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Abstract. In this paper, we have generalised the orthocentre of a triangle as
the isogonal conjugate of the circumcentre of a simplex. Along this generali-
sation, we have also carried two intriguing properties of the orthocentre of a
triangle over to higher dimensions, which says that the isogonal conjugate of
the circumcentre of a simplex is either the incentre or an excentre of its pedal
simplex, and is also the radical centre of the facetal circumhyperspheres of the
simplex.

To this end, we have extended the scope of isogonal conjugation with re-
spect to simplices to non-interior points through developing new algebraic and
geometric characterisations for it. We have also obtained a higher-dimensional
analogue of a curious property of isogonal conjugates with respect to trian-
gles, which says that when both a point and its isogonal conjugate with re-
spect to a simplex are projected onto the facets, the projections formed are
co-hyperspherical.
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1. Introduction

1.1. Background. The challenge of generalising notions and results in Euclidean
geometry in the plane to higher dimensions has attracted numerous mathematics
lovers to work on. One primary direction of generalisation is of triangles to sim-
plices, and investigating how much geometry can or cannot be carried over. See [9]
for an excellent survey paper on this field. See also [2], [3], [10], [16], [19], [23], [27]
and [28] from recent years for simplex versions of famous triangle theorems such
as Ceva’s, Menelaus’, Pompeiu’s, Wallace’s, Miquel’s, Thébault’s, van Aubel’s and
the Steiner–Routh theorems.

A comparatively young but already quite fruitful subfield is that of constructing
simplex centres that can bring along the most important properties of the original
triangle centres to higher dimensions. Successful ones include incentre, excentre,
centroid, circumcentre, orthocentre, nine-point centre, symmedian/Lemoine/Grebe
point, Gergonne point, Nagel point, Spieker/cleavance centre, Feuerbach point and
Fermat–Torricelli point, which are only the first eight, the tenth, the eleventh and
the thirteenth members of Kimberling centres under the framework of triangle
centres in [11] and [12]. See [1], [4], [5], [8], [13], [20], [22], [24] and [26] for these
works mostly from recent years.

While seeking possibilities to generalise other triangle centres to simplices is
a definite research direction, we have worked on the equally natural direction of
creating equivalents or alternatives to the existing generalisations. Here we describe
what have motivated our research and what have inspired the core ideas behind
the present work.
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1.2. Motivations and Inspirations. Our research began with having learned the
oddity that the orthocentre of a simplex may not exist because the altitudes may
not be concurrent. The so-called Monge point, antimedial circumcentre and orthic
inexcentre have generalised the orthocentres of triangles to tetrahedra/simplices
from quite distinct perspectives. They were invented through focusing on alter-
native definitions of the orthocentre of a triangle other than using altitudes, so as
to perform novel geometric constructions on tetrahedra/simplices and/or to utilise
known tetrahedron/simplex centres. See [5], [6] and [7] for those properties that
have been preserved to higher dimensions by these three generalisations.

How about the many more unpreserved properties? In this paper, we will es-
tablish higher-dimensional analogues (Theorems 25 and 27) for the following two
properties through a fourth perspective which considers the orthocentre of a tri-
angle as the isogonal conjugate of the circumcentre (see [12] for instance): The
orthocentre H of ∆ABC is

(i) either the incentre or an excentre of its pedal triangle ∆DEF . (see Figures
1 and 2 resp.)

Figure 1. : Figure 2. :

(ii) the radical centre of the three circles with diameters BC, CA and AB. (see
Figure 3)

To this end, we will utilise the geometric transformation of isogonal conjugation
with respect to simplices, which was coined in [22] just less than a decade ago (in
attempt to generalise symmedian point using the traditional definition). Our first
step will be to establish higher-dimensional analogues (Theorem 14) for the follow-
ing well-known characterisations of isogonal conjugation with respect to triangles:
If X∗ is the isogonal conjugate of a point X with respect to ∆ABC, then

(iii) X∗ is the point of concurrence of the reflections of the lines XA, XB and
XC across the angle bisectors of ∠A, ∠B and ∠C respectively. When
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Figure 3. :

X and X∗ are inside ∆ABC, we can say that AX and AX∗ are equally
inclined from AB and AC respectively (and its cyclic variations). (see
Figure 4)

(iv) XXA · X∗X∗
A = XXB · X∗X∗

B = XXC · X∗X∗
C , where XA, XB and XC

are the projections of X onto the (extended) sides, and X∗
A, X∗

B and X∗
C

are those of X∗. (see Figure 5)

Figure 4. : Figure 5. :
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(v) X∗ is the circumcentre of ∆X ′
AX ′

BX ′
C , where X ′

A, X ′
B and X ′

C are the
reflections of X across the sides. (see Figure 6)

(vi) If the barycentric coordinates of X with respect to ∆ABC are (xA : xB : xC),
then those of X∗ will be

󰀕
1

hA
2xA

: 1
hB

2xB

: 1
hC

2xC

󰀖
,

where hA, hB and hC are the lengths of the altitudes from A, B and C
respectively.

These results will also enable extending the isogonal conjugation in [22] to non-
interior points. A higher-dimensional analogue (Theorem 17) for the following
interesting property of isogonal conjugate will also follow as a by-product:

(vii) The six points XA, XB, XC , X∗
A, X∗

B and X∗
C in (iv) are concyclic, with

circumcentre being the midpoint M of X and X∗. (see Figures 5 and 7)

Figure 6. : Figure 7. :

Now we outline the flow of our paper.

1.3. Outline of Paper. The aforementioned missions will be accomplished as
follows. In Section 1.4, we will define the geometric objects and tools which will
be utilised in the upcoming sections, including a simplex and the corresponding
barycentric coordinate system, projection and reflection, both absolute and signed
distances from a point to a hyperplane, as well as angles between hyperplanes from
Definition 1 to Definition 8.
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In Section 2.1, we will develop new characterisations of isogonal conjugation
for interior points in [22] in algebraic and geometric terms from Definition 9 to
Theorem 14. They will be the higher-dimensional analogues of (iii)–(vi) above. We
will use these new characterisations to define isogonal conjugation for non-interior
points too, and discuss the complications of such a definition from Definition 15
to Theorem 16 by noting the distinction between points which form an isogonal
conjugate pair and points which are the isogonal conjugates of each other.

In Section 2.2, we will prove the higher-dimensional analogue of the interesting
property (vii) as a (2n + 2)-point hypersphere in Theorem 17, which contains all
the projections of an isogonal conjugate pair onto the extended facets of a simplex.

In Section 3, we will prove one more new characterisation of isogonal conjugate
pairs in Lemma 19, which will be useful in proving the upcoming higher-dimensional
analogues of (i)–(ii) above. In Section 3.1, we will prove that the isogonal conju-
gate of the circumcentre of a simplex is an inexcentre of its own pedal simplex
from Definition 18 to Theorem 25. In Section 3.2, we will prove that the isogo-
nal conjugate of the circumcentre of a simplex is the radical centre of the facetal
circumhyperspheres from Definition 26 to Theorem 27.

In Section 4, we will list some interesting observations made during the produc-
tion of the paper.

1.4. Foundations. In this paper, we will work with vectors, points and various
geometric objects in Rn with n ≥ 2. Unless otherwise specified, the position vector
of a point V (denoted by an italic uppercase letter) will be denoted by v (the
corresponding bold lowercase letter). A set of points and the set of their position
vectors will be mentioned interchangeably.

Throughout, we will be speaking of an n-dimensional simplex ∆ with the fol-
lowing default notations:

Definition 1. (Simplex, extended facet, extended (n−2)-dimensional face)
Let V = {V0, V1, . . . , Vn} be a set of (n + 1) affinely independent points (i.e. the n

vectors −−→
V0Vi (i = 1, . . . , n) are linearly independent). Its convex hull

conv ({V0, V1, . . . , Vn}) =
󰀫

n󰁛

i=0
aivi

󰀏󰀏󰀏󰀏󰀏

n󰁛

i=0
ai = 1 and all ai ≥ 0

󰀬

forms an n-dimensional simplex, which will denoted by ∆ throughout. The ex-
tended facet opposite to a vertex Vi is the affine hull aff(V \ {Vi}) of the remaining
vertices, which is a hyperplane and will be denoted by Fi throughout. Two extended
facets Fi and Fj intersect at the extended (n − 2)-dimensional face opposite to Vi

and Vj , which is the affine hull aff(V \ {Vi, Vj}) of the remaining vertices, which is
an (n − 2)-dimensional affine subspace and will be denoted by Fi,j throughout.
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Definition 2. (Barycentric coordinates) Let ∆ = conv({V0, V1, . . . , Vn}) be a
simplex. Each point X admits a unique representation in the form x = x0v0 + · · ·+
xnvn, where x0, . . . , xn ∈ R with x0 + · · · + xn = 1. The barycentric coordinates
of X with respect to ∆ is defined as the ordered tuple (x0, . . . , xn). Given any
a0, . . . , an ∈ R with a0 + · · · + an ∕= 0, the ordered tuple

󰀕
a0

a0 + · · · + an
, . . . ,

an

a0 + · · · + an

󰀖

is the barycentric coordinates of a point, which we will abbreviate as (a0 : · · · : an).

Endow Rn with an inner product 〈 · , · 〉 and the induced norm 󰀂 · 󰀂. Recall that
given any subset S ⊆ Rn, the orthogonal complement of S is defined as

S⊥ = {v ∈ Rn | 〈v, s〉 = 0 for all s ∈ S} .

In particular, the orthogonal complement W ⊥ of an (n − 1)-dimensional vector
subspace W is a 1-dimensional vector subspace. The vectors in W ⊥ will be called
the normal vectors of W . The normal vectors of unit norm will be called the
unit normal vectors of W . For convenience, a (unit) normal vector of the (n − 1)-
dimensional vector subspace parallel to a hyperplane H will also be called a (unit)
normal vector of H.

(Orthogonal) projection and reflection will now be defined using the inner prod-
uct in the usual way:

Definition 3. (Projection of vector onto (n − 1)-dimensional vector sub-
space) Let W be an (n−1)-dimensional vector subspace with unit normal vector
n. The projection of a vector v onto W is defined as

projW (v) = v − 〈v, n〉 n󰁿 󰁾󰁽 󰂀
∈W ⊥

.

Note that the particular choice of n does not matter, and projW satisfies the linear
algebraic definition of projection — a linear transformation T on a vector space
such that T ◦ T = T .

Definition 4. (Projection of point onto hyperplane) Let H be a hyperplane
with unit normal vector n, W be the (n − 1)-dimensional vector subspace parallel
to H and A be a point on H. The projection of a point P onto H is defined as

projH(P ) = a + projW
󰀓−→

AP
󰀔

= a + −→
AP −

󰁇−→
AP, n

󰁈
n = p −

󰁇−→
AP, n

󰁈
n.

Note that the particular choice of A and n do not matter. We will be frequently
mentioning the projection of a point X onto Fi, which will be denoted by Xi

throughout.
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Definition 5. (Reflection of vector across (n − 1)-dimensional vector sub-
space) Let W be an (n−1)-dimensional vector subspace with unit normal vector
n. The reflection of a vector v across W is defined as

reflW (v) = v − 2 〈v, n〉 n.

Note that the particular choice of n does not matter, and reflW preserves inner
product and satisfies the linear algebraic definition of reflection — a linear trans-
formation T ∕= id on a vector space such that T ◦ T = id.

Definition 6. (Reflection of point across hyperplane) Let H be a hyper-
plane with unit normal vector n, W be the (n − 1)-dimensional vector subspace
parallel to H and A be a point on H. The reflection of a point P across H is
defined as

reflH(P ) = a + reflW

󰀓−→
AP

󰀔
= a + −→

AP − 2
󰁇−→

AP, n
󰁈

n = p − 2
󰁇−→

AP, n
󰁈

n.

Note that the particular choice of A and n do not matter, and reflH preserves
distances between points and satisfies reflH ◦ reflH = id. We will be frequently
mentioning the reflection of a point X across Fi, which will be denoted by X ′

i

throughout.

Finally, we define the notions of distance, direction and angle pertaining to
hyperplanes:

Definition 7. (Absolute and signed distances from point to hyperplane,
unit normal vector directed towards point, inward normal vector of ex-
tended facet) Let H be a hyperplane with unit normal vector n, and A be a
point on H. Then, the distance from a point P to H is defined as

d(P, H) = 󰀂p − projH(P )󰀂 =
󰀐󰀐󰀐p −

󰀓
p −

󰁇−→
AP, n

󰁈
n

󰀔󰀐󰀐󰀐 =
󰀐󰀐󰀐
󰁇−→

AP, n
󰁈

n
󰀐󰀐󰀐 =

󰀏󰀏󰀏
󰁇−→

AP, n
󰁈󰀏󰀏󰀏 .

Note that the particular choice of A and n do not matter. Also note that this is
the shortest distance from P to any point on H (see [21], Theorems 3.32 and 3.34).

It will also be useful to define signed distance by attaching a sign to d(P, H) as

d±(P, H) =
󰁇−→

AP, n
󰁈

=

󰀻
󰀿

󰀽
d(P, H) if

󰁇−→
AP, n

󰁈
≥ 0

−d(P, H) if
󰁇−→

AP, n
󰁈

< 0.

Note that the particular choice of n matters here. Note that d±(P, H) > 0 indicates
that n is directed towards (the side of H that contains) P , while d±(P, H) < 0
indicates that n is directed towards the opposite side, and d±(P, H) = 0 indicates
that P ∈ H.

Moreover, in the context of the simplex ∆, we define the inward unit normal
vector of an extended facet Fi to be the one which is directed towards the opposite
vertex Vi, which will be denoted by ni throughout. It will be the default unit
normal vector whenever d±(P, Fi) is considered.
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As far as an angle between two hyperplanes is concerned, their (unit) normal
vectors have to be specified in order to give a sense of which region in the space is
“containing” the angle:

Definition 8. (Directed hyperplane, angle between directed hyperplanes)
Let H be a hyperplane with unit normal vector n, and P be a point not on H. We
say that H is directed towards P if n is directed towards P .

Let H1 and H2 be two hyperplanes, and P1 and P2 be two points not on H1
and H2 respectively. Let n1 and n2 be the unit normal vectors of H1 and H2
respectively such that H1 and H2 are directed towards P1 and P2 respectively.
Then, we say that

∠(H1, H2) = π − arccos 〈n1, n2〉
is the angle between H1 and H2 in which H1 and H2 are directed towards P1 and
P2 respectively.

Throughout, whenever an angle between an extended facet Fi and a hyperplane
H is considered, Fi will always be directed towards Vi (i.e. the inward unit normal
vector ni will be used in ∠(Fi, H)).

2. Isogonal Conjugation in Simplices

2.1. Old and New Characterisations of Isogonal Conjugates. We begin
with the definition of isogonal conjugate pairs for interior points in [22]:

Definition 9. (Isogonal conjugate pair for interior points) Let X and Y
be interior points of ∆. Then, X and Y form an isogonal conjugate pair if for all
i ∕= j, the hyperplanes AX = aff(Fi,j ∪ {X}) and AY = aff(Fi,j ∪ {Y }) are equally
inclined from Fi and Fj respectively, i.e.
(1) ∠(AX , Fi) = ∠(AY , Fj)
where AX is directed towards Vj in ∠(AX , Fi) and AY is directed towards Vi in
∠(AY , Fj). (see Figure 8)

Definition 9 is natural as it matches the meaning of the word “isogonal” (equal
angles). However, it is rather clunky and hard to work with. The first step out
of the box is the following that will eventually rephrase the meaning of equally
inclined hyperplanes in terms of reflection in Lemma 13:

Definition 10. (Angle bisector of extended facets) The angle bisector of Fi

and Fj (i ∕= j) is defined as the unique hyperplane Bi,j which passes through Fi,j

and with ni − nj as a normal vector. Also let Ci,j denote the (n − 1)-dimensional
vector subspace parallel to Bi,j (i.e. the orthogonal complement of ni −nj). These
two notations will be adopted throughout.
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Figure 8. nX and nY are the unit normal vectors of AX

and AY directed towards Vj and Vi respectively.

The word “angle bisector” is justified by that

∠(Bi,j , Fi) = π − arccos
󰀟

nj − ni

󰀂nj − ni󰀂
, ni

󰀠
= π − arccos 〈ni, nj〉 − 1

󰀂nj − ni󰀂

= π − arccos
󰀟

ni − nj

󰀂nj − ni󰀂
, nj

󰀠
= ∠(Bi,j , Fj)

where Bi,j is directed towards Vj in ∠(Bi,j , Fi) and is directed towards Vi in
∠(Bi,j , Fj).

The following two lemmas will be useful in proving Lemma 13:

Lemma 11. (Reflectional symmetry due to angle bisector) ni and nj are
reflections of each other across Ci,j.

Proof. Using the definition of reflection, we have

reflCi,j
(ni) = ni − 2

󰀟
ni,

ni − nj

󰀂ni − nj󰀂

󰀠
ni − nj

󰀂ni − nj󰀂 = ni − 2 〈ni, ni − nj〉 (ni − nj)
󰀂ni − nj󰀂2

= ni − 2(1 − 〈ni, nj〉)(ni − nj)
2 − 2 〈ni, nj〉 = ni − (ni − nj) = nj . □
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Lemma 12. (Normal vectors of hyperplanes containing Fi,j) Let H be a
hyperplane containing Fi,j, and suppose n is a non-zero normal vector of H. Then,
n has a unique representation in the form

(2) n = αni + βnj

where α, β ∈ R are not both zero. Furthermore, if H contains an interior point of
∆, then:

• if n is the unit normal vector of H directed towards Vi, then α > 0 > β.
• if n is the unit normal vector of H directed towards Vj, then α < 0 < β.

Proof. Take some arbitrary S ∈ Fi,j and consider the vector subspaces Fi − s,
Fj − s, H − s and Fi,j − s. Let W = (Fi,j − s)⊥. Since Fi,j − s is a subset of each of
Fi − s, Fj − s, H − s, by a well-known property of orthogonal complement, each of
(Fi − s)⊥, (Fj − s)⊥, (H − s)⊥ is a subset of W . In particular, ni, nj , n ∈ W (see
Figure 9). Furthermore, as W is 2-dimensional and ni, nj are non-parallel, {ni, nj}

Figure 9. :

actually forms a basis of W , implying the unique existence of real numbers α and
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β, not both zero, satisfying (2). In the case where H contains an interior point of
∆, it follows that Vi and Vj lie on different sides of H; by taking the inner product
with −−→

SVi, we obtain
n = αni + βnj

󰁇
n,

−−→
SVi

󰁈
=

󰁇
αni + βnj ,

−−→
SVi

󰁈

󰁇
n,

−−→
SVi

󰁈
= α

󰁇
ni,

−−→
SVi

󰁈
+ β

󰁇
nj ,

−−→
SVi

󰁈
.

Now
󰁇

ni,
−−→
SVi

󰁈
= d±(Vi, Fi) > 0 and

󰁇
nj ,

−−→
SVi

󰁈
= d±(Vi, Fj) = 0, so α and

󰁇
n,

−−→
SVi

󰁈
have the same sign. So if n is towards Vi, then it follows that α > 0

and if n is towards Vj , then it follows that α < 0. Similarly, by taking the inner
product with −−→

SVj , we obtain
n = αni + βnj

󰁇
n,

−−→
SVj

󰁈
=

󰁇
αni + βnj ,

−−→
SVj

󰁈

󰁇
n,

−−→
SVj

󰁈
= α

󰁇
ni,

−−→
SVj

󰁈
+ β

󰁇
nj ,

−−→
SVj

󰁈
.

Now
󰁇

nj ,
−−→
SVj

󰁈
= d±(Vj , Fj) > 0 and

󰁇
ni,

−−→
SVj

󰁈
= d±(Vj , Fi) = 0, so β and

󰁇
n,

−−→
SVj

󰁈
have the same sign. So if n is towards Vj , then it follows that β > 0 and

if n is towards Vi, then it follows that β < 0. □

Now we are ready to obtain new characterisations for a hyperplane being equally
inclined from Fi,j :

Lemma 13. (New characterisations for being equally inclined from ex-
tended facets) Let X and Y be points. Then, for any i ∕= j, the following
statements are equivalent:

(a) The reflection of X across Bi,j lies on a hyperplane containing Y and Fi,j.
(see Figure 10)

(b) d±(X, Fi)d±(Y, Fi) = d±(X, Fj)d±(Y, Fj). (see Figure 11)
(c)

󰀐󰀐󰀐
−−→
Y X ′

i

󰀐󰀐󰀐 =
󰀐󰀐󰀐
−−→
Y X ′

j

󰀐󰀐󰀐. (see Figure 12)
(d) xiyid±(Vi, Fi)2 = xjyjd±(Vj , Fj)2, where (x0, x1, . . . , xn) and (y0, y1, . . . , yn)

are the barycentric coordinates of X and Y with respect to ∆ respectively.
In particular, if X and Y are both interior points of ∆, then the above statements
are also equivalent to the following:

(e) AX and AY are equally inclined from Fi and Fj respectively, i.e. X and
Y satisfy (1) in Definition 9.

Proof. For convenience, take some S ∈ Fi,j .

First we show that (a) and (b) are equivalent. Let X ′ be the reflection of X across
Bi,j . Recall that by Lemma 12, a non-zero unit normal vector n of any hyperplane
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Figure 10. : Figure 11. :

Figure 12. :

H passing through Fi,j can be represented in the form n = αni + βnj , where α
and β are not both zero. So actually (a) holds if and only if there exists some α

and β not both zero such that
󰁇

αni + βnj ,
−−→
SX ′

󰁈
= 0 and

󰁇
αni + βnj ,

−→
SY

󰁈
= 0.
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Now observe that 󰀻
󰀿

󰀽

󰁇
αni + βnj ,

−−→
SX ′

󰁈
= 0

󰁇
αni + βnj ,

−→
SY

󰁈
= 0

󰀻
󰀿

󰀽
α

󰁇
ni,

−−→
SX ′

󰁈
+ β

󰁇
nj ,

−−→
SX ′

󰁈
= 0

α
󰁇

ni,
−→
SY

󰁈
+ β

󰁇
nj ,

−→
SY

󰁈
= 0

󰀫
αd±(X ′, Fi) + βd±(X ′, Fj) = 0
αd±(Y, Fi) + βd±(Y, Fj) = 0

󰀗
d±(X ′, Fi) d±(X ′, Fj)
d±(Y, Fi) d±(Y, Fj)

󰀘 󰀗
α
β

󰀘
=

󰀗
0
0

󰀘

Hence the existence of α and β not both zero is equivalent to the above matrix
having zero determinant; that is,

(3) d±(X ′, Fi)d±(Y, Fj) = d±(X ′, Fj)d±(Y, Fi).

Moreover, by reflection symmetry one obtains d±(X ′, Fi) =
󰁇

ni,
−−→
SX ′

󰁈
=

󰁇
nj ,

−−→
SX

󰁈
=

d±(X, Fj) and d±(X ′, Fj) =
󰁇

nj ,
−−→
SX ′

󰁈
=

󰁇
ni,

−−→
SX

󰁈
= d±(X, Fi), so (3) is equiva-

lent to (b).

Then we show that (b) and (c) are equivalent. By using the fact that x′
i =

x − 2d±(X, Fi)ni, we perform the following manipulations:
󰀐󰀐󰀐
−−→
Y Xi

󰀐󰀐󰀐
2

=
󰀐󰀐󰀐
−−→
Y Xj

󰀐󰀐󰀐
2

󰀂x′
i − y󰀂2 =

󰀐󰀐x′
j − y

󰀐󰀐2

󰀂x − y − 2d±(X, Fi)ni󰀂2 = 󰀂x − y − 2d±(X, Fj)nj󰀂2

󰀂x − y󰀂2 − 4d±(X, Fi) 〈x − y, ni〉 + 4d±(X, Fi)2

= 󰀂x − y󰀂2 − 4d±(X, Fj) 〈x − y, nj〉 + 4d±(X, Fj)2

d±(X, Fi)(〈y − x, ni〉 + d±(X, Fi)) = d±(X, Fj)(〈y − x, nj〉 + d±(X, Fj))
d±(X, Fi)(〈y − x, ni〉 + 〈x − s, ni〉) = d±(X, Fj)(〈y − x, nj〉 + 〈x − s, nj〉)

d±(X, Fi)(〈y − s, ni〉) = d±(X, Fj)(〈y − s, nj〉)
d±(X, Fi)d±(Y, Fi) = d±(X, Fj)d±(Y, Fj)

hence (b) and (c) are equivalent.

Now we show that (b) and (d) are equivalent. We make use of the fact that the
barycentric coordinates of any point X = (x0, . . . , xn) with respect to ∆ satisfies
the following:

(4) xi = d±(X, Fi)
d±(Vi, Fi)

.
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This is because

d±(X, Fi)
d±(Vi, Fi)

= 〈x − s, ni〉
〈vi − s, ni〉

=

󰁇󰁓n
j=0 xj(vj − s), ni

󰁈

〈vi − s, ni〉

=
󰁓n

j=0 xj 〈vj − s, ni〉
〈vi − s, ni〉

= xi 〈vi − s, ni〉
〈vi − s, ni〉

= xi.

Now using (4), we obtain
xiyid±(Vi, Fi)2 = xjyjd±(Vj , Fj)2

d±(X, Fi)
d±(Vi, Fi)

d±(Y, Fi)
d±(Vi, Fi)

d±(Vi, Fi)2 = d±(X, Fj)
d±(Vi, Fj)

d±(Y, Fi)
d±(Vi, Fj)d±(Vj , Fj)2

d±(X, Fi)d±(Y, Fi) = d±(X, Fj)d±(Y, Fj)
as desired.

Finally we show that (a) and (e) are equivalent in the case where X and Y are
interior points. Let nX and nY be the unit normal vectors of AX and AY such
that AX and AY are directed towards Vj and Vi respectively. By Lemma 12, we
may write nX = αni + βnj and nY = γni + δnj , where α < 0 < β and γ > 0 > δ.
The main idea is to prove that both conditions are equivalent to (β, α) = (γ, δ).
Rewrite (e) as

〈nX , ni〉 = 〈nY , nj〉
〈αni + βnj , ni〉 = 〈γni + δnj , nj〉

α + β 〈ni, nj〉 = γ 〈ni, nj〉 + δ

Also, note that 󰀂nX󰀂 = 󰀂nY 󰀂 = 1 implies α2 + β2 + 2αβ 〈ni, nj〉 = γ2 + δ2 +
2γδ 〈ni, nj〉 = 1. Hence (p, q) = (β, α) and (p, q) = (γ, δ) are both solutions to the
following system:

󰀻
󰀿

󰀽

p 〈ni, nj〉 + q = c, where c = 〈nX , ni〉 = 〈nY , nj〉
1 = p2 + q2 + 2pq 〈ni, nj〉
p > 0 > q

However, combining the first two equations and rearranging gives p2 = 1−c2

1−〈ni,nj〉2 ,

so the unique positive value of p is p =
󰁴

1−c2

1−〈ni,nj〉2 . It follows that the value of q

is unique as well. Hence the first condition is equivalent to (β, α) = (γ, δ). For (a),
denote the (n − 1)-dimensional vector subspace parallel to Bi,j as Ci,j and let n′

X

be the reflection of nX across Ci,j . Since ni and nj are reflections across Ci,j (by
Lemma 11), we have

n′
X = reflCi,j (nX) = reflCi,j (αni + βnj)

= αreflCi,j
(ni) + βreflCi,j

(nj) = αnj + βni = βni + αnj .

On the other hand, (a) holds if and only if the reflection of AX − s across Ci,j is
equal to AY −s. Recall that reflection preserves inner products, so it also preserves
orthogonality: hence (a) is actually equivalent to (reflCi,j (AX − s))⊥ = sp({n′

X})
and (AY − s)⊥ = sp({nY }) being equal i.e. n′

X 󰀂 nY . Of course n′
X and nY are
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both unit vectors pointing towards Vi, so n′
X 󰀂 nY if and only if n′

X = nY i.e.
βni + αnj = γni + δnj , which is equivalent to (β, α) = (γ, δ). □

Letting Lemma 13 run through all i ∕= j, we immediately obtain the first main
theorem of this paper:

Theorem 14. (New characterisations for isogonal conjugate pairs) Let
X and Y be points. Then, the following statements are equivalent:

(a) For all i ∕= j, the reflection of X across Bi,j lies on a hyperplane containing
Y and Fi,j.

(b) d±(X, F0)d±(Y, F0) = · · · = d±(X, Fn)d±(Y, Fn).
(c)

󰀐󰀐󰀐
−−→
Y X ′

0

󰀐󰀐󰀐 = · · · =
󰀐󰀐󰀐
−−−→
Y X ′

n

󰀐󰀐󰀐.
(d) x0y0d±(V0, F0)2 = · · · = xnynd±(Vn, Fn)2, where (x0, x1, . . . , xn) and

(y0, y1, . . . , yn) are the barycentric coordinates of X and Y with respect to
∆ respectively.

In particular, if X and Y are both interior points of ∆, then the above statements
are also equivalent to the following:

(e) X and Y form an isogonal conjugate pair as in Definition 9.

Theorem 14 enables us to extend the scope of isogonal conjugation to non-
interior points:

Definition 15. (Isogonal conjugate pair, isogonal conjugate of point) If
two points X and Y satisfy any of the statements (a)—(d) in Theorem 14, we say
that X and Y form an isogonal conjugate pair.

If Y is the unique point which forms an isogonal conjugate pair with X, and X
is also the unique point which forms an isogonal conjugate pair with Y , then we
say that X and Y are the isogonal conjugate of each other. In such case, we write
Y = X∗.

The word “pair” is justified by that statements (b) and (d) in Theorem 14 are
symmetric in X and Y . We have the following classification of points based on
how they form isogonal conjugate pairs:

Theorem 16. (Number of points forming isogonal conjugate pairs) Let
X and Y be two points with barycentric coordinates (x0, . . . , xn) and (y0, . . . , yn)
with respect to ∆ respectively. Then:

(a) If some of x0, . . . , xn are zero (i.e. X lies on some Fi), then X and Y form
an isogonal conjugate pair if and only if for all i = 0, . . . , n at least one of
xi or yi is zero. In such case, if X lies on exactly k of the extended facets,
then Y lies on the remaining (n + 1 − k) extended facets. The isogonal
conjugate of X does not exist.
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(b) If all of x0, . . . , xn are non-zero and

(5)
n󰁛

k=0

1
d±(Vk, Fk)2xk

= 0,

then no points form an isogonal conjugate pair with X. The isogonal con-
jugate of X does not exist.

(c) Otherwise, the isogonal conjugate X∗ of X exists, whose barycentric coor-
dinates with respect to ∆ are

󰀕
1

d±(V0, F0)2x0
: · · · : 1

d±(Vn, Fn)2xn

󰀖
.

This includes the case when X is an interior point of ∆ (because the sum
in the left-hand side of (5) is positive) (cf. [22]).

Proof. By Theorem 14, X and Y form an isogonal conjugate pair if and only if

(6) x0y0d±(V0, F0)2 = · · · = xnynd±(Vn, Fn)2.

Note that d±(V0, F0)2, . . . , d±(Vn, Fn)2 are all positive. Suppose Y forms an isog-
onal conjugate pair with X.

For case (a), the expressions in (6) must all be zero, hence

x0y0 = · · · = xnyn = 0

and so for all i = 0, . . . , n, at least one of xi or yi is zero. (Note that for all i, all
points on Fi form an isogonal conjugate pair with Vi. ) Now suppose X ∈ Fi. If
Y ∕= Vi, then Y and Vi both form an isogonal conjugate pair with X. If Y = Vi,
then for any point Z ∈ Fi \ {X}, we have that X and Z both form an isogonal
conjugate pair with Y . In either case, X and Y are not the isogonal conjugate of
each other as they are not the unique points which form an isogonal conjugate pair
with each other.

For cases (b) and (c) we may rewrite (6) as

y0 : · · · : yn = 1
d±(V0, F0)2x0

: · · · : 1
d±(Vn, Fn)2xn

so Y exists (and is unique) if and only if (5) does not hold, implying the desired
claim. □

2.2. (2n+2)-point Hypersphere. We now conclude this section with the follow-
ing interesting result, which is the second main theorem of this paper:

Theorem 17. ((2n+2)-point hypersphere) Suppose points X and Y form an
isogonal conjugate pair. Then X0, . . . , Xn, Y0, . . . , Yn lie on a common hypersphere
whose centre is the midpoint of X and Y (see Figure 13).
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Figure 13. :

Proof. Let M be the midpoint of X and Y . Since Xi is the midpoint of X and
Xi

′, 󰀐󰀐󰀐
−−−→
MXi

󰀐󰀐󰀐 = 1
2

󰀐󰀐󰀐
−−→
Y X ′

i

󰀐󰀐󰀐

the right-hand side is equal for all i by Theorem 14 (c). Furthermore,
󰀐󰀐󰀐
−−−→
MXi

󰀐󰀐󰀐 = 1
2

󰀐󰀐󰀐
−−→
Y X ′

i

󰀐󰀐󰀐 = 1
2

󰀐󰀐󰀐
−−→
Yi

′X
󰀐󰀐󰀐 =

󰀐󰀐󰀐
−−→
YiM

󰀐󰀐󰀐

where the second equality follows by reflectional symmetry. From this we conclude
that

󰀐󰀐󰀐
−−−→
MX0

󰀐󰀐󰀐 = · · · =
󰀐󰀐󰀐
−−−→
MXn

󰀐󰀐󰀐 =
󰀐󰀐󰀐
−−→
MY0

󰀐󰀐󰀐 = · · · =
󰀐󰀐󰀐
−−−→
MYn

󰀐󰀐󰀐 and the result follows.
□
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3. Isogonal Conjugate of Circumcentre

Definition 18. (Circumcentre) The circumcentre of ∆ is the unique point
(which will be denoted by O throughout) equidistant from the vertices of ∆, i.e.
O satisfies 󰀐󰀐󰀐

−−→
OV0

󰀐󰀐󰀐 = · · · =
󰀐󰀐󰀐
−−→
OVn

󰀐󰀐󰀐 .

Note that O is not necessarily an interior point of ∆; it can lie outside ∆, and
even lie on some of the extended facets Fi. Here we only discuss the case where
O has an isogonal conjugate (i.e. O lies in case (c) of Theorem 16). The isogonal
conjugate of O will be denoted by O∗ throughout. First we will give yet another
characterisation for isogonal conjugate pairs beside the ones given in Theorem 14,
which will help us establish the main results related to O∗:

Lemma 19. (One more characterisation for isogonal conjugate pair)
Points X and Y form an isogonal conjugate pair if and only if

(7)
󰁇−−→

VkY ,
−−−→
XiXj

󰁈
= 0 for all i, j ∕= k.

Proof. Note that
−−−−→
Xi

′Xj
′ = 2−−−→

XiXj because Xi and Xj are the midpoints of XXi
′

and XXj
′ respectively. Furthermore, for any i, j ∕= k, by reflectional symmetry we

have that
󰀐󰀐󰀐
−−−→
VkXi

′
󰀐󰀐󰀐 =

󰀐󰀐󰀐
−−→
VkX

󰀐󰀐󰀐 =
󰀐󰀐󰀐
−−−→
VkXj

′
󰀐󰀐󰀐. Thus

󰁇−−→
VkY ,

−−−→
XiXj

󰁈
= 0

󰁇−−→
VkY ,

−−−−→
Xi

′Xj
′
󰁈

= 0

〈y − vk, xi
′〉 = 〈y − vk, xj

′〉

〈y − vk, xi
′〉 − 1

2

󰀐󰀐󰀐
−−−→
VkXi

′
󰀐󰀐󰀐

2
= 〈y − vk, xj

′〉 − 1
2

󰀐󰀐󰀐
−−−→
VkXj

′
󰀐󰀐󰀐

2

〈y, xi
′〉 − 〈vk, xi

′〉 − 1
2

󰀓
󰀂vk󰀂2 − 2 〈vk, xi

′〉 + 󰀂xi
′󰀂2

󰀔

= 〈y, xj
′〉 − 〈vk, xj

′〉 − 1
2

󰀓
󰀂vk󰀂2 − 2 〈vk, xj

′〉 + 󰀂xj
′󰀂2

󰀔

−1
2 󰀂y󰀂2 + 〈y, xi

′〉 − 1
2 󰀂xi

′󰀂2 = −1
2 󰀂y󰀂2 + 〈y, xj

′〉 − 1
2 󰀂xj

′󰀂2

−1
2 󰀂y − xi

′󰀂2 = −1
2 󰀂y − xj

′󰀂2

󰀐󰀐󰀐
−−→
Y X ′

i

󰀐󰀐󰀐 =
󰀐󰀐󰀐
−−→
Y X ′

j

󰀐󰀐󰀐

So (7) is actually equivalent to
󰀐󰀐󰀐
−−→
Y X ′

i

󰀐󰀐󰀐 =
󰀐󰀐󰀐
−−→
Y X ′

j

󰀐󰀐󰀐 for all i, j, which is equivalent to
X and Y forming an isogonal conjugate pair by Theorem 14 (c). □
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3.1. Inexcentre of Pedal Simplex of O∗.

Definition 20. (Pedal simplex) For any point X we define the pedal sim-
plex (denoted by ∆X throughout) of X to be the simplex whose vertices are the
projections of X onto the extended facets of ∆, i.e.

∆X = conv({X0, . . . , Xn}).

The extended facet of ∆X opposite to Xi will be denoted by FXi
= aff({X0, . . . , Xn}\

{Xi}), and its inward unit normal vector (directed towards Xi) will be denoted by
nXi . It will be the default unit normal vector whenever d±(P, FXi) is considered.

Lemma 21. (Existence of pedal simplex) If X has an isogonal conjugate,
then X has a pedal simplex, i.e. the points X0, . . . , Xn are affinely independent.

Proof. Let X∗ be the isogonal conjugate of X. Since Xi is the midpoint of XX ′
i, it

is equivalent to show that X ′
0, . . . , X ′

n are affinely independent. Suppose they are
not, i.e. they lie on a common hyperplane H. Then suppose there exists a point S
equidistant to X ′

0, . . . , X ′
n; then S + n is also equidistant to X ′

0, . . . , X ′
n, where n

is any normal vector of H. Thus X ′
0, . . . , X ′

n does not have a unique circumcentre.
However, by Theorem 14, X∗ is the unique point which is equidistant to X ′

0, . . . , X ′
n,

a contradiction. □

Definition 22. (Inexcentre of pedal simplex) A point I is an inexcentre of
∆X if its absolute distances to all the extended facets of ∆X are equal, i.e.

d(I, FX0) = · · · = d(I, FXn
).

In particular, I is the incentre of ∆X if

d±(I, FX0) = · · · = d±(I, FXn
).

After two lemmas, we can prove the third main theorem of the paper:

Lemma 23. For any two interior points X and Y of ∆,
󰁇−−→

ViY ,
−−−→
XjXi

󰁈
> 0 for all

i ∕= j.
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Proof. Suppose the barycentric coordinates of Y with respect to ∆ are (y0, . . . , yn).
Then

󰁇−−→
ViY ,

−−−→
XjXi

󰁈
=

󰁇−−→
ViY ,

−−−→
XjX

󰁈
+

󰁇−−→
ViY ,

−−→
XXi

󰁈

= d±(X, Fj)
󰁇−−→

ViY , nj

󰁈
+ d±(X, Fi)

󰁇−−→
ViY , −ni

󰁈

= d±(X, Fj)d±(Y, Fj) + d±(X, Fi) 〈vi − y, ni〉

= d±(X, Fj)d±(Y, Fj) + d±(X, Fi)
󰀭󰀣

n󰁛

k=0
yk

󰀤
vi −

n󰁛

k=0
ykvk, ni

󰀮

= d±(X, Fj)d±(Y, Fj) + d±(X, Fi)
n󰁛

k=0
yk 〈vi − vk, ni〉

= d±(X, Fj)d±(Y, Fj) + d±(X, Fi)
n󰁛

k=0
k ∕=i

ykd±(Vi, Fi)

> 0

since all terms are positive. □

Lemma 24. Let X be a point with isogonal conjugate X∗. Then for any i, −−−→
ViX

∗

is a scalar multiple of nXi . In particular, if X is an interior point of ∆, then −−−→
ViX

∗

is a positive scalar multiple of nXi
.

Proof. Recall by Lemma 19 that for any j, k ∕= i we have
󰁇−−−→

ViX
∗,

−−−→
XjXk

󰁈
=

0. This implies that −−−→
ViX

∗ is actually orthogonal to the hyperplane containing
{X0, . . . , Xn} \ {Xi}, which is FXi . Hence it is parallel to the unit normal vector
nXi of FXi , so it must be a scalar multiple of nXi . If X is an interior point, by
Lemma 23 we have

󰁇−−−→
ViX

∗,
−−−→
XjXi

󰁈
> 0 for some j ∕= i. However,

󰁇
nXi ,

−−−→
XjXi

󰁈
> 0

because nXi
is directed towards Xi by definition. Hence −−−→

ViX
∗ and nXi

must point
in the same direction, so −−−→

ViX
∗ is a positive scalar multiple of nXi

. □

Theorem 25. (Isogonal conjugate of circumcentre as inexcentre of its
pedal simplex) The isogonal conjugate O∗ of the circumcentre O, if it exists,
is an inexcentre of its own pedal simplex. Furthermore, if X is an interior point of
∆, then it is the incentre of its own pedal simplex if and only if X = O∗.

Proof. Note that −−→
XiX = d±(X, Fi)ni and −−−→

XjX = d±(X, Fj)nj . Also note that by
Lemma 24, we can write −−−→

ViX
∗ = ai

󰀐󰀐󰀐
−−−→
ViX

∗
󰀐󰀐󰀐 nXi and −−−→

VjX∗ = aj

󰀐󰀐󰀐
−−−→
VjX∗

󰀐󰀐󰀐 nXj for
some ai, aj = ±1 (= 1 when X∗ is an interior point). Now X∗ = O if and only if
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󰀐󰀐󰀐
−−−→
V0X∗

󰀐󰀐󰀐 = · · · =
󰀐󰀐󰀐
−−−→
VnX∗

󰀐󰀐󰀐, and for any i ∕= j,
󰀐󰀐󰀐
−−−→
ViX

∗
󰀐󰀐󰀐 =

󰀐󰀐󰀐
−−−→
VjX∗

󰀐󰀐󰀐

d±(X, Fj)d±(X∗, Fj)󰀐󰀐󰀐
−−−→
ViX

∗
󰀐󰀐󰀐

= d±(X, Fi)d±(X∗, Fi)󰀐󰀐󰀐
−−−→
VjX∗

󰀐󰀐󰀐

d±(X, Fj)
󰁇−−−→

ViX
∗, nj

󰁈

󰀐󰀐󰀐
−−−→
ViX

∗
󰀐󰀐󰀐

=
d±(X, Fi)

󰁇−−−→
VjX∗, ni

󰁈

󰀐󰀐󰀐
−−−→
VjX∗

󰀐󰀐󰀐
󰁇−−−→

ViX
∗, d±(X, Fj)nj

󰁈

󰀐󰀐󰀐
−−−→
ViX

∗
󰀐󰀐󰀐

=

󰁇−−−→
VjX∗, d±(X, Fi)ni

󰁈

󰀐󰀐󰀐
−−−→
VjX∗

󰀐󰀐󰀐
󰁇

ai

󰀐󰀐󰀐
−−−→
ViX

∗
󰀐󰀐󰀐 nXi ,

−−−→
XjX

󰁈

󰀐󰀐󰀐
−−−→
ViX

∗
󰀐󰀐󰀐

=

󰁇
aj

󰀐󰀐󰀐
−−−→
VjX∗

󰀐󰀐󰀐 nXj ,
−−→
XiX

󰁈

󰀐󰀐󰀐
−−−→
VjX∗

󰀐󰀐󰀐

ai

󰁇
nXi ,

−−−→
XjX

󰁈
= aj

󰁇
nXj ,

−−→
XiX

󰁈

aid±(X, FXi
) = ajd±(X, FXj

)
=⇒ d(X, FXi) = d(X, FXj )

So if X and O are isogonal conjugates, then
󰀐󰀐󰀐
−−−→
V0X∗

󰀐󰀐󰀐 = · · · =
󰀐󰀐󰀐
−−−→
VnX∗

󰀐󰀐󰀐 implies
d(X, FX0) = · · · = d(X, FXn), so X is an inexcentre of its pedal simplex. If we
restrict our view and consider interior points X only, then since ai = 1 for all i

we actually have
󰀐󰀐󰀐
−−−→
V0X∗

󰀐󰀐󰀐 = · · · =
󰀐󰀐󰀐
−−−→
VnX∗

󰀐󰀐󰀐 ⇐⇒ d±(X, FX0) = · · · = d±(X, FXn),
therefore X is the incentre of its own pedal simplex if and only if X∗ = O (i.e.
X = O∗). □

3.2. Radical Centre of Facetal Circumhyperspheres.

Definition 26. (Facetal circumhypersphere) The facetal circumhypersphere
Si of the facet opposite to Vi, i.e. conv(V \ {Vi}), is the hypersphere centred at Oi

with radius Ri =
󰀐󰀐󰀐
−−→
OiVj

󰀐󰀐󰀐 where j ∕= i.

We conclude this section with the final main theorem of this paper:

Theorem 27. (Isogonal conjugate of circumentre as radical centre of
facetal circumhyperspheres) Let X be a point. Then,
(8) Pow(X, S0) = · · · = Pow(X, Sn)

if and only if X = O∗, where Pow(X, Si) =
󰀐󰀐󰀐
−−→
OiX

󰀐󰀐󰀐
2

− Ri
2 is called the power of

X with respect to Si. In other words, O∗ is the radical centre of S0, . . . , Sn.
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Proof.

Pow(X, Si) = Pow(X, Sj)
󰀐󰀐󰀐
−−→
OiX

󰀐󰀐󰀐
2

−
󰀐󰀐󰀐
−−−→
OiVk

󰀐󰀐󰀐
2

=
󰀐󰀐󰀐
−−→
OjX

󰀐󰀐󰀐
2

−
󰀐󰀐󰀐
−−−→
OjVk

󰀐󰀐󰀐
2

󰁇−−→
OiX − −−−→

OiVk,
−−→
OiX + −−−→

OiVk

󰁈
=

󰁇−−→
OjX − −−−→

OjVk,
−−→
OjX + −−−→

OjVk

󰁈

󰁇−−→
VkX,

−−→
OiX + −−−→

OiVk

󰁈
=

󰁇−−→
VkX,

−−→
OjX + −−−→

OjVk

󰁈

󰁇−−→
VkX,

−−→
OiX + −−−→

OiVk −
󰀓−−→

OjX + −−−→
OjVk

󰀔󰁈
= 0

󰁇−−→
VkX, 2−−−→

OiOj

󰁈
= 0

󰁇−−→
VkX,

−−−→
OiOj

󰁈
= 0

By considering all i, j ∕= k, we find that (8) is actually equivalent to
󰁇−−→

VkX,
−−−→
OiOj

󰁈
=

0 for all i, j ∕= k. By Lemma 19, this is true if and only if X = O∗. □

4. Closing Remarks

Besides having obtained the four main theorems in this paper, we also have some
interesting observations during the course of research.

With some work, one can show that the circumhypersphere of ∆ has the barycen-
tric equation

󰁛

i<j

xixj

󰀐󰀐󰀐
−−→
ViVj

󰀐󰀐󰀐
2

= 0.

It can be re-written into (5) if and only if n = 2, whose solution set is precisely the
circumcircle of a triangle excluding the vertices. This explains certain degree of
well-behavedness of O∗ in two dimensions, as it is impossible for the circumcentre
of a triangle to lie on the circumcircle. However, we still do not know whether O
might lie in the solution set of (5) when n > 2 — if the answer is negative, then
the assumption made in the first sentence of Theorem 25 could nearly be removed.

Furthermore, in order to study the solution set of the homogeneous equation
(5) in Rn+1, it can be seen as an object in the projective space RPn. Advanced
knowledge and techniques from the latter may help us understand the solution set
of (5).

Our research has been heavily dependent on the existence of an inner product.
What if we consider the geometries, of simplex centres in particular, arising from
only a norm? We learned that this field is called Minkowski geometry (see [14],
[15], [17], [18] and [25]), which has great room for research.
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REVIEWERS’ COMMENTS

This paper presents a discussion of generalizing the orthocentre of a triangle to
the isogonal conjugate of the circumcentre of a simplex in high dimensions. The pa-
per also covers discussion on two particular properties of the isogonal conjugate, e.g.,
whether the isogonal conjugate is the incentre or an excentre of its pedal simplex,
and whether the isogonal conjugate is the radical centre of the facetal circumhyper-
spheres of the simplex.

The method used to derive the results was mainly vector and linear algebra, yet
it requires some level of understanding of undergraduate level linear algebra, and
that impresses some of the referees.
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