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Abstract. The ancient Greeks raised the famous problem of trisecting an

arbitrary angle with a compass and an unmarked ruler, which was proved

impossible. Such a construction is possible if a marked ruler is used instead.
In this article, the possible geometric constructions by a compass and a marked

ruler are studied.2

1. Introduction

Trisecting an arbitrary angle with a compass and straightedge was one of
the famous ancient Greeks unsolved construction problems. Together with
duplicating the cube, these problems have been pending to be resolved for
more than 2000 years.

Plato (427–347 BC) defined clearly the rules of ruler and compass con-
struction, which implies that the marks or scales in the ruler should not
be relevant to the geometric construction. Many learned people tried em-
ploying different tools and methods to tackle the problem, in particular,
the interesting and simple construction algorithm proposed by Archimedes
(287–212 BC) who had employed a marked ruler and compass to solve the
trisecting problem, which was very close to the Platos rules.

In 19th Century, Pierre L. Wantzel (1814–1848) proved in 1837 that based
upon Plato’s criteria, it is impossible to trisect an arbitrary angle. The

1This work is done under the supervision of the author’s teacher, Ms. Fei Wong.
2The abstract is added by the editor.

1



2 S.T. FAN

problem became even more interesting after it was proved to be possible
because of the “magic” marked ruler, which have opened a new area for the
study of geometric constructions with marked ruler and compass.

Theorem 1.1. If we have a marked ruler and a compass, then it is possible
to trisect an arbitrary angle.

Proof. Archimedes proved this theorem by giving a construction algorithm.
As shown in figure 1.1 below, let =AOB be the angle being trisected and
the lengths |OA| � |OB| � 1, which is the distance between the two marks
on the ruler. Draw a semicircle centered at O from B through A. If we
mark C and D such that C is on the semi-circle and D is the intersection
of the lines OB and AC with |CD| � 1, then =AOB � 3=ADB.

Figure 1.1

Let =ADB � t. Then =COD � t and =OCA � =OAC � 2t (base angles
of isosceles triangle).

By the interior angle sum of triangle, =AOC � π � 4t. Hence,

=AOB � =COD.=AOC � π � t� pπ � 4tq � 3t � 3=ADB.

In theorem 1.1, Archimedes made use of the so-called marked ruler instead
of a typical straight edge in the construction. Some people criticized that
Archimedes did not respect the conventional definition of ruler and his ap-
proach was not strict enough hence it was not commonly accepted.

In spite of this, it was quite natural, when compared with using conics,
trisectrix or some other strange curves to give a solution to angle trisection,
marked ruler was an easy available tool in real life. One should appreciate
why adding two marks on a ruler makes the impossible becomes possible.
In this project, we try to give some terminology of marked ruler and clarify
which types of geometric constructions are possible by using marked ruler
and compass.
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Definition 1.2. A ruler or more precisely a straight edge with two notches
on it is called a marked ruler. Without loss of generality, the distance be-
tween the two notches is taken to be 1.

From definition 1.2, we notice that the marked ruler introduces the concept
of unit length into the system of geometric construction. It allows us to cut
off equal distance on a straight line in particular, and we will show that the
marked ruler is much more useful with the help of compass in the subsequent
sections. In order to study geometric construction algebraically, we will in-
troduce a rectangular coordinate system on the two dimensional Euclidean
Space. Moreover, by the end of this report, we will study how the problem of
constructing regular n-sided polygon is related to the construction by using
marked ruler and compass.

Now, let us define the meaning of constructible points and constructible
curves.

Definition 1.3. A constructible curve is a curve constructed from given
quantities such as points, lengths, etc, which are provided by given points
and constructible points. A constructible point is a point of intersection of
two constructible curves.

Our task is getting clearer that we treat construction as drawing the con-
structible curves. If we know what curves marked ruler and compass can
draw, we will know the properties of the constructible points. Before going
deep into our main goal, lets take a brief review on the general construction.

2. Classification of Construction

Up to this moment, our understanding on the term “construction” is too
vague for a mathematical theory to build on. In the following sections, we
will give a clear definition of “construction”, then classify different types of
construction and their relative field of extension.

Definition 2.1. A construction C is defined to be a finite set of constructible
points t0,u, A0, A1, A2, . . . , Anu, where 0 � p0, 0q, u � p1, 0q and A0 �
p0, 1q, such that An�1 is a point of intersection of any two of the con-
structible curves γi constructed from the points in the sub-construction Ck �
t0,u, A0, A1, A2, . . . , Aku where k � 1, 2, . . . , n under specific construction
rules.

Definition 2.2. Let C � t0,u, A0, A1, A2, . . . , Anu be a construction of n
steps and Ck � t0,u, A0, A1, A2, . . . , Aku where k ¤ n be a sub-construction
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of C. Also, let z1, z2, . . . , zn be the complex numbers that represent the points
A1, A2, . . . , An respectively. Then, KrCs � Qpi, z1, z2, . . . , znq is defined to be
the field of extension of Q by construction C. Note that KrCs is the smallest
field that contains i, z1, . . . , zn and we have

KrCks � KrCk�1spzkq for k � 1, 2, . . . , n.

Remark: Since 0 � p0, 0q, u � p1, 0q and A0 � p0, 1q, it is easy to see that
KrC0s � Qpiq.
Definition 2.3. A construction is called plane if it can be solved by using
ruler and compass only.
A construction is called solid if it can be solved by using conic sections only.
A construction is called higher dimensional if it is not plane or solid.

Remark: This classification was introduced by Pappus, but I replace the
term “linear” by “higher dimensional” since it will be more appropriate.

Definition 2.4. For plane constructions, a constructible straight line is a
line, which passes through two constructible points; and a constructible circle
is a circle centered at a constructible point, which passes through another
constructible point.

Before we state the well-known theorem for ruler and compass construction,
we give a lemma, which is used to prove this theorem.

Lemma 2.5. If two circles intersect or a circle and a straight line intersects,
where the coefficients of the equations of the circles and straight lines are
in field K, then the coordinates of the point of intersection lie in a field of
quadratic extension over K.

Proof. Firstly, let y � mx�c and x2�y2�dx�ey�f � 0 be the equations
of a straight line and a circle with m, c, d, e, f P K respectively. Then, by
solving the two equations, we have

x2 � pmx� cq2 � dx� epmx� cq � f � 0

ñp1�m2qx2 � p2mc� d�meqx� c2 � ce� f � 0

Note that the coefficients of the above equation are in K, its roots lie in a
field of quadratic extension of K. Also from y � mx � c, y is linear to x
and so the coordinates of the points of intersection lie in a field of quadratic
extension over K.

Secondly, let x2 � y2 � d1x� e1y � f1 � 0 and x2 � y2 � d2x� e2y � f2 � 0



MARKED RULER AS A TOOL FOR GEOMETRIC CONSTRUCTIONS 5

be the equations of two distinct circles with d1, d2, e1, e2, f1, f2 P K. Then
by subtracting the two equations, it yields a straight line pd2 � d1qx� pe2 �
e1qy � pf2 � f1q � 0 with its coefficients in K. Hence, by the above argu-
ment, the coordinates of the points of intersection lie in a field of quadratic
extension over K.

Theorem 2.6. A point px, yq has a plane construction if and only if x�yi P
C lies in a sub-field K of C such that DKi, i � 0, 1, . . . , n, satisfying that

Q � K0 � K1 � K2 � � � � � Kn � K

and the index rKj : Kj�1s � 1 or 2 for j � 1, 2, . . . , n.

Proof. Let C � t0,u, A0, A1, . . . , An�1u be a plane construction with An�1 �
px, yq. It is clear that when two constructible lines intersect, no exten-
sion of field is needed. Also note that the extension Qpiq is of degree 2.
Then, by lemma 2.5, we must have rKrCk�1s : KrCkss � 1 or 2, where
k � 1, 2, . . . , n� 2.

Hence, by letting Kj�1 � KrCjs, we have

Q � K0 � K1 � K2 � � � � � Kn � KrCs � K

and the index rKj : Kj�1s � 1, 2 for j � 1, 2, . . . , n.

Conversely, given a tower of fields

Q � K0 � K1 � K2 � � � � � Kn � K

where the index rKj : Kj�1s � 1 or 2 for j � 1, 2, . . . , n. It suffices to
verify that there is a plane construction associated to each step of field
extension. If rKj : Kj�1s � 1, then Kj � Kj�1 and the result is trivial.
If rKj : Kj�1s � 2, let zj � xj � yji such that Kj � Kj�1rzjs where
zj R Kj�1 for j � 1, 2, . . . , n. Since the degree of extension is 2, both xj and
yj are roots of certain quadratic equations with coefficients in Kj�1, say,
x2 � ax� b � 0 and y2 � py � q � 0 respectively. Then by constructing the
circle x2�y2�ax�b � 0 and the line y � 0, we solve xj as the x-coordinate.
Similarly, yj can be obtained as the y-coordinate of the intersection of the
circle x2 � y2 � px � q � 0 and the line x � 0. Hence zj � xj � yji has a
plane construction.

Remark: In fact, the index rKj : Kj�1s � 1 actually means that Kj � Kj�1,
so we can omit 1 in the preceding theorem.

Next, we want to show is that every point with solid construction lies in
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a 2-3-tower over Q. So we should first show that every points are closed
under quartic equation and on the other hand every equation of degree at
most 4 is solvable by solid construction.

Lemma 2.7. Every points of intersection of any two conic sections are roots
of an equation of degree at most four.

Proof. Let A1x
2 �B1xy �C1y

2 �D1x�E1y � F1 � 0 and A2x
2 �B2xy �

C2y
2�D2x�E2y�F2 � 0 be two distinct conic sections. Then by Bezout’s

Theorem, which states that two algebraic plane curves with degree m and
n respectively and with no common component have exactly mn points of
intersection counting multiplicity and points at infinity, it follows that there
are at most mn points of intersection for any two algebraic curves with
degree m and n respectively. The points of intersection of the two conic sec-
tions, each of degree 2, when solving together, are therfore roots of quartic
equations for irreducible cases, and thus yielding four distinct intersections.
For reducible cases, the degree of the equation will be even lower. So every
points of intersection are roots of an equation of degree at most four.

Practically, one may transform the first equation in the form

y2 � �A1

C1
x2 � B1

C1
xy � D1

C1
x� E1

C1
y � F1

C1
for C1 � 0

and it is used to reduce the degree of the second equation in y. Eventually, a
quartic equation maybe reducible or irreducible is yielded. If C1 � C2 � 0,
then we can eliminate y without much difficulty and also an equation of
degree not exceeding four is yielded.

Lemma 2.8. Trisecting an arbitrary angle has a solid construction.

Proof. Whenever we can construct an angle α, it is equivalent to say that we
can construct the length cosα, since one can readily construct a right angle
triangle with hypotenuse 1 and one side cosα where the included angle is
α from either one condition. Suppose 3θ be the angle to be trisected, then
cos 3θ is constructible and we aim at showing that cos θ is also constructible.

Consider the two conic sections#
y � x2,

xy � 3x� 2 cos 3θ � 0.

Since both of them have their coefficients in Qpcos 3θq, they are both con-
structible.
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Solving them together yields a cubic equation

x3 � 3x� 2 cos 3θ � 0.

It is not too difficult to show that 2 cos θ, 2 cospθ� 2

3
πq, and 2 cospθ� 4

3
θq are

the roots of it. Therefore cos θ is constructible and trisecting an arbitrary
angle has a solid construction.

Lemma 2.9. Find the cube root of arbitrary length has a solid construction.

Proof. Suppose the length l is constructible. We are aiming to show that
3
?
l is also constructible.

Consider the two conic sections,#
y � x2,

xy � l.

Both of them have their coefficients in Qplq, so they are constructible. Then
by solving them together, we yield

x3 � l,

and so 3
?
l is the only real root that satisfies this equation. Hence the cube

root of arbitrary length has a solid construction.

Theorem 2.10. All equations of degree at most 4 can be solved if and only
if one can trisect an angle and find that cube root for arbitrary length in
addition to the use of ruler and compass.

Proof. rñs Suppose all equations of degree at most 4 can be solved. Then
the equation x3 � a � 0 can be solved and we can find the cube root. As
shown in lemma 2.8, arbitrary angle 3α is trisectable if and only if cosα
is constructible length. Since cos 3α � 4 cos3 α � 3 cosα, replacing with
x � cosα, it can be written as

4x3 � 3x� cos 3α � 0,

which is solvable, hence we can trisect an arbitrary angle.

rðs Now, suppose we can trisect an angle and find the cube root, then
both equations "

x3 � k � 0, (2.1)

4x3 � 3x� cos 3α � 0, (2.2)
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are solvable.

Case 1: For linear and quadratic equation, we can trivially solve them by
ruler and compass only.

Case 2: For a general cubic equation x3 � ax2 � bx � c � 0, by a suitable

change of variable px � y � a

3
q, we always give a principal cubic equation

y3 � py � q � 0.

When p � 0, by equation (2.1), we can solve it.

When p � 0, from Cardano Formulas, the solutions of y3 � py � q � 0
are, A�B, Aξ �Bξ2, Aξ2 �Bξ, where ξ � e2{3πi and

A � 3

b
�1{2q �

a
p1{2qq2 � p1{3pq3, B � 3

b
�1{2q �

a
p1{2qq2 � p1{3pq3.

Since p1{2qq2 � p1{3pq3 is constructible, if p1{2qq2 � p1{3pq3 ¥ 0, A3 and
B3 are also constructible. Hence, also by equation (2.1), A and B are con-
structible, and thus y3 � py � q � 0 can be solved.

Now suppose p1{2qq2 � p1{3pq3   0, iff p3   27{4q2   0, then p   0 and����1{2q
a
�27{p3

���   1,

hence, there exists α such that

cos 3α � �1{2q
a
�27{p3.

By a suitable substitution y � 2
a

1{3p, we have

4t3 � 3t� cos 3α � 0.

Then, by equation (2.2), y3 � py � q � 0 is solvable. Therefore, all cubic
equations can be solved.

Case 3: Consider a general quartic equation x4 � ax3 � bx2 � cx� d � 0.

By substituting x � y � a{4, we obtain the depressed quartic

y4 � py2 � qy � r � 0. (2.3)

If q � 0, we solve the quartic by solving the quadratic equation in y2.

If q � 0, we rewrite (2.3) as

y4 � �py2 � qy � r. (2.4)
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By adding 2zy2 � z2 to both sides of (2.4), we have

py2 � zq2 � p2z � pqy2 � qy � pz2 � rq.
Since z is arbitrary depending on our choice, we wish to find z such that

p2z � pqy2 � qy � pz2 � rq � pgy � hq2 (2.5)

for some constants g, h. Then, we solve (2.3) by y2 � z2 � �pgy � hq and
solve two resulting quadratic equations.

But this situation occurs iff p2z � pqy2 � qy � pz2 � rq � 0 has a double
root, and thus iff

q2 � 4p2z � pqpz2 � rq � 0. (2.6)

Rewrite (2.6) as

8z3 � 4pz2 � 8rz � 4pr � q2 � 0 (2.7)

which is a cubic equation in z.

Now, from case 2, we can solve (2.7), and then by case 1, we can solve
(2.5). Hence (2.3) is solvable.

Therefore, we can solve all equations with degree at most four.

Theorem 2.11. A point px, yq has a solid construction if and only if x�yi P
C lies in a sub-field K of C such that there exists Ki, i � 0, 1, . . . , n, which
satisfies

Q � K0 � K1 � K2 � � � � � Kn � K

and the index rKj : Kj�1s � 2 or 3 for j � 1, 2, . . . , n.

3. Construction with marked ruler and compass

After classifying different types of construction and their relative field of
extension, we should now analyze the constructions made by marked ruler
and compass, and thus to show what class of construction it falls in. First,
we should introduce the two new curves constructible by marked ruler and
compass, then state the rules of constructions by using marked ruler and
compass.

Definition 3.1. Let l be a constructible straight line and P a fixed con-
structible point. If a straight line is drawn through P and meet l at Q, and
if P1 and P2 are points on this line such that

|P1Q| � |QP2| � k,
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where k is the distance between two notches of the marked ruler, then the
locus of P1 and P2 is called a constructible generalized conchoid of l with
respect to P .

Definition 3.2. Let C be a constructible circle and P a fixed constructible
point. If a straight line is drawn through P and meet C at Q, and if P1 and
P2 are points on this line such that

|P1Q| � |QP2| � k,

where k is the distance between two notches of the marked ruler, then the
locus of P1 and P2 is called a constructible generalized limacon of C with
respect to P .

Definition 3.3. The points constructible by marked ruler and compass are
the points of intersection of any two of the following curves.

(i) Straight lines passing through two constructible points;
(ii) Circles centered at constructible point passing through another con-

structible point;
(iii) Constructible generalized conchoids; and
(iv) Constructible generalized limacons.

Note that one cannot draw any two of the curves (iii) and (iv), hence the
intersections between them must be discarded.

From Definition 3.3, we can directly see that all plane constructions are
possible. It is, however, worthwhile to show that all solid constructions are
also possible, and it would be the main result of this section. Now, we are
going to present two algorithms for trisecting an angle and finding cube root,
due to Pappus and Nicomedes respectively.

Theorem 3.4. (Pappus’ Trisection Algorithm). Given arbitrary angle =ABC

with |AB| � 1

2
, where the distance between the two notches of the marked

ruler is taken to be 1, draw a line l1 through A, which is parallel to BC. Also
draw a line l2 through A, which is perpendicular to BC and cut BC at F .
Find the intersection D of the line l1 and the generalized conchoid of l2 with
respect to B. Then the line BD trisects =ABC with =ABC � 3=CBD.
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Proof. We will prove only in the case when =ABC is acute, other cases can
be obtained since we can always trisect right angle. Let =CBD � t, then

=ADB � t. Since =DAE � π

2
, by the converse of the theorem of Thales, A

lies on the circle centered at M , which is the midpoint of DE with diameter
|DE|. Thus =AMB � 2=ADB � 2t and =ABD � =AMB � 2t (base
angles of isosceles triangle). Hence =ABC � =ABD � =CBD � 3t �
3=CBD.

Theorem 3.5. (Nicomedes’ Cube Root Algorithm). Construct 4ABC with

|AC| � |BC| � 1 and |AB| � k

4
, where the distance between the two notches

of the marked ruler is taken to be 1 and k is the length we want to find its
cube root with 0   k   8. Let B be the midpoint of C and D and l1 be AD.
If S is the intersection of AB and the generalized conchoid of l1 with respect
to C, then |AS| � 3

?
k.

Proof. Construct CE such that it is parallel to AB and E is on AD. Then
4ABD is similar to 4ECD. Then, since B bisects CD, we have |CE| �
2|BA| � k

2
. Also, since 4ECR is similar to 4ASR, we have:

|CE|
|CR| �

|AS|
|RS| .

Let x � |AS|, then |CR| � k

2x
. with M the midpoint of A and B, by the

Pythagorean Theorem, we have

r1� k

2x
s2 � rCSs2 � |CM |2 � |MS|2

� r|CB|2 � |BM |2s � |MS|2 � r12 � pk
8
q2s � rx� k

8
s2.



12 S.T. FAN

A quartic equation 4x4�5x3�4kx�k2 � 0 is derived and it is factorized to
p4x� kqpx3 � kq � 0. Since 4x� k ¡ 0, we have x3 � k � 0. Hence x � 3

?
k

is the only real root as desired.

Remarks: Theorem 3.5 only provides an algorithm of finding cube root for
0   k   8, we express k as 8nm where 0   m   8. Then the cube root of
m can be found and 3

?
8nm � 2n. 3

?
m can also be found by doubling the

length 3
?
m by n times.

Theorem 3.6. All solid constructions can be solved by using marked ruler
and compass.

Proof. According to theorem 3.4 and 3.5, we can trisect an angle and find
cube root by using marked ruler and compass. It follows from theorem 2.10
that all equations of degree at most four can be solved and thus all solid
constructions can be solved.

4. Further study on generalized conchoid and generalized limacon

As elaborated in Section 3 that all plane and solid constructions can be
solved by using marked ruler and compass. The subsequent question is how
about the higher dimensional constructions? Apparently, some but not all
of them can be constructed. In order to further our study, it is convenient to
know the exact equations of generalized conchoids and generalized limacons
in rectangular coordinates.

Theorem 4.1. The equation of a generalized conchoid is of the form

x2y2 � pk2 � x2qpx� aq2

where a is a constant and k is the distance between the two notches of the
marked ruler.

Proof. According to definition 3.1, without loss of generality, we set l be the
line x � 0 and P be a point pa, 0q on the x-axis. Then for any point Qp0, y0q
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on l, we have

px, yq � p0, y0q � k
b
y2

0 � a2p�a, y0q

x � 	ak{
b
y2

0 � a2 and y �
�

1� k{
b
y2

0 � a2



y0 (4.1)

ñ y � p1� x{aqy0

ñ y0 � ay{pa� xq px � 0q (4.2)

Substitute (4.2) into (4.1), we have

x � 	ak{
a
a2y2{pa� xq2 � a2

x2ra2y2{pa� xq2 � a2s � a2k2

x2rpx� aq2 � y2s � k2px� aq2 (4.3)

Therefore,

x2y2 � pk2 � x2qpx� aq2. (4.4)

Theorem 4.2. The equation of a generalized limacon is of the form

px2 � y2 � k2 � r2q2ppx� aq2 � y2q � 4k2px2 � y2 � axq2.
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Proof. According to definition 3.2, without loss of generality, we set C be
the circle x2 � y2 � r2 and P be a point pa, 0q on the x-axis. Then for any
point Qpr cos t, r sin tq on C, we have:

px, yq � pr cos t, r sin tq � k{
b
pr cos t� aq2 � r2 sin2 tpr cos t� a, r sin tq.

By eliminating t from the system of the equation

x �
�

1� k{
a
pcos t� aq2 � pr sin tq2

	
pr cos t� aq � a,

y �
�

1� k{
a
pcos t� aq2 � pr sin tq2

	
pr sin tq,

we have

px2 � y2 � k2 � r2q2ppx� aq2 � y2q � 4k2px2 � y2 � axq2. (4.5)

After the equations of generalized conchoid and generalized limacon are clar-
ified, our interests are focused on the phenomena of the points of intersection
when these curves intersect with straight lines or circles.

Firstly, consider the intersections of a generalized conchoid and a straight
line. Since the equation of a generalized conchoid is of degree 4, when it
intersects with a straight line, the x-coordinates of the points of intersection
are roots of quartic polynomial equations. Recall from section 3 that all
quartic polynomial equations can be solved, so no new types of construction
yield.
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Secondly, when we intersect a generalized conchoid with a circle, we expect
to have something new. Consider a circle in standard form

px� pq2 � py � qq2 � s2. (4.6)

Then,

px� aq2 � y2 � 2pp� aqx� 2qy � a2 � s2 � p2 � q2. (4.7)

By substituting (4.7) into (4.3), we have

x2r2pp� aqx� 2qy � a2 � s2 � p2 � q2s � k2px� aq2.
So, there exists two polynomials fpxq and gpxq of degree 2 and 3 respectively
such that

fpxq � gpxq.
Then,

fpxqpy � qq � gpxq � qfpxq
f2pxqpy � aq2 � rgpxq � qfpxqs2.

From (4.6), we substitute py � qq2 by s2 � px� pq2,

f2pxqrs2 � px� pq2s � rgpxq � qfpxqs2. (4.8)

Equation (4.8) is clearly a sextic polynomial, with the coefficients of this
polynomial lie in an entire field K; its roots belong to a field extension of
degree at most 6 over K. Besides, the y-coordinates of the intersections
correspond to a field of quadratic extension over the x-coordinates.

Similarly, from (4.5), the equation of a generalized limacon is of degree 6.
When it intersects with a straight line, there is no doubt that the resulting
equation in x is also of degree 6. Hence, the points of intersection involve a
field of extension of degree at most 6 also.

Finally, we concern the case when a generalized limacon intersects with
a circle. Consider again the circle px� pq2 � py � qq2 � s2

x2 � y2 � 2px� 2qy � s2 � p2 � q2. (4.9)

By substituting (4.7) and (4.9) into (4.5), we have:

p2px� 2qy � s2 � p2 � q2 � k2 � r2q
r2pp� aqx� 2qy � a2 � s2 � p2 � q2s

� 4k2p2px� 2qy � s2 � p2 � q2 � axq2. (4.10)

Notice that (4.10) is a curve of degree 3 polynomial. By Bezout’s theorem,
it predicts that this curve has at most six points of intersection with the
circle and thus is the roots of a sextic polynomial equation in x. Again the
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y-coordinates are 2 degree over the x-coordinates, since it involves solving a
quadratic equation.

To summarize the above results, we give the following theorem that shows
construction by using marked ruler and compass lies in a 2-3-5-6 tower.

Theorem 4.3. If a point px, yq is constructible by marked ruler and com-
pass, then x� yi P C lies in a sub-field K of C such that there exists Ki with
i � 0, 1, 2, . . . , n satisfying that

Q � K0 � K1 � K2 � � � � � Kn � K

and the index rKj : Kj�1s � 2, 3, 5 or 6 for j � 1, 2, . . . , n.

Proof. The intersections of straight lines and circles, as shown in theorem
2.6, contribute to the field extension of 2 only. Then from the above results,
intersecting any two curves under the construction rules for marked ruler
and compass yields a polynomial equation of at most degree 6. It implies
that the field extension of 2, 3, 4, 5 & 6 should be enough for marked ruler
and compass. The remaining problem is why 4 is not necessary? The reason
follows from the fact that any quartic polynomial can be resolved by solving
a cubic and a quadratic one instead. It means that if rKj : Kj�1s � 4
for some j, then we can insert a field F such that Kj�1 � F � Kj with
rKi : Fs � 3 and rF : Kj�1s � 2. So the theorem follows.

Corollary 4.4. For a marked ruler and compass construction, if K is the
field of extension of the construction over Q, then 2, 3 and 5 are the only
primes that divide the index rK : Qs.

Proof. Since it is a marked ruler and compass construction by theorem 4.3,
there exists Ki with i � 0, 1, 2, . . . , n satisfying that

Q � K0 � K1 � K2 � � � � � Kn � K

and the index rKj : Kj�1s � 2, 3, 5, 6 for j � 1, 2, . . . , n. Then, by the
Tower Theorem, we have

rK : Qs �
n¹
j�1

rKj : Kj�1s.

Since 2, 3 and 5 are the only primes that divide rKj : Kj�1s for j �
1, 2, . . . , n, it follows that 2, 3 and 5 are also the only primes that divide
rK : Qs.
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5. Construction of regular n-gon with marked ruler and compass

In this section, we are going to study the possibilities of constructing regular
n-gon by using marked ruler and compass. In particular, we mainly concern
with regular n-gon with n ¤ 100.

First, we will show in the subsequent study how it helps in determining
whether or not a regular n-gon is constructible.

Theorem 5.1. Given a marked ruler and a compass, we cannot construct
a regular 23-gon or 29-gon.

Proof. If p is an odd prime, whenever we can construct a regular p-gon, it
means that we can construct

ξp � e2πi{p.

That is, the primitive p-th root of unity. It turns out that it is a root of
the cyclotomic polynomial Φp of degree p� 1. But then by corollary 4.4, ξp
lies in a field K of degree p � 1 over Q, such that 2, 3 and 5 are the only
primes that divides p�1. In particular, when p � 23, then 11 is a prime that
divides p�1, hence a regular 23-gon is not constructible by marked ruler and
compass. On the other hand, when p � 29, thus 7 is a prime that divides
p� 1, so a regular 29-gon is not constructible by marked ruler and compass
too. In fact, regular 43-gon, 47-gon, 53-gon, etc are also non-constructible
by marked ruler and compass due to the same reason.

From the above theorem, we show that some regular n-gons are strictly
inconstructible by marked ruler and compass, but how about the remaining
n-gon? Trisecting an angle is one of the distinguished features of the marked
ruler and compass construction, and we will show in the following theorem
which regular n-gons are constructible by ruler and compass together with a
trisector. When we look back to the plane construction, Gauss had already
given a perfect theorem that a regular n-gon has a plane construction if and
only if n � 2sp1p2 . . . pk where pi is a Fermat prime for i � 1, 2, . . . , k and
s is a non-negative integer. So without much difficulty, we should also find
an analog theorem for a solid construction. It was Pierpont who discovered
this theorem.

Theorem 5.2. A regular n-gon has a solid construction if and only if

n � 2s3tp1p2 . . . pk

where pi are primes of the form 2a3b � 1 and a, b, s, t are non-negative
integers.
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Proof. Suppose n is an integer greater than 2. Let ξn � e2πi{n be the
primitive nth root of unity, and η � ξn�ξn�1 � 2 cos 2π{n. Then the Galois
group over Q of the cyclotomic field Qpξnq is abelian with ϕpnq elements,
where ϕ is Euler’s phi function. Consequently, every field between Q and
Qpξnq is normal over Q. Since ξn has 2 degree over Qpηq,

rQpηq : Qs � rQpξnq : Qs{rQpξnq : Qpηqs � ϕpnq
2

.

Now suppose n � 2s3tp1p2 . . . pk as stated in theorem 5.2, then

ϕpnq � ϕp2s3tp1p2 . . . pkq
� ϕp2qsϕp3qkϕpp1qϕpp2q . . . ϕppkq
� 2tpp1 � 1qpp2 � 1q . . . ppk � 1q � 2u3v

for some non-negative integers u, v.

So the Galois group of Qpηq has 2u�13v elements, and therefore has a com-
position series of length u� v� 1 with all quotients isomorphic either to Z2

or Z3. Correspondingly, there is a tower of fields

Q � K0 � K1 � K2 � � � � � Ku�v�1 � Qpηq � Qpξnq
such that rKj : Kj�1s � 2 or 3 for j � 1, 2, . . . , u � v � 1 and rQpξnq :
Qpηqs � 2. Then by theorem 2.11, ξn has a solid construction and thus a
regular n-gon has solid construction.

Conversely, suppose a regular n-gon has a solid construction. Then ξn
can be constructed. Again by theorem 2.11, there exists fields Ki with
i � 0, 1, 2, . . . ,m such that

Q � K0 � K1 � � � � � Km � Qpξnq and

rKi : Kj�1s � 2 or 3 where j � 1, 2, . . . ,m.

From Tower Theorem, rQpξnq : Qs �
m¹
j�1

rKj : Kj�1s � 2c3d for some non-

negative integers c, d. It follows that ϕpnq � 2c3d and it implies that n is of
the form stated in theorem 5.2.

Based upon this theorem, we are able to show that regular 7-gon, 13-gon,
19-gon, etc are constructible by marked ruler and compass. However, be-
tween the possible and impossible, there still have some uncertainties lies
in between. Especially, we are interested in the constructibility of regular
11-gon, 31-gon, 41-gon and 61-gon. From the inspiration given by the above
theorem by the above theorem, we should appreciate the role that ϕpnq plays
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in the proof. It is natural to think that if a prime p divides ϕpnq, and if we
can p-sect an angle, we can in some sense solve the problem. It turns out to
be true, and the following theorem will be the best description of this result.

Theorem 5.3. Let n be an integer greater than 2. A regular n-gon can be
constructed if, in addition to ruler and compass, tools are available to p-sect
any given angle for each odd prime p that divides ϕpnq.

This theorem is actually a direct generalization of a corollary from Gauss’s
Disquistiones Arithmeticae (Article 55). It states that for a prime p, we can
construct the primitive pth root of unity if we are provided with tools that
can construct all pth

i root of unity for some pi which divides p� 1. To prove
that, we should use the method of the Lagrange resolvent and show that
there exists intermediate fields between Q and Qpξpq such that the field ex-
tension of each step is exactly one of pi which divides p� 1. However, since
the proof is very lengthy and involves much more background knowledge
in Galois Theory and cyclotomic equations, which are out of our scope of
interest, we will not include the proof here.

Now we will show an application of this theorem.

Corollary 5.4. If one can quinquesect an angle with marked ruler and com-
pass, then the regular 11-gon, 31-gon, 41-gon and 61-gon are constructible
by marked ruler and compass.

Proof. Since 11, 31, 41 and 61 are primes, ϕp11q � 10 � p2qp5q, ϕp31q �
30 � p2qp3qp5q, ϕp41q � 40 � p2q3p5q and ϕp61q � p2q2p3qp5q. As shown
in theorem 3.6, marked ruler and compass can act as a trisector. So it
follows from theorem 5.3 that if marked ruler and compass can quinquesect
an angle, then regular 11-gon, 31-gon, 41-gon and 61-gon are constructible
by marked ruler and compass.

From this corollary, we show that the regular n-gons for which their con-
structibility are not certain is closely related to the possibility of solving
some quintics by marked ruler and compass. The situation is getting clear
that the verification of the solvability of different types of quintic equations
are of primary importance in knowing what classification of constructions
are associated with marked ruler and compass. In particular, quinquesecting
an angle is associated with a quintic equation which is solvable by radicals.
In the next section, we will show that there does exist irreducible equation
that is solvable by marked ruler and compass.
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6. Solvability of irreducible quintic equation (not solvable by rad-
ical)

As shown in section 4, the points of intersection of two curves are associated
with sextic equations, but none of them are quintic equation at all. To con-
struct an irreducible quintic equation over Q, we should first fix one point
of intersection so that exactly one root is in Q. We will give an example
generated by intersecting a generalized conchoid with a circle.

Consider the generalized conchoid

x2y2 � p1� x2qpx� 2q2 (6.1)

and the circle

px� 1q2 � py � 1q2 � 5. (6.2)

Obviously, p1, 0q is a point of intersection.

By solving (6.1) and (6.2) together according to section 4, we have a sextic
polynomial

x6 � 5x5 � 4x4 � 10x3 � 6x2 � 4x� 2 � 0. (6.3)

Since 1 is a root of (6.3), we factorize it to:

px� 1qpx5 � 6x4 � 10x3 � 6x2 � 2q � 0

which yields a quintic equation

x5 � 6x4 � 10x3 � 6x2 � 2 � 0. (6.4)

It is easy to see that equation (6.4) is irreducible over Q according to Eisen-
stein’s Irreducibility Criterion. So marked ruler and compass really can solve
certain problems associated with an irreducible quintic equation.

Moreover, if we solve (6.1) and (6.2) geometrically, these two curves ac-
tually have four points of intersection. It implies that (6.4) has three real
roots and two complex roots. As a result, the complex conjugation is an
automorphism of the splitting field for (6.4) that fixes three real roots and
transposes the two complex roots, which means that the Galois Group for
(6.4) includes a transposition, and also a five-cycle. It follows that the group
must be S5. Since S5 is not solvable, from Abel’s result, (6.4) is not solvable
by radical indeed.
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7. Conclusion

Throughout the project, we have shown that marked ruler is a very powerful
tool in geometric constructions. With two notches more than an unmarked
straight edge, a great variety of new constructions have been accomplished.
We know now that the full strength of a marked ruler together with compass
would not exceed the algebraic closure of equations of at most degree 6. On
the other hand, it is also certain that all equations of at most degree 4 can be
solved. And the uncertainty is limited to the solvability of quintic and sextic
equations. The remaining unsolved construction problems by marked ruler
and compass are getting clearer. First, can we solve all quintic and sextic
equations? If we can solve it, all the problems are solved. However, the
problem is very complicated since it involves solving some exotic algebraic
curve (4.4) and (4.5) with little regularities. So we come up with the second
question. Are all quintics solvable by radicals also solvable by marked ruler
and compass? The significance of this question is shown in corollary 5.4
that it opens the possibility of constructing regular 11-gon, 31-gon, etc,
since quinquesecting an angle involves only a quintic equation, which is
solvable by radicals. Although I do not give a proof, we incline to believe
that it should be true because in the course of our study we find that some
irreducible quintic equations which are not solvable by radicals can be solved
by marked ruler and compass. I think that these two questions alone would
provide interesting topics for further study in similar mathematics project
competition to be held in the future.
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