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Abstract. In this report, our team has explored the mathematical
structure of Graeco-Latin squares. Although we give a review of the
scope of this field, our focus is on Euler’s Conjecture. According to
this conjecture, Graeco-Latin squares of certain orders do not exist.
In this report, we disprove this conjecture by demonstrating a means
to construct an infinite number of these so-called non-existent squares,
following Sade. This branch of mathematics is related to group theory,
combinatorics, and transversal design; therefore, we will also provide a
brief overview of these topics throughout this report.

1. A Short Introduction to the Problem

Mathematics is ubiquitous in our daily world. Engineers use it to design
bridges. Financial analysts use it to keep track of fluctuations in the econ-
omy. Even chefs are not immune to the necessity of math — they use it to
determine how much of an ingredient is needed for a recipe and how much
time to allow a stew to simmer. Even so, I cannot deny that I was mildly sur-
prised when the Physical Education Department at my school approached
the Mathematics Department October last year to solve a problem that will
lead me to discover over two hundred years of mathematics produced by
some of its greatest practitioners that have ever lived.

Their problem appears simple and concerns the arrangement of 30 teams
during a sporting event, with the following requirements:

1This work is done under the supervision of the author’s teacher, Mr. Jonathan
Hamilton
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1. There are six events that was going to occur that day; all 30 teams
must attend all six events.

2. There is only time enough for six time slots; therefore, at any given
time, each team must be attending one event.

3. Simple arithmetic will show that at any given time, there will be five
teams at each of the six events.

4. No two teams may share a common time and event twice. This means
that each team will face 24 of the 29 other teams with no duplication
during the course of the day.

5. Naturally, it is absurd to suggest that a team can be at two events at
the same time.

Truly, this seemed to be such a trivial problem that I did not at first try to
elegantly resolve it. I had thought that brute force will yield the answer in
a couple of minutes.

After three sheets of failed attempts and a broken pencil, I started to devise
algorithms by analysing possible combinations of smaller size that may yield
the solution. The techniques I have used, which were discovered by the great
Swiss mathematician, physicist, and thinker, Leonhard Euler (1707 – 1783),
included single-step and double-step arrays. (We will discuss this in chapters
three and four.)

However, when that method failed too, I became so disillusioned that I began
to resort to obtaining a disproof of its existence. Eventually, I was guided
by my research to the peculiar mathematical structure of Latin squares and
Graeco-Latin squares.

Throughout my investigation, my focus turned from sporting events to these
Latin squares: their properties, their construction, and the non-existence of
Graeco-Latin squares of order six. (The reader will notice the recurrence of
the number six in both problems.)

Having embarked on such an investigation, I attempted my first proofs of
non-existence based on some rudimentary group theory from abstract math-
ematics. The reason for this is because multiplication tables, indeed Cayley
tables, of quasi-groups are by definition also Graeco-Latin squares. (See
Appendix A.)

However, Henry Mann has shown in the 40’s and 50’s that any such attempt
based on groups will be inconclusive, because although all Cayley tables of
quasigroups are Graeco-Latin squares, the converse is not true: i.e. not all
Graeco-Latin squares correspond to a Cayley table.
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Finally, we come to the topic and purpose of this report: the disproof of Eu-
ler’s conjecture (which deals with the non-existence of Graeco-Latin squares
of order 4k � 2). However, before doing so, we familiarize ourselves with
the terminology and some definitions in this field. These will be covered in
chapter two.

2. Some Basic Definitions

2.1. Outline

In this chapter, we will explore some basic concepts pertaining to the prob-
lem. We will begin by introducing Latin and Graeco-Latin squares and
culminate in a formal statement of Euler’s Conjecture.

2.2. Squares

2.2.1. Latin Squares

Definition 1. A Latin square of order n is a n � n array filled with n
different symbols in a way such that each symbol occurs exactly once in each
row and column.

These structures are named by Euler as such because his scheme of symbols
employed the Latin alphabet: A, B, C. . .

We offer examples of Latin squares below.

 A Latin square of order 1 (the trivial group)�
1
�

 A Latin square of order 2 (the binary group)�
1 2
2 1




 A Latin square of order 3�
� 1 2 3

2 3 1
3 1 2

�


 A Latin square of order 4
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�
���

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

�
��

 Another Latin square of order 4 (the Klein four-group)�
���

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

�
��

 A Latin square of order 5�
�����

1 3 2 5 4
4 2 1 3 5
5 1 4 2 3
3 4 5 1 2
2 5 3 4 1

�
����

2.2.2. Graeco-Latin Squares

Definition 2. A Graeco-Latin square of order n is the superposition of two
Latin squares of order n such that it yields all n2 different combinations in
its cells. Two Latin squares having this property are said to be orthogonal
to each other.

They are also called orthogonal Latin squares or Euler squares. These terms
will be used interchangeably in this report.

These structures are named by Euler as such because his scheme of symbols
for Graeco-Latin squares employed the Latin alphabet: A, B, C. . . , and the
Greek alphabet: α, β, γ. . . .

We offer examples of Graeco-Latin squares below.

 An Euler square of order 3

�
� p1, 1q p2, 2q p3, 3q

p2, 3q p3, 1q p1, 2q
p3, 2q p1, 3q p2, 1q

�


 An Euler square of order 4

�
���

p1, 1q p2, 2q p3, 3q p4, 4q
p2, 3q p1, 4q p4, 1q p3, 2q
p3, 4q p4, 3q p1, 2q p2, 1q
p4, 2q p3, 1q p2, 4q p1, 3q

�
��
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 An Euler square of order 5

�
�����

p1, 5q p2, 4q p3, 3q p4, 2q p5, 1q
p2, 1q p3, 5q p4, 4q p5, 3q p1, 2q
p3, 2q p4, 1q p5, 5q p1, 4q p2, 3q
p4, 3q p5, 2q p1, 1q p2, 5q p3, 4q
p5, 4q p1, 3q p2, 2q p3, 1q p4, 5q

�
����

We will describe their construction in greater detail in chapter four.

2.2.3. On Mutually Orthogonal Latin Squares

Definition 3. Mutually orthogonal Latin squares of order n, also known as
MOLS of order n, are Latin squares which are pairwise orthogonal to each
other. (cf. Reviewer’s Comment 1)

Definition 4. A complete set of MOLS of order n is a set of n� 1 MOLS
of order n.

Theorem 5. In accordance to the above theorem a Latin square of order n
can have at most n� 1 MOLS. (cf. Reviewer’s Comment 2)

In this report, we will not go over mutually orthogonal Latin squares in
detail. I include them as an extension, as there are still some fertile problems
in their field. For example, the following conjecture has been regarded by
some to be the next ‘Fermat’s Last Theorem’.

Conjecture 6. A complete set of MOLS of order n exists for all composite
n.

It is well-known that complete sets exist for prime n.

Theorem 7. A complete set of MOLS of order n exists for all prime n.

See Appendix B for more information.

2.3. Euler’s Conjecture

Euler’s name is associated with a diverse range of mathematics. In this
report, one of his works is of particular importance to us: Recherches sur
une nouvelle espèce de quarrés magiques (1782).

In Recherches, Euler demonstrates algorithms to create Graeco-Latin sq-
uares of odd n and of n a multiple of four. This meant that he was able to
construct such squares of order 1, 3, 4, 5, 7, 8, 9, and so on.
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However, unable to construct a Graeco-Latin square of order 2 (the reader
may want to verify this through simple exhaustive enumeration) and order
6, he conjectured that squares of these orders do not exist.

Conjecture 8 (Euler’s conjecture). Graeco-Latin squares of order 4k � 2
do not exist for all integer k.

It is such a simple statement that one would not believe that it would be
solved only after nearly 200 years of work done by dozens of mathematicians
using the cutting-edge tools of modern mathematics.

3. History and Application

3.1. Euler

Euler can be said to be the pioneer of this field in combinatorics, and his pi-
oneering work Recherches has already been roughly discussed. The purpose
of his paper was to investigate the ‘36 officers problem’, which goes like this:

How can a delegation of six regiments, each of which sends a
colonel, a lieutenant-colonel, a major, a captain, a lieutenant,
and a sub-lieutenant be arranged in a regular 6 � 6 array such
that no row or column duplicates a rank or a regiment?

This is obviously isomorphic to the problem of finding a Graeco-Latin square
of order six. (We shall see that it is impossible.)

In the introduction of his Recherches, he lays the foundations and develops
the notation of Latin and Graeco-Latin squares. He also conceptualized his
idea of ‘formules directices’, an algorithm of sorts that will complete a Latin
square, i.e. find a second Latin square orthogonal to the first to create a
Graeco-Latin square. His techniques of single-step and multiple-step squares
are also introduced in this part. Euler opens with the statement that Euler
square of order six are not possible:

Une question fort curieuse, qui a exercé pendant quelque temps la
sagacité de bien du monde, m’a engagé à faire les recherches suiv-
antes qui semblent ouvrir une nouvelle carrière dans l’Analyse, et
en particulier dans la doctine des combinaisons. Cette question
rouloit sur une assemblée de 36 Officiers de six différens grades et
tirés de six Régimens différens, qu’il s’agissoit de ranger dans un
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quarré, de manière que sur chaque ligne tant horizontale que ver-
ticale il se trouva six Officiers tant de différens caractères que de
Régimens différens. Or, après toutes les peines qu’on s’est donné
pour resoudre ce Problème, on a été obilgé de réconnôıtre, qu’un
tel arrangement est absolument impossible; quoiqu’on ne puisse
pas, en donner de démonstration rigoureuse.

In part one, he discusses his methods for single-step squares in greater detail
,giving extensive examples and description of Euler squares of order 2, 3,
5, 7, and 9. Euler also derived a set of equations pertaining to his ‘guiding
formulae’. In addition, he also explored the connection between Graeco-
Latin squares and magic squares.

Definition 9. A magic square of order n is an arrangement of n2 numbers
in a square, such that the n numbers in every row and every column have a
sum of some constant k.

Euler gives a method to transform Graeco-Latin squares of order n to magic
squares of order n: simply replace pa, bq in every cell of the Graeco-Latin
square with pa � 1qn � b. It is clear that this will always produce a magic
square. For example:

An Euler square of order 3

�
� p1, 1q p2, 2q p3, 3q

p2, 3q p3, 1q p1, 2q
p3, 2q p1, 3q p2, 1q

�


becomes

A magic square of order 3

�
� 1 5 9

6 7 2
8 3 4

�


(Additional requirements are needed to have the diagonals to sum to k.)

Part two of his work deals with double-step Graeco-Latin squares, giving
such squares of order 4 and 8. He also begins to examine isotopy classes in
this chapter, which is also continued in part five.

Definition 10. An isotopy class is the equivalence class of Latin squares
formed by isotopy relations, such as the permutation of rows, columns, and
sybmols.

In part three, Euler uses a triple-step construction to create a Graeco-Latin
square of order 9. It is also in this part he begins to claim that an Euler
square of order 6 is not possible. In part four, Euler uses a quadruple-step
construction to create a Graeco-Latin square of order 8.



136 JUN-HOU FUNG

3.2. Before the 20th Century

After this extensive study of Graeco-Latin squares done by Euler, the prob-
lem has been laid aside by most of the mathematical community until the
20th century. However, this is not to say that there was no new advances in
this period of time.

In 1842, Heinrich Schumacher in a letter to Carl Gauss wrote that his as-
sistant, Thomas Clausen, have completed a proof of non-existence of Euler
squares of order six. This was done, he said, by dividing all the Latin squares
of order 6 into seven distinct isotopy classes and proving that none of them
could be completed. However, the purported ‘proof’ was lost and never
found.

3.3. The 20th Century

Half a century later in 1900, a French amateur mathematician, Gaston
Tarry, provided the first surviving proof. Tarry’s methodology is similar to
Clausen’s. It included the analysis of the 17 isotopy classes. Furthermore,
Tarry also hand-enumerated 9408 seperate cases, thus fulfilling Euler’s wish
for a proof of the non-existence of Euler squares of order 6.

After this, there was a race between mathematicians to provide a more
elegant proof of Tarry’s results. In 1902, Peterson published a proof us-
ing geometric arguments and Euler’s polygonal formula. However, in 1910,
Wernicke showed that Peterson’s proof is incomplete and started to apply a
group-theoretic technique to the problem.

One of the main proponents of the application of group theory to the prob-
lem at that time was MacNeish. In 1922, MacNeish managed to disprove
Wernicke’s results, and defined a ‘direct product’ of Euler squares. A di-
rect product of two Euler squares will yield an Euler square of some greater
order. (We will explore a similar constuction, the singular direct product,
later.)

MacNeish also proved some general theorems in this field:

Theorem 11. Let Npnq be the maximum (cf. Reviewer’s Comment 3)
number of MOLS of order n. Then

Npabq ¥ mintNpaq, Npbqu (1)
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Theorem 12. Let pe11 p
e2
2 p

e3
3 � � � pekk be the prime factorization of n. Then

Npnq ¥ mintpeii � 1u (2)

Conjecture 13 (MacNeish’s conjecture).

Npnq � mintpeii � 1u (3)

Corollary 14. (Corollary to MacNeish’s conjecture. ) If MacNeish’s con-
jecture is true, then Euler’s conjecture is true.

Proof of the Corollary to MacNeish’s conjecture. If MacNeish’s conjecture is
true, then all Euler squares of order 4k�2 will have no orthogonal mate, be-
cause peii � 21 is the smallest prime power in 4k�2. Therefore the maximum
number of MOLS of order 4k � 2 is 2 � 1 � 1 (i.e. there are no orthogonal
Latin squares of order 4k� 2, which is Euler’s conjecture) (cf. Reviewer’s
Comment 4).

Later, Fisher conjectured that

Conjecture 15. A complete set of MOLS of order n exists for all prime n.

This was soon proven true by Bose in 1938 using Galois fields.

Bose’s other contributions to the problem included using fields and finite
projective planes to construct Euler squares.

In 1942, Mann proved MacNeish’s conjecture (and thus Euler’s conjecture)
on condition that

Condition 16. There is a complete (cf. Reviewer’s Comment 5) bijec-
tion between the Cayley tables of quasigroups and Graeco-Latin squares.

However, he also managed to prove that his condition was false by construc-
tion; therefore, he effectively nullified all the results of Bose and MacNeish
in the last half century.

Mathematicians had to abandon their familiar groups and turn to other
structures to shed light on Euler’s conjecture. In 1959, Parker managed to
use orthogonal arrays and block-designs to construct Graeco-Latin squares.
This bypassed Mann’s limitations. Using his methods, Parker also found a
4-MOLS of order 21, which disproved MacNeish’s conjecture.
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Later, Parker, Bose, and Shrikhande began to collaborate their findings.
This yielded Graeco-Latin squares of order 10 and 22, which disproved Eu-
ler’s conjecture once and for all.

Even though the conjecture was proven false, research in this topic never
ceased. In 1960, Sade used a ‘singular direct product’ (SDP for short)
to construct Graeco-Latin Squares. Finally, Stinston (1984) and Zhu Lie
(1982), working independently, used mathematics from other fields such as
graph theory and vector spaces to prove the 36 Officers problem, a full two
hundred years after its initial statement by Euler in 1782.

3.4. Applications

Today, Euler squares are used in diverse fields, including algebraic coding
theory (in error-correcting codes), statistical experiment designs, finite pro-
jective planes (e.g. the Bruck-Ryser theorem), and linear programming.

4. Approach and Execution

4.1. Approach

In this report, we will disprove Euler’s conjecture by the construction of a
Graeco-Latin square of order 4k � 2. However, we will first go over some of
Euler’s methods as outlined in his Recherches.

4.2. Graeco-Latin Squares via Arithmetically Increasing Guiding
Formulae

Before progressing any further, we must define what a guiding formula is.

Definition 17. A guiding formula for a Latin square of order n is a sequence
pa1, a2, a3, . . . anq such that the set of cells in the ith row containing ai form
a transversal. A transversal of a Latin square of order n is a set of n cells,
one in each row and column, such that no two cells contain the same symbol.

For example (for sake of clarity, we will use the Latin and Greek alphabet
here):

Given this Latin square of order five:
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�
�����

a b c d e
b c d e a
c d e a b
d e a b c
e a b c d

�
����

A guiding formula for where we should place the symbol α would be pa, c, e, b, dq.
(cf. Reviewer’s Comment 6) That is:
�
�����

aα b c d e
b cα d e a
c d eα a b
d e a bα c
e a b c dα

�
����

By permuting the guiding formula for α, we obtain the guiding formulae for
β, γ, δ, and ε.

The final completed square is:
�
�����

aα bβ cγ dδ eε

bε cα dβ eγ aδ

cδ dε eα aβ bγ

dγ eδ aε bα cβ

eβ aγ bδ cε dα

�
����

Note that this is not the only possible guiding formula.

In this report, for sake of simplicity, we will only consider arithmetically
increasing guiding formulae.

Definition 18. An arithmetically increasing guiding formula is a guiding
formula for a Latin square of order n such that ai � npi� 1q � 1.

4.2.1. Single-step Latin Squares

Definition 19. A single-step Latin square is a Latin square such that each
row and column forms a increasing sequence (modn).

This is a single-step Latin square of order 4.
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�
���

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

�
��

In his Recherches, Euler, citing many examples, found that all single-step
Latin squares of odd order can be completed (cf. Reviewer’s Comment
7) (that is, filled in to produce a Graeco-Latin square) via his guiding for-
mulae, although he did not offer a rigourous proof for this. We, however,
will explicitly prove this.

Proof: Any single-step Latin square of odd order can be completed. First,
we note that we need only one transversal to prove this statement. This is
a direct consequence from the theorems in Appendix A.

We also note that in the ith row and the jth column of a single-step Latin
square of order n contains the symbol corresponding to i� j � 1 mod n.

Now, look at the main diagonal of such a square, that is, i � j, and so
the diagonal elements are 2i � 1 mod n. We want to show that this is a
transversal, and we can do this by showing that 2i � 1 mod n takes on n
different values as i takes on the numbers 1 through n.

Since there must be a value for 2i � 1 mod n for every i, we only need to
show that they are all different. Now suppose that they are not all different.
That is:

2iu � 1 mod n � 2iv � 1 mod n. (4)

2iu mod n � 2iv mod n. (5)

Since n is odd and therefore does not divide 2:

2piu mod nq � 2piv mod nq. (6)

iu mod n � iv mod n. (7)
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However, because i ¤ n and u � v,

iu mod n � iv mod n. (8)

Proof by reductio ad absurdum.

Therefore, a tranversal exists and the Latin square can be completed.

The above proof leads to the following theorem.

Theorem 20. At least one Graeco-Latin square exists for each odd order.

It would also be interesting to see why single-step construction cannot lead
to a Graeco-Latin square of even order. This fact was proven by Euler.

Theorem 21. No orthogonal mate exists for single-step Latin squares of
even order.

Proof. Suppose such a guide exists. We can denote this as t1, α, β, γ, . . .u.
Since all the numbers in a row of a single-step Latin square increase by one
and since α is taken from the second row (a) with the symbol a, α � a� 1.
Similarly, β � b� 2, γ � c� 3, and so on.

Now let

S � a� b� c� . . . (9)

Then,

α� β � γ � . . . � S � 1� 2� 3� . . .� pn� 1q (10)

α� β � γ � . . . � S �
1

2
npn� 1q (11)

However, the difference between the two sums must be a multiple of n.
Therefore,
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α� β � γ � . . .� pa� b� c� . . .q � λn (12)

λn �
1

2
npn� 1q (13)

λ �
1

2
pn� 1q (14)

Since this is an equation in integers, n�1 must be even, n must be odd.

With this, I believe we have sufficiently explored single-step Latin squares.

4.2.2. Multi-step Latin squares

Since single-step Latin squares are already thoroughly discussed and are
similar to multiple-step Latin squares, we will not prove the aforementioned
theorems for multi-step Latin squares. We will, however, give their construc-
tion and state some theorems resulting from a particular case: double-step
Latin squares.

Definition 22. This is the form of a double-step Latin square of order n.�
�������

1 2 3 4 5 6 � � � � � � n� 1 n
2 1 4 3 6 5 � � � � � � n n� 1
3 4 5 6 � � � � � � n� 1 n 1 2
4 3 6 5 � � � � � � n n� 1 2 1
5 6 � � � � � � n� 1 n 1 2 3 4

etc.

�
������

Notice that we simply take each 2 � 2 grouping and switch the elements on
lower row.

In his Recherches, Euler showed that all double-step Latin squares of orders
n � 4k can be completed with his other guiding formulae. Hence, the
following theorem:

Theorem 23. There exists at least one Graeco-Latin square of order 4k.

It is also interesting to note that if n � 4k and n ¡ 8, then an Euler square of
order n can be constructed using the singular direct product to be discussed
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in the next section if we take p � k, m � 4, and q � 0 (this is not the only
possible option), except for the following cases.

Case 24. We cannot use 24 � p6qp4q � 0, because no Graeco-Latin square
of order 6 exists. However, we can easily remedy this using 24 � p5qp4q �
4. Also, we (at this point) cannot create Graeco-Latin squares of order
40 � p10qp4q � 0, because we cannot create Graeco-Latin squares of order
p � 4k� 2. However, this can be altered accordingly. (e.g. 40 � p9qp4q � 4q.

This leaves us with Euler squares of order 4 and 8. Since we have already
seen an Euler square of order 4, I shall present here a Graeco-Latin square
of order 8 which is created by using Euler’s guiding formula for double-step
Latin squares.�
�����������

p1, 1q p2, 8q p3, 7q p4, 6q p5, 4q p6, 5q p7, 2q p8, 3q
p2, 2q p1, 7q p4, 8q p3, 5q p6, 3q p5, 6q p8, 1q p7, 4q
p3, 3q p4, 2q p5, 1q p6, 8q p7, 6q p8, 7q p1, 4q p2, 5q
p4, 4q p3, 1q p6, 2q p5, 7q p8, 5q p7, 8q p2, 3q p1, 6q
p5, 5q p6, 4q p7, 3q p8, 2q p1, 8q p2, 1q p3, 6q p4, 7q
p6, 6q p5, 3q p8, 4q p7, 1q p2, 7q p1, 2q p4, 5q p3, 8q
p7, 7q p8, 6q p1, 5q p2, 4q p3, 2q p4, 3q p5, 8q p6, 1q
p8, 8q p7, 5q p2, 6q p1, 3q p4, 1q p3, 4q p6, 7q p5, 2q

�
����������

In addition, as we will see, we will need an idempotent (cf. Reviewer’s
Comment 8) square of order 4. For sake of organization, it will be presented
here as well.�
���

p1, 1q p3, 2q p4, 3q p2, 4q
p4, 4q p2, 3q p1, 2q p3, 1q
p2, 2q p4, 1q p3, 4q p1, 3q
p3, 3q p1, 4q p2, 1q p4, 2q

�
��

4.3. Graeco-Latin Squares via SDP Construction

4.3.1. The Singular Direct Product

A. Sade first introduced this singular direct product (SDP) in 1960, in his
Produit direct-singulier de quasigroupes orthogonaux et anti-abéliens.

Here, we shall first give a simple example of this construction. However,
before that, we need to define an idempotent Latin square.
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Definition 25. An idempotent Latin square is a Latin square whose main
diagonal is a transversal. (cf. Reviewer’s Comment 9)

(Transversals are discussed – and defined – in more detail in Appendix A.)

To illustrate the construction, we will construct an Latin square of order 9.

The ‘Ingredients’

Noting that 9 � 2p4q � 1, we get p � 2, m � 4, and q � 1. Therefore we
need a Latin square of order p� q � 3 (a subsquare of order 1 is trivial), a
Latin square of order 2, and an idempotent Latin square - a Latin square
whose main diagonal is a transversal - of order 4.

1. A �

�
� 1 2 3

2 3 1
3 1 2

�


2. A1 �
�

1
�

3. B �

�
2 3
3 2




4. C �

�
���

a c d b
d b a c
b d c a
c a b d

�
��

(The reason for the use of the Latin alphabet will become apparent.)

Note that B uses the symbols found in A but not A1.

SDP Construction

First, we construct the first q rows and columns (which is, in this case, 1)
using A.
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�
�������������

1 2 3 2 3 2 3 2 3

2
3
2
3
2
3
2
3

�
������������

Notice that we take subsquare A1 and place it in the top-left corner and then
repeat whatever is in the other p columns (and rows) of A m times.

Then, we use the main diagonal of C (which is idempotent) to differentiate
between the repeated elements.

�
�������������

1 2a 3a 2b 3b 2c 3c 2d 3d

2a
3a
2b
3b
2c
3c
2d
3d

�
������������

We will translate the 2a’s, 3a’s. . . later.

Then, treating the remaining pm � pm squares as a m �m squares of size
p� p, we can continue to use C as such:.

�
�������������

1 2a 3a 2b 3b 2c 3c 2d 3d

2a a a c c d d b b
3a a a c c d d b b
2b d d b b a a c c
3b d d b b a a c c
2c b b d d c c a a
3c b b d d c c a a
2d c c a a b b d d
3d c c a a b b d d

�
������������
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Along the main left-to-right diagonal of the m�m square, we repeat what-
ever is left of the square of order p� q.

�
�������������

1 2a 3a 2b 3b 2c 3c 2d 3d

2a 3a 1a c c d d b b
3a 1a 2a c c d d b b
2b d d 3b 1b a a c c
3b d d 1b 2b a a c c
2c b b d d 3c 1c a a
3c b b d d 1c 2c a a
2d c c a a b b 3d 1d
3d c c a a b b 1d 2d

�
������������

Then, we fill in the remaining p � p cells with array B and set 1a � 1b �
1c � 1d � 1.�
�������������

1 2a 3a 2b 3b 2c 3c 2d 3d

2a 3a 1 2c 3c 2d 3d 2b 3b
3a 1 2a 3c 2c 3d 2d 3b 2b
2b 2d 3d 3b 1 2a 3a 2c 3c
3b 3d 2d 1 2b 3a 2a 3c 2c
2c 2b 3b 2d 3d 3c 1 2a 3a
3c 3b 2b 3d 2d 1 2c 3a 2a
2d 2c 3c 2a 3a 2b 3b 3d 1
3d 3c 2c 3a 2a 3b 2b 1 2d

�
������������

This is a Graeco-Latin square with the symbols t1, 2a, 3a, 2b, . . . , 3d, u.

Finally, we rewrite 2a � 2, 3a � 3, 2b � 4, . . . , 3d � 9, and we end up with:

�
�������������

1 2 3 4 5 6 7 8 9

2 3 1 6 7 8 9 4 5
3 1 2 7 6 9 8 5 4
4 8 9 5 1 2 3 6 7
5 9 8 1 4 3 2 7 6
6 4 5 8 9 7 1 2 3
7 5 4 9 8 1 6 3 2
8 6 7 2 3 4 5 9 1
9 7 6 3 2 5 4 1 8

�
������������
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The usefulness of this construction is reflected in the fact if we repeat the
construction with Latin squares that are orthogonal to those listed in ‘Ingre-
dients’, we get a Latin square that is orthogonal to the one above. Hence,
the SDP allows us to construct larger Graeco-Latin squares from smaller
ones. This idea is formalized in the following theorem.

Theorem 26. Given an orthogonal pair of Latin squares of order p � q,
with an orthogonal subsquare of order q; an orthogonal pair of order p, and
an idempotent orthogonal pair of order m, a Graeco-Latin square of order
pm� q can be constructed using the SDP.

Remark 27. Since idempotent squares of order n exist if and only if there
are three MOLS of order n, the SDP requires three MOLS of order m.

Remark 28. Via the SDP, we can construct Euler squares of order 4k� 2,
n ¥ 22.

There are certain restrictions on p, m, and q. We will go over this in the
next section.

4.3.2. A Pair of MOLS of Order 22

In this section, we will disprove Euler’s conjecture by creating a Graeco-
Latin square of order 4k � 2.

The ‘Ingredients’ Pt. 1

We have to first note the restrictions on p, m, and q.

1. p, m, p� q, q mod 4 � 2
Since we need to have orthogonal mates of order p, m, p� q, and q,

they must be constructible via other methods (e.g. Euler’s methods).
2. p ¥ q

Obviously, we cannot have a Latin square of order p � q with a
subsquare of order q with q ¡ p. In fact, we will see from this and
point 5 that p � 1 (only applicable for constructing squares of order
4k � 2).

3. m ¡ 3
Since the Latin square of order m needs to be idempotent, we need

to have 3 MOLS of order m. Because the greatest number of MOLS
of order n is n� 1, m ¡ 3.
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4. If q mod 4 � 2, then either m mod 4 � 0 or p mod 2 � 0 and m mod
2 � 0. Of course, p mod 4 � 0. (This is only applicable for constructing
squares of order 4k � 2.)

5. If q mod 4 � 1, then p mod 4 � 3 and m mod 2 � 1. (This is only
applicable for constructing squares of order 4k � 2.)

6. If q mod 4 � 3, then p mod 4 � 1 and m mod 2 � 1 (This is only
applicable for constructing squares of order 4k � 2.)

7. If q mod 4 � 0, then p mod 4 � 2. (This is only applicable for con-
structing squares of order 4k � 2.)

Given these restrictions, n ¥ 3p4q � 1, n ¥ 13. So, we are only considering
squares of order 14, 18, 22, and so on.

If n � 14, then q � 1 because pm ¥ 12 and q � 2. However, this leaves pm �
13, which factors to 1 � 13. But neither p nor m can equal 1. (Generally,
pm cannot be prime.) Therefore, we cannot construct n � 14.

If n � 18, then q � 1, 3, 4, or 5. If q � 1, then pm � 17, which is prime.
Similarly, q � 5. If q � 3, then pm � 15 � 3� 5. (Factorization into 1� 15
does not work.) In this case, we have p � 3, because m ¡ 3. However,
this violates point six above. Also, q � 4 because 14 factors into 2� 7, and
orthogonal latin squares of order two do not exist. Therefore, we cannot
construct n � 18.

However, we can construct n � 22 � 4p5q�2 using p � 3,m � 7, and q � 1.

The ‘Ingredients’ Pt. 2

In this section, we list A, B, and C necessary to construct a Latin square
of order 22 using the SDP. These squares can all be obtained via other
methods.

A �

�
���

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

�
��

B �

�
� 2 3 4

3 4 2
4 2 3

�
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C �

�
���������

a e b f c g d
e b f c g d a
b f c g d a e
f c g d a e b
c g d a e b f
g d a e b f c
d a e b f c g

�
��������

The ‘Ingredients’ Pt. 3

In this section, we list A, B, and C necessary to construct a Latin square
of order 22 orthogonal to the previous Latin square of order 22 using the
SDP. These squares can all be obtained via other methods. Note that these
squares are also orthogonal to the counterparts above. Therefore, by the
previous theorem, the resulting squares of order 22 will be orthogonal to
each other.

A �

�
���

1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3

�
��

B �

�
� 2 3 4

4 2 3
3 4 2

�


C �

�
���������

a e b f c g d
g d a e b f c
f c g d a e b
e b f c g d a
d a e b f c g
c g d a e b f
b f c g d a e

�
��������
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The Pair of MOLS of Order 22

The steps and procedure will be too tedious and complex to work out here.
However, the methodology is identical to the one for the square of order 9
given in the last section.

Readers are welcome to verify that they are indeed orthogonal.

�
��������������������������������������

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
2 1 4 3 14 15 16 5 6 7 17 18 19 8 9 10 20 21 22 11 12 13
3 4 1 2 15 16 14 6 7 5 18 19 17 9 10 8 21 22 20 12 13 11
4 3 2 1 16 14 15 7 5 6 19 17 18 10 8 9 22 20 21 13 11 12
5 14 15 16 1 7 6 17 18 19 8 9 10 20 21 22 11 12 13 2 3 4
6 15 16 14 7 1 5 18 19 17 9 10 8 21 22 20 12 13 11 3 4 2
7 16 14 15 6 5 1 19 17 18 10 8 9 22 20 21 13 11 12 4 2 3
8 5 6 7 17 18 19 1 10 9 20 21 22 11 12 13 2 3 4 14 15 16
9 6 7 5 18 19 17 10 1 8 21 22 20 12 13 11 3 4 2 15 16 14
10 7 5 6 19 17 18 9 8 1 22 20 21 13 11 12 4 2 3 16 14 15
11 17 18 19 8 9 10 20 21 22 1 13 12 2 3 4 14 15 16 5 6 7
12 18 19 17 9 10 8 21 22 20 13 1 11 3 4 2 15 16 14 6 7 5
13 19 17 18 10 8 9 22 20 21 12 11 1 4 2 3 16 14 15 7 5 6
14 8 9 10 20 21 22 11 12 13 2 3 4 1 16 15 5 6 7 17 18 19
15 9 10 8 21 22 20 12 13 11 3 4 2 16 1 14 6 7 5 18 19 17
16 10 8 9 22 20 21 13 11 12 4 2 3 15 14 1 7 5 6 19 17 18
17 20 21 22 11 12 13 2 3 4 14 15 16 5 6 7 1 19 18 8 9 10
18 21 22 20 12 13 11 3 4 2 15 16 14 6 7 5 19 1 17 9 10 8
19 22 20 21 13 11 12 4 2 3 16 14 15 7 5 6 18 17 1 10 8 9
20 11 12 13 2 3 4 14 15 16 5 6 7 17 18 19 8 9 10 1 22 21
21 12 13 11 3 4 2 15 16 14 6 7 5 18 19 17 9 10 8 22 1 20
22 13 11 12 4 2 3 16 14 15 7 5 6 19 17 18 10 8 9 21 20 1

�
�������������������������������������

�
��������������������������������������

1 2 3 4 11 12 13 20 21 22 8 9 10 17 18 19 5 6 7 14 15 16
3 4 1 2 14 15 16 5 6 7 17 18 19 8 9 10 20 21 22 11 12 13
4 3 2 1 16 14 15 7 5 6 19 17 18 10 8 9 22 20 21 13 11 12
2 1 4 3 15 16 14 6 7 5 18 19 17 9 10 8 21 22 20 12 13 11
12 20 21 22 13 1 11 2 3 4 14 15 16 5 6 7 17 18 19 8 9 10
13 22 20 21 12 11 1 4 2 3 16 14 15 7 5 6 19 17 18 10 8 9
11 21 22 20 1 13 12 3 4 2 15 16 14 6 7 5 18 19 17 9 10 8
21 17 18 19 8 9 10 22 1 20 11 12 13 2 3 4 14 15 16 5 6 7
22 19 17 18 10 8 9 21 20 1 13 11 12 4 2 3 16 14 15 7 5 6
20 18 19 17 9 10 8 1 22 21 12 13 11 3 4 2 15 16 14 6 7 5
9 14 15 16 5 6 7 17 18 19 10 1 8 20 21 22 11 12 13 2 3 4
10 16 14 15 7 5 6 19 17 18 9 8 1 22 20 21 13 11 12 4 2 3
8 15 16 14 6 7 5 18 19 17 1 10 9 21 22 20 12 13 11 3 4 2
18 11 12 13 2 3 4 14 15 16 5 6 7 19 1 17 8 9 10 20 21 22
19 13 11 12 4 2 3 16 14 15 7 5 6 18 17 1 10 8 9 22 20 21
17 12 13 11 3 4 2 15 16 14 6 7 5 1 19 18 9 10 8 21 22 20
6 8 9 10 20 21 22 11 12 13 2 3 4 14 15 16 7 1 5 17 18 19
7 10 8 9 22 20 21 13 11 12 4 2 3 16 14 15 6 5 1 19 17 18
5 9 10 8 21 22 20 12 13 11 3 4 2 15 16 14 1 7 6 18 19 17
15 5 6 7 17 18 19 8 9 10 20 21 22 11 12 13 2 3 4 16 1 14
16 7 5 6 19 17 18 10 8 9 22 20 21 13 11 12 4 2 3 15 14 1
14 6 7 5 18 19 17 9 10 8 21 22 20 12 13 11 3 4 2 1 16 15

�
�������������������������������������
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5. Conclusions and Reflections

In the previous chapter, we have followed the paths that mathematicians has
lain for us decades ago. Euler has provided the first construction method,
while Sade has given us the most recent (along with Parker, Bose, and
Shrikhande and their transversal designs).

To summarise their contributions: Euler has proven that Euler squares of
odd order or of an order that is a multiple of four exists (He also proved the
obvious non-existence of Euler squares of order 2), while Parker, Bose, and
Shrikhande constructed Graeco-Latin squares of all orders, including those
of form 4k � 2, with the exception of n � 2 and n � 6. On the other hand,
Tarry has shown that Graeco-Latin squares of order 6 are not possible.

Theorem 29. Euler squares exist for every order n except when n � 2 or
6.

But the research does not stop here. Recently, more elegant proofs have
brought forward by Stinson, Dougherty, and Zhu Lie. Also, research in this
area has taken on a greater scope. Mathematicians working in this field are
now researching self-orthogonal Latin squares — squares that are orthogonal
to its transpose. Some error-correcting codes in algebraic coding theory
are also based on MOLS. Speaking of which, perhaps the most exciting
developments come from finite projective planes, to which the following
theorem will link MOLS.

Theorem 30. A complete set of MOLS of order n implies a finite projective
plane of order n.

This had all started out as the simple riddle of 36 officers. After leading
to developments in combinatorics, group theory, field theory, transversal
design, and work done by many mathematicians around the globe, we finally
begin to draw the close to this problem. Yet, the future of Latin squares is
still vast to explore.

Where do we go from here? I list here a few open problems and conjectures
yet to be solved.

1. Problem 1. How many MOLS of order 10 are there? (We already
know that there are more than three but less than seven MOLS of
order 10.)

2. Conjecture 2. (Ryser’s conjecture) Any Latin square of odd order
has a transversal.
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3. Conjecture 3. (Brualdi’s conjecture) Any Latin square of order n has
a partial transversal of size at least n� 1.

By this we hope to have achieved the purpose of this report: to bring about
a basic understanding of this particular area of research and to describe its
vibrant history and mathematical developments throughout the centuries.

As for me, this project has led me to discover many mathematical tools and
techniques. It has sparked my interests in this area, particularly in group
theory.

Finally, it is time to give thanks to all those who have supported me through-
out the course of this project, notably my advisor Jonathon Hamilton and
my parents, and to bid our reader farewell.

Appendix A. A Group-Theoretic Attempt

A.1. Group Theory 101

Group theory is the cornerstone of the abstraction mathematics was going
through in the 19th and 20th centuries. In its purest sense, group theory is
the study of algebraic structures called groups and their properties.

A group pG, �q satisfies four basic axioms:

Axiom 31 (Closure). For any a P G and b P G, a � b P G.

Axiom 32 (Identity). For all a P G, there exists a element e P G, such that
a � e � a and e � a � a.

Axiom 33 (Inverse). Given a P G, there exists a unique a�1 P G, such that
a � a�1 � e and a�1 � a � e.

Axiom 34 (Associativity). For any a, b, c P G, a � pb � cq � pa � bq � c.

From these axioms, it is possible to deduce some general theorems in group
theory.

Theorem 35 (Left Cancellation Law). If for some a, b, c P G, a � b � a � c,
then b � c.

Proof of the Left Cancellation Law.

a � b � a � c (15)
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a�1 � pa � bq � a�1 � pa � cq (16)

pa�1 � aq � b � pa�1 � aq � c (17)

e � b � e � c (18)

b � c (19)

In (A.2), we multiplied both sides of the equation by a�1, which we know
exists because of the inverse axiom.

In (A.3), we used the associativity axiom.

In (A.4), we used the inverse axiom to arrive at the identity element.

In (A.5), we simplified the expression using the identity axiom.

Since groups are not generally commutative, i.e. a � b � b � a, we have to
prove the right cancellation law separately. The methodology is identical
with some change in notation, so we omit it.

Theorem 36 (Right Cancellation Law). If for some a, b, c P G, b�a � c�a,
then b � c.

Before moving on, the pigeonhole principle should also be stated because it
will be used.

Theorem 37 (The Pigeonhole Principle). There does not exist an injective
function on finite sets whose codomain is smaller than its domain.

A.2. Some Theorems

Below are some results I proved using elementary group theory.

Definition 38. A quasigroup pQ, �q is a groupoid that satisfies closure and
for any a, b P Q, there exists unique c, d P Q such that a�c � b and d�a � b.

Definition 39. A Cayley table is the multiplication table of a group or
groupoid.

Theorem 40. The Cayley table of a quasigroup is a Latin square.

Proof. For the Cayley table to be a Latin square, each column and row must
contain every element once and only once.



154 JUN-HOU FUNG

Now, suppose that such a table contains a column a where b appears twice,
i.e. a � c � b and a � d � b. By the definition of quasigroups above, c � d.
However, in the construction of the table, it is assumed that c � d.

Similarly, there is no element that can occurs twice in the same column.

Since each of the n elements can appear at most once in each of the n rows
and columns, then by the pigeonhole principle, each element must occur
exactly once in each row and column.

Definition 41. A transversal of a Latin square of order n is a set of n
cells, one in each row, one in each column, such that no two cells contain
the same symbol. (cf. Reviewer’s Comment 10)

Theorem 42. If a Latin square of order n which is the multiplication table
of a group and possesses at least one transversal, then it has a decomposition
into n disjoint transversals.

Proof. Let pG, �q be the group that produces the Latin square L . Construct
a transversal T1 in L by selecting symbol a1 in the first row, a2 in the second
row, . . . , and an in the nth row.

Another set T2 can be constructed by selecting elements ai � b from each
of the n rows, where b is an element of the group. By closure and the
cancellation law, ai � b will each take on a different symbol. Thus, T2 is a
transversal.

One more condition that needs to be proven is that ai � b are all in different
columns. Suppose ai is in the ith row and Ppiqth column, i.e. ai � pbi, bPpiqq,
where Ppxq is a permutation. As the two symbols were originally in different
columns, Ppiq � Ppjq, on condition that i � j. Then, ai�b � pbi, bPpiqq�b �
pbi, bP’piq where P’pxq is another permutation. Therefore, P’piq � P’pjq if
i � j.

Taking T2, T3 can be constructed, until Tn, after which ai � b
n cycles back

to T1.

Note that the converse is not true.

Theorem 43. If a Latin square has n disjoint transversals, we can create
its orthogonal mate by assigning each of the n transversal an element of the
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orthogonal mate. (cf. Reviewer’s Comment 11)

Conclusion 44. A given Latin square possesses an orthogonal mate if it
has a transversal.

This is a clear conclusion from the above theorems and the definition of
orthogonality.

1. Here is an example from the Klein four-group.

�
���

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

�
��

2. Here is a transversal.

�
���

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

�
��

3. Therefore, we may conclude that this Latin square can be completed
to form a Graeco-Latin square, because there is a transversal.

4. Here is the completed Euler square.

�
���

p1, 1q p2, 2q p3, 3q p4, 4q
p2, 3q p1, 4q p4, 1q p3, 2q
p3, 4q p4, 3q p1, 2q p2, 1q
p4, 2q p3, 1q p2, 4q p1, 3q

�
��

Appendix B. More on MOLS and other Topics

As we have already mentioned, MOLS have been very important in experi-
mental design and the theory of finite projective planes. Therefore, we will
provide a list of useful theorems in this field that have not been discussed.

Theorem 45. Suppose that there exist r MOLS of order n and r MOLS of
order m, then there exist r MOLS of order mn.

Theorem 46. If a Latin square of order 4k� 2 contains a Latin subsquare
of order 2k � 1, then it has no orthogonal mate.

Theorem 47. A Latin square of order mq and of q-step type has no transver-
sals if m is even and q is odd.

Theorem 48. There exist unipotent symmetric Latin squares of order n for
every even integer n, but none exists if n is any odd order greater than 1.

Theorem 49. An pn, q2, n � 1q q-ary code is equivalent to a set of n � 2
MOLS of order q.
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Theorem 50. k-MOLS of order n is equivalent to k � 2-net of order n.

Proofs of these theorems require group theory, general field theory, and
algebraic coding theory.

Appendix C. Regarding the Use of Computer-Aided Proof

In recent years, proofs involving computers, e.g. the proof of the Four Colour
Theorem, have spurred on some controversy. Do they qualify as proof? And
how are they different from the exhaustive enumeration by hand (like as done
by Tarry)?

In Parker, Bose, and Shrikhande’s work, the actual construction relied some-
what on computers. But fortunately, this is a proof of existence (indeed, by
finding a counterexample to Euler’s conjecture), and therefore is not ham-
pered by this philosophical debate on the nature of mathematical proof.
Given a counterexample, humans can always check that it does refute the
conjecture.

Even proofs of non-existence of Graeco-Latin squares of order 2 and 6 have
been found in elegant ways without resorting to brute force attack.

Therefore, Graeco-Latin squares are free (for now) of the plague of computer
aided proof.

(Computers were used minimally in this project, in order to facilitate the
construction of some of the Euler squares.)
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Reviewer’s Comments

1. In the statement of Definition 3, the meaning of the word “orthogonal”
is not specified. After the review, the author then quotes

Theorem 51. A Latin square of order n can have at most n�1 Latin
squares that are both orthogonal to it and to each other.

2. In the statement the reference theorem is not clearly stated. What
is the meaning of “a Latin square of order n can have at most n � 1
MOLS”? Reviewer suggests the author may mean “there are at most
n� 1 MOLS of order n”.

3. In the statement of Theorem 11, the word “maximum” was missing.

4. On page 7, in the last sentence of the proof of Corollary 14, reviewer
asks how Euler conjecture follows.

5. On page 7, in the statement of Condition 16, the meaning of the word
“complete” is not specified.

6. On page 9, line 3, what is the meaning of the symbol α? Reviewer
doubts if it is a Latin square according to Definition 17. Further-
more, what is the meaning of aα?

7. On page 10, line 2, the meaning of the word “completed” is not clear.
One can perhaps guess what the term means, but a clear definition is
helpful. It seems not clear how the “single-step property” of the Latin
square is involved here.

8. On page 12, last paragraph, line 1, the meaning of the word “idempo-
tent” is not specified.

9. On page 13, the statement of Definition 25 is then deleted by the au-
thor.

10. On page 21, the statement of Definition 41 is then deleted by the au-
thor.

11. In the statement of Theorem 43, the meaning of “orthogonal mate” of
a Latin square is not specified.


