here, we
have a sequence: 1, 1, 2, 3, 5, 8, . . . in which the next term is generated by
adding the two previous terms. Now, can you tell me the 100th term?”

At that point in time, it goes without saying, Theodore failed to come up
with the answer. When he told us about this experience of his, it inspired
us to work on this problem.

Throughout the history of Mathematics, many mathematicians have indeed
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been curiously absorbed in the investigation of special numbers, from the
largest prime number to the largest perfect number. Before doing any in-
vestigations in these large numbers, we need to evaluate them. Christopher
Clavius, an Italian astronomer and mathematician in the 16th century, pro-
vided a new way of calculation of product of two enormous numbers in a
short time. Can we do something similar? Is there a convenient way to
evaluate large Lucas or Fibonacci numbers with pen and paper only?

Immerse yourself in these two sequences and you will soon realize, as we
do, how diversified, exciting, special and magical these numbers become.

2. U (n) Formula in 3 unknowns

In this section, we shall develop a formula which can be applied to any recur-
rence sequence that satisfies the following rule: Upnq�Upn�1q � Upn�2q.
The Fibonacci and Lucas sequences are two examples of Upnq. This new
formula generated can help us solve not only the large numbers in the Fi-
bonacci and Lucas sequences, but also those in other Upnq sequences.

Before introducing our discovery, for the sake of convenience, we have put
down the first 16 Fibonacci and Lucas numbers (including F p0q and Lp0q)
in the form of a table so that it is easier to refer to. In the Appendices,
there are two tables of Fibonacci and Lucas numbers that goes up to the
100th term for your reference as well.

Table 2.1. The first 16 Fibonacci numbers

n 0 1 2 3 4 5 6 7
F pnq 0 1 1 2 3 5 8 13

n 8 9 10 11 12 13 14 15
F pnq 21 34 55 89 144 233 377 610

Table 2.2. The first 16 Lucas numbers

n 0 1 2 3 4 5 6 7
Lpnq 2 1 3 4 7 11 18 29

n 8 9 10 11 12 13 14 15
Lpnq 47 76 123 199 322 521 843 1364
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Here Upnq denotes a sequence that always satisfies the following equation:
Upnq�Upn�1q � Upn�2q. To use a specific case for better understanding
and presentation of our observation, we will create a new sequence, U1pnq,
with 4 and 5 as U1p1q and U1p2q respectively.

Table 2.3. The first 15 U1(n) numbers(cf. Reviewer’s Comments
1)

n 1 2 3 4 5 6 7 8
U1pnq 4 5 9 14 23 37 60 107

n 9 10 11 12 13 14 15
U1pnq 167 274 441 715 1156 1871 3027

The Lucas sequence will be examined first and Lp11q and Lp14q will be anal-
ysed in detail.

Observation 2.4.

Lp11q � 199

� 2� 123� 47 � 3� 76� 29

� 2Lp10q � 1Lp8q � 3Lp9q � 1Lp7q

� 5� 47� 2� 18 � 8� 29� 3� 11

� 5Lp8q � 2Lp6q � 8Lp7q � 3Lp5q

Lp14q � 843

� 2� 521� 199 � 3� 322� 123

� 2Lp13q � 1Lp11q � 3Lp12q � 1Lp10q

� 5� 199� 2� 76 � 8� 123� 3� 47

� 5Lp11q � 2Lp9q � 8Lp10q � 3Lp8q

So far the coefficients of Lpnq remind us of the Fibonacci sequence of t1, 1, 2, 3, 5, . . .u.
Is it merely a coincidence or is there more behind the scene?

To generalize the findings, we have



DECRYPTING FIBONACCI AND LUCAS SEQUENCES 247

Hypothesis 2.5.

Lpnq � F pr � 2qLpn� rq � F prqLpn� r � 2q

where n ¡ r � 2 and r is any positive integer.

Let us consider the Fibonacci sequence this time. We shall focus on F p10q
and F p13q.

Observation 2.6.

F p10q � 55

� 2� 34� 13 � 3� 21� 8

� 2F p9q � 1F p7q � 3F p8q � 1F p6q

� 5� 13� 2� 5 � 8� 8� 3� 3

� 5F p7q � 2F p5q � 8F p6q � 3F p4q

F p13q � 233

� 2� 144� 55 � 3� 89� 34

� 2F p12q � 1F p10q � 3F p11q � 1F p9q

� 5� 55� 2� 21 � 8� 34� 3� 13

� 5F p10q � 2F p8q � 8F p9q � 3F p7q

To generalize the findings, we have

Hypothesis 2.7.

F pnq � F pr � 2qF pn� rq � F prqF pn� r � 2q

where n ¡ r � 2 and r is any positive integer.

In the examination of the following sequence, U1pnq, U1p5q and U1p7q are
used.
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Observation 2.8.

U1p5q � 23

� 2� 14� 5 � 3� 9� 4

� 2U1p4q � 1U1p2q � 3U1p3q � 1U1p1q

U1p7q � 60

� 2� 37� 14 � 3� 23� 9

� 2U1p6q � 1U1p4q � 3U1p5q � 1U1p3q

� 5� 14� 2� 5

� 5U1p4q � 2U1p2q

To generalize the findings, we have

Hypothesis 2.9.

U1pnq � F pr � 2qU1pn� rq � F prqU1pn� r � 2q

Have you noticed the similarity of the three hypotheses we have made?

Hypothesis 2.5. Lpnq � F pr � 2qLpn� rq � F prqLpn� r � 2q
Hypothesis 2.7. F pnq � F pr � 2qF pn� rq � F prqF pn� r � 2q
Hypothesis 2.9. U1pnq � F pr � 2qU1pn� rq � F prqU1pn� r � 2q

No matter what the generating numbers of the sequence are, (t1, 1u in Fi-
bonacci sequence, t1, 3u in Lucas sequence or t4, 5u in the sequence we have
made up tU1pnqu) as long as it follows the rule of Upnq�Upn�1q � Upn�2q,
that is the previous two terms adding up to form the next term, it seems
that it satisfies the equation of

Hypothesis 2.10.

Upnq � F pr � 2qUpn� rq � F prqUpn� r � 2q

Details of Proof for Hypothesis 2.10 can be found in Appendix E.
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Observation 2.11.

U1p5q � 23

� 14� 9 � 2� 9� 5

� U1p4q � U1p3q � 2U1p3q � U1p2q

U1p7q � 60

� 37� 23 � 2� 23� 14

� U1p6q � U1p5q � 2U1p5q � U1p4q

� 3� 14� 2� 9 � 5� 9� 3� 5

� 3U1p4q � 2U1p3q � 5U1p3q � 3U1p2q

To generalize the findings, we have

Hypothesis 2.12.

U1pnq � F pr � 1qU1pn� rq � F prqU1pn� r � 1q

From Hypothesis 2.12, another hypothesis is derived, by replacing all U1pnq
with Upnq.

Hypothesis 2.13.

Upnq � F pr � 1qUpn� rq � F prqUpn� r � 1q

Details of Proof for Hypothesis 2.13 can be found in Appendix E.

There are only minor differences between Formula 2.10 and Formula 2.13.
To have a better understanding of the relationships among Upnq, F pnq and
r, U1p5q and U1p7q are considered again.
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Observation 2.14.

U1p5q � 23

� 46

2

� 3� 14� 4

2

� 3U1p4q � U1p1q
2

U1p7q � 60 � 120

2

� 3� 37� 9

2
� 5� 23� 5

2

� 3U1p6q � U1p3q
2

� 5U1p5q � U1p2q
2

� 8� 14� 2� 4

2

� 8U1p4q � 2U1p1q
2

This seems a bit complicated. However, by reorganizing the terms, another
hypothesis can be made.

2U1p5q � 3U1p4q � 1U1p1q 2U1p7q � 3U1p6q � 1U1p3q
� 5U1p5q � 1U1p2q
� 8U1p4q � 2U1p1q

We make a hypothesis that:

Hypothesis 2.15.

2U1pnq � F pr � 3qU1pn� rq � F prqU1pn� r � 3q

But why is it that U1pnq, this time, is multiplied by 2? Perhaps we shall
look into U1p7q again.
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Observation 2.16.

Up7q � 60 � 180

3

� 5� 37� 5

3
� 8� 23� 4

3

� 5Up6q � Up2q
3

� 8Up5q � Up1q
3

To generalize the findings, we have

Hypothesis 2.17.

3U1pnq � F pr � 4qU1pn� rq � F prqU1pn� r � 4q

Observation 2.18. Now we have:

1Upnq � F pr � 1qUpn� rq � F prqUpn� r � 1q (1)

1Upnq � F pr � 2qUpn� rq � F prqUpn� r � 2q (2)

2Upnq � F pr � 3qUpn� rq � F prqUpn� r � 3q
3Upnq � F pr � 4qUpn� rq � F prqUpn� r � 4q

where (1) and (2) are proved.

For the coefficients of Upnq, i.e. 1, 1, 2, 3, . . ., they remind us of the
Fibonacci sequence. We will do some little changes to the coefficients:

F p1qUpnq � F pr � 1qUpn� rq � F prqUpn� r � 1q
F p2qUpnq � F pr � 2qUpn� rq � F prqUpn� r � 2q
F p3qUpnq � F pr � 3qUpn� rq � F prqUpn� r � 3q
F p4qUpnq � F pr � 4qUpn� rq � F prqUpn� r � 4q

Is it easier for you to observe the pattern now?

F p1qUpnq � F pr � 1qUpn� rq � F prqUpn� r � 1q
F p2qUpnq � F pr � 2qUpn� rq � F prqUpn� r � 2q
F p3qUpnq � F pr � 3qUpn� rq � F prqUpn� r � 3q
F p4qUpnq � F pr � 4qUpn� rq � F prqUpn� r � 4q

To generalize the findings, we have

Hypothesis 2.19.

F pkqUpnq � F pr � kqUpn� rq � p�1qk�1F prqUpn� r � kq
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Details of Proof for Hypothesis 2.19 can be found in Appendix E.

By careful observation of the relationship between numbers in the Lucas
and Fibonacci sequences, a handful of hypotheses and assumptions have
been made. In the end, a new formula is generated and successfully proved.
This discovery leads us a lot closer to our aim of resolving large Lucas or
Fibonacci numbers. We can now use the formula to help us find out large
Upnq (including Lucas and Fibonacci numbers). However, before applying
this formula, we must plan carefully as a misuse of this formula will only
make things even more complicated.

Let us name this formula the Upnq Formula in three unknowns.

Formula 2.19.

F pkqUpnq � F pr � kqUpn� rq � p�1qk�1F prqUpn� r � kq

In this formula, n should be a given number and we should choose appro-
priate k and r to use.

Replace Upnq by F pnq to generate formula for solving large F pnq.
Formula 2.20.

F pkqF pnq � F pr � kqF pn� rq � p�1qk�1F prqF pn� r � kq

Replace Upnq by Lpnq to generate formula for solving large Lpnq.
Formula 2.21.

F pkqLpnq � F pr � kqLpn� rq � p�1qk�1F prqLpn� r � kq

Having generated Formula 2.20 and Formula 2.21, we will use them to help
us prove some other existing formulae as application.

Let us consider all F pnq and Lpnq numbers with n ¡ 25 large. Hence in
all cases below, for F p1q to F p25q and Lp1q to Lp25q, we will take the num-
bers directly from the tables in Appendix A. For F p26q and Lp26q onwards,
we will make use of the formulae we have found.

Application 2.22. We will use Formula 2.13 to help us prove two formulae:

F p2kq � F pk � 1q2 � F pk � 1q2
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and

Lp2kq � F pk � 1qLpk � 1q � F pk � 1qLpk � 1q

Proof. We substitute n � 2k, r � k into Formula 2.13,

Up2kq � F pk � 1qUpkq � F pkqUpk � 1q
� F pk � 1qUpkq � rF pk � 1q � F pk � 1qsUpk � 1q
� F pk � 1qrUpkq � Upk � 1qs � F pk � 1qUpk � 1q
� F pk � 1qUpk � 1q � F pk � 1qUpk � 1q

Formula 2.23.

Up2kq � F pk � 1qUpk � 1q � F pk � 1qUpk � 1q

For example, to find Up50q,
Up50q � Up2� 25q

� F p26qUp26q � F p24qUp24q

As Upnq indicates any sequence satisfying Upnq � Upn� 1q � Upn� 2q, we
can express Upnq in terms of F pnq and Lpnq instead.

Therefore, we have F p2kq � F pk � 1qF pk � 1q � F pk � 1qF pk � 1q.

Formula 2.24.

F p2kq � F pk � 1q2 � F pk � 1q2

Consider the following example:

F p50q � F p2� 25q
� F p26q2 � F p24q2
� F p2� 13q2 � F p2� 12q2
� rF p14q2 � F p12q2s2 � rF p13q2 � F p11q2s2

At this point, we can solve F p50q with the table in Appendix A, a calculator
and some patience. Hence we will not tire you with the tedious calculation
and will carry on with the next formula.

Let us look at Formula 2.24:

F p2kq � F pk � 1q2 � F pk � 1q2
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As we all know, a2�b2 � pa�bqpa�bq, F p2kq � rF pk�1q�F pk�1qsrF pk�
1q � F pk � 1qs.

F p2kq � rF pk � 1q � F pk � 1qsF pkq
or

F p2kq � rF pkq � 2F pk � 1qsF pkq
or

F p2kq � r2F pk � 1q � F pkqsF pkq

For example,
F p50q � F p25qrF p26q � F p24qs

or
F p50q � F p25qrF p25q � 2F p24qs

or
F p50q � F p25qr2F p26q � F p25qs

Note that up to here, we can only further resolve F p14q and F p12q, but
not F p13q and F p11q, since we do not have a formula to resolve F p2k �
1q{Up2k � 1q. We will talk about that in Application 2.26.

Replace Upnq in Formula 2.23 by Lpnq, we have

Formula 2.25.

Lp2kq � F pk � 1qLpk � 1q � F pk � 1qLpk � 1q

Application 2.26. This time, we will use Formula 2.13 to help us prove

F p2k � 1q � F pk � 1q2 � F pkq2
and

Lp2k � 1q � F pk � 1qLpk � 1q � F pkqLpkq

Proof. Substitute n � 2k � 1, r � k, we have

Formula 2.27.

Up2k � 1q � F pk � 1qUpk � 1q � F pkqUpkq

Replace Upnq in Formula 2.27 by F pnq, we have F p2k�1q � F pk�1qF pk�
1q � F pkqF pkq.
Formula 2.28.

F p2k � 1q � F pk � 1q2 � F pkq2
(This was in fact introduced by Lucas in 1876.)
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Back to the previous example in Application 2.22, we can now resolve F p11q
and F p13q.

F p11q � F p2� 5� 1q F p13q � F p2� 6� 1q
� F p6q2 � F p5q2 � F p7q2 � F p6q2

Replace Upnq in Formula 2.27 by Lpnq, we have

Formula 2.29.

Lp2k � 1q � F pk � 1qLpk � 1q � F pkqLpkq

Consider the following example.

Lp51q � F p26qLp26q � F p25qLp25q
� rF p14q2 � F p12q2srF p14qLp14q � F p12qLp12qs

� rF p13q2 � F p12q2srF p13qLp13q � F p12qLp12qs

This is very convenient indeed.

Actually Formula 2.27 can be derived easily from Formula 2.23.

L.H.S. � Up2k � 1q
� Up2k � 2q � Up2kq (by definition)

� F pk � 2qUpk � 2q � F pkqUpkq
� F pk � 1qUpk � 1q � F pk � 1qUpk � 1q

� rF pk � 1q � F pkqsUpk � 2q � F pk � 1qUpk � 1q
� F pkqUpkq � F pk � 1qUpk � 1q

� F pk � 1qUpk � 2q � F pk � 1qUpk � 1q
� F pkqUpk � 2q � F pkqUpkq � F pk � 1qUpk � 1q

� F pk � 1qUpkq � F pkqUpk � 1q � F pk � 1qUpk � 1q
� F pk � 1qUpkq � F pkqUpkq�

F pkqUpk � 1q � F pk � 1qUpk � 1q
� F pk � 1qUpkq � F pkqUpkq � F pk � 1qUpk � 1q
� F pk � 1qUpk � 1q � F pkqUpkq
� R.H.S.

Application 2.30. What is Lp299q � Lp113q?



256 H.S. HUI, T.W. LUI, Y.K. WONG

By the formulae we have known already,

Lp299q � Lp113q
� F p150qLp150q � F p149qLp149q � F p57qLp57q � F p56qLp56q

This is the simplest way to solve this problem.

However, we have another approach:

Lp299q � Lp113q
� rLp299q � Lp297qs � rLp297q � Lp295qs � rLp295q � Lp293qs

� . . .� rLp117q � Lp115qs � rLp115q � Lp113qs
� Lp298q � Lp296q � Lp294q � . . .� Lp114q
� F(150)L(150)� F p148qLp148q

� F(149)L(149)� F p147qLp147q � F p148qLp148q
� F p146qLp146q � F p147qLp147q � F p145qLp145q
� . . .� F p59qLp59q � F p57qLp57q
� F p58qLp58q � F(56)L(56)

� F p150qLp150q � F p149qLp149q � F p57qLp57q � F p56qLp56q

The answer is the same for both approaches. However, this method shows
how we can apply Formula 2.25 to solve this problem.

In this section, the most complicated formula we have got is Formula 2.19

F pkqUpnq � F pr � kqUpn� rq � p�1qk�1F prqUpn� r � kq
as it has 3 unknowns.

Formula 2.19 is the most complicated and yet perhaps the most useful for-
mula in the section. We should handle the three unknowns in it with great
care. If the right numbers are inserted into the unknowns, we can come up
with the answer in a few steps. On the other hand, if we insert the numbers
randomly, we risk making things even more complicated. To further illus-
trate our point, consider Up400q and substitute different sets of numbers to
it.

Method I
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Substitute n � 400, k � 3, r � 198 into Formula 2.19, we have

F p3qUp400q � F p198� 3qUp400� 198q
� p�1q3�1F p198qUp400� 198� 3q

Up400q � F p201qUp202q � F p198qUp199q
2

Method II

Substitute n � 400, k � 300, r � 200 into Formula 2.19, we have

F p300qU (400) � F p500qUp200q � F p200qUp�100q

Now, as you can see, we have made the problem even more complicated.
We have to solve F p500q, F p300q and Up�100q in Method II, but in Method
I, we have break down Up400q into terms of Upnq and F pnq with n around
half of 400, i.e. 200.

In conclusion, there are some tricks in applying Formula 2.19.

To find Upn1q,

(1) put n � n1; (as n should be the greatest value)
(2) let k be the smallest possible non-negative integer; (as we have to divide

the whole thing on R.H.S. by it) and
(3) let pr� kq, pn� rq, r and pn� r� kq be more or less the same as each

other.

3. Polynomial Expression of L(kn) in Terms of L(n)

In the expansion of px�1q4, the coefficients of powers of x are 1, 4, 6, 4, 1. In
the expression of Lp4nq in terms of Lpnq, the coefficients of powers of Lpnq
are 1, 5, 9, 7, 2. Why are we drawing comparison between these two strings
of numbers that do not seem to have anything in common? In fact, we will
show you how these two strings of numbers are closely related in this section.

When we look into the Lucas sequence, we can in fact find out some special
relations which can help us express Lpknq in terms of Lpnq.

First, we shall try to express all Lp2nq in terms of Lpnq.
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Observation 3.1.

Lp2q � 3 Lp4q � 7 Lp6q � 18

� 1� 2 � 9� 2 � 16� 2

� 12 � 2 � 32 � 2 � 42 � 2

� Lp1q2 � 2 � Lp2q2 � 2 � Lp3q2 � 2

To generalize the findings, we have

Hypothesis 3.2.

Lp2nq � Lpnq2 � p�1qn�1p2q

Details of Proof for Hypothesis 3.2 can be found in Application 6.68.

Observation 3.3. Now, we try to see if we can resolve Lp3nq into Lpnq.

Lp3q � 4 Lp6q � 18 Lp9q � 76

� 1� 3 � 27� 9 � 64� 12

� 13 � 3p1q � 33 � 3p3q � 43 � 3p4q
� Lp1q3 � 3Lp1q � Lp2q3 � 3Lp2q � Lp3q3 � 3Lp3q

To generalize the findings, we have

Hypothesis 3.4.

Lp3nq � Lpnq3 � p�1qn�1p3qLpnq

Note that Lp4nq can be reduced to Lp2nq and then to Lpnq. So, we are
going to investigate Lpknq where k is prime first.
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Observation 3.5.

Lp5q � 11 Lp10q � 123

� 15 � 10 � 35 � 120

� 15 � p1qp2qp5q � 35 � p3qp8qp5q
� Lp1q5 � Lp1qrLp2q � 1sp5q � Lp2q5 � Lp2qrLp4q � 1sp5q

Lp15q � 1364

� 45 � 340

� 45 � p4qp17qp5q
� Lp3q5 � Lp3qrLp6q � 1sp5q

To generalize the findings, we have

Hypothesis 3.6.

Lp5nq � Lpnq5 � p�1qn�1p5qLpnqrLp2nq � p�1qns
� Lpnq5 � p�1qn�1p5qLpnqrLpnq2 � p�1qn�1s

(by Lp2nq � p�1qn � Lpnq2 � p�1qn�1p2q � p�1qn�1 � Lpnq2 � p�1qn�1q

Observation 3.7. What about Lp7nq?
Lp7q � 29 Lp14q � 843

� 17 � 28 � 37 � 1344

� 17 ��p1qp4qp7q � 37 � p3qp64qp7q
� Lp1q7 � Lp1qrLp2q � 1s2p7q � Lp2q7 � Lp2qrLp4q � 1s2p7q

Lp21q � 24476

� 47 � 8092

� 47 � p4qp289qp7q
Lp3q7 � Lp3qrLp6q � 1s2p7q

To generalize the findings, we have
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Hypothesis 3.8.

Lp7nq � Lpnq7 � p�1qn�1p7qLpnqrLp2nq � p�1qns2
� Lpnq7 � p�1qn�1p7qLpnqrLpnq2 � p�1qn�1s2

Observation 3.9. However, when it comes to Lp11nq, we have something
different.

Lp11q � 199

� 111 � p11qp1qp18q
� 111 � p11qp1qp2qp23 � 12q
� Lp1q11 � p11qLp1qrLp2q � 1strLp2q � 1s3 � Lp1q2u

Lp22q � 39603

� 311 � p11qp3qp4168q
� 311 � p11qp3qp8qr83 � 32s
� Lp2q11 � p11qLp2qrLp4q � 1strLp4q � 1s3 � Lp2q2u

Lp33q � 7881196

� 411 � p11qp4qp83793q
� 411 � p11qp4qp17qr173 � 42s
� Lp3q11 � p11qLp3qrLp6q � 1strLp6q � 1s3 � Lp3q2u

To generalize the findings, we have

Hypothesis 3.10.

Lp11nq
� Lpnq11 � p�1qn�1p11qLpnqrLp2nq � p�1qnstrLp2nq � p�1qns3 � Lpnq2u
� Lpnq11 � p�1qn�1p11qLpnqrLpnq2 � p�1qn�1s
trLpnq2 � p�1qn�1s3 � Lpnq2u
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Observation 3.11. What about Lp13nq?
Lp13q � 521

� 113 � p13qp1qp40q
� 113 � p13qp1qp22qp23 � 2p1q2q
� Lp1q13 � p13qLp1qrLp2q � 1s2trLp2q � 1s3 � 2Lp1q2u

Lp22q � 271443

� 313 � p13qp3qp33920q
� 313 � p13qp3qp82qr83 � 2p3q2s
� Lp2q13 � p13qLp2qrLp4q � 1s2trLp4q � 1s3 � 2Lp2q2u

Lp33q � 141422324

� 413 � p13qp4qp1429105q
� 413 � p13qp4qp172qr173 � 2p4q2s
� Lp3q13 � p13qLp3qrLp6q � 1s2trLp6q � 1s3 � 2Lp3q2u

To generalize the findings, we have

Hypothesis 3.12.

Lp13nq
� Lpnq13 � p�1qn�1p13qLpnqrLp2nq � p�1qns2
trLp2nq � p�1qns3 � 2Lpnq2u

� Lpnq13 � p�1qn�1p13qLpnqrLpnq2 � p�1qn�1s2
trLpnq2 � p�1qn�1s3 � 2Lpnq2u

Before finding out Lp17nq and Lp19nq and other Lpknq where k is prime,
we have decided to find out the relationship among our previous findings.

Now we shall rearrange our findings and all the hypotheses above and ex-
press them in a form which we can observe special patterns among the string
of polynomials. We want to express Lpknq in terms of Lpnq only.

Here are the results. For the steps of calculation, please refer to Appen-
dix C.
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Lp1nq � Lpnq
Lp2nq � Lpnq2 � p�1qn�1p2q
Lp3nq � Lpnq3 � p�1qn�1p3qLpnq
Lp4nq � Lpnq4 � p�1qn�1p4qLpnq2 � 2

Lp5nq � Lpnq5 � p�1qn�1p5qLpnq3 � 5Lpnq
Lp6nq � Lpnq6 � p�1qn�1p6qLpnq4 � 9Lpnq2 � p�1qn�1p2q
Lp7nq � Lpnq7 � p�1qn�1p7qLpnq5 � 14Lpnq3 � p�1qn�1p7qLpnq
Lp8nq � Lpnq8 � p�1qn�1p8qLpnq6 � 20Lpnq4 � p�1qn�1p16qLpnq2 � 2

Lp9nq � Lpnq9 � p�1qn�1p9qLpnq7 � 27Lpnq5 � p�1qn�1p30qLpnq3
� 9Lpnq

Lp10nq � Lpnq10 � p�1qn�1p10qLpnq8 � 35Lpnq6 � p�1qn�1p50qLpnq4
� 25Lpnq2 � p�1qn�1p2q

Lp11nq � Lpnq11 � p�1qn�1p11qLpnq9 � 44Lpnq7 � p�1qn�1p77qLpnq5
� 55Lpnq3 � p�1qn�1p11qLpnq

Lp12nq � Lpnq12 � p�1qn�1p12qLpnq10 � 54Lpnq8 � p�1qn�1p112qLpnq6
� 105Lpnq4 � p�1qn�1p36qLpnq2 � 2

Lp13nq � Lpnq13 � p�1qn�1p13qLpnq11 � 65Lpnq9 � p�1qn�1p156qLpnq7
� 182Lpnq5 � p�1qn�1p91qLpnq3 � 13Lpnq

Lp14nq � Lpnq14 � p�1qn�1p14qLpnq12 � 77Lpnq10 � p�1qn�1p210qLpnq8
� 294Lpnq6 � p�1qn�1p196qLpnq4 � 49Lpnq2 � p�1qn�1p2q

Lp15nq � Lpnq15 � p�1qn�1p15qLpnq13 � 90Lpnq11 � p�1qn�1p275qLpnq9
� 450Lpnq7 � p�1qn�1p378qLpnq5 � 140Lpnq3
� p�1qn�1p15qLpnq

Lp16nq � Lpnq16 � p�1qn�1p16qLpnq14 � 104Lpnq12

� p�1qn�1p352qLpnq10 � 660Lpnq8
� p�1qn�1p372qLpnq6 � 336Lpnq4
� p�1qn�1p64qLpnq2 � 2
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Observation 3.13. It seems rather confusing and discouraging when we
first get hold of the above equations. But if we compare the coefficients
only, it is easier for us to handle and find out special relationships among
the coefficients.

(The 1st row represents the terms in the expansion of Lpknq, and the 1st

column represents k.)

1st

term
2nd

term
3rd

term
4th

term
5th

term
6th

term
7th

term
8th

term
9th

term
p�1qn�1 4 4 4 4

1 1
2 1 2
3 1 3
4 1 4 2
5 1 5 5
6 1 6 9 2
7 1 7 14 7
8 1 8 20 16 2
9 1 9 27 30 9
10 1 10 35 50 25 2
11 1 11 44 77 55 11
12 1 12 54 112 105 36 2
13 1 13 65 156 182 91 13
14 1 14 77 210 294 196 49 2
15 1 15 90 275 450 378 140 15
16 1 16 104 352 660 672 336 64 2

This is a very interesting table. You will soon find out that it is very similar
to the Pascal’s Triangle. Before sharing with you how interesting this table
is, let us create a naming system for it.

First, let us use 352 as an example. Lkp16,4q refers to 352 where we use
Lk as a notation for the above table, 16 as the row number and 4 as the
fourth term of the expression arranged in descending power of Lpnq. Please
bear in mind that all the terms on the k-th row are the coefficients of powers
of Lpnq in the expansion of Lpknq.

If we find out the properties of this table, we can find out a way to evaluate
the coefficients of powers of Lpnq in the expansion of Lpknq. Let us find out
some special properties of this table.
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Property I How to get the numbers on the next row

Observation 3.14. In the Pascal’s Triangle, the numbers on the next
row can be generated from the previous rows. (In the Pascal’s Triangle,

nCr � nCr�1 � n�1Cr�1) Similarly, we have tried to do this.

For example:

Lkp4,2q � 4 Lkp8,3q � 20

Lkp5,3q � 5 Lkp9,4q � 30

Lkp6,3q � 9 Lkp10,4q � 50

Lk4,2q � Lkp5,3q � Lkp6,3q Lkp8,3q � Lkp9,4q � Lkp10,4q

Lkp12,6q � 36

Lkp13,7q � 13

Lkp14,7q � 49

Lkp12,6q � Lkp13,7q � Lkp14,7q

Therefore, we conjecture that:

Lkpx,yq � Lkpx�1,y�1q � Lkpx�2,y�1q

Property II Special coefficients on odd- and even-number rows

Observation 3.15. When we look at odd-number rows, the last coefficient
is the same as the degree of the expansion. For instance, the coefficient of
the last term of the expansion of Lp9nq (arranged in descending power of
Lpnq) in terms of Lpnq is 9. Also, the coefficient of the last term of the
expansion of Lp11nq in terms of Lpnqs is 11.

Observation 3.16. When we look at even-number rows, the constant term
is always 2. That also leads to the previous observation in odd-number rows.

For example:

Lkp9,5q � Lkp10,6q � 9� 2

� 11

� Lkp11,6q
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Observation 3.17. Then why is “� 2” or “� 2” always the constant term
on even rows?

Consider the resolution of L(2kn) in terms of Lpnq. We can break down
Lp2knq into Lpknqs by the formula Lp2nq � Lpnq2 � 2p�1qn�1.

In other words, Lp2knq � Lpknq2 � 2p�1qkn�1.

Thus, depending on whether k is odd or even, �2 or �2 is generated.

Property III Usefulness of the Lk Table in tackling prime numbers.

Please refer to Appendix D for details.

Property IV Summation of all the terms on the k-th row

Observation 3.18. Let Spnq denote the summation of all the terms on
the k-th row.

Sp1q � 1

Sp2q � 1� 2 � 3

Sp3q � 1� 3 � 4

Sp4q � 1� 4� 2 � 7

Sp5q � 1� 5� 5 � 11

And so on.

t1, 3, 4, 7, 11, . . .u actually form the Lucas sequence.

Spnq � Lpnq

It is in fact very easy to explain.

Spkq is the summation of all the terms on the k-th row in the table (all
the coefficients of powers of L(n) in the expression of Lpknq in terms of
Lpnq).

Take Lp7q as an example.

Applying Lp7nq � Lpnq7 � p�1qn�1p7qLpnq5 � p14qLpnq3 � p�1qn�1p7qLpnq,
in finding Lp7q in terms of Lp1q, substitute n � 1.
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Lp7q � Lp1q7� p�1q1�1p7qLp1q5 � p14qLp1q3 � p�1q1�1p7qLp1q
� 1� 7� 14� 7

� summation of all the terms on the 7th row in the table

� Sp7q
In order to have a better representation, we are going to rearrange the terms
in the table by rotating the table 45� anticlockwise.

1
1 2
1 3
1 4 2
1 5 5
1 6 9 2
1 7 14 7
1 8 20 16 2
1 9 27 30 9
1 10 35 50 25 2
1 11 44 77 55 11

If we put the numbers of the same colour into a horizontal line, we get the
following triangle - the Lk Triangle.

1 2
1 3 2

1 4 5 2
1 5 9 7 2

1 6 14 16 9 2
1 7 20 30 25 11 2

1 8 27 50 55 36 13 2
. . .

Does the Lk Triangle remind you of the Pascal’s Triangle?

This is actually an altered form of the Pascal’s Triangle, only it begins
with t1, 2u, not t1, 1u.

It is also obvious that, for example, on the 4th row, the coefficients are:
1, 5, 9, 7, 2, which are t1, 5, 10, 10, 5, 1u minus t0, 0, 1, 3, 3, 1u, that is, the
5th row on the Pascal’s Triangle minus the 3rd row of the Pascal’s Triangle.
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Observation 3.19. Now, consider the summation of each row in the tri-
angle above. Let Spnq denote the summation of all the terms on the n-th
row.

Sp1q � 1� 2 � 3

Sp2q � 1� 3� 2 � 6 � 2p3q
Sp3q � 1� 4� 5� 2 � 12 � 22p3q
Sp4q � 1� 5� 9� 7� 2 � 24 � 23p3q

For n � k, Spkq � 2k�1p3q.
Explanation for Observation 3.19

Actually, Spk � 1q � 2Spkq. Since every term on the k-th row will re-
peat itself 2 times on the next row - pk � 1qth row, the summation is twice.
Well, as Sp1q � 3, Spkq � 2k�1Sp1q � 2k�1p3q.

The following shows the Lk Triangle.

1 2
1 3 2

1 4 5 2
1 5 9 7 2

1 6 14 16 9 2
1 7 20 30 25 11 2

1 8 27 50 55 36 13 2
1 9 35 77 105 91 49 15 2

1 10 44 112 182 196 140 64 17 2
1 11 54 156 294 378 336 204 81 19 2

1 12 65 210 350 672 714 540 285 100 21 2
1 13 77 275 560 1022 1386 1254 825 385 121 23 2

Definition 3.20. We name terms in the Pascal’s Triangle with nCr.
n � the line the term lies on, pr � 1q � the position of the term counting
from the left.

1 1

ÝÑ

1C0 1C1

1 2 1 2C0 2C1 2C2

1 3 3 1 3C0 3C1 3C2 3C3

1 4 6 4 1 4C0 4C1 4C2 4C3 4C4

1 5 10 10 5 1 5C0 5C1 5C2 5C3 5C4 5C5
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In a similar manner, we name the Lk Triangle below with nLr.
n � the line the term lies on, pr � 1q � the position of the term counting
from the left.

1 2

ÝÑ

1L0 1L1

1 3 2 2L0 2L1 2L2

1 4 5 2 3L0 3L1 3L2 3L3

1 5 9 7 2 4L0 4L1 4L2 4L3 4L4

1 6 14 16 9 2 5L0 5L1 5L2 5L3 5L4 5L5

Now we have created a naming system of this Triangle, we can look more in
depth into the relationship between the Pascal’s Triangle and the Lk Trian-
gle.

Observation 3.21. Let us consider 3L3 and 4L2.

3L3 � 2 � 4� 2 � 4C3 � 2C1

4L2 � 9 � 10� 1 � 5C2 � 3C0

4L3 � 7 � 10� 3 � 5C3 � 3C1

Hypothesis 3.22. We can make an assumption that

nLr � n�1Cr � n�1Cr�2

Details of Proof for Hypothesis 3.22 can be found in Appendix E.

As we all know that nCr has another representation

nCr � n!

r!pn� rq! .

nLr � n�1Cr � n�1Cr�2

� pn� 1q!
pn� 1� rq!r!

� pn� 1q!
rn� 1� pr � 2qs!pr � 2q!

� pn� 1q!
pn� 1� rq!r!

� pn� 1q!
pn� 1� rq!pr � 2q!

� pn� 1q!� pn� 1q!rpr � 1q
pn� 1� rq!r!

� pn� 1q!rnpn� 1q � rpr � 1qs
pn� 1� rq!r!

� pn� 1q!pn2 � n� r2 � rq
pn� 1� rq!r!
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Formula 3.23.

nLr � pn� 1q!pn2 � n� r2 � rq
pn� 1� rq!r!

There is a lot that we have discovered up to this point. The most important
thing we need to do is to resolve Lpknq. Since we have established the re-
lationship between nLr and nCr, we can use this to find out the coefficients
of Lpknq.
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Table 3.24. Let us express all the terms in the Lk Table in terms of nLr.
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Hypothesis 3.25. Let k � 4p, where p is an integer.

Lpknq � Lp4pnq
� 4pL0Lpnq4p � p�1qn�1

4p�1L1Lpnq4p�2 � 4p�2L2Lpnq4p�4

� p�1qn�1
4p�3L3Lpnq4p�6 � . . .� 4p�rLrLpnq4p�2r�2

� . . .� p�1qn�1
2p�1L2p�1Lpnq2 � 2pL2p

Note: p�1qn�1 occurs in the 2nd, 4th, 6th and other even-number terms,

4pL0 � 1; 4p�1L1 � 4p; 2pL2p � 2.

Hypothesis 3.26. Let k � 4p� 1, where p is an integer.

Lpknq � Lpp4p� 1qnq
� 4p�1L0Lpnq4p�1 � p�1qn�1

4p�2L1Lpnq4p�3 � 4p�3L2Lpnq4p�5

� p�1qn�1
4p�4L3Lpnq4p�7 � . . .� 4p�1�rLrLpnq4p�2r�1

� . . .� p�1qn�1
2pL2p�1Lpnq

Note: p�1qn�1 occurs in the 2nd, 4th, 6th and other even-number terms,

4p�1L0 � 1; 4p�2L1 � 4p� 1.

Hypothesis 3.27. Let k � 4p� 2, where p is an integer.

Lpknq � Lpp4p� 2qnq
� 4p�2L0Lpnq4p�2 � p�1qn�1

4p�3L1Lpnq4p�4 � 4p�4L2Lpnq4p�6

� p�1qn�1
4p�5L3Lpnq4p�8 � . . .� 4p�2�rLrLpnq4p�2r

� . . .� p�1qn�1
2p�1L2p�1

Note: p�1qn�1 occurs in the 2nd, 4th, 6th and other even-number terms,

4p�2L0 � 1; 4p�3L1 � 4p� 2; 2p�1L2p�1 � 2.

Hypothesis 3.28. Let k � 4p� 3, where p is an integer.

Lpknq � Lpp4p� 3qnq
� 4p�3L0Lpnq4p�3 � p�1qn�1

4p�4L1Lpnq4p�5 � 4p�5L2Lpnq4p�7

� p�1qn�1
4p�6L3Lpnq4p�9 � . . .� 4p�3�rLrLpnq4p�2r�1

� . . .� p�1qn�1
2p�1L2p�2Lpnq
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Note: p�1qn�1 occurs in the 2nd, 4th, 6th and other even-number terms,

4p�3L0 � 1; 4p�4L1 � 4p� 3.

Application 3.29. Suppose we want to compute L(98).

Lp98q � Lp14� 7q
� Lpp4� 4� 2q � 7q phere p � 4q
� 1Lp7q14 � p�1q7�114Lp7q12 � 12L2Lp7q10 � p�1q7�1

11L3Lp7q8
� 10L4Lp7q6 � p�1q7�1

9L5Lp7q4 � 8L6Lp7q2 � p�1q7�1p2q
� 1Lp7q14 � 14Lp7q12 � 12L2Lp7q10 � 11L3Lp7q8

�10 L4Lp7q6 �9 L5Lp7q4 � 8L6Lp7q2 � 2

� 2914 � 14� 2912 � p13C2 � 11C0q2910 � p12C3 � 10C1q298

� p11C4 � 9C2q296 � p10C5 � 8C3q294 � p9C6 � 7C4q292 � 2

� 2914 � 14� 2912 � 77� 2910 � 210� 298

� 294� 296 � 196� 294 � 49� 292 � 2

� 297558232675799463481� 4953406964876566574

� 32394456964115477� 105051746721810

� 174878056374� 138627076� 41209� 2

� 302544139324403592003

Note: Recall that nLr � n�1Cr � n�1Cr�2.
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Application 3.30.

Lp104q � Lp13� 8q
� Lpp4� 4� 3q � 8q
� 13L0Lp8q13 � p�1q8�1

12L1Lp8q11 � 11L2Lp8q9
� p�1q8�1

10L3Lp8q7 � 9L4Lp8q5 � p�1q8�1
8L5Lp8q3 � 7L6Lp8q

� p14C0 � 12C�2qLp8q13 � p13C1 � 11C�1qLp8q11

� p12C2 � 10C0qLp8q9 � p11C3 � 9C1qLp8q7
� p10C4 � 8C2qLp8q5 � p9C5 � 7C3qLp8q3 � p8C6 � 6C4qLp8q

� p1� 0q4713 � p13� 0q4711 � p66� 1q479 � p165� 9q477

� p210� 28q475 � p126� 35q473 � p28� 15q47

� 1� 4713 � 13� 4711 � 65� 479 � 156� 477

� 182� 475 � 91� 473 � 13� 47

� 5460999706120583177327� 32138069796092159939

� 72743480751679855� 79033206792228

� 41740791274� 9447893� 611

� 5428934300813767249007

The Pascal’s Triangle and the Lk Triangle

As the coefficients in binomial expansion and the coefficients in polyno-
mial expression of Lpknq in terms of Lpnq have some similar properties, we
try to compare the Pascal’s Triangle and the Lk Triangle.

Observation 3.31. In Pascal’s Triangle, the numbers are as follow.

The first two numbers on the Pascal’s Triangle, 1 and 0, remind us of F p1q
and F p0q. Let us draw some inclined lines (from the bottom left to the top
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right, a.k.a. “shallow diagonals”) across the Pascal’s Triangle. Along each
shallow diagonal, we will find out the sum of the numbers that pass through
it. The sums are 1, 1, 2, 3, 5, . . . and this is the Fibonacci sequence.

Compare the above situation with the Lk Triangle.

Observation 3.32. Now let us look at the Lk Triangle.

As we draw shallow diagonals on the Lk Triangle and find out the sum of
the numbers that pass through them, we obtained the Lucas sequence.

In the above examples, it is observed that a sequence with the property
Upnq � Upn� 1q � Upn� 2q can be obtained by the sum of numbers lying
on the shallow diagonals.

In fact, we have every reason to believe that any triangle that starts with
Up1q and Up0q will have this property.

Let us consider the Pascal’s Triangle again. Now we try to analyze the
numbers in the Triangle. On the first row of the Triangle, the two starting
numbers are 1 and 0, which correspond to F p1q and F p0q respectively. And
what we get in the sequence are 1, 1, 2, 3, 5, 8, . . . which correspond to
F p1q, F p2q, F p3q, F p4q, F p5q, F p6q, . . . respectively.

Now let us consider the Lk Triangle again. We try to analyze the num-
bers in the Triangle. On the first row of the Triangle, the two starting
numbers are 1 and 2, which correspond to Lp1q and Lp0q respectively. And
what we get in the sequence are 1, 3, 4, 7, 11, . . . which correspond to Lp1q,
Lp2q, Lp3q, Lp4q, Lp5q, . . . respectively.

Therefore, we have this hypothesis:
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Is the sequence obtained Up1q, Up2q, Up3q, . . . if we try to create a tri-
angle in a similar way starting with Up1q and Up0q on the first row?

We are going to set up an example. The numbers on the first row of the
following triangle are t5,�3u, i.e. Up1q � 5 and Up0q � 3.

Again, we obtain a sequence t5, 2, 7, 9, 16, 25, 41, . . .u obeying Upnq �Upn�
1q � Upn� 2q.

We are going to prove this by constructing the required triangle and repre-
senting each term in terms of Up1q and Up0q only.

Figure 3.33.

We denote the sum of numbers lying on the n-th shallow diagonal by Dpnq.
Dp1q � Up1q
Dp2q � Up1q � Up0q � Up2q
Dp3q � Up1q � Up1q � Up0q � Up3q
Dp4q � Up1q � 2Up1q � Up0q � Up0q � Up4q
Dp5q � Up1q � 3Up1q � Up0q � Up1q � 2Up0q � Up5q
. . .
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Therefore, we conjecture that Dpnq � Upnq.

To prove this, first, we are going to find out how Figure 3.33 is formed.

Figure 3.34.

In fact, Figure 3.33 consists of two Pascal’s Triangles, as illustrated by Fig-
ure 3.34. Every term in the triangle on the left is multiplied by Up1q and
every term in the triangle on the right is multiplied by Up0q. Then the
two triangles are merged by adding up the terms in the overlapped area,
resulting in the Triangle in Figure 3.33.

Dp1q � 0C1Up1q � Up1q
Dp2q � 1C0Up1q � 1C1Up0q � Up2q
Dp3q � p2C0 � 1C1qUp1q � 1C0Up0q � Up3q
Dp4q � p3C0 � 2C1qUp1q � p2C0 � 1C1qUp0q � Up4q
Dp5q � p4C0 � 3C1 � 2C2qUp1q � p3C0 � 2C1qUp0q � Up5q
Dp6q � p5C0 � 4C1 � 3C2qUp1q � p4C0 � 3C1 � 2C2qUp0q � Up6q
. . .

From the above observations, we conjecture that

Hypothesis 3.35.

Dp2p� 1q � p2pC0 � 2p�1C1 � . . .� p�1Cp�1 � pCpqUp1q
� p2p�1C0 � 2p�2C1 � . . .� p�1Cp�2 � pCp�1qUp0q

Dp2p� 2q � p2p�1C0 � 2pC1 � . . .� p�2Cp�1 � p�1CpqUp1q
� p2pC0 � 2p�1C1 � . . .� p�1Cp�1 � pCpqUp0q

In short, we are going to prove Dpnq � Upnq.

Details of Proof for Hypothesis 3.35 can be found in Appendix E.

Is it amazing? We can form a sequence with the property Upnq�Upn�1q �
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Upn� 2q in this way in the Triangle starting with Up1q and Up0q.

In this section, we have found out how to express Lpknq in terms of Lpnq
only and the relation is shown in the Lk Triangle. You will be interested
in knowing if the Pascal’s Triangle can help us express F pknq in terms of
F pnq. We will have a more detailed discussion in section 5.

4. Introduction of the Tables (Fibonacci Table, Lucas-Fibonacci
Table, Lucas Table)

Why do we introduce the Tables?

In geometry, we have point, line, plane and solid, which represent 0, 1,
2, and 3 dimensions respectively. It is these definitions in geometry that
inspire us to investigate Fibonacci and Lucas numbers in two dimensions.

Constructing a table helps us observe patterns and present our findings.
In section 5 and 6, we will use tables to illustrate our discoveries. In these
two sections, we have come up with formulae that can be used to resolve
large F pnq and Lpnq; at the same time, we have spotted a lot of special
patterns and interesting phenomena that contribute to the second part of
our report.

Definitions Concerning the Tables

Before you begin to read the contents of the following sectionss, there is
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a need to define notations that we will use for the Tables.

XXXXXXXXXRow
Column

1 2 3 4 5 6 7 8 9 10

1 1 1 2 3 5 8 13 21 34 55

2 1 1 2 3 5 8 13 21 34 55

3 2 2 4 6 10 16 26 42 68 110

4 3 3 6 9 15 24 39 63 102 165

5 5 5 10 15 25 40 65 105 170 275

6 8 8 16 24 40 64 104 168 272 440

7 13 13 26 39 65 104 169 273 442 715

8 21 21 42 63 105 168 273 441 714 1155

9 34 34 68 102 170 272 442 714 1156 1870

10 55 55 110 165 275 440 715 1155 1870 3025

In order to facilitate the reading of the Table and locating terms on it, we
have created a naming system. Under this naming system, pF3, F6q refers
to the number on the third column, sixth row; that is 16.

Procedure of creating the Fibonacci Table

(1) The 1st number of the sequence, 1, is placed in the first row and the
first column.

(2) Afterwards, in the horizontal and vertical direction, the Fibonacci se-
quence is generated.

(3) On the second row, another Fibonacci sequence is generated and the
same occurs to the second column.

(4) The third row is created by adding row 1 and row 2. The fourth by
adding row 2 and row 3. Similarly, column 3 is generated by adding
column 1 and 2; while column 4 is a sum of column 2 and 3.

(5) Repeat the addition of rows and columns to get the Fibonacci Table.
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```````Row
Column 1 2 3 4 5 6

ÝÑ

```````Row
Column 1 2 3 4 5 6

1 1 1 1 1 2 3 5 8
2 2 1
3 3 2
4 4 3
5 5 5
6 6 8

Ó
```````Row

Column 1 2 3 4 5 6

ÐÝ

```````Row
Column 1 2 3 4 5 6

1 1 1 2 3 5 8 1 1 1 2 3 5 8
2 1 1 2 3 5 8 2 1 1 2 3 5 8
3 2 2 4 6 10 16 3 2 2
4 3 3 8 9 15 24 4 3 3
5 5 5 10 15 25 40 5 5 5
6 8 8 16 24 40 64 6 8 8

The following table illustrates more clearly what happens after the genera-
tion of Fibonacci Table.

```````Row
Column 1 2 3 4 5 6

1 F p1qF p1q F p2qF p1q F p3qF p1q F p4qF p1q F p5qF p1q F p6qF p1q
2 F p1qF p2q F p2qF p2q F p3qF p2q F p4qF p2q F p5qF p2q F p6qF p2q
3 F p1qF p3q F p2qF p3q F p3qF p3q F p4qF p3q F p5qF p3q F p6qF p3q
4 F p1qF p4q F p2qF p4q F p3qF p4q F p4qF p4q F p5qF p4q F p6qF p4q
5 F p1qF p5q F p2qF p5q F p3qF p5q F p4qF p5q F p5qF p5q F p6qF p5q
6 F p1qF p6q F p2qF p6q F p3qF p6q F p4qF p6q F p5qF p6q F p6qF p6q

The Fibonacci Triangle

If we try to rotate the Fibonacci Table 45� clockwise, a triangle below is



280 H.S. HUI, T.W. LUI, Y.K. WONG

formed. Let us name this triangle the Fibonacci Triangle.

1
1 1

2 1 2
3 2 2 3

5 3 4 3 5
8 5 6 6 5 8

13 8 10 9 10 8 13
21 13 16 15 15 16 13 21

34 21 26 24 25 24 26 21 34
55 34 42 39 40 40 39 42 34 55

This is the Fibonacci Triangle. For the sake of convenience, we have created
a naming system.

The axis t1, 1, 4, 9, 25u is named as A0, vertical lines next to the axis are
named as A1 (to the right of the axis) and A�1 (to the left of the axis), as
shown in the figure.

To name the 3rd term on line 9, i.e. 26, we first locate the term that lies on
the axis on line 9, in this case, 25. Then look for 26, which is located on
axis A�4 and on line 9. Hence the 3rd term on line 9 is named as A�4L9.
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The Lucas-Fibonacci Table

Before introducing the Lucas-Fibonacci Triangle, it is necessary to intro-
duce the Lucas-Fibonacci Table. While the method of generation of the
table is the same, the top horizontal sequence is the Lucas sequence
while the leftmost vertical sequence is the Fibonacci sequence.

XXXXXXXXXRow
Column

1 2 3 4 5 6 7 8 9

1 1 3 4 7 11 18 29 47 76

2 1 3 4 7 11 18 29 47 76

3 2 6 8 14 22 36 58 94 152

4 3 9 12 21 33 54 87 141 228

5 5 15 20 35 55 90 145 235 380

6 8 24 32 56 88 144 232 376 608

7 13 39 52 91 143 234 377 611 988

8 21 63 64 147 231 378 609 987 1596

9 34 102 136 238 374 612 986 1598 2584

The Lucas-Fibonacci Triangle

The Lucas-Fibonacci Triangle is formed by rotating the Lucas-Fibonacci
Table 45� clockwise. The following shows part of the Lucas-Fibonacci Tri-
angle.

1
1 3

2 3 4
3 6 4 7

5 9 8 7 11
8 15 12 14 11 18

13 24 20 21 22 18 29
21 39 32 35 33 36 29 47

34 63 52 56 55 54 58 47 76
55 102 84 91 88 90 87 94 76 123

The Lucas Table

Since we are going to use the Lucas Table in the following sections, there
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is also a need to introduce the Lucas Table. It is formed by the Lucas se-
quence. The method of generation of the Lucas Table is just the same as
that of the Fibonacci Table.

XXXXXXXXXRow
Column

1 2 3 4 5 6 7 8 9

1 1 3 4 7 11 18 29 47 76

2 3 9 12 21 33 54 87 141 228

3 4 12 16 28 44 72 116 188 304

4 7 21 28 49 77 126 203 329 532

5 11 33 44 77 121 198 319 517 836

6 18 54 72 126 198 324 522 846 1368

7 29 87 116 203 319 522 841 1363 2204

8 47 141 188 329 517 846 1363 2209 3572

9 76 228 304 532 836 1368 2204 3572 5776

The Lucas Triangle

With the method of generation the same as that of the Fibonacci Trian-
gle, the Lucas Triangle is generated.

1
3 3

4 9 4
7 12 12 7

11 21 16 21 11
18 33 28 28 33 18

29 54 44 49 44 54 29
47 87 72 77 77 72 87 47

76 141 116 126 121 126 116 141 76

5. Relationships between Fibonacci and Lucas Sequences

Have you ever thought that the Fibonacci sequence and the Lucas sequence
are inter-related?
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One of the main reasons for us to insert the tables (Fibonacci Table, Lucas-
Fibonacci Table and Lucas Table) is because it is good for observing pat-
terns. Some of these patterns can even help us break down big F pnq and
Lpnq.

5.1. Expressing L(n) in terms of F(n)

Here, we are going to introduce some special patterns in the Lucas-Fibonacci
Table. Note that every term in the Table represents the product of a Lucas
number and a Fibonacci number.

Observations Hypothesis

5.1

pL1, F2q � 1� 1 � 1

� 2� 1

� F p3q � F p1q
pL1, F3q � 1� 2 � 2

� 3� 1

� F p4q � F p2q
pL1, F4q � 1� 3 � 3

� 5� 2

� F p5q � F p3q

5.2 Lp1qF pkq � F pk�1q�F pk�1q

5.3

pL2, F3q � 3� 2 � 6

� 5� 1

� F p5q � F p1q
pL2, F4q � 3� 3 � 9

� 8� 1

� F p6q � F p2q
pL2, F5q � 3� 5 � 15

� 13� 2

� F p7q � F p3q

5.4 Lp2qF pkq � F pk�2q�F pk�2q
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5.5

pL3, F4q � 4� 3 � 12

� 13� 1

� F p7q � F p1q
pL3, F5q � 4� 5 � 20

� 21� 1

� F p8q � F p2q
pL3, F6q � 4� 8 � 32

� 34� 2

� F p9q � F p3q

5.6 Lp3qF pkq � F pk�3q�F pk�3q

5.7

pL4, F5q � 7� 5 � 35

� 34� 1

� F p9q � F p1q
pL4, F6q � 7� 8 � 56

� 55� 1

� F p10q � F p2q
pL4, F7q � 7� 13 � 91

� 89� 2

� F p11q � F p3q

5.8 Lp4qF pkq � F pk�4q�F pk�4q

5.9

pL5, F6q � 11� 8 � 88

� 89� 1

� F p11q � F p1q
pL5, F7q � 11� 13 � 143

� 144� 1

� F p12q � F p2q
pL5, F8q � 11� 21 � 231

� 233� 2

� F p13q � F p3q

5.10 Lp5qF pkq � F pk�5q�F pk�5q
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5.11

pL6, F7q � 18� 13 � 234

� 233� 1

� F p13q � F p1q
pL6, F8q � 18� 21 � 378

� 377� 1

� F p14q � F p2q
pL6, F9q � 18� 34 � 612

� 610� 2

� F p15q � F p3q

5.12 Lp6qF pkq � F pk�6q�F pk�6q

5.13

pL2, F1q � 3� 1 � 3

� 2� 1

� F p3q � F p1q
pL3, F1q � 4� 1 � 4

� 3� 1

� F p4q � F p2q
pL4, F1q � 7� 1 � 7

� 5� 2

� F p5q � F p3q

5.14 F p1qLpkq � F pk�1q�F pk�1q

5.15

pL3, F2q � 4� 1 � 4

� 5� 1

� F p5q � F p1q
pL4, F2q � 7� 1 � 7

� 8� 1

� F p6q � F p2q
pL5, F2q � 11� 1 � 11

� 13� 2

� F p7q � F p3q

5.16 F p2qLpkq � F pk�2q�F pk�2q
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5.17

pL4, F3q � 7� 2 � 14

� 13� 1

� F p7q � F p1q
pL5, F3q � 11� 2 � 22

� 21� 1

� F p8q � F p2q
pL6, F3q � 18� 2 � 36

� 34� 2

� F p9q � F p3q

5.18 F p3qLpkq � F pk�3q�F pk�3q

5.19

pL5, F4q � 11� 3 � 33

� 34� 1

� F p9q � F p1q
pL6, F4q � 18� 3 � 54

� 55� 1

� F p10q � F p2q
pL7, F4q � 29� 3 � 87

� 89� 2

� F p11q � F p3q

5.20 F p4qLpkq � F pk�4q�F pk�4q

5.21

pL6, F5q � 18� 5 � 90

� 89� 1

� F p11q � F p1q
pL7, F5q � 29� 5 � 145

� 144� 1

� F p12q � F p2q
pL8, F5q � 47� 5 � 235

� 233� 2

� F p13q � F p3q

5.22 F p5qLpkq � F pk�5q�F pk�5q
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5.23

pL7, F6q � 29� 8 � 232

� 233� 1

� F p13q � F p1q
pL8, F6q � 47� 8 � 376

� 377� 1

� F p14q � F p2q
pL9, F6q � 76� 8 � 608

� 610� 2

� F p15q � F p3q

5.24 F p6qLpkq � F pk�6q�F pk�6q

Let us recap what we have found related to F pkq.
Hypothesis 5.2. Lp1qF pkq � F pk � 1q � F pk � 1q
Hypothesis 5.4. Lp2qF pkq � F pk � 2q � F pk � 2q
Hypothesis 5.6. Lp3qF pkq � F pk � 3q � F pk � 3q
Hypothesis 5.8. Lp4qF pkq � F pk � 4q � F pk � 4q
Hypothesis 5.10. Lp5qF pkq � F pk � 5q � F pk � 5q
Hypothesis 5.12. Lp6qF pkq � F pk � 6q � F pk � 6q
To generalize the findings, we have

Hypothesis 5.25.

LprqF pkq � F pk � rq � p�1qrF pk � rq

Details of Proof for Hypothesis 5.25 can be found in Appendix E.

Let us recap what we have found related to Lpkq.

Hypothesis 5.14. F p1qLpkq � F pk � 1q � F pk � 1q
Hypothesis 5.16. F p2qLpkq � F pk � 2q � F pk � 2q
Hypothesis 5.18. F p3qLpkq � F pk � 3q � F pk � 3q
Hypothesis 5.20. F p4qLpkq � F pk � 4q � F pk � 4q
Hypothesis 5.22. F p5qLpkq � F pk � 5q � F pk � 5q
Hypothesis 5.24. F p6qLpkq � F pk � 6q � F pk � 6q

To generalize the findings, we have

Hypothesis 5.26.

F prqLpkq � F pk � rq � p�1qr�1F pk � rq
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Details of Proof for Hypothesis 5.26 can be found in Appendix E.

Application 5.27. When we look into the Fibonacci sequence, we do
not just look at F pnq with positive n. We sometimes may have to en-
counter F pnq with negative n, for example, in doing some proofs. How
can we find them? The answer is easy and simple. Using the property
F pn � 2q � F pnq � F pn � 1q, we can find out the negative part of the se-
quence.

F p0q � 0 F p0q � 0
Positive side Negative side

F p1q � 1 F p�1q � 1
F p2q � 1 F p�2q � �1
F p3q � 2 F p�3q � 2
F p4q � 3 F p�4q � �3
F p5q � 5 F p�5q � 5
F p6q � 8 F p�6q � �8
F p7q � 13 F p�7q � 13
F p8q � 21 F p�8q � �21
F p9q � 34 F p�9q � 34
F p10q � 55 F p�10q � �55

You may have noticed that F pkq � p�1qk�1F p�kq. Now, we are going to
prove this simple property of the Fibonacci sequence by Formula 5.25 and
Formula 5.26.

Proof. First, consider Formula 5.25,

LprqF pkq � F pk � rq � p�1qrF pk � rq

Putting r � a, k � b, we have

LpaqF pbq � F pa� bq � p�1qaF pb� aq (3)

Then, consider Formula 5.26,

F prqLpkq � F pk � rq � p�1qr�1F pk � rq

Putting r � b, k � a, we have

F pbqLpaq � F pa� bq � p�1qb�1F pa� bq (4)
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Now, sub (3) into (4).

F pa� bq � p�1qaF pb� aq � F pa� bq � p�1qb�1F pa� bq
p�1qaF pb� aq � p�1qb�1F pa� bq

p�1qa�pb�1qF pb� aq � F pa� bq
p�1qa�b�1F pb� aq � F pa� bq

Substitute k � a� b,

p�1qk�1F p�kq � F pkq
F pkq � p�1qk�1F p�kq

Although our project does not focus on the negative part of the Fibonacci
sequence, sometimes we do encounter large F p�nq. For instance, we want
to find F p�100q, we can just find F p100q first and then apply F pkq �
p�1qk�1F p�kq to obtain F p�100q.

Application 5.28. As we have two formulae:

LpaqF pbq � F pb� aq � p�1qaF pb� aq (3)

F paqLpbq � F pb� aq � p�1qa�1F pb� aq (4)

Now, we can generate some useful formulae to resolve large F pnq from them.

(3)� (4):

LpaqF pbq � F paqLpbq � F pb� aq � F pb� aq � p�1qaF pb� aq
� p�1qaF pb� aq

LpaqF pbq � F paqLpbq � 2F pb� aq

By this method, we can in fact reduce F pnq conveniently.

For example,

F p80q � F p30� 50q

� Lp30F p50q � F p30qLp50q
2

Actually, if we want to reduce F pb � aq quickly, a and b should be more
or less the same. That is, we should substitute a � 40 and b � 40 in the
previous example.
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(3)� (4):

LpaqF pbq � F paqLpbq � F pb� aq � F pb� aq � p�1qaF pb� aq
� p�1qaF pb� aq

LpaqF pbq � F paqLpbq � p�1qa2F pb� aq
LpaqF pbq � p�1qa2F pb� aq � F paqLpbq

Actually this formula cannot help us much on the breakdown of large F pnq
or Lpnq. However, please look at the formula again.

pLa, Fbq � pLb, Faq � p�1qa2F pb� aq

In the Fibonacci Triangle, pFa, Fbq actually equals pFb, Faq, because they
both represents F paqF pbq. Therefore, A0 is actually the axis of symmetry
in the Fibonacci Triangle. The same thing also occurs in the Lucas Triangle.

Now, let us look at the Lucas-Fibonacci Triangle. Although A0 is not the
axis of symmetry of the Triangle, can we find out the relation between
pLa, Fbq and pLb, Faq? In fact, this relation is given by the above formula.

Let us consider an example.

Refer to line 12.

pL5, F8q � 231

pL8, F5q � 235

231� 235 � �4

pL5, F8q � pL8, F5q � p�1q52F p3q

This is how we can use the formula in the Tables.

Application 5.29. We shall try to use Formula 5.26 to compute large
F pnq.
From Formula 5.26,

F pkqLpnq � F pn� kq � p�1qk�1F pn� kq
F pn� kq � F pkqLpnq � p�1qkF pn� kq

Note that, in the formula, the largest term is F pn� kq.
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How useful is this formula? Consider the following example.

F p41q � F p21� 20q
� F p20qLp21q � p�1q20F p1q (by Formula 5.25q
� F p20qLp21q � 1

� 6765� 24476� 1

� 165580141

Application 5.30. In section 3, we have investigated how to express Lpknq
in terms of Lpnq. Can we do the same on F pknq by applying Formula 5.25
F pk � rq � F pkqLprq � p�1qr�1F pk � rq?
Now, substitute k � r � n,

F pn� nq � F pnqLpnq � p�1qn�1F pn� nq
F p2nq � F pnqLpnq � p�1qn�1F p0q

Formula 5.31.

F p2nq � F pnqLpnq

Application 5.32. If we substitute k � 2n, r � n into Formula 5.25, we
have

F p2n� nq � F p2nqLpnq � p�1qn�1F p2n� nq
F p3nq � F pnqLpnqLpnq � p�1qn� 1F pnq (by Formula 5.31)

Formula 5.33.

F p3nq � F pnqLpnq2 � p�1qn�1F pnq

Application 5.34. If we substitute k � 3n, r � n into Formula 5.25, we
have

F p3n� nq � F p3nqLpnq � p�1qn�1F p3n� nq
F p4nq � F pnqLpnq3 � p�1qn�1F pnqLpnq � p�1qn�1F pnqLpnq

(by Formula 5.31 and Formula 5.33)

Formula 5.35.

F p4nq � F pnqLpnq3 � p�1qn�12F pnqLpnq
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Application 5.36. If we substitute k � 4n, r � n into Formula 5.25, we
have

F p4n� nq � F p4nqLpnq � p�1qn�1F p4n� nq
F p5nq � F pnqLpnq4 � p�1qn�12F pnqLpnq2

� p�1qn�1F pnqLpnq2 � F pnq
(by Formula 5.33 and Formula 5.35)

Formula 5.37.

F p5nq � F pnqLpnq4 � p�1qn�13F pnqLpnq2 � F pnq

Application 5.38. If we substitute k � 5n, r � n into Formula 5.25, we
have

F p5n� nq � F p5nqLpnq � p�1qn�1F p5n� nq
F p6nq � F pnqLpnq5 � p�1qn�13F pnqLpnq3

� p�1qn�1F pnqLpnq3 � 2F pnqLpnq
(by Formula 5.35 and Formula 5.37)

Formula 5.39.

F p6nq � F pnqLpnq5 � p�1qn�14F pnqLpnq3 � 3F pnqLpnq

Application 5.40. If we substitute k � 6n, r � n into Formula 5.25, we
have

F p6n� nq � F p6nqLpnq � p�1qn�1F p6n� nq
F p7nq � F pnqLpnq6 � p�1qn�14F pnqLpnq4 � 3F pnqLpnq2

� p�1qn�1F pnqLpnq4 � 3F pnqLpnq2 � p�1qn�1F pnq
(by Formula 5.37 and Formula 5.39)

Formula 5.41.

F p7nq � F pnqLpnq6 � p�1qn�15F pnqLpnq4 � 6F pnqLpnq2 � p�1qn�1F pnq

Application 5.42. If we substitute k � 7n, r � n into Formula 5.25, we
have

F p7n� nq � F p7nqLpnq � p�1qn�1F p7n� nq
F p8nq � F pnqLpnq7 � p�1qn�15F pnqLpnq5 � 6F pnqLpnq3

� p�1qn�1F pnqLpnq5 � 4F pnqLpnq3 � p�1qn�13F pnqLpnq
(by Formula 5.39 and Formula 5.41)
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Formula 5.43.

F p8nq � F pnqLpnq7 � p�1qn�16F pnqLpnq5
� 10F pnqLpnq3 � p�1qn�14F pnqLpnq

Now, let us recap what we have found.

F p1nq � F pnq
Formula 5.31. F p2nq � F pnqLpnq
Formula 5.33. F p3nq � F pnqrLpnq2 � p�1qn�1s
Formula 5.35. F p4nq � F pnqrLpnq3 � p�1qn�12Lpnqs
Formula 5.37. F p5nq � F pnqrLpnq4 � p�1qn�13Lpnq2 � 1s
Formula 5.39. F p6nq � F pnqrLpnq5 � p�1qn�14Lpnq3 � 3Lpnqs
Formula 5.41. F p7nq � F pnqrLpnq6 � p�1qn�15Lpnq4 � 6Lpnq2

�p�1qn�1s
Formula 5.43. F p8nq � F pnqrLpnq7 � p�1qn�16Lpnq5

�10Lpnq3 � p�1qn�14Lpnqs
Please look at the coefficients.

1

ÝÑ

0C0

1 1C0

1 1 2C0 1C1

1 2 3C0 2C1

1 3 1 4C0 3C1 2C2

1 4 3 5C0 4C1 3C2

1 5 6 1 6C0 5C1 4C2 3C3

1 6 10 4 7C0 6C1 5C2 4C3

Note: p�1qn�1 appears on even number terms when arranged in descend-
ing power of Lpnq.

We have now found out the relationship between F pnq and Pascal’s Tri-
angle. Now, by observation, we generalize that
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Hypothesis 5.44.

F p4pnq � F pnqr4p�1C0Lpnq4p�1 � p�1qn�1
4p�2C1Lpnq4p�3

� 4p�3C2Lpnq4p�5 � . . .� 2p�1C2p�2Lpnq3
� p�1qn�1

2pC2p�1Lpnqs
F pp4p� 1qnq � F pnqr4pC0Lpnq4p � p�1qn�1

4p�1C1Lpnq4p�2

� 4p�2C2Lpnq4p�4 � . . .� p�1qn�1
2p�1C2p�1Lpnq2

� 2pC2ps
F pp4p� 2qnq � F pnqr4p�1C0Lpnq4p�1 � p�1qn�1

4pC1Lpnq4p�1

� 4p�1C2Lpnq4p�3 � . . .� p�1qn�1
2p�2C2p�1Lpnq3

2p�1C2pLpnqs
F pp4p� 3qnq � F pnqr4p�2C0Lpnq4p�2 � p�1qn�1

4p�1C1Lpnq4p
� 4pC2Lpnq4p�2 � . . .� 2p�2C2pLpnq2
� p�1qn�1

2p�1Cp�1s

Details of Proof for Hypothesis 5.44 can be found Appendix E.

5.2. Expressing F(n) in terms of L(n)

In section 5.1, we have found out how to express Lpnq in terms of F pnq.
Now, we want to find out how we can express F pnq in terms of Lpnq. To
find out this relationship, we can use the Fibonacci Table, together with
the Lucas sequence.
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Observation 5.45. Let us concentrate on the 1st column. (which is in-
terchangeable with the 1st row, same in the following examples)

Lp4q � Lp2q � 7� 3 � 10 � 5� 2

� 5� p1� 2q � 5� pF1, F3q
Therefore, 5F p1qF p3q � Lp4q � Lp2q.

Lp5q � Lp3q � 11� 4 � 15 � 5� 3

� 5� p1� 3q � 5� pF1, F4q
Therefore, 5F p1qF p4q � Lp5q � Lp3q.

Lp6q � Lp4q � 18� 7 � 25 � 5� 5

� 5� p1� 5q � 5� pF1, F5q
Therefore, 5F p1qF p5q � Lp6q � Lp4q.

And so on.

To generalize the findings, we have

Hypothesis 5.46.

5F p1qF pnq � Lpn� 1q � Lpn� 1q

Observation 5.47. Let us concentrate on the 2nd column.

Lp5q � Lp1q � 11� 1 � 10 � 5� 2

� 5� p1� 2q � 5� pF2, F3q
Therefore, 5F p2qF p3q � Lp5q � Lp1q.

Lp6q � Lp2q � 18� 3 � 15 � 5� 3

� 5� p1� 3q � 5� pF2, F4q
Therefore, 5F p2qF p4q � Lp6q � Lp2q.

Lp7q � Lp3q � 29� 4 � 25 � 5� 5

� 5� p1� 5q � 5� pF2, F5q
Therefore, 5F p2qF p5q � Lp7q � Lp3q.

And so on.

To generalize the findings, we have
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Hypothesis 5.48.

5F p2qF pnq � Lpn� 2q � Lpn� 2q

Observation 5.49. Let us concentrate on the 3rd column.

Lp7q � Lp1q � 29� 1 � 30 � 5� 6

� 5� p2� 3q � 5� pF3, F4q
Therefore, 5F p3qF p4q � Lp7q � Lp1q.

Lp8q � Lp2q � 47� 3 � 50 � 5� 10

� 5� p2� 5q � 5� pF3, F5q
Therefore, 5F p3qF p5q � Lp8q � Lp2q.

Lp9q � Lp3q � 76� 4 � 25 � 5� 16

� 5� p2� 8q � 5� pF3, F6q
Therefore, 5F p3qF p6q � Lp9q � Lp3q.

And so on.

To generalize the findings, we have

Hypothesis 5.50.

5F p3qF pnq � Lpn� 3q � Lpn� 3q

Observation 5.51. What about expressing F p4qF pnq in terms of Lpn� 4q
and Lpn� 4q? Let us concentrate on the 4th column.

Lp9q � Lp1q � 76� 1 � 75 � 5� 15

� 5� p3� 5q � 5� pF4, F5q
Therefore, 5F p4qF p5q � Lp9q � Lp1q.

Lp10q � Lp2q � 123� 3 � 120 � 5� 24

� 5� p3� 8q � 5� pF4, F6q
Therefore, 5F p4qF p6q � Lp10q � Lp2q.

Lp11q � Lp3q � 199� 4 � 195 � 5� 39

� 5� p3� 13q � 5� pF4, F7q
Therefore, 5F p4qF p7q � Lp11q � Lp3q.
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And so on.

To generalize the findings, we have

Hypothesis 5.52.

5F p4qF pnq � Lpn� 4q � Lpn� 4q

Observation 5.53. Let us concentrate on the 5th column.

Lp11q � Lp1q � 199� 1 � 200 � 5� 40

� 5� p5� 8q � 5� pF5, F6q
Therefore, 5F p5qF p6q � Lp11q � Lp1q.

Lp12q � Lp2q � 322� 3 � 325 � 5� 65

� 5� p5� 13q � 5� pF5, F7q
Therefore, 5F p5qF p7q � Lp12q � Lp2q.

Lp13q � Lp3q � 521� 4 � 525 � 5� 105

� 5� p5� 21q � 5� pF5, F8q
Therefore, 5F p5qF p8q � Lp13q � Lp3q.

And so on.

To generalize the findings, we have

Hypothesis 5.54.

5F p5qF pnq � Lpn� 5q � Lpn� 5q

Up to this point, let us recap what we have found.

Hypothesis 5.46. 5F p1qF pnq � Lpn� 1q � Lpn� 1q
Hypothesis 5.48. 5F p2qF pnq � Lpn� 2q � Lpn� 2q
Hypothesis 5.50. 5F p3qF pnq � Lpn� 3q � Lpn� 3q
Hypothesis 5.52. 5F p4qF pnq � Lpn� 4q � Lpn� 4q
Hypothesis 5.54. 5F p5qF pnq � Lpn� 5q � Lpn� 5q

To generalize the findings, we have

Hypothesis 5.55.

5F pkqF pnq � Lpn� kq � p�1qk�1Lpn� kq
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Details of Proof for Hypothesis 5.55 can be found in Appendix E.

You may wonder, why we can generate 2 formulae, Formula 5.25 and For-
mula 5.26, from the observations in section 5.1 but can only generate one
formula, Formula 5.55, in section 5.2.

Actually, in section 5.1, since we use the Lucas-Fibonacci Table, which is
formed by 2 different sequences (the Lucas sequence and the Fibonacci se-
quence), we can generate 2 formulae, Formula 5.25 from Lpkq and Formula
5.26 from F pkq. However, in section 5.2, the Fibonacci Table is in fact
formed by the product of two identical sequences, the Fibonacci sequence.
Therefore, we can only get Formula 5.55.

Application 5.56. When we look into the Lucas sequence, we do not
just look at Lpnq with positive n. We sometimes may have to encounter
Lpnq with negative n, for example, in doing some proofs.

How can we find them?

The answer is easy and simple. By the property Lpn�2q � Lpnq�Lpn�1q,
we can find out the negative part of the sequence.

Lp0q � 2 Lp0q � 2
Positive side Negative side

Lp1q � 1 Lp�1q � 1
Lp2q � 3 Lp�2q � 3
Lp3q � 4 Lp�3q � �4
Lp4q � 7 Lp�4q � 7
Lp5q � 11 Lp�5q � �11
Lp6q � 18 Lp�6q � 18
Lp7q � 29 Lp�7q � �29
Lp8q � 47 Lp�8q � 47
Lp9q � 76 Lp�9q � �76

Lp10q � 123 Lp�10q � 123

You may have noticed that Lpkq � p�1qkLp�kq. Now, we are going to prove
this simple property of the Lucas sequence by Formula 5.55.

Proof. Subsitute n � a, k � b into Formula 5.55,

Lpa� bq � 5F pbqF paq � p�1qbLpa� bq (5)
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Substitute n � b, k � a into Formula 5.55,

Lpb� aq � 5F paqF pbq � p�1qaLpb� aq (6)

(6)� (5).

0 � p�1qaLpb� aq � p�1qbLpa� bq
p�1qbLpa� bq � p�1qaLpb� aq

Lpa� bq � p�1qa�bLpb� aq
Substitute p � a� b, we have

Lppq � p�1qpLp�pq.

Application 5.57. By Formula 5.55, we have

Lpn� kq � 5F pkqF pnq � p�1qkLpn� kq.
Replace k by n,

Lp2nq � 5F pnq2 � p�1qnLp0q
Formula 5.58.

Lp2nq � 5F pnq2 � p�1qnp2q

This formula will help us prove Hypothesis 3.2. We will discuss the proof in
detail in Application 6.68.

6. Squares of Fibonacci and Lucas Numbers

We have introduced various Tables to you. Now, can we make good use of
the Tables to prove the relationship between squares of F pnq and Lpnq in
terms of F pn� kq and Lpn� kq respectively?

6.1. Fibonacci Numbers

For Fibonacci numbers, we have discovered some interesting pattern in
squaring Fibonacci numbers:
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Observation 6.1.

pF4, F4q � F p4qF p4q � 32 � 9

pF3, F5q � F p3qF p5q � 2� 5 � 10

Therefore, F p4q2 � F p3qF p5q � 1.

pF5, F5q � F p5qF p5q � 52 � 25

pF4, F6q � F p4qF p6q � 3� 8 � 24

Therefore, F p5q2 � F p4qF p6q � 1.

pF6, F6q � F p6qF p6q � 82 � 64

pF5, F7q � F p5qF p7q � 5� 13 � 65

Therefore, F p6q2 � F p5qF p7q � 1.

To generalize the above findings, we have

Hypothesis 6.2.

F pnq2 � F pn� 1qF pn� 1q � p�1qn�1

Details of Proof for Hypothesis 6.2 can be found in Appendix E.

Observation 6.3. This time, instead of using F pn � 1q and F pn � 1q
to compare with F pnq2, we consider F pn� 2q and F pn� 2q.

pF5, F5q � F p5qF p5q � 52 � 25

pF3, F7q � F p3qF p7q � 2� 13 � 26

Therefore, F p5q2 � F p3qF p7q � 1.

pF6, F6q � F p6qF p6q � 82 � 64

pF4, F8q � F p4qF p8q � 3� 21 � 63

Therefore, F p6q2 � F p4qF p8q � 1.

pF7, F7q � F p7qF p7q � 132 � 169

pF5, F9q � F p5qF p9q � 5� 34 � 170

Therefore, F p7q2 � F p5qF p9q � 1.
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To generalize the above findings, we have

Hypothesis 6.4.

F pnq2 � F pn� 2qF pn� 2q � p�1qn

Details of Proof for Hypothesis 6.4 can be found in Appendix E.

Observation 6.5. In this observation, we choose F pn� 3q and F pn� 3q to
compare with F pnq.

pF5, F5q � F p5qF p5q � 52 � 25

pF2, F8q � F p2qF p8q � 1� 21 � 21

Therefore, F p5q2 � F p2qF p8q � 4.

pF6, F6q � F p6qF p6q � 82 � 64

pF3, F9q � F p3qF p9q � 2� 34 � 68

Therefore, F p6q2 � F p3qF p9q � 4.

pF7, F7q � F p7qF p7q � 132 � 169

pF4, F10q � F p4qF p10q � 3� 55 � 165

Therefore, F p7q2 � F p4qF p10q � 4.

To generalize the above findings, we have

Hypothesis 6.6.

F pnq2 � F pn� 3qF pn� 3q � p�1qn�1p4q
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Observation 6.7. It is expected that we shall use F pn� 4q and F pn� 4q
for comparison this time.

pF5, F5q � F p5qF p5q � 52 � 25

pF1, F9q � F p1qF p9q � 1� 34 � 34

Therefore, F p5q2 � F p1qF p9q � 9.

pF6, F6q � F p6qF p6q � 82 � 64

pF2, F10q � F p2qF p10q � 1� 55 � 55

Therefore, F p6q2 � F p2qF p10q � 9

pF7, F7q � F p7qF p7q � 132 � 169

pF3, F11q � F p3qF p11q � 2� 89 � 178

Therefore, F p7q2 � F p3qF p11q � 9.

To generalize the above findings, we have

Hypothesis 6.8.

F pnq2 � F pn� 4qF pn� 4q � p�1qnp9q

Observation 6.9. A further investigation of Fibonacci numbers with F pn�
5q and F pn� 5q and F pnq2 is conducted as follows:

pF8, F8q � F p8qF p8q � 212 � 441

pF3, F13q � F p3qF p13q � 2� 233 � 466

Therefore, F p8q2 � F p3qF p13q � 25.

pF9, F9q � F p9qF p9q � 342 � 1156

pF4, F14q � F p4qF p14q � 3� 377 � 1131

Therefore, F p9q2 � F p4qF p14q � 25.

To generalize the above findings, we have

Hypothesis 6.10.

F pnq2 � F pn� 5qF pn� 5q � p�1qn�1p25q

Up to this point, let us recap what we have found.
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Hypothesis 6.2. F pnq2 � F pn� 1qF pn� 1q � p�1qn�1p1q
Hypothesis 6.4. F pnq2 � F pn� 2qF pn� 2q � p�1qnp1q
Hypothesis 6.6. F pnq2 � F pn� 3qF pn� 3q � p�1qn�1p4q
Hypothesis 6.8. F pnq2 � F pn� 4qF pn� 4q � p�1qnp9q
Hypothesis 6.10. F pnq2 � F pn� 5qF pn� 5q � p�1qn�1p25q

In other words,

F pnq2 � F pn� 1qF pn� 1q � p�1qn�1F p1q2
F pnq2 � F pn� 2qF pn� 2q � p�1qn�2F p2q2
F pnq2 � F pn� 3qF pn� 3q � p�1qn�3F p3q2
F pnq2 � F pn� 4qF pn� 4q � p�1qn�4F p4q2
F pnq2 � F pn� 5qF pn� 5q � p�1qn�5F p5q2

From the above table, generally speaking,

Hypothesis 6.11.

F pnq2 � F pn� kqF pn� kq � p�1qn�kF pkq2

Proof for Hypothesis 6.11.

To do this proof, we can actually follow what we have done in the proofs of
Hypothesis 6.2 and Hypothesis 6.4. However, in that way, the proof will be
very complicated and may even lead to a dead end. In sight of this, we are
going to get them by another approach. It is definitely amazing that, this
time, we are actually doing the proof by the Fibonacci Table itself!

Before doing the proof, we have to introduce a special and interesting tech-
nique to use the Fibonacci Table.

Observation 6.12. Let us make some observations in the Fibonacci Table.

1 1 2 3 5 8 13 21
1 1 2 3 5 8 13 21
2 2 4 6 10 16 26 42
3 3 6 9 15 24 39 63
5 5 10 15 25 40 65 105
8 8 16 24 40 64 104 168
13 13 26 39 65 104 169 273
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What pattern can you observe between the numbers in bold (i.e. numbers
that lie on A0 in the Fibonacci Triangle) and their neighbours?

In fact, across a row or down a column, Upnq�Upn� 1q � Upn� 2q applies
everywhere. With this property of the Fibonacci Table, we can find the sum
of numbers on an axis of any length, and the following is the method of
summation that we are going to introduce.

First we consider A0,

Case I: Summing up numbers in bold starting with horizontal summation

0 1 1 0� 1 � 1
1 1� 1 � 2
2 4 6 2� 4 � 6

9 6� 9 � 15
15 25 40 15� 25 � 40

64 40� 64 � 104
104 169 273 104� 169 � 273

You might have already noticed that:

1� 1� 1� 2� 4� 6� 9� 15� 25� 40� 64� 104� 169

� 1� 2� 6� 15� 40� 104� 273

1� 1� 4� 9� 25� 64� 169� p1� 2� 6� 15� 40� 104q
� 273� p1� 2� 6� 15� 40� 104q

1� 1� 4� 9� 25� 64� 169 � 273

Case II: Summing up numbers in bold starting with vertical summation

0
1 0� 1 � 1
1 1 2 1� 1 � 2

4 2� 4 � 6
6 9 15 6� 9 � 15

25 15� 25 � 40
40 64 104 40� 64 � 104

169 104� 169 � 273
273
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In fact, we can see that we can find the sum of number on an axis of any
length by looking for the number on the right or immediately below the
number at the end of the summation.

In case I, since we start with horizontal summation, we get 0 � 1 � 1.
After the first horizontal summation, we go downwards to do the vertical
summation, obtaining 1 � 1 � 2. After that, we go to the right to do the
horizontal summation, obtaining 2 � 4 � 6. This 6 is the sum of the first
three numbers in the A0. Also, this number 6 is found to the right of the
final number in the summation, that is, 4.

In case II, since we start with vertical summation, we get 0 � 1 � 1. After
the first vertical summation, we go to the right to do the horizontal summa-
tion, obtaining 1 � 1 � 2. After that, we go downwards to do the vertical
summation, obtaining 2�4 � 6. This 6 is the sum of the first three numbers
in the A0. Also, this number 6 is found immediately below the final number
in the summation, that is, 4.

It is interesting to know that this method of summation is just like play-
ing Chinese checker (“Chinese-checker-like method of summation”). This is
what we would like to use in the proof.

Then, what if we want to add up the numbers from 4 to 169 in the A0

instead of starting from the beginning? The mechanism is just the same.
We start by horizontal summation in the context of case I. So we take the
number 2 to ‘trigger’ the series of summation. After a series of horizontal
and vertical summation, we get 273 in the end. And the sum from 4 to 169
on A0 should be 273� 2 � 271.

Application 6.13. With this method, we can find out the summation
of the terms lying on Ak. For example, as shown above, all the numbers
that lie on A0 in the Fibonacci Triangle can be illustrated by F pnq � F pnq,
i.e. F pnq2.
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From the above observation and since F p0q is defined as 0, we get the fol-
lowing special property:

7̧

n�1

F pnq2 � 273

7̧

n�1

F pnq2 � F p7qF p8q

From this, we have

Formula 6.14.

ņ

k�1

F pkq2 � F pnqF pn� 1q

Observation 6.15.

A0 represents F pnqF pnq, A1 represents the terms F pnqF pn � 1q, . . . and
Ak represents the terms F pnqF pn� kq. By the Chinese-checker-like method
of summation, we can find out the sum of terms on Ak i.e. summation of
F pnqF pn� kq.

Now we have investigated the special property of the summation of axis
A0. So does the same property apply to the axis A1 or A�1?

Consider A1,
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Case I: Summing up numbers in bold starting with horizontal summation

0 1 1 0� 1 � 1
2 1� 2 � 3
3 6 9 3� 6 � 9

15 9� 15 � 24
24 40 64 24� 40 � 64

104 64� 104 � 168
168

Case II: Summing up numbers in bold starting with vertical summation

1
1 1� 1 � 2
2 2 4 2� 2 � 4

6 4� 6 � 10
10 15 25 10� 15 � 25

40 25� 40 � 65
65 104 169 65� 104 � 169

We discovered that using the same method of summation, there is a differ-
ence of 1 between the two numbers what we get in the underlined. Let us
investigate a longer series of numbers on A1.

Case I: Summing the numbers starting with horizontal summation

0 1 1 0� 1 � 1
2 1� 2 � 3
3 6 9 3� 6 � 9

15 9� 15 � 24
24 40 64 24� 40 � 64

104 64� 104 � 168
168 273 441 168� 273 � 441
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Case II: Summing up numbers in bold starting with vertical summation

1
1 1� 1 � 2
2 2 4 2� 2 � 4

6 4� 6 � 10
10 15 25 10� 15 � 25

40 25� 40 � 65
65 104 169 65� 104 � 169

273 169� 273 � 442
442

We still get the same result using a longer series of numbers. That leads us
to the following observations:

6̧

k�1

F pkqF pk � 1q � 169� 1 � F p7qF p7q � F p1qF p1q

or

� 168� 0 � F p6qF p8q

7̧

k�1

F pkqF pk � 1q � 442� 1 � F p7qF p9q � F p1qF p1q

or

� 441� 0 � F p8qF p8q

Application 6.16. Here is a question that can be solved easily with the
help of the Fibonacci Table. Compute F p1qF p6q � F p2qF p7q � F p3qF p8q �
. . .� F prqF pr � 5q � . . .� F p10qF p15q.

By using the table, there are two approaches to solve this problem.

Method I

Consider F p11qF p15q. By reversing the process of Chinese-checker-like method
of summation, we will go through the numbers F p9qF p15q,
F p9qF p13q, F p7qF p13q, F p7qF p11q, F p5qF p11q, F p5qF p9q, F p3qF p9q,
F p3qF p7q, F p3qF p5q and finally F p1qF p5q.
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Therefore,

F p1qF p6q � F p2qF p7q � F p3qF p8q � . . .� F prqF pr � 5q
� . . .� F p10qF p15q

� F p11qF p15q � F p1qF p5q
� p89qp610q � p1qp5q
� 54290� 5

� 54285

Method II

Consider F p10qF p16q. By reversing the process of Chinese-checker-like method
of summation, we will go through the numbers F p10qF p14q,
F p8qF p14q, F p8qF p12q, F p6qF p12q, F p6qF p10q, F p4qF p10q, F p4qF p8q,
F p2qF p8q, F p2qF p6q and finally F p0qF p6q.

Therefore,

F p1qF p6q � F p2qF p7q � F p3qF p8q � . . .� F prqF pr � 5q
� . . .� F p10qF p15q

� F p10qF p16q � F p0qF p6q
� p55qp987q � p0qp8q
� 54285� 0

� 54285

Here is a little trick in solving this problem. Consider the final term F paqF pa�
kq which lies on Ak. If k is odd, it means either a or a�k is odd, say, a is odd
and a�k is even, then the answer is directly given by F pa�1qF pa�kq. This
is due to the reverse process of Chinese-checker-like method of summation,
we finally come to F p0qF pk � 1q, which is 0. It should be noted that this
trick is applied only when the summation is done from the beginning of the
axis, i.e. F p1qF pnq or F pnqF p1q.

Therefore, the answer to the above question is F p10qF p16q as the follow-
ing conditions are given: (1) the last term in the summation is F p10qF p15q;
(2) the summation is done from the beginning of the axis A5; and (3) The
number 15 in F p15q is odd.
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Application 6.17.

Here, we would like you to observe some special things in the table. (For
the sake of convenience, we rotate the table so that it stands upright like a
triangle.)

1
1 1

2 1 2
3 2 2 3

5 3 4 3 5
8 5 6 6 5 8

13 8 10 9 10 8 13
21 13 16 15 15 16 13 21

34 21 26 24 25 24 26 21 34

Please keep in mind that, each line in the Triangle represents a diagonal in
the Table.

Now focus on the differences between neighbouring numbers on each line.

Line
4 3 2 2 3

�1 0 �1
5 5 3 4 3 5

�2 �1 �1 �2
6 8 5 6 6 5 8

�3 �1 0 �1 �3
7 13 8 10 9 10 8 13

�5 �2 �1 �1 �2 �5
8 21 13 16 15 15 16 13 21

�8 �3 �1 0 �1 �3 �8
9 34 21 26 24 25 24 26 21 34

�13 �5 �2 �1 �1 �2 �5 �13

From the above observation, we can generalize them as follows:
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(Note: For the sake of formatting, Fn is used to indicate F pnq in Appli-
cation 6.17 only)

Line
4k

F2k�2F2k�3 F2k�1F2k�2 F2kF2k�1 F2k�1F2k F2k�2F2k�1 F2k�3F2k�2

�8 � 3 � 1 0 � 1 � 3 � 8
�F p6q � F p4q � F p2q F p0q � F p2q � F p4q � F p6q

4k � 1
F2k�1F2k�3 F2kF2k�2 F2k�1F2k�1 F2k�2F2k F2k�3F2k�1

�5 � 2 � 1 � 1 � 2 � 5
�F p5q � F p3q � F p1q � F p1q � F p3q � F p5q

4k � 2
F2k�1F2k�4 F2kF2k�3 F2k�1F2k�2 F2k�2F2k�1 F2k�3F2k F2k�4F2k�1

�8 � 3 � 1 0 � 1 � 3 � 8
�F p6q � F p4q � F p2q F p0q � F p2q � F p4q � F p6q

4k � 3
F2kF2k�4 F2k�1F2k�3 F2k�2F2k�2 F2k�3F2k�1 F2k�4F2k

�5 � 2 � 1 � 1 � 2 � 5
�F p5q � F p3q � F p1q � F p1q � F p3q � F p5q

You may think that if we want to prove this relationship in a purely math-
ematical way, the proof will be very complicated. In fact, this Chinese-
checker-like method of summation itself serves as an elegant proof!

Consider the following cases.

Case I

Consider line 5.

1
1 1

2 1 2
3 2 2 3

5 3 4 3 5

How can we explain that 4 � 1� 3, i.e. F p3qF p3q � F p1q � F p2qF p4q?

We can convert the Triangle back to the Table again.
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0 0 0 0 0 0
0 1 1 2 3 5
0 (1) 1 2 3
0 2 (2) 4
0 3 3
0 5

By the Chinese-checker-like method of summation:
If we use 4,

p1q � p2q � 4� 1

If we use 3,

p1q � p2q � 3� 0

Therefore,

4� 1 � 3� 0

4 � 1� 3

This approach proves the difference between neighbouring numbers on each
line.

Case II

To further our explanation, let us consider one more case.

XXXXXXXXXRow
Column

1 2 3 4 5 6 7 8 9 10

1 1 1 2 3 5 8 13 21 34 55

2 1 1 2 3 5 8 13 21 34 55

3 2 2 4 6 10 16 26 42 68 110

4 3 3 6 9 15 24 39 63 102 165

5 5 5 10 15 25 40 65 105 170 275

6 8 8 16 24 40 64 104 168 272 440

7 13 13 26 39 65 104 169 273 442 715

8 21 21 42 63 105 168 273 441 714 1155

9 34 34 68 102 170 272 442 714 1156 1870

10 55 55 110 165 275 440 715 1155 1870 3025
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To prove: 170 � 165� F p5q.

Applying the Chinese-checker-like method of summation, we have:

8� 13� 42� 102 � 170� 5 � 170� F p5q (7)

8� 13� 42� 102 � 165� 0 � 165� F p0q (8)

Combining (7) and (8), we have:

170� F p5q � 165� F p0q
170 � 165� F p5q

Up to this point, by the two examples above, you should be able to un-
derstand how the Chinese-checker-like method of summation can prove the
differences between neighbouring numbers on each line in the Fi-
bonacci Triangle.

Now, we are going to use it to find the difference between the middle term
(as the middle term represents the square of F pnq) and other terms (not
neighbouring to each other) on the same line in the Fibonacci Triangle.

Observation 6.18. On line 4k, middle term � F p2kqF p2k � 1q � M1.
Consider the nth term from M on the same line,

n nth term
1 M1 � 1 = M1 � 1
2 M1 � 1� 3 = M1 � 2
3 M1 � 1� 3� 8 = M1 � 6
4 M1 � 1� 3� 8� 21 = M1 � 15
5 M1 � 1� 3� 8� 21� 55 = M1 � 40
6 M1 � 1� 3� 8� 21� 55� 144 = M1 � 104
. . .

Hypothesis 6.19.

p
M1 � 1� 3� 8� 21� . . .
� p�1qp�1F p2pq � M1 � p�1qp�1F ppqF pp� 1q

Note: 1, 2, 6, 15, 40, 104 lie on A�1.

An illustration of line 4k would be as follows:
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On line 12, the middle term � F p6qF p7q � 104

The term on A3 �M1 � p�1q4F p3qF p4q
� 104� 2� 3

� 110

� 2� 55

� F p3qF p10q

Details of Proof for Hypothesis 6.19 can be found in Appendix E.

Observation 6.20. On line p4k� 1q, middle term � F p2k� 1qF p2k� 1q �
M2

n nth term
1 M2 � 1 = M2 � 1
2 M2 � 1� 2 = M2 � 1
3 M2 � 1� 2� 5 = M2 � 4
4 M2 � 1� 2� 5� 13 = M2 � 9
5 M2 � 1� 2� 5� 13� 34 = M2 � 25
6 M2 � 1� 2� 5� 13� 34� 89 = M2 � 64
. . .

Hypothesis 6.21.

p
M2 � 1� 2� 5� 13� 34� . . .
� p�1qpF p2p� 1q = M2 � p�1qpF ppqF ppq

An illustration of line p4k � 1q would be as follows:

On line 13, the middle term � F p7qF p7q � 169

The term on A4 �M2 � p�1q4F p4qF p4q
� 169� 3� 3

� 178

� 2� 89

� F p3qF p11q

Details of Proof for Hypothesis 6.21 can be found in Appendix E.

Observation 6.22. On line p4k� 2q, middle term � F p2k� 1qF p2k� 2q �
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M3

n nth term
1 M3 � 1 = M3 � 1
2 M3 � 1� 3 = M3 � 2
3 M3 � 1� 3� 8 = M3 � 6
4 M3 � 1� 3� 8� 21 = M3 � 15
5 M3 � 1� 3� 8� 21� 55 = M3 � 40
6 M3 � 1� 3� 8� 21� 55� 144 = M3 � 104
. . .

Hypothesis 6.23.

p M3 � 1� 3� 8� . . .� p�1qpF p2pq = M3 � p�1qpF ppqF pp� 1q

An illustration of line p4k � 2q would be as follows:

On line 14, the middle term � F p7qF p8q � 273

The term on A3 �M3 � p�1q3F p3qF p4q
� 273� 2� 3

� 267

� 3� 89

� F p4qF p11q

Details of Proof for Hypothesis 6.23 can be found in Appendix E.

Observation 6.24. On line p4k� 3q, middle term � F p2k� 2qF p2k� 2q �
M4.

n nth term
1 M4 � 1 = M4 � 1
2 M4 � 1� 2 = M4 � 1
3 M4 � 1� 2� 5 = M4 � 4
4 M4 � 1� 2� 5� 13 = M4 � 9
5 M4 � 1� 2� 5� 13� 34 = M4 � 25
6 M4 � 1� 2� 5� 13� 34� 89 = M4 � 64
. . .

Hypothesis 6.25.

p M4�1�2�5�. . .�p�1qp�1F p2p�1q= M4 � p�1qp�1F ppqF ppq

An illustration of line p4k � 3q would be as follows:
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On line 15, the middle term � F p8qF p8q � 441

The term on A5 �M4 � p�1q6F p5qF p5q
� 441� 25

� 466

� 2� 233

� F p3qF p13q

Details of Proof for Hypothesis 6.25 can be found in Appendix E.

On the whole, 2 new formulae are formed.

F p2q � F p4q � F p6q � . . .� p�1qn�1F p2nq � p�1qn�1F pnqF pn� 1q

i.e.

Formula 6.26.

ņ

k�1

p�1qk�1F p2kq � p�1qn�1F pnqF pn� 1q

F p1q � F p3q � F p5q � . . .� p�1qn�1F p2n� 1q � p�1qn�1F pnq2

i.e.

Formula 6.27.

ņ

k�1

p�1qk�1F p2k � 1q � p�1qn�1F pnqF pnq

Application 6.28. By adding up Formula 6.26 and Formula 6.27, we have

ņ

k�1

p�1qk�1rF p2kq � F p2k � 1qs � p�1qn�1F pnqrF pnq � F pn� 1qs

� p�1qn�1F pnqF pn� 2q
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In order to explain more clearly, we are going to use the previous example.
Here is the Fibonacci Table.

1 1 2 3 5 8 13 21 34
1 1 2 3 5 8 13 21 34
2 2 4 6 10 16 26 42 68
3 3 6 9 15 24 39 63 102
5 5 10 15 25 40 65 105 170
8 8 16 24 40 64 104 168 272
13 13 26 39 65 104 169 273 442
21 21 42 63 105 168 273 441 714
34 34 68 102 170 272 442 714 1156

Please look at the bold-faced numbers in the table. They all represent F pnq2.
For instance, pF5, F5q � 25 � 5 � 5 � F p5q2 and 169 � 13 � 13 � F p7q2.
All these numbers lie on A0 and odd-number lines. For instance, 25 lies on
line 9 and 169 lies on line 13.

Therefore, we have underlined all the terms on odd number lines for easy
visualization. As mentioned above, every underlined term differs from its
neighbouring term by F p2k � 1q.

For example, on line 11,

65 � 64� 1 � 64� F p1q
63 � 65� 2 � 65� F p3q
68 � 63� 5 � 63� F p5q, and so on.

Also, look at line 9,

24 � 25� 1 � 25� F p1q
26 � 24� 2 � 24� F p3q
21 � 26� 5 � 26� F p5q
34 � 21� 13 � 21� F p7q, and so on.

In fact, the pattern repeats itself every 4 lines.

Now, we are going to express all the underlined terms in terms of F pnq2
on the same line. Consider the previous examples.
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On line 11,

65 � 64� 1 � F p6q2 � F p1q2
63 � 64� 1� 2 � 64� 1 � F p6q2 � F p2q2
68 � 64� 1� 2� 5 � 64� 4 � F p6q2 � F p3q2, and so on.

Note: This is actually F p1q � F p3q � F p5q � . . . � p�1qn�1F p2n � 1q �
p�1qn�1F pnq2.

Also, on line 9,

24 � 25� 1 � F p5q2 � F p1q2
26 � 25� 1� 2 � 25� 1 � F p5q2 � F p2q2
21 � 25� 1� 2� 5 � 25� 4 � F p5q2 � F p3q2
34 � 25� 1� 2� 5� 13 � 25� 9 � F p5q2 � F p4q2, and so on.

Note: This is actually �F p1q � F p3q � F p5q � . . . � p�1qnF p2n � 1q �
p�1qnF pnq2.

Note that in the Table, we only have a term representing F pnq2 on ev-
ery odd-number lines. We have used line 9 and 11 to demonstrate this.

In general, we have two cases.

Case I

On line p4r � 1q, as represented by line 9,

The k-th term from F p2r � 1q2
� F p2r � 1� kqF p2r � 1� kq
� F p2r � 1q2 � F p1q � F p3q � F p5q � . . .� p�1qkF p2k � 1q
� F p2r � 1q2 � p�1qkF pkqF pkq (by Formula 6.27)

� F p2r � 1q2 � p�1qkF pkq2

Case II
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On line p4r � 3q, as represented by line 11,

The k-th term from F p2r � 2q2
� F p2r � 2� kqF p2r � 2� kq
� F p2r � 2q2 � F p1q � F p3q � F p5q � . . .� p�1qk�1F p2k � 1q
� F p2r � 2q2 � p�1qk�1F pkqF pkq (by Formula 6.27)

� F p2r � 2q2 � p�1qk�1F pkq2
Now we have two formulae:

From case I,

F p2r � 1� kqF p2r � 1� kq � F p2r � 1q2 � p�1qkF pkq2
or

Formula 6.29.

F p2r � 1q2 � F p2r � 1� kqF p2r � 1� kq � p�1qk�1F pkq2

From case II,

F p2r � 2� kqF p2r � 2� kq � F p2r � 2q2 � p�1qk�1F pkq2
or

Formula 6.30.

F p2r � 2q2 � F p2r � 2� kqF p2r � 2� kq � p�1qkF pkq2

From Formula 6.29, we have

F p2r � 1q2 � F p2r � 1� kqF p2r � 1� kq � p�1qk�2r�1F pkq2

From Formula 6.30, we have

F p2r � 2q2 � F p2r � 2� kqF p2r � 2� kq � p�1qk�2r�2F pkq2

Now, replace p2r � 1q by n, we have
(a) F pnq2 � F pn� kqF pn� kq � p�1qn�kF pkq2
(b) F pn� 1q2 � F pn� 1� kqF pn� 1� kq � p�1qn�k�1F pkq2

So we have exactly proved Formula 6.11. Isn’t that miraculous?

Application 6.31. Compute F p10q�F p11q�F p12q�F p13q� . . .�F p43q�
F p44q.
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Compare this question to Application 6.16.

Answer � rp�1q23F p22qF p24q � p�1q5F p4qF p6qs � F p9q
� r�17711� 46368� 3� 8s � 34

� �821223658

Application 6.32. If we want to resolve large F pnqs in terms of small
F pnqs only, we can always use Formula 6.11

F pn� kq � F pnq2 � p�1qn�k�1F pkq2
F pn� kq

because F pn� kq is the largest among all the terms.

Note that pn� kq is not equal to 0.

For example, we want to find F p80q.

Substitute n � 50, k � 30 into Formula 6.11,

F p80q � F p50� 30q

� F p50q2 � p�1q81F p30q2
F p20q

F p30q � F p20� 10q

� F p20q2 � p�1q31F p10q2
F p10q

� 67652 � 552

55
� 832040

F p50q � F p30� 20q

� F p30q2 � p�1q51F p20q2
F p10q

� 8320402 � 67652

55
� 12586269025
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Hence,

F p80q � F p50� 30q

� F p50q2 � p�1q81F p30q2
F p20q

� 125862690252 � 8320402

6765
� 23416728348467685

If we want to apply this formula, however, when we choose n and k, n and
k should not be too far away. Take F p50q as an example. If we choose
n � 48, k � 2, when we break down F p48 � 2q, we will get F p48q2, F p2q2
and F p46q. That, in fact, makes things more complicated as there are two
large Fibonacci numbers to be resolved.

Application 6.33. If pn � kq is odd, we substitute n � k � 1 into For-
mula 6.11, we have

F p2k � 1q � F pk � 1q2 � p�1q2k�2F pkq2
F p1q

Therefore, we have

Formula 2.28.

F p2k � 1q � F pk � 1q2 � F pkq2
We come back to Lucas’ discovery in 1876.

Application 6.34. If pn � kq is even, we cannot substitute n � k be-
cause F pn� kq will become F p0q � 0 which cannot be the denominator.

We substitute n � k � 2 into Formula 6.11, we have

F p2k � 2q � F pk � 2q2 � p�1q2k�3F pkq2
F p2q

F p2k � 2q � F pk � 2q2 � F pkq2

Therefore, we have

Formula 2.24.

F p2kq � F pk � 1q2 � F pk � 1q2
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6.2. Lucas Numbers

Observation 6.35.

pL3, L3q � Lp3q2 � 16

pL2, L4q � Lp2qLp4q � 21

Therefore, Lp3q2 � Lp2qLp4q � 5.

pL4, L4q � Lp4q2 � 49

pL3, L5q � Lp3qLp5q � 44

Therefore, Lp4q2 � Lp3qLp5q � 5.

pL5, L5q � Lp5q2 � 121

pL4, L6q � Lp4qLp6q � 126

Therefore, Lp5q2 � Lp4qLp6q � 5.

To generalize the above findings, we have

Hypothesis 6.36.

Lpnq2 � Lpn� 1qLpn� 1q � p�1qnp5q

Details of Proof for Hypothesis 6.36 can be found in Appendix E.

Observation 6.37.

pL4, L4q � Lp4q2 � 49

pL2, L6q � Lp2qLp6q � 54

Therefore, Lp4q2 � Lp2qLp6q � 5.

pL5, L5q � Lp5q2 � 121

pL3, L7q � Lp3qLp7q � 116

Therefore, Lp5q2 � Lp3qLp7q � 5.

pL6, L6q � Lp6q2 � 324

pL4, L8q � Lp4qLp8q � 329

Therefore, Lp6q2 � Lp4qLp8q � 5.



DECRYPTING FIBONACCI AND LUCAS SEQUENCES 323

To generalize the above findings, we have

Hypothesis 6.38.

Lpnq2 � Lpn� 2qLpn� 2q � p�1qn�1p5q

Details of Proof for Hypothesis 6.38 can be found in Appendix E.

Observation 6.39.

pL4, L4q � Lp4q2 � 49

pL1, L7q � Lp1qLp7q � 29

Therefore, Lp4q2 � Lp1qLp7q � 20.

pL5, L5q � Lp5q2 � 121

pL2, L8q � Lp2qLp8q � 141

Therefore, Lp5q2 � Lp2qLp8q � 20.

pL6, L6q � Lp6q2 � 324

pL3, L9q � Lp3qLp9q � 304

Therefore, Lp6q2 � Lp3qLp9q � 20.

To generalize the above findings, we have

Hypothesis 6.40.

Lpnq2 � Lpn� 3qLpn� 3q � p�1qnp20q

or

Lpnq2 � Lpn� 3qLpn� 3q � p�1qnp5qp4q
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Observation 6.41.

pL5, L5q � Lp5q2 � 121

pL1, L9q � Lp1qLp9q � 76

Therefore, Lp5q2 � Lp1qLp9q � 45.

pL6, L6q � Lp6q2 � 324

pL2, L10q � Lp2qLp10q � 369

Therefore, Lp6q2 � Lp2qLp10q � 45.

pL7, L7q � Lp7q2 � 841

pL3, L11q � Lp3qLp11q � 796

Therefore, Lp7q2 � Lp3qLp11q � 45.

To generalize the above findings, we have

Hypothesis 6.42.

Lpnq2 � Lpn� 4qLpn� 4q � p�1qn�1p45q
or

Lpnq2 � Lpn� 4qLpn� 4q � p�1qn�1p5qp9q

Observation 6.43.

pL6, L6q � Lp6q2 � 324

pL1, L11q � Lp1qLp11q � 199

Therefore, Lp6q2 � Lp1qLp11q � 125.

pL7, L7q � Lp7q2 � 841

pL2, L12q � Lp2qLp12q � 966

Therefore, Lp7q2 � Lp2qLp12q � 125.

To generalize the above findings, we have

Hypothesis 6.44.

Lpnq2 � Lpn� 5qLpn� 5q � p�1qnp125q
or

Lpnq2 � Lpn� 5qLpn� 5q � p�1qnp5qp25q
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Up to this point, let us recap what we have found.

Hypothesis 6.36. Lpnq2 � Lpn� 1qLpn� 1q � p�1qnp5q
Hypothesis 6.38. Lpnq2 � Lpn� 2qLpn� 2q � p�1qn�1p5q
Hypothesis 6.40. Lpnq2 � Lpn� 3qLpn� 3q � p�1qnp5qp4q
Hypothesis 6.42. Lpnq2 � Lpn� 4qLpn� 4q � p�1qn�1p5qp9q
Hypothesis 6.44. Lpnq2 � Lpn� 5qLpn� 5q � p�1qnp5qp25q

In other words,

Lpnq2 � Lpn� 1qLpn� 1q � p�1qn�2p5qF p1q2
Lpnq2 � Lpn� 2qLpn� 2q � p�1qn�3p5qF p2q2
Lpnq2 � Lpn� 3qLpn� 3q � p�1qn�4p5qF p3q2
Lpnq2 � Lpn� 4qLpn� 4q � p�1qn�5p5qF p4q2
Lpnq2 � Lpn� 5qLpn� 5q � p�1qn�6p5qF p5q2

To generalize the findings, we have

Hypothesis 6.45.

Lpnq2 � Lpn� kqLpn� kq � p�1qn�k�1p5qF pkq2

Proof for Hypothesis 6.45.

Again, to do this proof, we can actually follow what we have done in the
proofs for Hypothesis 6.36 and Hypothesis 6.38. However, in that way, the
proof is going to be very complicated and may even come to a dead end. In
sight of this, we are going to get them by the Chinese-checker-like method
of summation we have introduced before.

This time, we are going to do the proof by using the Lucas Table.

With the Chinese-checker-like method, we can find out the summation of
the terms lying on Ak. For example, all the numbers that lie on A0 in the
Lucas Triangle can be illustrated by Lpnq � Lpnq, i.e. Lpnq2.
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From the above observation and since Lp0q is defined as 2, we get the fol-
lowing special property:

7̧

n�1

Lpnq2 � 1361

7̧

n�1

Lpnq2 � 29� 47� 2 � Lp7qLp8q � 2

From this, we have

Formula 6.46.

ņ

k�1

Lpkq2 � LpnqLpn� 1q � 2

Observation 6.47.

Similar to the Fibonacci Triangle, in the Lucas Triangle, A0 represents
LpnqLpnq, A1 represents the terms LpnqLpn � 1q, . . . and Ak represents
the terms LpnqLpn�kq. By the Chinese-checker-like method of summation,
we can find out the sum of terms on Ak i.e. summation of LpnqLpn � kq.
As we have mentioned this previously in section 6.1, we have decided not to
do this again here.

Application 6.48. Here, we would like to invite you to observe some
special things in the table. (For the sake of convenience, we rotate the table



DECRYPTING FIBONACCI AND LUCAS SEQUENCES 327

so that it stands upright like a triangle.)

1
3 3

4 9 4
7 12 12 7

11 21 16 21 11
18 33 28 28 33 18

29 54 44 49 44 54 29
47 87 72 77 77 72 87 47

76 141 116 126 121 126 116 141 76

Please keep in mind that, each line in the Triangle represents a diagonal in
the Table.

Now let us focus on the differences between neighbouring numbers on each
line.

Line
4 7 12 12 7

�5 0 �5
5 11 21 16 21 11

�10 �5 �5 �10
6 18 33 28 28 33 18

�15 �5 0 �5 �15
7 29 54 44 49 44 54 29

�25 �10 �5 �5 �10 �25
8 47 87 72 77 77 72 87 47

�40 �15 �5 0 �5 �15 �40
9 76 141 116 126 121 126 116 141 76

�65 �25 �10 �5 �5 �10 �25 �65

From the above observation, we can generalize them as follows:
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(Note: For the sake of formatting, Ln is used to indicate Lpnq in Appli-
cation 6.48 only)

Line
4k

L2k�2L2k�3 L2k�1L2k�2 L2kL2k�1 L2k�1L2k L2k�2L2k�1 L2k�3L2k�2

�40 � 15 � 5 0 � 5 � 15 � 40
�5F p6q � 5F p4q � 5F p2q 5F p0q � 5F p2q � 5F p4q � 5F p6q

4k � 1
L2k�1L2k�3 L2kL2k�2 L2k�1L2k�1 L2k�2L2k L2k�3L2k�1

�25 � 10 � 5 � 5 � 10 � 25
�5F p5q � 5F p3q � 5F p1q � 5F p1q � 5F p3q � 5F p5q

4k � 2
L2k�1L2k�4 L2kL2k�3 L2k�1L2k�2 L2k�2L2k�1 L2k�3L2k L2k�4L2k�1

�40 � 15 � 5 0 � 5 � 15 � 40
�5F p6q � 5F p4q � 5F p2q 5F p0q � 5F p2q � 5F p4q � 5F p6q

4k � 3
L2kL2k�4 L2k�1L2k�3 L2k�2L2k�2 L2k�3L2k�1 L2k�4L2k

�25 � 10 � 5 � 5 � 10 � 25
�5F p5q � 5F p3q � 5F p1q � 5F p1q � 5F p3q � 5F p5q

Again, we are going use the Chinese-checker-like method of summation as
an elegant proof.

Consider the following cases:

Please look at line 5.

1
3 3

4 9 4
7 12 12 7

11 21 16 21 11

How can we explain that 16 � 21� 5, i.e. Lp3qLp3q � F p2qF p4q � 5?

We can convert the Triangle back to the Table again.

2 1 3 4 7 11
6 (3) 9 12 21
8 4 (12) 16

7 21
11
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By the Chinese-checker-like method of summation:
If we use 16,

p3q � p12q � 16� 1

If we use 3,
p3q � p12q � 21� 6

Therefore,

16� 1 � 21� 6

16 � 21� 5

The Chinese-checker-like method of summation has proved the differences
between neighbouring numbers on each line in the Lucas Triangle.

Now, we are going to use it to find the difference between the middle term
(as the middle term itself is representing the square of Lpnq) and other terms
(not neighbouring to each other) on the same line in the Lucas Triangle.

Observation 6.49. On line 4k, middle term � Lp2kqLp2k � 1q � M1.
Consider the nth term from M on the same line,

n nth term
1 M1 � 5 = M1 � 5
2 M1 � 5� 15 = M1 � 10
3 M1 � 5� 15� 40 = M1 � 30
4 M1 � 5� 15� 40� 105 = M1 � 75
. . .

Hypothesis 6.50.

p
M1 � 5p1q � 5p3q � 5p8q � . . .
� p�1qp5F p2pq � M1 � p�1qp5F ppqF pp� 1q

Note: F ppqF pp� 1q are terms lying on A1 in the Fibonacci Triangle.

An illustration of line 4k would be as follows:

On line 12, the middle term � Lp6qLp7q � 522

The term on A3 �M1 � p�1q35F p3qF p4q
� 522� 5� 2� 3

� 492

� 4� 123

� Lp3qLp10q
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Details of Proof for Hypothesis 6.50 can be found in Appendix E.

Observation 6.51. On line p4k� 1q, middle term � Lp2k� 1qLp2k� 1q �
M2.

n nth term
1 M2 � 5 = M2 � 5
2 M2 � 5� 10 = M2 � 5
3 M2 � 5� 10� 25 = M2 � 20
4 M2 � 5� 10� 25� 65 = M2 � 45
. . .

Hypothesis 6.52.

p
M2 � 5p1q � 5p2q � 5p5q � 5p13q
� 5p34q � . . .� p�1qp�15F p2p� 1q = M2 � p�1qp�15F ppqF ppq

An illustration of line p4k � 1q would be as follows:

On line 13, the middle term � Lp7qLp7q � 841

The term on A4 �M2 � p�1q55F p4qF p4q
� 841� 5� 3� 3

� 796

� 4� 199

� Lp3qLp11q

Details of Proof for Hypothesis 6.52 can be found in Appendix E.

Observation 6.53. On line p4k� 2q, middle term � Lp2k� 1qLp2k� 2q �
M3.

n nth term
1 M3 � 5 = M3 � 5
2 M3 � 5� 15 = M3 � 10
3 M3 � 5� 15� 40 = M3 � 30
4 M3 � 5� 15� 40� 105 = M3 � 75
. . .

Hypothesis 6.54.

p
M3 � 5p1q � 5p3q � 5p8q � . . .
� p�1qp�15F p2pq = M3�p�1qp�15F ppqF pp�1q
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An illustration of line p4k � 2q would be as follows:

On line 14, the middle term � Lp7qLp8q � 1363

The term on A4 �M3 � p�1q45F p3qF p4q
� 1363� 5� 2� 3

� 1393

� 7� 199

� Lp4qLp11q

Details of Proof for Hypothesis 6.54 can be found in Appendix E.

Observation 6.55. On line p4k� 3q, middle term � Lp2k� 2qLp2k� 2q �
M4.

n nth term
1 M4 � 5 = M4 � 5
2 M4 � 5� 10 = M4 � 5
3 M4 � 5� 10� 25 = M4 � 20
4 M4 � 5� 10� 25� 65 = M4 � 45
. . .

Hypothesis 6.56.

p
M4 � 5p1q � 5p2q � 5p5q � . . .�
p�1qp5F p2p� 1q = M4 � p�1qp5F ppqF ppq

An illustration of line p4k � 3q would be as follows:

On line 15, the middle term � Lp8qLp8q � 2209

The term on A3 �M4 � p�1q55F p5qF p5q
� 2209� 5� 5� 5

� 2084

� 4� 521

� Lp3qLp13q
Details of Proof for Hypothesis 6.56 can be found in Appendix E.

On the whole, 2 new formulae are formed by cancelling M from both sides
of the equation:

5F p2q � 5F p4q � 5F p6q � . . .� p�1qn�15F p2nq � p�1qn�15F pnqF pn� 1q
i.e.
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Formula 6.57.
ņ

k�1

p�1qk�15F p2kq � p�1qn�15F pnqF pn� 1q

5F p1q � 5F p3q � 5F p5q � . . .� p�1qn�15F p2n� 1q � p�1qn�15F pnqF pnq
i.e.

Formula 6.58.
ņ

k�1

p�1qk�15F p2k � 1q � p�1qn�15F pnqF pnq

This is actually what we have got in section 6.1, only that both sides are
multiplied by 5.

(Note that in the Table, we only have a term representing Lpnq2 on all
the odd-number lines.)

In general, we have two cases.

Case I

On line p4r � 1q,
The k-th term from Lp2r � 1q2

� Lp2r � 1� kqLp2r � 1� kq
� Lp2r � 1q2 � 5F p1q � 5F p3q � 5F p5q � . . .� p�1qk�15F p2k � 1q
� Lp2r � 1q2 � p�1qk�15F pkqF pkq (by Formula 6.58)

� Lp2r � 1q2 � p�1qk�15F pkq2

Case II

On line p4r � 3q,
The k-th term from Lp2r � 2q2

� Lp2r � 2� kqLp2r � 2� kq
� Lp2r � 2q2 � 5F p1q � 5F p3q � 5F p5q � . . .� p�1qk5F p2k � 1q
� Lp2r � 2q2 � p�1qk5F pkqF pkq (by Formula 6.58)

� Lp2r � 2q2 � p�1qk5F pkq2
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Now we have two formulae:

From case I,

Lp2r � 1� kqLp2r � 1� kq � Lp2r � 1q2 � p�1qk�15F pkq2

or

Formula 6.59.

Lp2r � 1q2 � Lp2r � 1� kqLp2r � 1� kq � p�1qkF pkq2

From case II,

Lp2r � 2� kqLp2r � 2� kq � Lp2r � 2q2 � p�1qk5F pkq2

or

Formula 6.60.

Lp2r � 2q2 � Lp2r � 2� kqLp2r � 2� kq � p�1qk�15F pkq2

From Formula 6.59, we have

Lp2r � 1q2 � Lp2r � 1� kqLp2r � 1� kq � p�1qk�2r�25F pkq2

From Formula 6.30, we have

Lp2r � 2q2 � Lp2r � 2� kqLp2r � 2� kq � p�1qk�2r�35F pkq2

Now, replace p2r � 1q by n, we have
(a) Lpnq2 � Lpn� kqLpn� kq � p�1qn�k�1F pkq2
(b) Lpn� 1q2 � Lpn� 1� kqLpn� 1� kq � p�1qn�k�25F pkq2

Note that (a) and (b) represent the same thing and (a) is essentially the
same as Formula 6.45.

Application 6.61. If we want to break down large L(n)s, we can always
use Formula 6.45.

Lpn� kq � Lpnq2 � p�1qn�kp5qF pkq2
Lpn� kq

Note that, pn� kq is the largest among all.
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For example, we want to find Lp80q.

Lp80q � Lp60� 20q

� Lp60q2 � p�1q80p5qF p20q2
Lp40q

Lp40q � Lp21� 19q

� Lp21q2 � p�1q40p5qF p19q2
Lp2q

� 244762 � 5� 41812

3
� 228826127

Lp60q � Lp40� 20q

� Lp40q2 � p�1q60p5qF p20q2
Lp20q

� 2288261272 � 5� 67652

15127
� 3461452808002

Hence,

Lp80q � Lp60q2 � p�1q80p5qF p20q2
Lp40q

� 34614528080022 � 5� 67652

228826127
� 52361396397820127

Application 6.62. If pn� kq is odd, we substitute n � k� 1 into Formula
6.45,

Lp2k � 1q � Lpk � 1q2 � p�1q2k�1p5qF pkq2
Lp1q

Formula 6.63.

Lp2k � 1q � Lpk � 1q2 � 5F pkq2
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Application 6.64. If pn� kq is even, we substitute n � k� 2 into Formula
6.45,

Lp2k � 2q � Lpk � 2q2 � p�1q2k�2p5qF pkq2
Lp2q

Lp2k � 2q � Lpk � 2q2 � p5qF pkq2
3

In other words,

Formula 6.65.

Lp2kq � Lpk � 1q2 � 5F pk � 1q2
3

Let us look at an example.

Lp40q � Lp21q2 � 5F p19q2
3

(by Formula 6.65)

� rLp11q2 � 5F p10q2s2 � 5rF p10q2 � F p9q2s2
3

(by Formula 6.63 and Formula 2.28)

� r1992 � p5qp55q2s2 � 5p552 � 342q2
3

� p39601� 15125q2 � 5p3025� 1156q2
3

� 244762 � p5qp4181q2
3

� 599074576� 87403805

3
� 228826127

Application 6.66. However, unlike F p0q, Lp0q � 2 can be the denominator.
If pn� kq is even, we can substitute n � k into Formula 6.45,

Lp2kq � Lpkq2 � p�1q2kp5qF pkq2
Lp0q

Formula 6.67.

Lp2kq � Lpkq2 � 5F pkq2
2
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Let us find L(40) again.

Lp40q � Lp20q2 � 5F p20q2
2

(by Formula 6.67)

�

�
Lp10q2 � 5F p10q2

2

�2

� 5rF p11q2 � F p9q2s2

3
(by Formula 6.67 and Formula 2.24)

�

�
1232 � p5qp55q2

2

�2

� 5p892 � 342q2

2

�

�p15129� 15125q2
2


2

� 5p7921� 1156q2

3

� 151272 � 5p6765q2
2

� 228826127

Application 6.68. Actually the above findings can help us complete an
important proof.

By Formula 5.58, we have

Lp2nq � 5F pnq2 � p�1qnp2q (9)

By Formula 6.67, we have

2Lp2nq � Lpnq2 � 5F pnq2 (10)

(9)� (10) :

Lp2nq � Lpnq2 � p�1qn�1p2q

Hypothesis 3.2 is proved here.

Application 6.69. Can we work out some direct relations between F pkq2
and Lpkq2? Back to the example in Application 6.66, in the resolution of
Lp40q, have you noticed that

Lp10q2 � 15129 5F p10q2 � 15125

and

Lp20q2 � 228826129 5F p20q2 � 228826125?
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Furthermore,

Lp5q2 � 121 5F p5q2 � 125

It seems that
Lpkq2 � 5pkq2 � 4.

Why is it like that?

Let us look at Formula 6.67.

Lp2kq � Lpkq2 � 5F pkq2
2

Lpkq2 � p�1qk�1p2q � Lpkq2 � 5F pkq2
2

(by Formula 3.2 Lp2nq � Lpnq2 � p�1qn�1p2qq
2Lpkq2 � p�1qk�1p4q � Lpkq2 � 5pkq2

Formula 6.70.
Lpkq2 � 5F pkq2 � p�1qkp4q

For instance, we have F p8q � 21. How can we find Lp8q directly?

Applying Formula 6.70,

Lp8q2 � 5p21q2 � 4

� 2209

Therefore, Lp8q � 47.

7. More About the Tables (Fibonacci Table, Lucas-Fibonacci Ta-
ble and Lucas Table)

Usually Fibonacci and Lucas sequences are investigated in one dimension
only. Now we are going to investigate them in two dimensions, that is, in a
table form.

Now that we have introduced to you the Fibonacci Table (“F-Table”), we
are going to investigate a number of relationships in the F-Table. As we are
investigating into a two-dimensional plane, we will find out relationships on
diagonals, lines parallel to diagonals, rows and columns. Do you notice the
relationship among the sums of numbers on each row of the F-Table?
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We have found something in the Fibonacci Table, but how about the Fi-
bonacci Triangle? Can you find out a specific term in the Fibonacci triangle
with the help of the numbers on the axis of symmetry of the Triangle?

7.1. Summation of all terms on n-th Line in the Triangles

Observation 7.1. Refer to the Fibonacci Triangle. Let SF pnq denote the
sum of all the terms on the n-th line in the Fibonacci Triangle.

For example, on the 5th line, there are five terms: 5, 3, 4, 3, 5. There-
fore, SF p5q � 5� 3� 4� 3� 5 � 20.

Observe carefully the following,

SF p1q � 1

SF p2q � 2

SF p3q � 5

SF p4q � 10

SF p5q � 20

SF p6q � 38

SF p7q � 71

. . .

It seems that Spnq does not take a general pattern. However, in fact, there
are some relationships among these numbers:

SF p3q � 5 � 1� 2� 2 � SF p1q � SF p2q � F p3q
SF p4q � 10 � 2� 5� 3 � SF p2q � SF p3q � F p4q
SF p5q � 20 � 5� 10� 5 � SF p3q � SF p4q � F p5q
SF p6q � 38 � 10� 20� 8 � SF p4q � SF p5q � F p6q
SF p7q � 71 � 20� 38� 13 � SF p5q � SF p6q � F p7q

. . .

From the above observations, we conjecture that:

Hypothesis 7.2.

SF pnq � SF pn� 1q � F pn� 2q � SF pn� 2q
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Details of Proof for Hypothesis 7.2 can be found in Appendix E.

Observation 7.3. Refer to the Lucas-Fibonacci Triangle. It can be ex-
pected that the above special property should also be found in the Lucas-
Fibonacci Triangle. Let SLF pnq denote the sum of all the terms on the n-th
line in the Lucas-Fibonacci Triangle.

For example, on the 5th line, there are five terms: 5, 9, 8, 7, 11. There-
fore, SLF p5q � 5� 9� 8� 7� 11 � 40.

Observe carefully,

SLF p1q � 1

SLF p2q � 4

SLF p3q � 9

SLF p4q � 20

SLF p5q � 40

SLF p6q � 78

SLF p7q � 147

. . .

Note that:

SLF p3q � 9 � 1� 4� 4 � SLF p1q � SLF p2q � Lp3q
SLF p4q � 20 � 4� 9� 7 � SLF p2q � SLF p3q � Lp4q
SLF p5q � 40 � 9� 20� 11 � SLF p3q � SLF p4q � Lp5q
SLF p6q � 78 � 20� 40� 18 � SLF p4q � SLF p5q � Lp6q
SLF p7q � 147 � 40� 78� 29 � SLF p5q � SLF p6q � Lp7q

. . .

From the above relationships, we can generalize them into the following
formula:

Hypothesis 7.4.

SLF pnq � SLF pn� 1q � Lpn� 2q � SLF pn� 2q

It is interesting to note that although the Lucas-Fibonacci Triangle we are
focusing here is formed by both the Fibonacci and the Lucas sequences, each
SLF pn � 2q only involves SLF pnq, SLF pn � 1q and Lpn � 2q, but does not



340 H.S. HUI, T.W. LUI, Y.K. WONG

involve any F pkq. This observation is unlike the one found in the Fibonacci
Triangle.

Details of Proof for Hypothesis 7.4 can be found in Appendix E.

Observation 7.5. Refer to the Lucas Triangle. It can be expected that
the above special property should also be found in the Lucas Triangle. Let
SLpnq denote the sum of all the terms on the n-th line in the Lucas Triangle.

For example, on the 5th line, there are five terms: 11, 21, 16, 21, 11. There-
fore, SLp5q � 11� 21� 16� 21� 11 � 80.

Observe carefully,

SLp1q � 1

SLp2q � 6

SLp3q � 17

SLp4q � 38

SLp5q � 80

SLp6q � 158

. . .

Note that:

SLp3q � 17 � 1� 6� 10 � SLp1q � SLp2q � 5F p3q
SLp4q � 38 � 6� 17� 15 � SLp2q � SLp3q � 5F p4q
SLp5q � 80 � 17� 38� 25 � SLp3q � SLp4q � 5F p5q
SLp6q � 158 � 38� 80� 40 � SLp4q � SLp5q � 5F p6q

. . .

From the above relationships, we can generalize them into the following
formula:

Hypothesis 7.6.

SLpnq � SLpn� 1q � 5F pn� 2q � SLpn� 2q

It is interesting to note that although the Lucas Triangle we are focusing
here is formed by Lucas sequence only, however, we have the term 5F pn�2q
in the hypothesis.
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Details of Proof for Hypothesis 7.6 can be found in Appendix E.

7.2. Location of terms in the Fibonacci Triangle

Observation 7.7. Now we reorganize the Fibonacci Triangle so that the
terms are arranged to form a sequence t1,1,1, 2, 1, 2,3,2,2,3, 5, 3, 4, 3, 5, . . .u.

1
1 1

2 1 2
3 2 2 3

5 3 4 3 5
8 5 6 6 5 8

13 8 10 9 10 8 13
21 13 16 15 15 16 13 21

34 21 26 24 25 24 26 21 34
55 34 42 39 40 40 39 42 34 55

This Fibonacci Triangle can also be represented by:

F p1qF p1q
F p1qF p2q F p2qF p1q

F p1qF p3q F p2qF p2q F p3qF p1q
F p1qF p4q F p2qF p3q F p3qF p2q F p4qF p1q

. .
. ...

. . .

F p1qF pnq F p2qF pn� 1q F p3qF pn� 2q . . . F pn� 2qF p3q F pn� 1qF p2q F pnqF p1q

Hence the general form of a term is given by

F path term of the lineq � F pline number � a� 1q

Application 7.8. For example,

the 3rd term on line 9 (we know that is 26)

� F p3q � F p9� 3� 1q
� F p3q � F p7q
� 2� 13

� 26

Application 7.9. If we are asked to find the 10000th term of the sequence,
there are actually two methods.
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Method I

First, we aim at looking for the line the 10000th term belongs to, in this
case n, on the Fibonacci triangle. This can be found using the inequality:

p1� 2� 3� 4� 5� . . .� nq ¥ 10000

where n is the smallest integer possible.

Solving the inequality gives n � 141. Hence the 10000th term lies on the
141st line.

The last term on the 140th line the p1�2�3�. . .�140q � 9870th term of the
sequence. Hence the 10000th term of the sequence is the p10000 � 9870q �
130th term on the 141st line.

Hence

the 10000th term

� F p130q � F p141� 130� 1q
� F p130q � F p12q
� 659034621587630041982498215� 144.

By applying
Formula 2.24 F p2kq � F pk � 1q2 � F pk � 1q2,
Formula 2.28 F p2k � 1q � F pk � 1q2 � F pkq2
and

Formula 6.11 F pn� kq � F pnq2 � p�1qn�k�1F pkq2
F pn� kq ,

the 10000th term is 94 900 985 508 618 726 045 479 742 960.

Method II

We can also use the axis in the Fibonacci Triangle to help us evaluate the
10000th term.

The term on line 141 that lies on A0 � F p71qF p71q. It is the 71st term
of the line from the left. It is p130 � 71q � 59th term away from the 130th

term on the 141st line. (i.e. the 10000th term)
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Hence by Formula 6.21

M2 � 1� 2� 5� 13� 34� . . .� p�1qpF p2p� 1q �M2 � p�1qpF ppqF ppq,
the 60th term from the term on A0L141

� F p71qF p71q � p�1q59F p59qF p59q
� F p71qF p71q � F p59qF p59q
� F p71q2 � F p59q2
� 3080615211701292 � 9567220260412

� 94 900 985 508 618 726 045 479 742 960.

8. Conclusion

Ever since the invention of the Fibonacci and Lucas numbers, people have
been trying to figure out ways to solve these numbers. Many formulae have
been generated. In this report, we have discovered and presented to you
four different approaches to find large F pnq and Lpnq.

These formulae can be applied to find large Fibonacci and Lucas numbers.
In different situations, we should use the appropriate formula to simplify
the problem.

Moreover, as we work on the Fibonacci and Lucas sequences, the idea of
developing them in two dimensions strikes us. Fibonacci and Lucas se-
quences contain numbers that show special relationships when we put them
in different order or arrange them in different layouts. As we put these
sequences into tables and triangles, we are all thrilled to observe many fas-
cinating patterns.

The whole team benefited from learning to put thoughts into words. Af-
ter all, mathematicians need language.

We hope that this project will bring about a new path for research into
sequences in mathematics.

9. Evaluation on the Major Formulae

The objective and purpose of this project is to find out formulae that can
help us resolve large Fibonacci and Lucas numbers. At this point, we have
already generated four methods to help us with this task. Now it is time to
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evaluate these formulae and compare them with one another to understand
their limitations and usefulness. This allows us to learn to apply them ap-
propriately and wisely in different situations.

The major formulae in sections 2, 3, 5 and 6

Section 2

Formula 2.19.

F pkqUpnq � F pr � kqUpn� rq � p�1qk�1F prqUpn� r � kq

Section 3

Hypotheses 3.25�3.28.

Lp4pnq � 4pL0Lpnq4p � p�1qn�1
4p�1L1Lpnq4p�2 � 4p�2L2Lpnq4p�4

� p�1qn�1
4p�3L3Lpnq4p�6 � . . .� 4p�rLrLpnq4p�2r�2

� . . .� p�1qn�1
2p�1L2p�1Lpnq2 � 2pL2p

Lpp4p� 1qnq � 4p�1L0Lpnq4p�1 � p�1qn�1
4p�2L1Lpnq4p�3

� 4p�3L2Lpnq4p�5 � p�1qn�1
4p�4L3Lpnq4p�7

� . . .� 4p�1�rLrLpnq4p�2r�1

� . . .� p�1qn�1
2pL2p�1Lpnq

Lpp4p� 2qnq � 4p�2L0Lpnq4p�2 � p�1qn�1
4p�3L1Lpnq4p�4

� 4p�4L2Lpnq4p�6 � p�1qn�1
4p�5L3Lpnq4p�8

� . . .� 4p�2�rLrLpnq4p�2r

� . . .� p�1qn�1
2p�1L2p�1

Lpp4p� 3qnq � 4p�3L0Lpnq4p�3 � p�1qn�1
4p�4L1Lpnq4p�5

� 4p�5L2Lpnq4p�7 � p�1qn�1
4p�6L3Lpnq4p�9

� . . .� 4p�3�rLrLpnq4p�2r�1

� . . .� p�1qn�1
2p�1L2p�2Lpnq
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Note: These hypotheses are to be proved.

Section 5

Formula 5.25.

LprqF pkq � F pk � rq � p�1qrF pk � rq
Formula 5.26.

F prqLpkq � F pk � rq � p�1qr�1F pk � rq
Formula 5.55.

5F pkqF pnq � Lpn� kq � p�1qk�1Lpn� kq
Formula 5.44.

F p4pnq � F pnqr4p�1C0Lpnq4p�1 � p�1qn�1
4p�2C1Lpnq4p�3

� 4p�3C2Lpnq4p�5 � . . .� 2p�1C2p�2Lpnq3
� p�1qn�1

2pC2p�1Lpnqs
F pp4p� 1qnq � F pnqr4pC0Lpnq4p � p�1qn�1

4p�1C1Lpnq4p�2

� 4p�2C2Lpnq4p�4 � . . .� p�1qn�1
2p�1C2p�1Lpnq2

� 2pC2ps
F pp4p� 2qnq � F pnqr4p�1C0Lpnq4p�1 � p�1qn�1

4pC1Lpnq4p�1

� 4p�1C2Lpnq4p�3 � . . .� p�1qn�1
2p�2C2p�1Lpnq3

2p�1C2pLpnqs
F pp4p� 3qnq � F pnqr4p�2C0Lpnq4p�2 � p�1qn�1

4p�1C1Lpnq4p
� 4pC2Lpnq4p�2 � . . .� 2p�2C2pLpnq2
� p�1qn�1

2p�1Cp�1s

Section 6

Formula 6.11.

F pnq2 � F pn� kqF pn� kq � p�1qn�kF pkq2
Formula 6.45.

Lpnq2 � Lpn� kqLpn� kq � 5p�1qn�k�1F pkq2
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Formulae Usefulness Limitations Remarks

2.19 1. It can resolve
large F pnq to small
F pnq when we
choose large r and k.
2. It does not
involve powers.
Hence, it is possible
to calculate
manually.
3. It can be used to
solve Upnq, but not
the methods in other
3 sections.

1. It consists of 3
unknowns. To find
suitable values of k
and r is difficult and
requires much
practice.
2. It is necessary to
find F pnq to resolve
Lpnq or any Upnq.
3. For very large
F pnq or Lpnq, with
n ¡ 100, we may
need to apply the
formula several
times.

1. Put n the
greatest value.
2. Let k be the
smallest possible
non-negative integer.
3. Let pr � kq,
pn� rq, r and
pn� r � kq be more
or less the same as
each other.

(Hypothesis)
3.25�3.28 1. If we have the

function nLr built in
the calculator or
computer (computer
modelling), the
equation is
convenient to use,
just like coefficients
in binomial
expansion.
2. We can have
different
combinations in
resolving large Lpnq.
If we are able to
choose the best
combination, we can
come to the answer
quickly.
3. After applying
the formulae, Lpknq
will be reduced to a
polynomial
expression with Lpnq
only, so that we can
focus on Lpnq only in
the next resolution.

1. There are 4 cases.
2. The whole
expression is very
long and tedious.
3. We need to
convert all nLr to

nCr. It is easy to
make mistakes in the
meantime.
4. The form of
polynomial
expression may
involve high powers
and eventually lead
to calculation
mistakes.
5. Choosing the
proper combination
requires much
practice.

For example,
Lp105q � Lp1� 105q

� Lp3� 35q
� Lp5� 21q
� Lp7� 15q.

We actually have 7
ways to resolve
Lp105q.
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5.25, 5.26,
5.55

1. Little involves
multiplication.
Hence it is easy to
calculate manually.
2. For substitution
of proper values into
the unknowns, we
can generate many
useful formulae.
3. These formulae
enable us to resolve
F pknq into F pnq or
Lpnq.

1. To resolve Lpnq,
we also need to deal
with F pnq.
2. Involves division.
3. For very large
F pnq or Lpnq, with
n ¡ 100, we may
need to apply the
formula several
times.

For Formulae 5.25
and 5.26, F pk � rq
should be the largest
term among all.
For Formula 5.55,
Lpn� kq should be
the largest term
among all.

5.44 1. Built-in functions
of nCr are present in
the calculators and
computers. The
equation is very
convenient to use.
2. We can have
different
combinations in
resolving large F pnq.
If we are able to
choose the best
combination, we can
come to the answer
quickly.
3. After applying
the formulae, F pknq
will be reduced to a
polynomial
expression with F pnq
and Lpnq only, so
that we can focus on
F pnq and Lpnq only
in the next
resolution.

1. There are 4 cases.
2. The whole
expression is very
long and tedious.
3. The form of
polynomials
expression may
involve high powers
and eventually lead
to calculation
mistakes.
4. Choosing the
proper combination
requires much
practice.

For example,
F p105q � F p1� 105q

� F p3� 35q
� F p5� 21q
� F p7� 15q.

We actually have 7
ways to resolve
F p105q.
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6.11, 6.55 1. The formulae in
fact indicate the
relationships among
terms lying on the
same line. They may
help us understand
the Tables better
and also benefit our
future investigation
on the Tables.

1. They require
multiplication.
2. To resolve Lpnq,
we also need to deal
with F pnq.
3. For very large
F pnq or Lpnq, with
n ¡ 100, we may
need to apply the
formula several
times.

Note that pn� kq
should be the largest
term among all By
the formulae, we can
locate the terms in
the tables easily
(please refer to
Application 7.9).

Binet’s
Formulae

1. If we insert the
Binet’s Formulae
into the computer,
we can find F pnq
easily–with only one
step.
2. They inspire us to
drill into the general
expression for any
recurrence sequence
Upnq.

1. They involve
?

5
which is an
irrational number.
2. They involve the
n-th power, which
means it is almost
impossible to
calculate manually if
n is large.

It serves as a general
formula to solve
F pnq.

Successor
Formulae

1. They can show us
the relationships
between consecutive
Fibonacci or Lucas
numbers.

1. They involve
?

5
which is an
irrational number.
2. They involve the
n-th power, which
means it is almost
impossible to
calculate manually if
n is large.
3. We have to round
down the result to
the greatest integer
smaller than it.
4. We cannot use
them to resolve large
F pnq and Lpnq. It is
because before
finding F pn� 1q or
Lpn� 1q, we have to
find F pnq or Lpnq
respectively.
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10. Suggestions for Future Investigation

In the process of our work, we have actually come up with many ideas worthy of
further examination. However, time does not allow us to do too much research.
They have to be left and dealt with when the opportunities arise in future. We
would like to list some of these ideas for any preliminary interest.

(1) Although our project only focuses on the Fibonacci and Lucas numbers, we
have also successfully generated formulae that can be used to find large re-
currence sequences, Upnq in section 2. Had we been able to extend the scope
of investigation in sections 5 and 6 to Upnq, we believe that a fuller picture
and a better understanding of the topic could be achieved.

(2) In this project, we have constructed three Tables, the Fibonacci Table, the
Lucas-Fibonacci Table and the Lucas Table. These Tables have helped us
observe the relationships between and within sequences. In section 6, we can
even produce the proofs using these Tables. If we can construct the Tables
with different recurrence sequences, we can observe more patterns and gener-
ate more useful formulae to deal with various problems in this topic. Please
note that, the choice of Up1q and Up2q will also lead to completely different
results.

(3) In the past, people tend to relate these recurrence sequences (mainly F pnq
and Lpnqq to 1 dimension only. (That is, the sequence itself) Our effort here
of relating it to 2 dimensions gives the subject a greater depth. As mentioned
before, in geometry, we have points, lines, planes and solids. Inspired by this,
we generate the Tables. In the Tables, the recurrence property is actually
going in 2 directions, giving justifications to our relating it to 2 dimensions.

Is it possible to put the sequences in three dimensions? In the project, we have
introduced the Chinese-checker-like method. Can we still apply this method
in 3 dimensions?

Despite the rigid definition of dimensions in physics, in mathematics, we can
extend our scope of investigation of dimensions to n-th power freely. Hence,
is it possible to put the sequences in n-th dimension? These questions have
yet to be answered.

(4) In Hypotheses 3.25�3.28, we have invented a method to resolve Lpknq into a
polynomial expression consisting of powers of L(n) only. In Formulae 5.44, we
have invented another method to resolve F pknq into F pnq and a polynomial
expression consisting of powers of Lpnq only. By considering the coefficients
in the polynomial expressions, we can actually obtain triangles similar to the
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Pascal’s Triangle. We have already talked about these Tables in 3.31�3.34.
By inventing and using the Uk Tables, we may discover how we can resolve
Upknq into Upnq and a polynomial expression containing powers of Lpnq only.
The expression should be similar. By resolving Upknq into Upnq and a poly-
nomial expression containing powers of Lpnq only, we can have many combi-
nations to solve large Upknq. We can even apply computer modelling to help
us solve these large Upknq.

(5) In Appendix C, we have talked about the prime-number rows in the Lk Table.
We conjecture that all the numbers on the prime-number rows (except the
first term) are divisible by the prime numbers themselves, that is,

n | n�kLk where 0   k ¤ n

2
or

n | n�k�1Ck � n�k�1Ck�2 where 0   k ¤ n

2
We have already proved that this hypothesis holds up to the 41st row in the
Lk Table. However, we have not completed the proof yet. Is this one of the
special properties of the Lucas numbers? Can this property be used to derive
a new formula for prime numbers?

(6) In Formula 5.55, Formula 5.58, Formula 6.45 (including the proof of Formula
6.45) and Formula 7.6, we discovered that the Lucas sequence has a very spe-
cial relation with the integer “5”. How can we explain this phenomenon? Is
there a special integer for every recurrence sequence? Can we explain this by
referring to the Binet’s Formula, which involves

?
5?

There is still a long way to go before anybody can fully decrypt these recurrence
sequences. Our scrutiny so far in the subject will hopefully spark off some interest
and act as a catalyst for other studies on these fascinating numbers which might
prove to be of greater magnitude.

Appendix A. The first 100 Fibonacci numbers

n F pnq n F pnq
1 1 51 20365011074
2 1 52 32951280099
3 2 53 53316291173
4 3 54 86267571272
5 5 55 139583862445
6 8 56 225851433717
7 13 57 365435296162
8 21 58 591286729879
9 34 59 956722026041
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10 55 60 1548008755920
11 89 61 2504730781961
12 144 62 4052739537881
13 233 63 6557470319842
14 377 64 10610209857723
15 610 65 17167680177565
16 987 66 27777890035288
17 1597 67 44945570212853
18 2584 68 72723460248141
19 4181 69 117669030460994
20 6765 70 190392490709135
21 10946 71 308061521170129
22 17711 72 498454011879264
23 28657 73 806515533049393
24 46368 74 1304969544928657
25 75025 75 2111485077978050
26 121393 76 3416454622906707
27 196418 77 5527939700884757
28 317811 78 8944394323791464
29 514229 79 14472334024676221
30 832040 80 23416728348467685
31 1346269 81 37889062373143906
32 2178309 82 61305790721611591
33 3524578 83 99194853094755497
34 5702887 84 160500643816367088
35 9227465 85 259695496911122585
36 14930352 86 420196140727489673
37 24157817 87 679891637638612258
38 39088169 88 1100087778366101931
39 63245986 89 1779979416004714189
40 102334155 90 2880067194370816120
41 165580141 91 4660046610375530309
42 267914296 92 7540113804746346429
43 433494437 93 12200160415121876738
44 701408733 94 19740274219868223167
45 1134903170 95 31940434634990099905
46 1836311903 96 51680708854858323072
47 2971215073 97 83621143489848422977
48 4807526976 98 135301852344706746049
49 7778742049 99 218922995834555169026
50 12586269025 100 354224848179261915075

Appendix B. The first 100 lucas numbers
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n Lpnq n Lpnq
1 1 51 45537549124
2 3 52 73681302247
3 4 53 119218851371
4 7 54 192900153618
5 11 55 312119004989
6 18 56 505019158607
7 29 57 817138163596
8 47 58 1322157322203
9 76 59 2139295485799
10 123 60 3461452808002
11 199 61 5600748293801
12 322 62 9062201101803
13 521 63 14662949395604
14 843 64 23725150497407
15 1364 65 38388099893011
16 2207 66 62113250390418
17 3571 67 100501350283429
18 5778 68 162614600673847
19 9349 69 263115950957276
20 15127 70 425730551631123
21 24476 71 688846502588399
22 39603 72 1114577054219522
23 64079 73 1803423556807921
24 103682 74 2918000611027443
25 167761 75 4721424167835364
26 271443 76 7639424778862807
27 439204 77 12360848946698171
28 710647 78 20000273725560978
29 1149851 79 32361122672259149
30 1860498 80 52361396397820127
31 3010349 81 84722519070079276
32 4870847 82 137083915467899403
33 7881196 83 221806434537978679
34 12752043 84 358890350005878082
35 20633239 85 580696784543856761
36 33385282 86 939587134549734843
37 54018521 87 1520283919093591604
38 87403803 88 2459871053643326447
39 141422324 89 3980154972736918051
40 228826127 90 6440026026380244498
41 370248451 91 10420180999117162549
42 599074578 92 16860207025497407047
43 969323029 93 27280388024614569596
44 1568397607 94 44140595050111976643
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45 2537720636 95 71420983074726546239
46 4106118243 96 115561578124838522882
47 6643838879 97 186982561199565069121
48 10749957122 98 302544139324403592003
49 17393796001 99 489526700523968661124
50 28143753123 100 792070839848372253127

Appendix C. Steps of Calculation for expressing L(kn) in terms of L(n)
only

Lp1nq � Lpnq

Lp2nq � Lpnq2 � 2p�1qn�1

Lp3nq � Lpnq3 � 3Lpnqp�1qn�1

Lp4nq � Lp2 � 2nq
� Lp2nq2 � 2p�1q2n�1

� rLpnq2 � 2p�1qn�1s2 � 2

� Lpnq4 � 4Lpnq2p�1qn�1 � 4p�1q2n�2 � 2

� Lpnq4 � 4Lpnq2p�1qn�1 � 4 � 2

� Lpnq4 � 4Lpnq2p�1qn�1 � 2

Lp5nq � Lpnq5 � 5Lpnqp�1qn�1rLpnq2 � p�1qn�1s
� Lpnq5 � 5Lpnq3p�1qn�1 � 5Lpnqp�1q2n�2

� Lpnq5 � 5Lpnq3p�1qn�1 � 5Lpnq
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Method I for Lp6nq

Lp6nq � Lp2nq3 � 3Lp2nqp�1q2n�1

� rLpnq2 � 2p�1qn�1s3 � 3rLpnq2 � 2p�1qn�1s
� Lpnq6 � 6Lpnq4p�1qn�1 � 12Lpnq2p�1q2n�2 � 8p�1q3n�3

� 3Lpnq2 � 6p�1qn
� Lpnq6 � 6Lpnq4p�1qn�1 � 9Lpnq2 � 2p�1qn�1

(Note that: p�1q3n�3 � p�1q3n�1 � p�1qn�1q

Method II for Lp6nq

Lp6nq � Lp3nq2 � 2p�1q3n�1

� rLpnq3 � 3Lpnqp�1qn�1s2 � 2p�1qn�1

� Lpnq6 � 6Lpnq4p�1qn�1 � 9Lpnq2 � 2p�1qn�1

Lp7nq � Lpnq7 � 7Lpnqp�1qn�1rLpnq2 � p�1qn�1s2
� Lpnq7 � 7Lpnqp�1qn�1rLpnq4 � 2Lpnq2p�1qn�1 � 1s
� Lpnq7 � 7Lpnq5p�1qn�1 � 14Lpnq3 � 7Lpnqp�1qn�1

Lp8nq � Lp2nq4 � 4Lp2nq2p�1q2n�1 � 2

� rLpnq2 � 2p�1qn�1s4 � 4p�1q2n�1rLpnq2 � 2p�1qn�1s2 � 2

� Lpnq8 � 8Lpnq6p�1qn�1 � 24Lpnq4 � 32Lpnq2p�1qn�1

� 16 � 4Lpnq4 � 16Lpnq2p�1qn�1 � 16 � 2

� Lpnq8 � 8Lpnq6p�1qn�1 � 20Lpnq4 � 16Lpnq2p�1qn�1 � 2

Lp9nq � Lp3nq3 � 3Lp3nqp�1q3n�1

� rLpnq3 � 3Lpnqp�1qn�1s3 � 3p�1qn�1rLpnq3 � 3Lpnqp�1qn�1s
� Lpnq9 � 9Lpnq7p�1qn�1 � 27Lpnq5 � 30Lpnq3p�1qn�1 � 9Lpnq
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Lp10nq � Lp2p5nqq
� Lp5nq2 � 2p�1q5n�1

� rLpnq5 � 5Lpnq3p�1qn�1 � 5Lpnqs2 � 2p�1qn�1

� Lpnq10 � 10Lpnq8p�1qn�1 � 35Lpnq6 � 50Lpnq4p�1qn�1

� 25Lpnq2 � 2p�1qn�1

Lp11nq � Lpnq11 � p�1qn�1p11qLpnqrLpnq2 � p�1qn�1s
trLpnq2 � p�1qn�1s3 � Lpnq2u

� Lpnq11 � p�1qn�1p11qLpnqrLpnq2 � p�1qn�1s
tLpnq6 � 3Lpnq4p�1qn�1 � 3Lpnq2 � rp�1qn�1s3 � Lpnq2u

� Lpnq11 � 11Lpnqp�1qn�1rLpnq8 � 4Lpnq6p�1qn�1

� 7Lpnq4 � 5Lpnq2 � Lpnq2p�1qn�1s
� Lpnq11 � 11Lpnq9p�1qn�1 � 44Lpnq7 � 77Lpnq5p�1qn�1

� 55Lpnq3 � 11Lpnqp�1qn�1

Lp12nq � Lp2p6nqq
� Lp6nq2 � 2p�1q6n�1

� rLpnq6 � 6Lpnq4p�1qn�1 � 9Lpnq2 � 2s2 � 2

� Lpnq12 � 12Lpnq10p�1qn�1 � 54Lpnq8 � 112Lpnq6p�1qn�1

� 105Lpnq4 � 36Lpnq2p�1qn�1 � 4 � 2

� Lpnq12 � 12Lpnq10p�1qn�1 � 54Lpnq8 � 112Lpnq6p�1qn�1

� 105Lpnq4 � 36Lpnq2p�1qn�1 � 2
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Lp13nq � Lpnq13 � p�1qn�1p13qLpnqrLpnq2 � p�1qn�1s2
trLpnq2 � p�1qn�1s3 � 2Lpnq2u

� Lpnq13 � 13Lpnqp�1qn�1rLpnq4 � 2Lpnq2p�1qn�1 � 1s
trLpnq2 � p�1qn�1s3 � 2Lpnq2u

� Lpnq13 � r13Lpnq5p�1qn�1 � 26Lpnq3 � 13Lpnqp�1qn�1s
rLpnq6 � 3Lpnq4p�1qn�1 � 5Lpnq2 � p�1qn�1s

� Lpnq13 � 13Lpnq11p�1qn�1 � 65Lpnq9 � 156Lpnq7p�1qn�1

� 182Lpnq5 � 91Lpnq3p�1qn�1 � 13Lpnq

Lp14nq � Lp2p7nqq
� Lp7nq2 � 2p�1q7n�1

� rLpnq7 � p�1qn�1p7qLpnq5 � p14qLpnq3 � p�1qn�1p7qLpnqs2
� 2p�1qn�1

� Lpnq14 � 14Lpnq12p�1qn�1 � 77Lpnq10 � 210Lpnq8p�1qn�1

� 294Lpnq6 � 196Lpnq4p�1qn�1 � 49Lpnq2 � 2p�1qn�1

Lp15nq � Lp3p5nqq
� Lp5nq3 � p�1q5n�1p3qLp5nq
� rLpnq5 � p�1qn�1p5qLpnq3 � p5qLpnqs3

� p�1qn�1p3qrLpnq5 � p�1qn�1p5qLpnq3 � 5Lpnqs
� Lpnq15 � 15Lpnq13p�1qn�1 � 90Lpnq11 � 275Lpnq9p�1qn�1

� 450Lpnq7 � 378Lpnq5p�1qn�1 � 140Lpnq3 � 15Lpnqp�1qn�1

Lp16nq � Lp2p8nqq
� Lp8nq2 � p�1q8n�1p2q
� rLpnq8 � p�1qn�1p8qLpnq6 � 24Lpnq4 � p�1qn�1p32qLpnq2

� 16 � 4Lpnq4 � p�1qn�1p16qLpnq2 � 6 � 2s2 � 2

� Lpnq16 � 16Lpnq14p�1qn�1 � 104Lpnq12
� 352Lpnq10p�1qn�1 � 660Lpnq8 � 372Lpnq6p�1qn�1

� 336Lpnq4 � 64Lpnq2p�1qn�1 � 2
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Appendix D. Usefulness of the Lk Table in tackling prime numbers

When using the Excel to continue to evaluate this table up to the 41st row, it turns
out that when k is a prime number, all the coefficients (except the leading term)
on the k-th row are all divisible by k.

Take the coefficients on the 11th row as an example: 11, 44, 77, 55, 11 are all
divisible by 11.

Also look at the 13th row, 13, 65, 156, 182, 91, 13 are all divisible by 13.

This is interesting. Perhaps we can try to use this property to help us determine
whether a number is prime. If we are not sure if an integer n is a prime number
or not, look at the n-th row. If all the terms on the n-th row are all divisible by n,
then n is a prime number. Otherwise, n is a composite number.

Let us look at the prime number rows to verify this observation:

On the 17th row,
17, 119, 442, 935, 1122, 714, 204, 17 are all divisible by 17.

On the 19th row,
19, 152, 665, 1729, 2717, 2508, 1254, 285, 19 are all divisible by 19.

On the 23rd row,
23, 230, 1311, 4692, 10948, 16744, 16445, 9867, 3289, 506, 23 are all divisible by 23.

On the 29th row,
29, 377, 2900, 14674, 51359, 127281, 224808, 281010, 243542, 140998, 51272, 10556,
1015, 29 are all divisible by 29.

On the 31st row,
31, 434, 3627, 20150, 78430, 219604, 447051, 660858, 700910, 520676, 260338,
82212, 14756, 1240, 31 are all divisible by 31.

On the 37th row,
37, 629, 6512, 45880, 232841, 878787, 2510820, 5476185, 9126975, 11560835, 10994920,
7696444, 3848222, 1314610, 286824, 35853, 2109, 37 are all divisible by 37.

On the 41st row,
41, 779, 9102, 73185, 429352, 1901416, 6487184, 17250012, 35937525, 58659315,
74657310, 73370115, 54826020, 30458900, 12183560, 3350479, 591261, 59983, 2870,
41 are all divisible by 41.
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Up to the 41st row, the hypothesis still holds for the prime number.

We will set up a counter example for each composite number row to show that
the divisibility does not hold for all numbers on composite number row.

Row number
Counter
example

Row number
Counter
example

4 2 25 19380
6 9 26 299
8 20 27 2277
9 30 28 350
10 35 30 405
12 54 32 464
14 77 33 4466
15 275 34 527
16 104 35 166257
18 135 36 594
20 170 38 665
21 952 39 7735
22 209 40 740
24 252

As we have found that on prime-number row, every number except the leading one
is divisible by the prime number. If we express it mathematically, by referring to
[Table 2.24], we have the following hypothesis:

n | n�kLk where 0   k ¤ n

2

That is,

n | n�k�1Ck � n�k�1Ck�2 where 0   k ¤ n

2

Appendix E. Proofs

Proofs for Hypothesis 2.10 and Hypothesis 2.13.

First, we express Upnq in terms of Upkq and Upk � 2q.
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Suppose Upnq � AUpkq �BUpk � 2q where A and B are real.

Upnq � AUpkq �BUpk � 2q
� ArUpk � 1q � Upk � 2qs �BUpk � 2q
� AUpk � 1q � pA�BqUpk � 2q
� AUpk � 1q � pA�BqrUpk � 1q � Upk � 3qs
� p2A�BqUpk � 1q � pA�BqUpk � 3q (11)

We use the above expression for this special recurrence relation that can facilitate
our proof below.

Using Mathematical Induction, prove that
Hypothesis 2.10.

Upnq � F pr � 2qUpn� rq � F prqUpn� r � 2q

Proof. Let P prq denote the statement “Upnq � F pr�2qUpn�rq�F prqUpn�r�2q”
for all positive integers r.

Consider P p1q.
Upnq � 2Upn� 1q � Upn� 3q (proved)

Therefore, P p1q is true.

Consider P p2q.
Substitute k � n� 1, A � 2, B � �1 into (11), we have

Upnq � 3Upn� 2q � Upn� 4q

Therefore, P p2q is true.

Consider P p3q.
Substitute k � n� 2, A � 3, B � �1 into (11), we have

Upnq � 5Upn� 3q � 2Upn� 5q.

Therefore, P p3q is true.

Assume P pkq is true, that is,

Upnq � F pk � 2qUpn� kq � F pkqUpn� k � 2q.
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Consider P pk � 1q.
L.H.S. � Upnq

� F pk � 2qUpn� kq � F pkqUpn� k � 2q (byP pkqq
� r2F pk � 2q � F pkqsUpn� k � 1q

� rF pk � 2q � F pkqsUpn� k � 3q (by (11))

� rF pk � 2q � F pk � 1qsUpn� k � 1q � rF pk � 1qsUpn� k � 3q
� F pk � 3qUpn� k � 1q � F pk � 1qUpn� k � 3q
� F ppk � 1q � 2qUpn� pk � 1qq � F pk � 1qUpn� pk � 1q � 2q
� R.H.S.

Therefore, P pk � 1q is also true.

By Mathematical Induction, P prq is true for all positive integers r.

Using Mathematical Induction, prove that
Hypothesis 2.13.

Upnq � F pr � 1qUpn� rq � F prqUpn� r � 1q

Upnq � AUpkq �BUpk � 1q
� ArUpk � 1q � Upk � 2qs �BUpk � 1q
� pA�BqUpk � 1q �AUpk � 2q (12)

We use the above expression for this special recurrence relation that can facilitate
our proof below.

Proof. Let P prq denote the statement “Upnq � F pr�1qUpn�rq�F prqUpn�r�1q”
for all positive integers r.

Consider P p1q.
L.H.S. � Upnq
R.H.S. � F p2qUpn� 1q � F p1qUpn� 2q � Upn� 1q � Upn� 2q
L.H.S. � R.H.S. (definition)

Therefore, P p1q is true.

Suppose P pkq is true, i.e.

Upnq � F pk � 1qUpn� kq � F pkqUpn� k � 1q.
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Consider P pk � 1q.

L.H.S. � Upnq
� F pk � 1qUpn� kq � F pkqUpn� k � 1q (by P pkqq
� rF pk � 1q � F pkqsUpn� k � 1q

� F pk � 1qUpn� k � 2q (by (12))

� F pk � 2qUpn� k � 1q � F pk � 1qUpn� k � 2q
� F ppk � 1q � 1qUpn� pk � 1qq � F pk � 1qUpn� pk � 1q � 1q
� R.H.S.

Therefore, P pk � 1q is also true.

By Mathematical Induction, P prq is true for all positive integers r.

Proof for Hypothesis 2.21.

Proof. Let P pkq denote the statement “F pkqUpnq � F pr � kqUpn� rq � p�1qk�1

F prqUpn� r � kq” for all positive integers k.

Consider P p1q.
L.H.S. � F p1qUpnq

� Upnq
R.H.S. � F pr � 1qUpn� rq � p�1q2F prqUpn� r � 1q

� F pr � 1qUpn� rq � F prqUpn� r � 1q
L.H.S. � R.H.S. (by (1) in Observation 2.18)

Therefore, P p1q is true.

Consider P p2q.
L.H.S. � F p2qUpnq

� Upnq
R.H.S. � F pr � 2qUpn� rq � p�1q3F prqUpn� r � 2q

� F pr � 2qUpn� rq � F prqUpn� r � 2q
L.H.S. � R.H.S. (by (2) in Observation 2.18)

Therefore, P p2q is also true.

Assume P pk1q is true, i.e.

F pk1qUpnq � F pr � k1qUpn� rq � p�1qk1�1F prqUpn� r � k1q
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and P(k’ + 1) is also true, i.e.

F pk1 � 1qUpnq � F pr � k1 � 1qUpn� rq � p�1qk1�2F prqUpn� r � k1 � 1q.

Consider P pk1 � 2q.
L.H.S. � F pk1 � 2qUpnq

� rF pk1q � F pk1 � 1qsUpnq
� F pk1qUpnq � F pk1 � 1qUpnq
� F pr � k1qUpn� rq � p�1qk1�1F prqUpn� r � k1q

� F pr � k1 � 1qUpn� rq � p�1qk1�2F prqUpn� r � k1 � 1q
(by P pk1q and P pk1 � 1qq

� rF pr � k1q � F pr � k1 � 1qsUpn� rq � p�1qk1�1F prqUpn� r � k1q
� p�1qk1�1F prqUpn� r � k1 � 1q

� F pr � k1 � 2qUpn� rq � p�1qk1�3F prqUpn� r � k1 � 2q
� R.H.S.

Therefore, P pk1 � 2q is also true.

By Mathematical Induction, P pkq is true for all positive integers k.

Proof for Hypothesis 3.22.

Proof. Given

nLr � nLr�1 � n�1Lr�1, (13)

nCr � nCr�1 � n�1Cr�1. (14)

Let P pn, rq denote the statement “nLr � n�1Cr � n�1Cr�2” where n ¥ r ¥ 0.

Consider P p1, rq.

Consider P p1, 0q.
L.H.S. � 1L0 � 1

R.H.S. � 2C0 � 0C�2 � 1

L.H.S. � R.H.S.

Therefore, P p1, 0q is true.
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Consider P p1, 1q.
L.H.S. � 1L1 � 2

R.H.S. � 2C1 � 0C�1 � 2

L.H.S. � R.H.S.

Therefore, P p1, 1q is true.

Thus, P p1, rq is true.

Assume P pk, rq is true, that is kLr � k�1Cr � k�1Cr�2.

Consider P pk � 1, rq.
L.H.S. � k�1Lr

� kLr�1 � kLr (by (13))

� k�1Cr�1 � k�1Cr�3 � k�1Cr � k�1Cr�2 (by P pk, rqq
� k�1Cr�1 � k�1Cr � pk�1Cr�3 � k�1Cr�2q
� k�2Cr � kCr�2 (by (14))

� rpk�1q�1sCr � rpk�1q�1sCr�2

� R.H.S.

Therefore, P pk � 1, rq is true.

By Mathematical Induction, P pk, rq is true for all non-negative integers n and
r satisfying n ¥ r.

Proof for Hypothesis 3.35.

Proof. First,

Dp1q � p0C0qUp1q � Up1q,
Dp2q � p1C0qUp1q � p1C1qUp0q � Up1q � Up0q � Up2q.

As Up1q � Dp1q, Up2q � Dp2q and with the property Upnq �Upn� 1q � Upn� 2q,
we have to prove that, when Dpkq � Upkq and Dpk � 1q � Upk � 1q,

Dpk � 2q � Upk � 2q
� Upkq � Upk � 1q
� Dpkq �Dpk � 1q.

In other words, we want to prove Dpkq �Dpk � 1q � Dpk � 2q.

However, there are two cases since k can be odd or even.
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Case I: Let k � 2p� 1.

Dp2p� 1q
� p2pC0 � 2p�1C1 � . . .� p�1Cp�1 � pCpqUp1q

� p2p�1C0 � 2p�2C1 � . . .� p�1Cp�2 � pCp�1qUp0q
Dp2p� 2q

� p2p�1C0 � 2pC1 � . . .� pCp�1 � p�1CpqUp1q
� p2pC0 � 2p�1C1 � . . .� p�1Cp�1 � pCpqUp0q
Dp2p� 1q �Dp2p� 2q

� rp2pC0 � 2p�1C1 � . . .� p�1Cp�1 � pCpqUp1q
� p2p�1C0 � 2p�2C1 � . . .� p�1Cp�2 � pCp�1qUp0qs
� rp2p�1C0 � 2pC1 � . . .� pCp�1 � p�1CpqUp1q
� p2pC0 � 2p�1C1 � . . .� p�1Cp�1 � pCpqUp0qs

� r2p�1C0 � p2pC1 � 2pC0q � p2p�1C2 � 2p�1C1q
� . . .� pp�1Cp � p�1Cp�1q � pCpsUp1q
� r2pC0 � p2p�1C1 � 2p�1C0q � p2p�2C2 � 2p�2C1q
� . . .� pp�1Cp�1 � p�1Cpq � ppCp � pCp�1qsUp0q

� p2p�2C0 � 2p�1C1 � 2pC2 � . . .� p�2Cp � p�1Cp�1qUp1q
� p2p�1C0 � 2pC1 � 2p�1C2 � . . .�p�2 Cp � p�1CpqUp0q
(by (1) nCr � nCr�1 �n�1 Cr�1, (2) aC0 � aCa

� bC0 � bCb � 1 in the Pascal’s Trianlgeq
� Dp2p� 3q

Therefore, Case I is true.
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Case II: Let k � 2p� 2.

Dp2p� 2q �Dp2p� 3q � rp2p�1C0 � 2pC1 � . . .� pCp�1 � p�1CpqUp1q
� p2pC0 � 2p�1C1 � . . .� p�1Cp�1 � pCpqUp0qs
� rp2p�2C0 � 2p�1C1 �2p C2

� . . .� p�2Cp � p�1Cp�1qUp1q
� p2p�1C0 � 2pC1 � 2p�1C2

� . . .� p�2Cp � p�1CpqUp0qs
� r2p�2C0 � p2p�1C1 � 2p�1C0q � . . .

� pp�2Cp � p�2Cp�1q � pp�1Cp�1 � p�1CpqsUp1q
� r2p�1C0 � p2pC1 � 2pC0q � . . .

� pp�1Cp � p�1Cp�1q � pCpsUp0q
� p2p�3C0 � 2p�2C1 � . . .� p�3Cp � p�2Cp�1qUp1q

� p2p�2C0 � 2p�1C1 � . . .�p�2 Cp � p�1Cp�1qUp0q
(by (1) nCr � nCr�1 �n�1 Cr�1, (2) aC0 � aCa

� bC0 � bCb � 1 in the Pascal’s Trianlgeq
� Dp2p� 4q

Therefore, Case II is true.

Considering both cases, Dpnq � Dpn � 1q � Dpn � 2q is true for all positive in-
tegers n. As Dp1q � Up1q, Dp2q � Up2q and Upnq � Upn � 1q � Upn � 2q,
Dpnq � Upnq.

Proof for Hypothesis 5.25.

Proof. Let P pnq denote the statement “Lp1qF pnq � F pn � 1q � F pn � 1q” for all
positive integers n ¥ 2.

Consider P p2q.

L.H.S. � Lp1qF p2q � 1

R.H.S. � F p3q � F p1q � 2 � 1 � 1

L.H.S. � R.H.S.

Therefore, P p2q is true.
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Consider P p3q.
L.H.S. � Lp1qF p3q � 2

R.H.S. � F p4q � F p2q � 3 � 1 � 2

L.H.S. � R.H.S.

Therefore, P p3q is also true.

Assume both P pkq and P pk � 1q are true, i.e.

Lp1qF pkq � F pk � 1q � F pk � 1q
and

Lp1qF pk � 1q � F pk � 2q � F pkq.

Consider P pk � 2q.
L.H.S. � Lp1qF pk � 2q

� Lp1qrF pkq � F pk � 1qs
� Lp1qF pkq � Lp1qF pk � 1q
� F pk � 1q � F pk � 1q � F pk � 2q � F pkq (by P pkq and P pk � 1qq
� F pk � 1q � F pk � 2q � rF pk � 1q � F pkqs
� F pk � 3q � F pk � 1q
� R.H.S.

Therefore, P pk � 2q is also true.

By Mathematical Induction, P pnq is true for all positive integers n ¥ 2.

Let Qpnq denote the statement “Lp2qF pnq � F pn � 2q � F pn � 2q” for all posi-
tive integers n ¥ 3.

Consider Qp3q.
L.H.S. � Lp2qF p3q � 6

R.H.S. � F p5q � F p1q � 5 � 1 � 6

L.H.S. � R.H.S.

Therefore, Qp3q is true.

Consider Qp4q.
L.H.S. � Lp2qF p4q � 9

R.H.S. � F p6q � F p2q � 8 � 1 � 9

L.H.S. � R.H.S.
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Therefore, Q(4) is also true.

Assume both Qpkq and Qpk � 1q are true, i.e.

Lp2qF pkq � F pk � 2q � F pk � 2q
and

Lp2qF pk � 1q � F pk � 3q � F pk � 1q.

Consider Qpk � 2q.
L.H.S. � Lp2qF pk � 2q

� Lp2qrF pkq � pk � 1qs
� Lp2qF pkq � Lp2qF pk � 1q
� F pk � 2q � F pk � 2q � F pk � 3q � F pk � 1q (by Qpkq and Qpk � 1qq
� F pk � 2q � F pk � 3q � F pk � 2q � F pk � 1q
� F pk � 4q � F pkq
� R.H.S.

Therefore, Qpk � 2q is also true.

By Mathematical Induction, Qpnq is true for all positive integers n ¥ 3.

Let Rpkq denote the statement “LpkqF pnq � F pn � kq � p�1qkF pn � kq” for all
positive integers k.

Consider Rp1q.
L.H.S. � Lp1qF pnq
R.H.S. � F pn� 1q � F pn� 1q
L.H.S. � R.H.S. (proved in P pnqq

Therefore, Rp1q is true.

Consider Rp2q.
L.H.S. � Lp2qF pnq
R.H.S. � F pn� 2q � F pn� 2q
L.H.S. � R.H.S. (proved in Qpnqq

Therefore, Rp2q is true.

Suppose both Rpaq and Rpa� 1q are true, i.e.

LpaqF pnq � F pn� aq � p�1qaF pn� aq
and

Lpa� 1qF pnq � F pn� a� 1q � p�1qa�1F pn� a� 1q.
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Consider Rpa� 2q.
L.H.S. � Lpa� 2qF pnq

� rLpaq � Lpa� 1qsF pnq
� LpaqF pnq � Lpa� 1qF pnq
� F pn� aq � p�1qaF pn� aq � F pn� a� 1q � p�1qa�1F pn� a� 1q

(by Rpaq and Rpa� 1qq
� F pn� aq � F pn� a� 1q � p�1qa�2F pn� aq � p�1qa�2F pn� a� 1q
� F pn� a� 2q � p�1qa�2F pn� a� 2q
� R.H.S.

Therefore, Rpa� 2q is also true.

By Mathematical Induction, Rpkq is true for all positive integers k.

Proof for Hypothesis 5.26.

Proof. Let P pnq denote the statement “Lpnq � F pn�1q�F pn�1q” for all positive
integers n ¥ 2.

Consider P p2q.
L.H.S. � Lp2q � 3

R.H.S. � F p3q � F p1q � 2 � 1 � 3

L.H.S. � R.H.S.

Therefore, P p2q is true.

Consider P p3q.
L.H.S. � Lp3q � 4

R.H.S. � F p4q � F p2q � 3 � 1 � 4

L.H.S. � R.H.S.

Therefore, P p3q is also true.

Suppose P pkq and P pk � 1q are true, that is,

Lpkq � F pk � 1q � F pk � 1q,

Lpk � 1q � F pk � 2q � F pkq.
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Consider P pk � 2q.

L.H.S. � Lpk � 2q
� Lpkq � Lpk � 1q
� F pk � 1q � F pk � 1q � F pk � 2q � F pkq (by P pkq and P pk � 1qq
� F pk � 1q � F pk � 2q � F pk � 1q � F pkq
� F pk � 3q � F pk � 1q
� R.H.S.

Therefore, P pk � 2q is also true.

By Mathematical Induction, P pnq is true for all positive integers n ¥ 2.

Let Qpnq denote the statement “Lpnq � F pn � 2q � F pn � 2q” for all positive
integers n ¥ 3.

Consider Qp3q.

L.H.S. � Lp3q � 4

R.H.S. � F p5q � F p1q � 5 � 1 � 4

L.H.S. � R.H.S.

Therefore, Qp3q is true.

Consider Qp4q.

L.H.S. � Lp4q � 7

R.H.S. � F p6q � F p2q � 7

L.H.S. � R.H.S.

Therefore, Qp4q is also true.

Suppose Qpkq and Qpk � 1q are true, that is,

Lpkq � F pk � 2q � F pk � 2q,

Lpk � 1q � F pk � 3q � F pk � 1q.
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Consider Qpk � 2q.

L.H.S. � Lpk � 2q
� Lpkq � Lpk � 1q
� F pk � 2q � F pk � 2q � F pk � 3q � F pk � 1q (by Qpkq and Qpk � 1qq
� F pk � 2q � F pk � 3q � rF pk � 2q � F pk � 1qs
� F pk � 4q � F pkq
� R.H.S.

Therefore, Qpk � 2q is also true.

By Mathematical Induction, Qpnq is true for all positive integers n ¥ 3.

Let Rpkq denote the statement “F pkqLpnq � F pn � kq � p�1qk�1F pn � kq” for
all positive integers k.

Consider Rp1q.

L.H.S. � F p1qLpnq � Lpnq
R.H.S. � F pn� 1q � F pn� 1q � Lpnq (proved)

L.H.S. � R.H.S.

Therefore, Rp1q is true.

Consider Rp2q.

L.H.S. � F p2qLpnq � Lpnq
R.H.S. � F pn� 2q � F pn� 2q � Lpnq (proved)

L.H.S. � R.H.S.

Therefore, Rp2q is true.

Suppose Rprq and Rpr � 1q are true, that is,

F prqLpnq � F pn� rq � p�1qr�1F pn� rq,

F pr � 1qLpnq � F pn� r � 1q � p�1qr�2F pn� r � 1q.
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Consider Rpr � 2q.
L.H.S. � F pr � 2qLpnq

� F prqLpnq � F pr � 1qLpnq
� F pn� rq � p�1qr�1F pn� rq � F pn� r � 1q � p�1qr�2F pn� r � 1q

(by Rprq and Rpr � 1qq
� F pn� r � 2q � p�1qr�3rF pn� rq � F pn� r � 1qs
� F pn� r � 2q � p�1qr�3F pn� r � 2q
� R.H.S.

Therefore, Rpr � 2q is also true.

By Mathematical Induction, Rpkq is true for all positive integers k.

Proof for Hypothesis 5.44.

Proof. Let P pkq denote the statement “F pknq satisfies Hypothesis 5.44” for all pos-
itive integers n.

Case I: Given that P p4pq and P p4p� 1q are true, Consider P p4p� 2q.
L.H.S. � F pp4p� 2qnq

� F pp4p� 1qnqLpnq � p�1qn�1F p4pnq (by Formula 5.25)

� F pnqr4pC0Lpnq4p�1 � p�1qn�1
4p�1C1Lpnq4p�1 � 4p�2C2Lpnq4p�3

� . . .� p�1qn�1
2p�1C2p�1Lpnq3 � 2pC2pLpnqs

� F pnqrp�1qn�1
4p�1C0Lpnq4p�1 � 4p�2C1Lpnq4p�3

� p�1qn�1
4p�3C2Lpnq4p�5 � . . .� p�1qn�1

2p�1C2p�2Lpnq3
� 2pC2p�1Lpnqs (by P p4pq and P p4p� 1qq

� F pnqr4pC0Lpnq4p�1 � p�1qn�1p4p�1C1 � 4p�1C0qLpnq4p�1

� p4p�2C2 � 4p�2C1qLpnq4p�3 � . . .� p�1qn�1p2p�1C2p�1

� 2p�1C2p�2qLpnq3 � p2pC2p � 2pC2p�1qLpnqs
� F pnqr4p�1C0Lpnq4p�1 � p�1qn�1

4pC1Lpnq4p�1 � 4p�1C2Lpnq4p�3

� . . .� p�1qn�1
2p�2C2p�1Lpnq3 � 2p�1C2pLpnqs

� R.H.S.

Therefore, P p4p� 2q is also true.

Note that (1) aC0 � aCa � bC0 � bCb � 1; (2) nCr � nCr�1 � n�1Cr�1; and
(3) p�1q2n�2 � 1.



372 H.S. HUI, T.W. LUI, Y.K. WONG

Case II: Given that P p4p� 1q and P p4p� 2q are true, Consider P p4p� 3q.
L.H.S. � F pp4p� 3qnq

� F pp4p� 2qnqLpnq � p�1qn�1F pp4p� 1qnq (by Formula 5.25)

� F pnqr4p�1C0Lpnq4p�2 � p�1qn�1
4pC1Lpnq4p � 4p�1C2Lpnq4p�2

� . . .� p�1qn�1
2p�2C2p�1Lpnq4 � 2p�1C2pLpnq2s

� F pnqrp�1qn�1
4pC0Lpnq4p � 4p�1C1Lpnq4p�2

� p�1qn�1
4p�2C2Lpnq4p�4 � . . .� 2p�1C2p�1Lpnq2

� p�1qn�1
2pC2ps (by P p4p� 1q and P p4p� 2qq

� F pnqr4p�2C0Lpnq4p�2 � p�1qn�1p4pC1 � 4pC0qLpnq4p
� p4p�1C2 � 4p�1C1qLpnq4p�2 � . . .� p2p�1C2p � 2p�1C2p�1qLpnq2
� p�1qn�1

2p�1C2p�1s
� F pnqr4p�2C0Lpnq4p�2 � p�1qn�1

4p�1C1Lpnq4p � 4pC2Lpnq4p�2

� . . .� p�1qn�1
2p�1C2p�1s

� R.H.S.

Therefore, P p4p� 3q is also true.

Note that (1) aC0 � aCa � bC0 � bCb � 1; (2) nCr � nCr�1 � n�1Cr�1; and
(3) p�1q2n�2 � 1.

Case III: Given that P p4p� 2q and P p4p� 3q are true, Consider P p4p� 4q.
L.H.S. � F pp4p� 4qnq

� F pp4p� 3qnqLpnq � p�1qn�1F pp4p� 2qnq (by Formula 5.25)

� F pnqr4p�2C0Lpnq4p�3 � p�1qn�1
4p�1C1Lpnq4p�1 � 4pC2Lpnq4p

� . . .� 2p�2C2pLpnq3 � p�1qn�1
2p�1C2p�1Lpnqs

� F pnqrp�1qn�1
4p�1C0Lpnq4p�1 � 4pC1Lpnq4p�1

� p�1qn�1
4p�1C2Lpnq4p�3 � . . .� 2p�2C2p�1Lpnq3

� p�1qn�1
2p�1C2pLpnqs (by P p4p� 2q and P p4p� 3qq

� F pnqr4p�3C0Lpnq4p�3 � p�1qn�1p4p�1C1 � 4p�1C0qLpnq4p�1

� p4pC2 � 4pC1qLpnq4p�1 � . . .� p2p�2C2p � 2p�2C2p�1qLpnq3
� p�1qn�1p2p�1C2p�1 � 2p�1C2pqLpnqs

� F pnqr4p�3C0Lpnq4p�3 � p�1qn�1
4p�2C1Lpnq4p�1

� . . .� p�1qn�1
2p�2C2p�1Lpnqs

� R.H.S.
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Therefore, P p4p� 4q is also true.

Note that (1) aC0 � aCa � bC0 � bCb � 1; (2) nCr � nCr�1 � n�1Cr�1; and
(3) p�1q2n�2 � 1.

Case IV: Given that P p4p� 3q and P p4p� 4q are true, Consider P p4p� 5q.
L.H.S. � F pp4p� 5qnq

� F pp4p� 4qnqLpnq � p�1qn�1F pp4p� 3qnq (by Formula 5.25)

� F pnqr4p�3C0Lpnq4p�4 � p�1qn�1
4p�2C1Lpnq4p�2

� . . .� 2p�3C2pLpnq4 � p�1qn�1
2p�2C2p�1Lpnq2s

� F pnqrp�1qn�1
4p�2C0Lpnq4p�2 � 4p�1C1Lpnq4p

� . . .� p�1qn�1
2p�2C2pLpnq2 � 2p�1C2p�1s

(by P p4p� 3q and P p4p� 4qq
� F pnqr4p�4C0Lpnq4p�4 � p�1qn�1p4p�2C1 � 4p�2C0qLpnq4p�2

� . . .� p�1qn�1p2p�2C2p�1 � 2p�2C2pqLpnq2
� 2p�2C2p�2s

� F pnqr4p�4C0Lpnq4p�4 � p�1qn�1
4p�3C1Lpnq4p�2

� . . .� p�1qn�1
2p�3C2p�1Lpnq2 � 2p�2C2p�2s

� R.H.S.

Therefore, P p4p� 5q is also true.

Note that (1) aC0 � aCa � bC0 � bCb � 1; (2) nCr � nCr�1 � n�1Cr�1; and
(3) p�1q2n�2 � 1.

As P p1q and P p2q are true, by Mathematical Induction, P pkq is true for all positive
integers k.

Proof for Formula 5.55.

Proof. Let P pnq denote the statement “5F p1qF pnq � Lpn � 1q � Lpn � 1q” for all
positive integers n ¥ 2.

Consider P p2q.
L.H.S. � 5F p1qF p2q � 5

R.H.S. � Lp3q � Lp1q � 4 � 1 � 5

L.H.S. � R.H.S.

Therefore, P p2q is true.
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Consider P p3q.
L.H.S. � 5F p1qF p3q � 10

R.H.S. � Lp4q � Lp2q � 7 � 3 � 10

L.H.S. � R.H.S.

Therefore, P p3q is also true.

Suppose P pkq and P pk � 1q are true, that is,

5F p1qF pkq � Lpk � 1q � Lpk � 1q,
5F p1qF pk � 1q � Lpk � 2q � Lpkq.

Consider P pk � 2q.
L.H.S. � 5F p1qF pk � 2q

� 5F p1qF pkq � 5F p1qF pk � 1q
� Lpk � 1q � Lpk � 1q � Lpk � 2q � Lpkq (by P pkq and P pk � 1qq
� Lpk � 1q � Lpk � 2q � Lpk � 1q � Lpkq
� Lpk � 3q � Lpk � 1q
� R.H.S.

Therefore, P pk � 2q is also true.

By Mathematical Induction, P pnq is true for all positive integers n ¥ 2.

Let Qpnq denote the statement “5F p2qF pnq � Lpn� 2q �Lpn� 2q” for all positive
integers n ¥ 3.

Consider Qp3q.
L.H.S. � 5F p2qF p3q � 10

R.H.S. � Lp5q � Lp1q � 11 � 1 � 10

L.H.S. � R.H.S.

Therefore, Qp3q is true.

Consider Qp4q.
L.H.S. � 5F p2qF p4q � 15

R.H.S. � Lp6q � Lp2q � 18 � 3 � 15

L.H.S. � R.H.S.

Therefore, Qp4q is also true.

Suppose Qpkq and Qpk � 1q are true, that is,

5F p2qF pkq � Lpk � 2q � Lpk � 2q,
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5F p2qF pk � 1q � Lpk � 3q � Lpk � 1q.

Consider Qpk � 2q.

L.H.S. � 5F p2qF pk � 2q
� 5F p2qF pkq � 5F p2qF pk � 1q
� Lpk � 2q � Lpk � 2q � Lpk � 3q � Lpk � 1q (by Qpkq and Qpk � 1qq
� Lpk � 2q � Lpk � 3q � rLpk � 2q � Lpk � 1qs
� Lpk � 4q � Lpkq
� R.H.S.

Therefore, Qpk � 2q is also true.

By Mathematical Induction, Qpnq is true for all positive integers n ¥ 3.

Let Rpkq denote the statement “5F pkqF pnq � Lpn� kq � p�1qk�1Lpn� kq” for all
positive integers k.

Consider Rp1q.

L.H.S. � 5F p1qF pnq � 5F pnq
R.H.S. � Lpn� 1q � Lpn� 1q � 5F pnq (by P pnqq
L.H.S. � R.H.S.

Therefore, Rp1q is true.

Consider Rp2q.

L.H.S. � 5F p2qF pnq � 5F pnq
R.H.S. � Lpn� 2q � Lpn� 2q � 5F pnq (by Qpnqq
L.H.S. � R.H.S.

Therefore, Rp2q is true.

Suppose Rprq and Rpr � 1q are true, that is,

5F prqF pnq � Lpn� rq � p�1qr�1Lpn� rq,

5F pr � 1qF pnq � Lpn� r � 1q � p�1qr�2Lpn� r � 1q.
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Consider Rpr � 2q.
L.H.S. � 5F pr � 2qF pnq

� 5F prqF pnq � 5F pr � 1qF pnq
� Lpn� rq � p�1qr�1Lpn� rq � Lpn� r � 1q � p�1qr�2Lpn� r � 1q

(by Rprq and Rpr � 1qq
� Lpn� r � 2q � p�1qr�3rLpn� rq � Lpn� r � 1qs
� Lpn� r � 2q � p�1qr�3Lpn� r � 2q
� R.H.S.

Therefore, Rpr � 2q is also true.

By Mathematical Induction, Rpkq is true for all positive integers k.

Proof for Hypothesis 6.2.

Proof. Let P pnq denote the statement “F pnq2 � F pn� 1qF pn� 1q � p�1qn�1” for
all positive integers n ¥ 2.

Consider P p2q.
L.H.S. � F p2q2 � 1

R.H.S. � F p1qF p3q � p�1q3 � 1

L.H.S. � R.H.S.

Therefore, P p2q is true.

Suppose P pkq is true, i.e.

F pkq2 � F pk � 1qF pk � 1q � p�1qk�1,

i.e.
F pk � 1qF pk � 1q � F pkq2 � p�1qk�1,

i.e.
F pk � 1qF pk � 1q � F pkq2 � p�1qk�2.

Consider P pk � 1q.
L.H.S. � F pk � 1q2

� rF pk � 1q2 � F pkqF pk � 1qs � F pkqF pk � 1q
� F pk � 1qF pk � 1q � F pkqF pk � 1q
� F pkq2 � p�1qk�2 � F pkqF pk � 1q (by P pkqq
� F pkqF pk � 2q � p�1qk�2

� R.H.S.
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Therefore, P pk � 1q is also true.

By Mathematical Induction, P pnq is true for all positive integers n ¥ 2.

Proof for Hypothesis 6.4.

Proof. Let P pnq denote the statement “F pnq2 � F pn� 2qF pn� 2q � p�1qn” for all
positive integers n ¥ 3.

Consider P p3q.
L.H.S. � F p3q2 � 4

R.H.S. � F p1qF p5q � 1 � 1 � 5 � 4

L.H.S. � R.H.S.

Therefore, P p3q is true.

Assume P pkq is true, i.e.

F pkq2 � F pk � 2qF pk � 2q � p�1qk,
i.e.

F pk � 2qF pk � 2q � F pkq2 � p�1qk�1.

Consider P pk � 1q.
L.H.S. � F pk � 1q2

� rF pk � 1qF pk � 1q � F pkqF pk � 1qs � F pkqF pk � 1q
� F pk � 2qF pk � 1q � F pkqF pk � 1q
� rF pk � 2qF pk � 1q � F pk � 2qF pk � 1qs � F pkqF pk � 1q

� F pk � 2qF pk � 1q
� rF pk � 2qF pkq � F pk � 2qF pk � 1qs � F pkqF pk � 1q

� 2F pk � 2qF pk � 1q
� F pk � 2qF pk � 2q � F pkqF pk � 1q � 2F pk � 2qF pk � 1q
� rF pkqF pkq � p�1qk�1s � F pkqF pk � 1q � 2F pk � 2qF pk � 1q

(by P pkqq
� � F pkqrF pk � 1q � F pkqs � 2F pk � 2qF pk � 1q � p�1qk�1

� F pk � 2qF pk � 1q � F pk � 2qF pk � 1q � F pkqF pk � 1q � p�1qk�1

� F pk � 2qF pk � 1q � F pk � 1qF pk � 1q � p�1qk�1

� F pk � 3qF pk � 1q � p�1qk�1

� R.H.S.
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Therefore, P pk � 1q is also true.

By Mathematical Induction, P pnq is true for all positive integers n ¥ 3.

Proof for Hypothesis 6.19.

Proof. Let P pnq denote the statement “F p2q�F p4q�F p6q� . . .�p�1qn�1F p2nq �
p�1qn�1F pnqF pn� 1q” for all positive integers n.

Consider P p1q.
L.H.S. � F p2q � 1

R.H.S. � p�1q2F p1qF p2q � 1

L.H.S. � R.H.S.

Therefore, P p1q is true.

Suppose P pkq is true, i.e.

F p2q � F p4q � F p6q � . . .� p�1qk�1F p2kq � p�1qk�1F pkqF pk � 1q.

Consider P pk � 1q.
L.H.S. � F p2q � F p4q � F p6q � . . .� p�1qk�1F p2kq � p�1qk�2F p2k � 2q

� p�1qk�1F pkqF pk � 1q � p�1qk�2F p2k � 2q
� p�1qk�2rF p2k � 2q � F pkqF pk � 1qs
� p�1qk�2rF pk � 2q2 � F pkq2 � F pkqF pk � 1qs
papply F p2kq � F pk � 1q2 � F pk � 1q2q

� p�1qk�2trF pk � 2q2 � F pkqrF pkq � F pk � 1qsu
� p�1qk�2rF pk � 2q2 � F pkqF pk � 2qs
� p�1qk�2F pk � 1qF pk � 2q
� R.H.S.

Therefore, P pk � 1q is also true.

By Mathematical Induction, P pnq is true for all positive integers n.

Proof for Hypothesis 6.21.

Proof. Let P pnq denote the statement “�F p1q�F p3q�F p5q�. . .�p�1qnF p2n�1q �
p�1qnF pnqF pnq” for all positive integers n.
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When n � 1,

L.H.S. � �F p1q � �1

R.H.S. � p�1q1F p1qF p1q � �1

L.H.S. � R.H.S.

Therefore, P p1q is true.

Suppose P pkq is true, i.e.

�F p1q � F p3q � F p5q � . . .� p�1qkF p2k � 1q � p�1qkF pkqF pkq.

Consider P pk � 1q.
L.H.S. � � F p1q � F p3q � F p5q � . . .� p�1qkF p2k � 1q � p�1qk�1F p2k � 1q

� p�1qkF pkqF pkq � p�1qk�1F p2k � 1q
� p�1qk�1rF p2k � 1q � F pkq2s
� p�1qk�1rF pk � 1q2 � F pkq2 � F pkq2s
papply F p2k � 1q � F pk � 1q2 � F pkq2q

� p�1qk�1F pk � 1qF pk � 1q
� R.H.S.

Therefore, P pk � 1q is also true.

By Mathematical Induction, P pnq is true for all positive integers n.

Proof for Hypothesis 6.23.

Proof. Let P pnq denote the statement “�F p2q�F p4q�F p6q� . . .�p�1qnF p2nq �
p�1qnF pnqF pn� 1q” for all positive integers n.

When n � 1,

L.H.S. � �F p2q � �1

R.H.S. � p�1q1F p1qF p2q � �1

L.H.S. � R.H.S.

Therefore, P p1q is true.

Suppose P pkq is true, i.e.

�F p2q � F p4q � F p6q � . . .� p�1qkF p2kq � p�1qkF pkqF pk � 1q.
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Consider P pk � 1q.
L.H.S. � � F p2q � F p4q � F p6q � . . .� p�1qkF p2kq � p�1qk�1F p2k � 2q

� p�1qkF pkqF pk � 1q � p�1qk�1F p2k � 2q
� p�1qk�1rF p2k � 2q � F pkqF pk � 1qs
� p�1qk�1rF pk � 2q2 � F pkq2 � F pkqF pk � 1qs
papply F p2kq � F pk � 1q2 � F pk � 1q2q

� p�1qk�1rF pk � 2q2 � F pkqF pk � 2qs
� p�1qk�1F pk � 1qF pk � 2q
� R.H.S.

Therefore, P pk � 1q is also true.

By Mathematical Induction, P pnq is true for all positive integers n.

Proof for Hypothesis 6.25.

Proof. Let P pnq denote the statement “F p1q�F p3q�F p5q� . . .�p�1qn�1F p2n�
1q � p�1qn�1F pnqF pnq” for all positive integers n.

When n � 1,

L.H.S. � F p1q � 1

R.H.S. � p�1q2F p1qF p1q � 1

L.H.S. � R.H.S.

Therefore, P p1q is true.

Suppose P pkq is true, i.e.

F p1q � F p3q � F p5q � . . .� p�1qk�1F p2k � 1q � p�1qk�1F pkqF pkq.

Consider P pk � 1q.
L.H.S. � F p1q � F p3q � F p5q � . . .� p�1qk�1F p2k � 1q � p�1qk�2F p2k � 1q

� p�1qk�1F pkqF pkq � p�1qk�2F p2k � 1q
� p�1qk�2rF p2k � 1q � F pkq2s
� p�1qk�2rF pk � 1q2 � F pkq2 � F pkq2s
papply F p2k � 1q � F pk � 1q2 � F pkq2q

� p�1qk�2F pk � 1qF pk � 1q
� R.H.S.
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Therefore, P pk � 1q is also true.

By Mathematical Induction, P pnq is true for all positive integers n.

Proof for Hypothesis 6.36.

Proof. Let P pnq denote the statement “Lpnq2 � Lpn� 1qLpn� 1q � p�1qn�2

p5qF p1q2” for all positive integers n ¥ 2.

Consider P p2q,
L.H.S. � Lp2q2 � 9

R.H.S. � pLp1qLp3q � 5p1q � 1 � 4 � 5 � 9

L.H.S. � R.H.S.

Therefore, P p2q is true.

Suppose P pkq is true, i.e.

Lpkq2 � Lpk � 1qLpk � 1q � p�1qk�2p5qF p1q2,
i.e.

Lpkq2 � Lpk � 1qLpk � 1q � 5,

i.e.

Lpk � 1qLpk � 1q � Lpkq2 � 5.

Consider P pk � 1q.
L.H.S. � Lpk � 1q2

� rLpk � 1q2 � LpkqLpk � 1qs � LpkqLpk � 1q
� Lpk � 1qLpk � 1q � LpkqLpk � 1q
� Lpkq2 � 5 � LpkqLpk � 1q pby P pkqq
� LpkqLpk � 2q � 5

� Lpk � 1 � 1qLpk � 1 � 1q � p�1qk�3p5q
� R.H.S.

Therefore, P pk � 1q is also true.

By Mathematical Induction, P pnq is true for all positive integers n ¥ 2.

Proof for Hypothesis 6.38.

Proof. Let P pnq denote the statement “Lpnq2 � Lpn � 2qLpn � 2q � p�1qn�1p5q”
for all positive integers n ¥ 3.
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Consider P p3q,
L.H.S. � Lp3q2 � 16

R.H.S. � Lp1qLp5q � 5 � 1 � 11 � 5 � 16

L.H.S. � R.H.S.

Therefore, P p3q is true.

Suppose P pkq is true, i.e.

Lpkq2 � Lpk � 2qLpk � 2q � p�1qk�1p5q.

Consider P pk � 1q.
L.H.S. � Lpk � 1q2

� rLpk � 1qLpk � 1q � LpkqLpk � 1qs � LpkqLpk � 1q
� Lpk � 2qLpk � 1q � LpkqLpk � 1q
� rLpk � 2qLpk � 1q � Lpk � 2qLpk � 1qs � LpkqLpk � 1q

� Lpk � 2qLpk � 1q
� rLpk � 2qLpkq � Lpk � 2qLpk � 1qs � LpkqLpk � 1q

� 2Lpk � 2qLpk � 1q
� Lpk � 2qLpk � 2q � LpkqLpk � 1q � 2Lpk � 2qLpk � 1q
� rLpkqLpkq � p�1qk�2p5qs � LpkqLpk � 1q � 2Lpk � 2qLpk � 1q
pby P pkqq

� � LpkqrLpk � 1q � Lpkqs � 2Lpk � 2qLpk � 1q � p�1qk�2p5q
� Lpk � 2qLpk � 1q � Lpk � 2qLpk � 1q � LpkqLpk � 1q � p�1qk�2p5q
� Lpk � 2qLpk � 1q � Lpk � 1qLpk � 1q � p�1qk�2p5q
� Lpk � 3qLpk � 1q � p�1qk�1�1p5q
� R.H.S.

Therefore, P pk � 1q is also true.

By Mathematical Induction, P pnq is true for all positive integers n ¥ 3.

Proof for Hypothesis 6.50.

Proof. Let P pnq denote the statement “�5F p2q � 5F p4q � 5F p6q � . . .� p�1qn
5F p2nq � p�1qn5F pnqF pn� 1q” for all positive integers n.
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Consider P p1q,
L.H.S. � �5F p2q � �5

R.H.S. � p�1q15F p1qF p2q � �5

L.H.S. � R.H.S.

Therefore, P p1q is true.

Suppose P pkq is true, i.e.

�5F p2q � 5F p4q � 5F p6q � . . .� p�1qk5F p2kq � p�1qk5F pkqF pk � 1q.

Consider P pk � 1q.
L.H.S. � � 5F p2q � 5F p4q � 5F p6q � . . .� p�1qk5F p2kq � p�1qk�15F p2k � 2q

� p�1qk5F pkqF pk � 1q � p�1qk�15F p2k � 2q
� p�1qk�15rF p2k � 2q � F pkqF pk � 1qs
� p�1qk�15rF pk � 2q2 � F pkq2 � F pkqF pk � 1qs
papply F p2kq � F pk � 1q2 � F pk � 1q2q

� p�1qk�15tF pk � 2q2 � F pkqrF pkq � F pk � 1qsu
� p�1qk�15rF pk � 2q2 � F pkqF pk � 2qs
� p�1qk�15F pk � 1qF pk � 2q
� R.H.S.

Therefore, P pk � 1q is also true.

By Mathematical Induction, P pnq is true for all positive integers n.

Proof for Hypothesis 6.52.

Proof. Let P pnq denote the statement “5F p1q � 5F p3q � 5F p5q � . . .� p�1qn�1

5F p2n� 1q � p�1qn�15F pnqF pnq” for all positive integers n.

Consider P p1q,
L.H.S. � 5F p1q � 5

R.H.S. � p�1q25F p1qF p1q � 5

L.H.S. � R.H.S.

Therefore, P p1q is true.

Suppose P pkq is true, i.e.

5F p1q � 5F p3q � 5F p5q � . . .� p�1qk�15F p2k � 1q � p�1qk�15F pkqF pkq.
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Consider P pk � 1q.

L.H.S. � 5F p1q � 5F p3q � 5F p5q � . . .� p�1qk�15F p2k � 1q
� p�1qk�25F p2k � 1q

� p�1qk�15F pkqF pkq � p�1qk�25F p2k � 1q
� p�1qk�25rF p2k � 1q � F pkq2s
� p�1qk�25rF pk � 2q2 � F pkq2 � F pkq2s
papply F p2k � 1q � F pk � 1q2 � F pkq2q

� p�1qk�25F pk � 1qF pk � 1q
� R.H.S.

Therefore, P pk � 1q is also true.

By Mathematical Induction, P pnq is true for all positive integers n.

Proof for Hypothesis 6.54.

Proof. Let P pnq denote the statement “5F p2q � 5F p4q � 5F p6q � . . .� p�1qn�1

5F p2nq � p�1qn�15F pnqF pn� 1q” for all positive integers n.

Consider P p1q,

L.H.S. � 5F p2q � 5

R.H.S. � p�1q25F p1qF p2q � 5

L.H.S. � R.H.S.

Therefore, P p1q is true.

Suppose P pkq is true, i.e.

5F p2q � 5F p4q � 5F p6q � . . .� p�1qk�15F p2kq � p�1qk�15F pkqF pk � 1q.
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Consider P pk � 1q.

L.H.S. � 5F p2q � 5F p4q � 5F p6q � . . . p�1qk�15F p2kq � p�1qk�25F p2k � 2q
� p�1qk�15F pkqF pk � 1q � p�1qk�25F p2k � 2q
� p�1qk�25rF p2k � 2q � F pkqF pk � 1qs
� p�1qk�25rF pk � 2q2 � F pkq2 � F pkqF pk � 1qs
papply F p2kq � F pk � 1q2 � F pk � 1q2q

� p�1qk�25rF pk � 2q2 � F pkqF pk � 2qs
� p�1qk�2F pk � 1qF pk � 2q
� R.H.S.

Therefore, P pk � 1q is also true.

By Mathematical Induction, P pnq is true for all positive integers n.

Proof for Hypothesis 6.56.

Proof. Let P pnq denote the statement “�5F p1q � 5F p3q � 5F p5q � . . .� p�1qn
5F p2n� 1q � p�1qn5F pnqF pnq” for all positive integers n.

Consider P p1q,

L.H.S. � �5F p1q � �5

R.H.S. � p�1q15F p1qF p1q � �5

L.H.S. � R.H.S.

Therefore, P p1q is true.

Suppose P pkq is true, i.e.

�5F p1q � 5F p3q � 5F p5q � . . .� p�1qk5F p2k � 1q � p�1qk5F pkqF pkq.
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Consider P pk � 1q.

L.H.S. � � 5F p1q � 5F p3q � 5F p5q � . . .� p�1qk5F p2k � 1q
� p�1qk�15F p2k � 1q

� p�1qk5F pkqF pkq � p�1qk�15F p2k � 1q
� p�1qk�15rF p2k � 1q � F pkq2s
� p�1qk�15rF pk � 1q2 � F pkq2 � F pkq2s
papply F p2k � 1q � F pk � 1q2 � F pkq2q

� p�1qk�1F pk � 1qF pk � 1q
� R.H.S.

Therefore, P pk � 1q is also true.

By Mathematical Induction, P pnq is true for all positive integers n.

Proof for Formula 7.2

Proof.

SF p1q � F p1qF p1q
SF p2q � F p1qF p2q � F p2qF p1q
SF p3q � F p1qF p3q � F p2qF p2q � F p3qF p1q
SF p4q � F p1qF p4q � F p2qF p3q � F p3qF p2q � F p4qF p1q
SF p5q � F p1qF p5q � F p2qF p4q � F p3qF p3q � F p4qF p2q � F p5qF p1q

. . .

SF pkq � F p1qF pkq � F p2qF pk � 1q � . . .� F prqF pk � r � 1q
� . . .� F pkqF p1q

SF pk � 1q � F p1qF pk � 1q � F p2qF pkq � . . .� F prqF pk � r � 2q
� . . .� F pkqF p2q � F pk � 1qF p1q

SF pk � 2q � F p1qF pk � 2q � F p2qF pk � 1q � . . .� F prqF pk � r � 3q
� . . .� F pkqF p3q � F pk � 1qF p2q � F pk � 2qF p1q
. . .
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SF pkq � SF pk � 1q � rF p1qF pkq � F p2qF pk � 1q � . . .� F prqF pk � r � 1q
� . . .� F pkqF p1qs � rF p1qF pk � 1q � F p2qF pkq
� . . .� F prqF pk � r � 2q
� . . .� F pkqF p2q � F pk � 1qF p1qs

� rF p1qF pkq � F p1qF pk � 1qs � rF p2qF pk � 1q � F p2qF pkqs
� . . .� rF prqF pk � r � 1q � F prqF pk � r � 2qs
� . . .� rF pkqF p1q � F pkqF p2qs � F pk � 1qF p1q

� F p1qrF pkq � F pk � 1qs � F p2qrF pk � 1q � F pkqs
� . . .� F prqrF pk � r � 1q � F pk � r � 2qs
� . . .� F pkqrF p1q � F p2qs � F pk � 1qF p1q

� F p1qF pk � 2q � F p2qF pk � 1q � . . .� F prqF pk � r � 3q
� . . .� F pkqF p3q � F pk � 1qF p2q
(Note that F p1q � F p2q � 1q

� SF pk � 2q � F pk � 2qF p1q
� SF pk � 2q � F pk � 2q

Therefore,

SF pkq � SF pk � 1q � SF pk � 2q � F pk � 2q,
SF pkq � SF pk � 1q � F pk � 2q � SF pk � 2q.

In other words,

SF pnq � SF pn� 1q � F pn� 2q � SF pn� 2q.

Proof for Formula 7.4.
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Proof.

SLF p1q � Lp1qF p1q
SLF p2q � Lp1qF p2q � Lp2qF p1q
SLF p3q � Lp1qF p3q � Lp2qF p2q � Lp3qF p1q

. . .

SLF pkq � Lp1qF pkq � Lp2qF pk � 1q � . . .� LprqF pk � r � 1q
� . . .� LpkqF p1q

SLF pk � 1q � Lp1qF pk � 1q � Lp2qF pkq � . . .� LprqF pk � r � 2q
� . . .� LpkqF p2q � Lpk � 1qF p1q

SLF pk � 2q � Lp1qF pk � 2q � Lp2qF pk � 1q � . . .� LprqF pk � r � 3q
� . . .� LpkqF p3q � Lpk � 1qF p2q � Lpk � 2qF p1q
. . .

SLF pkq � SLF pk � 1q � rLp1qF pkq � Lp2qF pk � 1q � . . .� LprqF pk � r � 1q
� . . .� LpkqF p1qs � rLp1qF pk � 1q � Lp2qF pkq
� . . .� LprqF pk � r � 2q
� . . .� LpkqF p2q � Lpk � 1qF p1qs

� rLp1qF pkq � Lp1qF pk � 1qs
� rLp2qF pk � 1q � Lp2qF pkqs
� . . .� rLprqF pk � r � 1q � LprqF pk � r � 2qs
� . . .� rLpkqF p1q � LpkqF p2qs � Lpk � 1qF p1q

� Lp1qrF pkq � F pk � 1qs � Lp2qrF pk � 1q � F pkqs
� . . .� LprqrF pk � r � 1q � F pk � r � 2qs
� . . .� LpkqrF p1q � F p2qs � Lpk � 1qF p1q

� Lp1qF pk � 2q � Lp2qF pk � 1q � . . .� LprqF pk � r � 3q
� . . .� LpkqF p3q � Lpk � 1qF p2q
(Note that F p1q � F p2q � 1q

� SLF pk � 2q � Lpk � 2qF p1q
� SLF pk � 2q � Lpk � 2q

Therefore,

SLF pkq � SLF pk � 1q � SLF pk � 2q � Lpk � 2q,
SLF pkq � SLF pk � 1q � Lpk � 2q � SLF pk � 2q.

In other words,

SLF pnq � SLF pn� 1q � Lpn� 2q � SLF pn� 2q.
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Previously, we start the proof by considering the leftmost term on the k-th line,
that is, Lp1qF pkq. Now, we are going to do the proof again by considering the
rightmost term on the k-th line, that is, F p1qLpkq.

Proof.

SLF p1q � F p1qLp1q
SLF p2q � F p1qLp2q � F p2qLp1q
SLF p3q � F p1qLp3q � F p2qLp2q � F p3qLp1q
SLF p4q � F p1qLp4q � F p2qLp3q � F p3qLp2q � F p4qLp1q
SLF p5q � F p1qLp5q � F p2qLp4q � F p3qLp3q � F p4qLp2q � F p5qLp1q
SLF p6q � F p1qLp6q � F p2qLp2q � F p3qLp4q � F p4qLp3q � F p5qLp2q

� F p6qLp1q
. . .

SLF pkq � F p1qLpkq � F p2qLpk � 1q � . . .� F prqLpk � r � 1q
� . . .� F pkqLp1q

SLF pk � 1q � F p1qLpk � 1q � F p2qLpkq � . . .� F prqLpk � r � 2q
� . . .� F pkqLp2q � F pk � 1qLp1q

SLF pk � 2q � F p1qLpk � 2q � F p2qLpk � 1q � . . .� F prqLpk � r � 3q
� . . .� F pkqLp3q � F pk � 1qLp2q � F pk � 2qLp1q
. . .

SLF pkq � SLF pk � 1q � rF p1qLpkq � F p2qLpk � 1q � . . .� F prqLpk � r � 1q
� . . .� F pkqLp1qs � rF p1qLpk � 1q � F p2qLpkq
� . . .� F prqLpk � r � 2q
� . . .� F pkqLp2q � F pk � 1qLp1qs

� rF p1qLpkq � F p1qLpk � 1qs
� rF p2qLpk � 1q � F p2qLpkqs
� . . .� rF prqLpk � r � 1q � F prqLpk � r � 2qs
� . . .� rF pkqLp1q � F pkqLp2qs � F pk � 1qLp1q

� F p1qrLpkq � Lpk � 1qs � F p2qrLpk � 1q � Lpkqs
� . . .� F prqrLpk � r � 1q � Lpk � r � 2qs
� . . .� F pkqrLp1q � Lp2qs � F pk � 1qLp1q

� F p1qLpk � 2q � F p2qLpk � 1q � . . .� F prqLpk � r � 3q
� . . .� F pkqLp3q � F pk � 1qLp1q
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Since

SLF pk � 2q � F p1qLpk � 2q � F p2qLpk � 1q � . . .� F prqLpk � r � 3q
� . . .� F pkqLp3q � F pk � 1qLp2q � F pk � 2qLp1q

Therefore,

SLF pkq � SLF pk � 1q � F pk � 1qLp1q � SLF pk � 2q � F pk � 1qLp2q
� F pk � 2qLp1q

SLF pkq � SLF pk � 1q � F pk � 1q � SLF pk � 2q � 3F pk � 1q
� F pk � 2q

SLF pkq � SLF pk � 1q � 2F pk � 1q � F pk � 2q � SLF pk � 2q
SLF pkq � SLF pk � 1q � F pk � 1q � F pk � 3q � SLF pk � 2q

papply Lpnq � F pn� 1q � F pn� 1q where n � k � 2q
SLF pkq � SLF pk � 1q � Lpk � 2q � SLF pk � 2q

In other words,

SLF pnq � SLF pn� 1q � F pn� 2q � SLF pn� 2q.

Proof for Formula 7.6.

Proof.

SLp1q � Lp1qLp1q
SLp2q � Lp1qLp2q � Lp2qLp1q
SLp3q � Lp1qLp3q � Lp2qLp2q � Lp3qLp1q

. . .

SLpkq � Lp1qLpkq � Lp2qLpk � 1q � . . .� LprqLpk � r � 1q
� . . .� LpkqLp1q

SLpk � 1q � Lp1qLpk � 1q � Lp2qLpkq � . . .� LprqLpk � r � 2q
� . . .� LpkqLp2q � Lpk � 1qLp1q

SLpk � 2q � Lp1qLpk � 2q � Lp2qLpk � 1q � . . .� LprqLpk � r � 3q
� . . .� LpkqLp3q � Lpk � 1qLp2q � Lpk � 2qLp1q
. . .
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SLpkq � SLpk � 1q � rLp1qLpkq � Lp2qLpk � 1q � . . .� LprqLpk � r � 1q
� . . .� LpkqLp1qs � rLp1qLpk � 1q � Lp2qLpkq
� . . .� LprqLpk � r � 2q
� . . .� LpkqLp2q � Lpk � 1qLp1qs

� rLp1qLpkq � Lp1qLpk � 1qs � rLp2qLpk � 1q � Lp2qLpkqs
� . . .� rLprqLpk � r � 1q � LprqLpk � r � 2qs
� . . .� rLpkqLp1q � LpkqLp2qs � Lpk � 1qLp1q

� Lp1qrLpkq � Lpk � 1qs � Lp2qrLpk � 1q � Lpkqs
� . . .� LprqrLpk � r � 1q � Lpk � r � 2qs
� . . .� LpkqrLp1q � Lp2qs � Lpk � 1qLp1q

� Lp1qLpk � 2q � Lp2qLpk � 1q � . . .� LprqLpk � r � 3q
� . . .� LpkqLp3q � Lpk � 1qLp1q

� SLpk � 2q � Lpk � 2qLp1q � Lpk � 1qLp2q � Lpk � 1qLp1q
� SLpk � 2q � Lpk � 2q � 2Lpk � 1q

Therefore,

SLpkq � SLpk � 1q � SLpk � 2q � Lpk � 2q � 2Lpk � 1q
SLpkq � SLpk � 1q � Lpk � 2q � 2Lpk � 1q � SLpk � 2q
SLpkq � SLpk � 1q � rLpk � 3q � Lpk � 1qs � SLpk � 2q

Applying Formula 5.35

5F p1qF pnq � Lpn� 1q � Lpn� 1q,
we have

SLpkq � SLpk � 1q � 5F pk � 2q � SLpk � 2q.

In other words,

SLpnq � SLpn� 1q � 5F pn� 2q � SLpn� 2q.

Appendix F. Formulae

Formula 2.10.

Upnq � F pr � 2qUpn� rq � F prqUpn� r � 2q

Formula 2.13.

Upnq � F pr � 1qUpn� rq � F prqUpn� r � 1q

Formula 2.19.

F pkqUpnq � F pr � kqUpn� rq � p�1qk�1F prqUpn� r � kq
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Formula 2.20.

F pkqF pnq � F pr � kqF pn� rq � p�1qk�1F prqF pn� r � kq

Formula 2.21.

F pkqLpnq � F pr � kqLpn� rq � p�1qk�1F prqLpn� r � kq

Formula 2.23.

Up2kq � F pk � 1qUpk � 1q � F pk � 1qUpk � 1q

Formula 2.24.

F p2kq � F pk � 1q2 � F pk � 1q2

Formula 2.25.

Lp2kq � F pk � 1qLpk � 1q � F pk � 1qLpk � 1q

Formula 2.27.

Up2k � 1q � F pk � 1qUpk � 1q � F pkqUpkq

Formula 2.28.

F p2k � 1q � F pk � 1q2 � F pkq2

Formula 2.29.

Lp2k � 1q � F pk � 1qLpk � 1q � F pkqLpkq

Formula 2.31.

F p2kq � rF pk � 1q � F pk � 1qsF pkq
or

F p2kq � rF pkq � 2F pk � 1qsF pkq
or

F p2kq � r2F pk � 1q � F pkqsF pkq

Formula 3.2.

Lp2nq � Lpnq2 � p�1qn�1p2q

Hypothesis 3.4.

Lp3nq � Lpnq3 � p�1qn�1p3qLpnq

Hypothesis 3.6.

Lp5nq � Lpnq5 � p�1qn�1p5qLpnqrLpnq2 � p�1qn�1s
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Hypothesis 3.8.

Lp7nq � Lpnq7 � p�1qn�1p7qLpnqrLpnq2 � p�1qn�1s2

Hypothesis 3.10.

Lp11nq
� Lpnq11 � p�1qn�1p11qLpnqrLpnq2 � p�1qn�1strLpnq2 � p�1qn�1s3 � Lpnq2u

Hypothesis 3.12.

Lp13nq
� Lpnq13 � p�1qn�1p13qLpnqrLpnq2 � p�1qn�1s2trLpnq2 � p�1qn�1s3 � 2Lpnq2u

Formula 3.22.

nLr � n�1Cr � n�1Cr�2

Formula 3.23.

nLr � pn� 1q!pn2 � n� r2 � rq
pn� 1 � rq!r!

Hypothesis 3.25.

Lp4pnq � 4pL0Lpnq4p � p�1qn�1
4p�1L1Lpnq4p�2 � 4p�2L2Lpnq4p�4

� p�1qn�1
4p�3L3Lpnq4p�6 � . . .� 4p�rLrLpnq4p�2r�2

� . . .� p�1qn�1
2p�1L2p�1Lpnq2 � 2pL2p

Note: p�1qn�1 occurs in the 2nd, 4th, 6th and other even-number terms, 4pL0 � 1;

4p�1L1 � 4p; 2pL2p � 2.
Hypothesis 3.26.

Lpp4p� 1qnq � 4p�1L0Lpnq4p�1 � p�1qn�1
4p�2L1Lpnq4p�3 � 4p�3L2Lpnq4p�5

� p�1qn�1
4p�4L3Lpnq4p�7 � . . .� 4p�1�rLrLpnq4p�2r�1

� . . .� p�1qn�1
2pL2p�1Lpnq

Note: p�1qn�1 occurs in the 2nd, 4th, 6th and other even-number terms, 4p�1L0 � 1;

4p�2L1 � 4p� 1.
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Hypothesis 3.27.

Lpp4p� 2qnq � 4p�2L0Lpnq4p�2 � p�1qn�1
4p�3L1Lpnq4p�4 � 4p�4L2Lpnq4p�6

� p�1qn�1
4p�5L3Lpnq4p�8 � . . .� 4p�2�rLrLpnq4p�2r

� . . .� p�1qn�1
2p�1L2p�1

Note: p�1qn�1 occurs in the 2nd, 4th, 6th and other even-number terms, 4p�2L0 � 1;

4p�3L1 � 4p� 2; 2p�1L2p�1 � 2.

Hypothesis 3.28.

Lpp4p� 3qnq � 4p�3L0Lpnq4p�3 � p�1qn�1
4p�4L1Lpnq4p�5 � 4p�5L2Lpnq4p�7

� p�1qn�1
4p�6L3Lpnq4p�9 � . . .� 4p�3�rLrLpnq4p�2r�1

� . . .� p�1qn�1
2p�1L2p�2Lpnq

Note: p�1qn�1 occurs in the 2nd, 4th, 6th and other even-number terms, 4p�3L0 � 1;

4p�4L1 � 4p� 3.

Formula 3.35.

Dpnq � Upnq

Formula 5.25.

LprqF pkq � F pk � rq � p�1qrF pk � rq

Formula 5.26.

F prqLpkq � F pk � rq � p�1qr�1F pk � rq

Formula 5.31.

F p2nq � F pnqLpnq

Formula 5.33.

F p3nq � F pnqLpnq2 � p�1qn�1F pnq

Formula 5.35.

F p4nq � F pnqLpnq3 � p�1qn�12F pnqLpnq

Formula 5.37.

F p5nq � F pnqLpnq4 � p�1qn�13F pnqLpnq2 � F pnq

Formula 5.39.

F p6nq � F pnqLpnq5 � p�1qn�14F pnqLpnq3 � 3F pnqLpnq
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Formula 5.41.

F p7nq � F pnqLpnq6 � p�1qn�15F pnqLpnq4 � 6F pnqLpnq2 � p�1qn�1F pnq

Formula 5.43.

F p8nq � F pnqLpnq7 � p�1qn�16F pnqLpnq5 � 10F pnqLpnq3 � p�1qn�14F pnqLpnq

Formula 5.44.

F p4pnq � F pnqr4p�1C0Lpnq4p�1 � p�1qn�1
4p�2C1Lpnq4p�3

� 4p�3C2Lpnq4p�5 � . . .� 2p�1C2p�2Lpnq3
� p�1qn�1

2pC2p�1Lpnqs
F pp4p� 1qnq � F pnqr4pC0Lpnq4p � p�1qn�1

4p�1C1Lpnq4p�2

� 4p�2C2Lpnq4p�4 � . . .� p�1qn�1
2p�1C2p�1Lpnq2

� 2pC2ps
F pp4p� 2qnq � F pnqr4p�1C0Lpnq4p�1 � p�1qn�1

4pC1Lpnq4p�1

� 4p�1C2Lpnq4p�3 � . . .� p�1qn�1
2p�2C2p�1Lpnq3

2p�1C2pLpnqs
F pp4p� 3qnq � F pnqr4p�2C0Lpnq4p�2 � p�1qn�1

4p�1C1Lpnq4p
� 4pC2Lpnq4p�2 � . . .� 2p�2C2pLpnq2
� p�1qn�1

2p�1Cp�1s

Formula 5.55.

5F pkqF pnq � Lpn� kq � p�1qk�1Lpn� kq

Formula 5.58.

Lp2nq � 5F pnq2 � p�1qnp2q

Formula 6.2.

F pnq2 � F pn� 1qF pn� 1q � p�1qn�1

Formula 6.4.

F pnq2 � F pn� 2qF pn� 2q � p�1qn

Formula 6.11.

F pnq2 � F pn� kqF pn� kq � p�1qn�kF pkq2

Formula 6.14.
ņ

k�1

F pkq2 � F pnqF pn� 1q
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Formula 6.26.
ņ

k�1

p�1qk�1F p2kq � p�1qn�1F pnqF pn� 1q

Formula 6.27.
ņ

k�1

p�1qk�1F p2k � 1q � p�1qn�1F pnqF pnq

Formula 6.29.

F p2r � 1q2 � F p2r � 1 � kqF p2r � 1 � kq � p�1qk�1F pkq2

Formula 6.30.

F p2r � 2q2 � F p2r � 2 � kqF p2r � 2 � kq � p�1qkF pkq2

Formula 6.36.

Lpnq2 � Lpn� 1qLpn� 1q � p�1qnp5q

Formula 6.38.

Lpnq2 � Lpn� 2qLpn� 2q � p�1qn�1p5q

Formula 6.45.

Lpnq2 � Lpn� kqLpn� kq � p�1qn�k�1p5qF pkq2

Formula 6.46.
ņ

k�1

Lpkq2 � LpnqLpn� 1q � 2

Formula 6.57.
ņ

k�1

p�1qk�15F p2kq � p�1qn�15F pnqF pn� 1q

Formula 6.58.
ņ

k�1

p�1qk�15F p2k � 1q � p�1qn�15F pnqF pnq

Formula 6.59.

Lp2r � 1q2 � Lp2r � 1 � kqLp2r � 1 � kq � p�1qk5F pkq2

Formula 6.60.

Lp2r � 2q2 � Lp2r � 2 � kqLp2r � 2 � kq � p�1qk�15F pkq2
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Formula 6.63.
Lp2k � 1q � Lpk � 1q2 � 5F pkq2

Formula 6.65.

Lp2kq � Lpk � 1q2 � 5F pk � 1q2
3

Formula 6.67.

Lp2kq � Lpkq2 � 5F pkq2
2

Formula 6.70.
Lpkq2 � 5F pkq2 � p�1qkp4q

Formula 7.2.
SF pnq � SF pn� 1q � F pn� 2q � SF pn� 2q

Formula 7.4.

SLF pnq � SLF pn� 1q � Lpn� 2q � SLF pn� 2q

Formula 7.6.
SLpnq � SLpn� 1q � 5F pn� 2q � SLpn� 2q
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Reviewer’s Comments

1. On Page 5, Table 2.3, the first 15 U1pnq numbers should be as follows.

n 1 2 3 4 5 6 7 8
U1pnq 4 5 9 14 23 37 60 97

n 9 10 11 12 13 14 15
U1pnq 157 254 411 665 1076 1741 2817


