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Abstract. In this report, we want to know whether there is a magic square

whose entries are distinct perfect squares.
Firstly, we analyze the basic properties of a magic square and find that the

magic sum of a magic square is equal to 3 times of the central entry and the

9 entries of a magic square contain 8 arithmetic progressions.
Secondly, we focus on our main target, magic square of squares. Investi-

gating the properties of the prime factors of those 9 entries, we find that if

the greatest common divisor of all entries is equal to 1, the prime factors of
central entry are of the form p ≡ 1 (mod 4), the central entry must not be a

square of a prime number and the common prime factors of any two adjacent
entries (if exist) are not of the form p ≡ 3 (mod 4).

Thirdly, we find that this problem is equivalent to a system of Diophantine

equations with ten variables. We provide a construction method of the solution
to these partial equations:

a2 + b2 = c2 + d2 = e2 + f2 = g2 + h2 = 2M2,

where these nine perfect squares are distinct.

Finally, based on the theorems obtained, we find that given a positive
integer N , there exists a positive integer M such that it has N essentially
different representations of a sum of two perfect squares.

1. Part I

First of all, let’s define what magic square is.

Definition 1. A magic square is a n × n square of which entries are positive
integers and sum in any row, column or main diagonal is the same. This sum is
called magic sum.

In this report, we only focus on 3× 3 magic square. A magic square must have the
form:
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x1 x2 x3

x4 x5 x6

x7 x8 x9

Property 1. If M denotes the magic sum, M = 3x5.

Proof.

4M = (x1 + x5 + x9) + (x2 + x5 + x8) + (x3 + x5 + x7) + (x4 + x5 + x6)

= (x1 + x2 + x3) + (x4 + x5 + x6) + (x7 + x8 + x9) + 3x5

= 3M + 3x5

Therefore, M = 3x5.

Property 2. All the entries can be expressed by 3 integers and every magic square
has the form

c− a+ b c+ a− 2b c+ b

c+ a c c− a

c− b c− a+ 2b c+ a− b

,

where c = x5, a = x5 − x6, b = x5 − x7.

Proof. x1 + x5 + x9 = x2 + x5 + x8 = x3 + x5 + x7 = x4 + x5 + x6 = 3x5 = M

Therefore, x1 = 2x5 − x9, x2 = 2x5 − x8, x4 = 2x5 − x6, x3 = 2x5 − x7.

Since M = x1 + x4 + x7 = x3 + x6 + x9 = x1 + x2 + x3 = 3x5,

x1 = 3x5 − x7 − (2x5 − x6) = x5 + x6 − x7,
x9 = 3x5 − x3 − x6 = 3x5 − (2x5 − x7)− x6 = x5 − x6 + x7 and

x2 = 3x5 − x1 − x3 = 3x5 − (x5 + x6 − x7)− (2x5 − x7) = 2x7 − x6
Since x8 = 2x5 − x2, x8 = 2x5 − (2x7 − x6) = 2x5 + x6 − x7.

Let c = x5, a = x5 − x6, b = x5 − x7,
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x1 x2 x3

x4 x5 x6

x7 x8 x9

can be written as

c− a+ b c+ a− 2b c+ b

c+ a c c− a

c− b c− a+ 2b c+ a− b

Property 3. The corner entry equals the average of the two middle-side entries
that are not adjacent to the corner.

The central entry equals the average of the two entries that are in the same magic
line through the central entry.

Proof. since x1 +x5 +x9 = x2 +x5 +x8 = x3 +x5 +x7 = x4 +x5 +x6 = 3x5 = M ,

x1 + x9 = x2 + x8 = x3 + x7 = x4 + x6 = 2x5 (1)

By property 2:

x2 + x4 = 2x9 (2)

x2 + x6 = 2x7 (3)

x6 + x8 = 2x1 (4)

x4 + x8 = 2x3 (5)
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2. Part II

In this part, we investigate the properties of magic squares of squares, of which
entries are distinct perfect squares.

A magic square of squares must have this form:

y21 y22 y23

y24 y25 y26

y27 y28 y29

,

where yi are distinct positive integer. (i = 1, 2, . . . , 9)

If the greatest common divisor of y1, y2, . . . , y9 (= D) is greater than 1,

y21
D2

y22
D2

y23
D2

y24
D2

y25
D2

y26
D2

y27
D2

y28
D2

y29
D2

is also a magic squares of square so, in this part, we only focus on the case when
g.c.d (y1, y2, . . . , y9) = 1.

We assume all entries are relatively prime in this part.

Property 4. y1, y2, . . . , y9 are odd numbers.

Proof. Suppose y5 ≡ 0 (mod 2), we can get y25 ≡ 0 (mod 4) and 2y25 ≡ 0 (mod 8),

∴ 2y25 = y2i + y210−i ≡ 0 (mod 8) for (i = 1, 2, 3, 4, 6, 7, 8, 9) (By (1)).

a2 =

{
0 or 4 (mod 8) if a is even

1 (mod 8) if a is odd
(see Lemma 15 in the Appendix), so

a2 + b2 ≡ 0 (mod 8) ⇐⇒ a ≡ b ≡ 0 (mod 2) (6)

(by considering the positive outcome of a2 + b2 (mod 8))

[See reviewer’s comment (1)]
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∴ yi ≡ 0 (mod 2) for (i = 1, 2, . . . , 9) which contradicts our assumption:

g.c.d (y1, y2, . . . , y9) = 1.

We must have

y5 ≡ 1 (mod 2) (7)

Suppose yi = 2ti, where ti ∈ Z (i ∈ {1, 2, 3, 4, 6, 7, 8, 9}).

From (1), we get: y2i + y210−i = 2y25 , y
2
10−i = 2(y25 − 2t2i ),

∴ ∃t10−i ∈ Z s.t. y10−i = 2t10−i, 2(t2i + t210−i) = y25 .

∴ y5 ≡ 0 (mod 2) which contradicts (7) so we must have yi ≡ 1 (mod 2).

we can get yi ≡ 1 (mod 2) for i ∈ {1, 2, 3, 4, 6, 7, 8, 9}.

Property 5. The prime factors of y5 are of the form p ≡ 1 (mod 4).

Proof. Let p be a prime of y5, we can get:

y2i + y210−i ≡ 2y25 (mod p) where (i = 1, 2, 3, 4, 6, 7, 8, 9).

There exists a i ∈ {1, 2, 3, 4, 6, 7, 8, 9} such that yi is not divisible by p, otherwise
all entries are divisible by p. Let p - yi, y2i + y210−i ≡ 0 (mod p). Since ∀a ∈ Z,
such that g.c.d(a, p) = 1, ∃a∗ ∈ Z, such that aa∗ ≡ 1 (mod p) (see Lemma 16 in
the Appendix).

∴ (y∗i )2(y2i + y210−i) ≡ 0 (mod p), (y∗i y10−i)
2 ≡ −1 (mod p),

We can get that x2 ≡ −1 (mod p) is solvable so

(−1

p

)
= 1. (here

(
a

p

)
denotes

the Legendre symbol.)

By Euler’s criterion:

a
p−1
2 ≡

(
a

p

)
(mod p)

(where a, p are relatively prime and p is an odd prime) (see Lemma 17 in the

appendix), we can get (−1)
p−1
2 = 1, so p ≡ 1 (mod 4).

Property 6. The common prime factors of any two adjacent entries (if exist) are
not of the form p ≡ 3 (mod 4).

Proof. It is impossible for y5 to have a prime factor p such that p ≡ 3 (mod 4).
Duo to the symmetry of magic square, we can suppose y1 ≡ y2 ≡ 0 (mod p) where
p ≡ 3 (mod 4) and p is a prime.

If a2+b2 ≡ 0 (mod p) and p is a prime s.t. p ≡ 3 (mod 4), then a ≡ b ≡ 0 (mod p).
(see Lemma 18 in the Appendix.)
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By (4),
y26 + y28 = 2y21 ≡ 0 (mod p).

By Lemma 18,
y6 ≡ y8 ≡ 0 (mod p).

By (1),
2y25 = y22 + y28 ≡ 0 (mod p),

so y3 ≡ 0 (mod p) which contradicts Property 5.

Property 7. If y5 is divisible by 5, any entries adjacent to the central entry are
not divisible by 5.

[See reviewer’s comment (2)]

Proof. WLOG, let y2 ≡ 0 (mod 5), y28 ≡ 2y25 − y22 ≡ 0 (mod 5),

∴ y8 ≡ 0 (mod 5).

Let y21 ≡ a (mod 5).

By (4), 2y21 = y28 + y26 ≡ 0 + y26 (mod 5), so y26 ≡ 2a (mod 5).

By (1), we can get:

y9 ≡ −a (mod 5) and y24 ≡ −2a (mod 5).

By (3), we can get:

2y27 = y22 + y26 ≡ 0 + 2a (mod 5) so y27 ≡ a (mod 5).

By (1),
y23 ≡ −a (mod 5),

∀a ∈ Z, a2 = 0, 1 or 4 (mod 5) (8)

(by considering the possible outcome of a2 (mod 5)) so a ≡ 0, 1 or 4 (mod 5).

Since y26 ≡ 2a (mod 5), 2a ≡ 0, 1 or 4 (mod 5). As a result, 5 | a. This contradicts
our assumption: all entries are relatively prime.

∴ any entries adjacent to the central entry are not divisible by 5.
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Property 8. y5 must be a composite nuymber.

Proof. Suppose 2p2 = a2 + b2 = c2 + d2 has a solution such that p is a prime and
a, b, c, d are distinct odd positive numbers:

WLOG let a > c > d > b > 0 :

Let d0 = g.c.d (a, b), a = d0a0, b = d0b0, where g.c.d(a0, b0) = 1.

2p2 = a2 + b2 = d20(a20 + b20) so d20 | 2p2. Since 2 - a, b, 2 - d0,

∴ d20 | p2 and d0 | p. Since p is a prime, d0 = p or 1.

If d0 = p, we have 2 = a20 + b20 so a0 = b0 = 1. However, this is contradictory to
our initial condition “a, b, c, d are distinct odd positive number”.

∴ g.c.d(a, b) = 1. Similarly, using the same argument, we have g.c.d (c, d) = 1.

4p4 = (2p2)2 = (a2 + b2)(c2 + d2)

= (ac− bd)2 + (ad+ bc)2 = (ac+ bd)2 + (ad− bc)2 (9)

since

(ac+ bd)(ad+ bc) = cd(a2 + b2) + ab(c2 + d2) = 2p2(ab+ cd) (10)

p2 | (ac+ bd)(ad+ bc)

There are three cases:

Case A: p2 | ac+ bd, Case B: p2 | ad+ bc, Case C: p | ac+ bd and p | ad+ bc.

Case A:

let kp2 = ac+ bd, where k ∈ N.

From (9),

(ad− bc)2 = 4p4 − (ac+ bd)2 = (4− k2)p4 (11)

∴ p2 | ad− bc. Let ad− bc = sp2, where s ∈ Z.

Put it into (11), we get: s2 + k2 = 4. Since k ∈ N, k = 1 or 2.

When k = 1, no solution. When k = 2, s = 0. So ad = bc, a
b = c

d .

Since g.c.d(a, b) = g.c.d(c, d) = 1, we have a = c and b = d, that contradicts a, b, c, d
are distinct odd positive numbers.

Case B is similar to Case A.
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Case C: p | ac+ bd and p | ad+ bc,

let ac+ bd = s1p, ad+ bc = s2p, where s1 and s2 are positive integers.

From (9), (ac − bd)2 = 4p4 − (ad + bc)2 = 4p4 − (s2p)
2 = p2(4p2 − s22), and

(ad− bc)2 = 4p4 − (ac+ bd)2 = p2(4p2 − s21), so p | (ad− bc) and p | (ac− bd).

Let ad− bc = k1p and ac− bd = k2p, where k1, k2 ∈ Z.

Hence, ac+ bd, ad+ bc, ac− d and ad− bc ≡ 0 (mod p).

The difference or sum of any two numbers out of these four numbers is also divisible
by p.

As a result, ac, bd, ad and bc ≡ 0 (mod p).

If a ≡ 0 (mod p), b2 = 2p2 − a2 ≡ 0 (mod p).

Thus, b ≡ 0 (mod p) since p is a prime.

However, it is imposiible since g.c.d(a, b) = 1.

Similarly, a, b, c, d are not divisible by p contradicting “ac, bd, ad and bc are divisible
by p”.

Combining Cases A,B and C, we conclude that it is impossible for 2p2 to have two
essentially different representations of the sum of two squares.

Since 2y25 = y2i + y210−i for (i = 1, 2, 3, 4), 2y25 has four essentially different repres-
ntations of the sum of two squares.

∴ y5 must not be a prime.

[See reviewer’s comment (3)]

3. Part III

The existence of magic square of squares is equivalent to the existence of the solution
to this set of Diophantine equations:

a2 + b2 + c2 = d2 + e2 + f2 = g2 + h2 + i2 = a2 + d2 + g2 = b2 + e2 + h2

= c2 + f2 + i2 = a2 + e2 + i2 = c2 + e2 + g2 = M

where a, b, c, d, e, f, g, h, i and M are distinct positive integers.

In this part, we provide a construction method of solutions to these Diophantine
equations:

a2 + b2 = c2 + d2 = e2 + f2 = g2 + h2 = 2k2 (*)
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From (1), we find that the 9 entries satisfy (*). If we can find a construction method
of solutions to (*), it is possible for us to find magic square of squares.

Theorem 9.

(a, b) = (k1k3k5 − k2k4k5 − k1k4k6 − k2k3k6, k1k3k6 − k2k4k6 + k1k4k5 + k2k3k5)

(c, d) = (k1k3k5 + k2k4k5 − k1k4k6 + k2k3k6, k1k3k6 + k2k4k6 + k1k4k5 − k2k3k5)

(e, f) = (k1k3k5 + k2k4k5 + k1k4k6 − k2k3k6, k1k3k6 + k2k4k6 − k1k4k5 + k2k3k5)

(g, h) = (k1k3k5 − k2k4k5 + k1k4k6 + k2k3k6, k1k3k6 − k2k4k6 − k1k4k5 − k2k3k5)

where (k1, k2, k3, k4, k5, k6) = (t21−t22, 2t1t2, t23−t24, 2t3t4, t25−t26−2t5t6, t
2
5−t26+2t5t6)

and k = (t21 + t22)(t23 + t24)(t25 + t26), then a, b, c, d, e, f, g, h, k are solution to

a2 + b2 = c2 + d2 = e2 + f2 = g2 + h2 = 2k2.

Proof. We have this identity:

(ac− bd)2 + (ad+ bc)2 = (ac+ bd)2 + (ad− bc)2 = (a2 + b2)(c2 + d2) (9)

Using this identity repeatedly, we get:

(k21 + k22)(k23 + k24)(k25 + k26)

= ((k1k3 − k2k4)2 + (k1k4 + k2k3)2)(k25 + k26)

= ((k1k3 + k2k4)2 + (k1k4 − k2k3)2)(k25 + k26)

= ((k1k3 + k2k4)k5 − (k1k4 − k2k3)k6)2 + ((k1k3 + k2k4)k6 + (k1k4 − k2k3)k5)2

= ((k1k3 + k2k4)k5 + (k1k4 − k2k3)k6)2 + ((k1k3 + k2k4)k6 − (k1k4 − k2k3)k5)2

= ((k1k3 − k2k4)k5 − (k1k4 + k2k3)k6)2 + ((k1k3 − k2k4)k6 + (k1k4 + k2k3)k5)2

= ((k1k3 − k2k4)k5 − (k1k4 + k2k3)k6)2 − ((k1k3 − k2k4)k6 + (k1k4 + k2k3)k5)2

[See reviewer’s comment (4)]

Let

(a, b) = (|k1k3k5 − k2k4k5 − k1k4k6 − k2k3k6|, |k1k3k6 − k2k4k6 + k1k4k5 + k2k3k5|)
(c, d) = (|k1k3k5 + k2k4k5 − k1k4k6 + k2k3k6|, |k1k3k6 + k2k4k6 + k1k4k5 − k2k3k5|)
(e, f) = (|k1k3k5 + k2k4k5 + k1k4k6 − k2k3k6|, |k1k3k6 + k2k4k6 − k1k4k5 + k2k3k5|)
(g, h) = (|k1k3k5 − k2k4k5 + k1k4k6 + k2k3k6|, |k1k3k6 − k2k4k6 − k1k4k5 − k2k3k5|),
then a2 + b2 = c2 + d2 = e2 + f2 = g2 + h2 = (k21 + k22)(k23 + k24)(k25 + k26).
If we let

(k1, k2, k3, k4, k5, k6) = (t21 − t22, 2t1t2, t23 − t24, 2t3t4, t25 − t26 − 2t5t6, t
2
5 − t26 + 2t5t6),

(k21 + k22)(k23 + k24)(k25 + k26) = (t21 + t22)2(t33 + t24)2(2(t25 + t26)2) = 2k2,

where
k = (t21 + t22)(t23 + t24)(t25 + t26).

[See reviewer’s comment (5)]
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Example 10. Taking (t1, t2, t3, t4, t5, t6) = (1, 2, 3, 4, 5, 6), we can get:

2(7625)2 = 102252 + 34252 = 61512 + 88572 = 104632 + 26092 = 4252 + 107752

so we can find a solution of (*).

Corollary 11. (ac − bd)2 + (ad + bc)2 = (ac + bd)2 + (ad − bc)2 represent two
different ways of sum of two squares and these four squares are distinct if and only
if

abcd(a2 − b2)(c2 − d2)(a2(c− d)2 − b2(c+ d)2)(a2(c+ d)2 − b2(c+ d)2) 6= 0.

Proof. These four squares are distinct

⇐⇒ ((ac− bd)2 − (ad+ bc)2)((ac− bd)2 − (ac+ bd)2)

× ((ac− bd)2 − (ad− bc)2)((ad+ bc)2 − (ac+ bd)2)

× ((ad+ bc)2 − (ad− bc)2)((ac+ bd)2 − (ad− bc)2) 6= 0

⇐⇒ 16a2b2c2d2(a2 − b2)2(c2 − d2)2(a2(c− d)2 − b2(c+ d)2)

× (a2(c+ d)2 − b2(c+ d)2) 6= 0

⇐⇒ abcd(a2 − b2)(c2 − d2)(a2(c− d)2 − b2(c+ d)2)(a2(c+ d)2 − b2(c+ d)2) 6= 0

[See reviewer’s comment (6)]

Corollary 12. If a, b, c, d, e, f, g, h obtained in Theorem 9 are distinct, then

k1k2k3k4k5k6(k1k5 ± k2k6)(k2k5 ± k1k5)(k1k3 ± k1k5)

× (k2k3 ± k1k4)(k3k5 ± k4k6)(k4k5 ± k3k6) 6= 0.

Proof. (k21 + k22)(k23 + k24)(k25 + k26) = (k2i1 + k2i2)(k2i3 + k2i4)(k2i5 + k2i6), where sets
{i1, i2}, {i3, i4}, {i5, i6} are permutation of the sets {1, 2}, {3, 4}, {5, 6}.

(k2i1 + k2i2)(k2i3 + k2i4)(k2i5 + k2i6)

= ((ki1ki3∓ki2ki4)2 + (ki1ki4±ki2ki3)2)(k2i5 + k2i6)

= ((ki1ki3∓ki2ki4)ki5±(ki1ki4±ki2ki3)ki6)2+

((ki1ki3∓ki2ki4)ki6∓(ki1ki4±ki2ki3)ki5)2,

where the two red sign ∓ and ± are chosen in a opposite way.

[See reviewer’s comment (V)]

It is not difficult to see that no matter what the permutation of {i1, i2}, {i3, i4}, {i5, i6}
we choose, the sum of two squares generated by this approach is always amount
the four representations generated in Theorem 9.

By Corollary 11,

abcd(a2 − b2)(c2 − d2)(a2(c− d)2 − b2(c+ d)2)(a2(c+ d)2 − b2(c+ d)2) 6= 0,

where a = ki1ki3∓ki2ki4 , b = ki1ki4±ki2ki3 , c = ki5 , d = ki6 .
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Since {i1, i2}, {i3, i4}, {i5, i6} is a permutation of {1, 2}, {3, 4}, {5, 6}, we can get

k1k2k3k4k5k6(k1k5 ± k2k6)(k2k5 ± k1k5)(k1k3 ± k1k5)

× (k2k3 ± k1k4)(k3k5 ± k4k6)(k4k5 ± k3k6) 6= 0

We investigate whether this approach can help us find magic square of squares.

Corollary 13. If there exists 9 distinct positive integers such that

2y25 = y2i + y210−i (for i = 1, 2, 3, 4) (10)

and

y22 + y24 = 2y29 , (11)

y22 + y26 = 2y27 , (12)

y26 + y28 = 2y21 , (13)

y24 + y28 = 2y23 , (14)

y2i (i = 1, 2, . . . , 9) are the entries of magic square of squares.

Proof. We want to prove

y21 y22 y23

y24 y25 y26

y27 y28 y29

is that magic square of squares. This suffics to prove

y21 + y24 + y27 = y27 + y28 + y29 = y29 + y26 + y23 = y21 + y22 + y23 = 3y25

and

3y25 = y2i + y210−i + y25 (for i = 1, 2, 3, 4).

By (10),

3y25 = y2i + y210−i + y25 (for i = 1, 2, 3, 4).

By (12), (13):

y21 + y24 + y27 =
y26 + y28

2
+ (2y25 − y26) +

y22 + y26
2

= 2y25 +
y22 + y28

2
= 3y25 .

Similarly,

y27 + y28 + y29 = y29 + y26 + y23 = y21 + y22 + y23 = 3y25 .
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There are many possible ways of distribution of a2, b2, . . . , h2 and k2 in the entries
of magic square. It is hard to verify all the cases so we shift our attention to an
interesting fact:

Given a positive integer N , there exits a positive integer M such that
it has N essentially different representations of a sum of two perfect
squares.

4. Part IV

In this part, we prove an interesting fact:

Given a positive integer N , there exits a positive integer M such that it has N
essentially different representations of a sum of two perfect squares.

Proof. [See reviewer’s comment (7)]
a2 + b2 = c2 + d2 where a, b, c, d are positive distinct integers.

Let p, q be two distinct positive integers: consider

(a2 + b2)(p2 + q2) = (ap− bq)2 + (aq + bp)2 = (ap+ bq)2 + (aq − bp)2

= (c2 + d2)(p2 + q2) = (cp− dq)2 + (cq + dp)2 = (cp+ dq)2 + (cq − dp)2

If (ap − bq)2, (aq + bp)2, (ap + bq)2, (aq − bp)2, (cp − dq)2, (cq + dp)2, (cp + dq)2,
(cp + dq)2 and (cq − dp)2 are different integers, then their pairwise difference are
not equal to zero.

By Corollary 11,

pqcd(p2 − q2)(c2 − d2)(p2(c− d)2 − q2(c+ d)2)(p2(c+ d)2 − q2(c+ d)2) 6= 0 (15)

guarantees (cp− dq)2, (cq + dp)2, (cp+ dq)2, (cq − dp)2 are distinct.

By Corollary 11,

pqab(p2 − q2)(a2 − b2)(p2(a− b)2 − q2(a+ b)2)(p2(a+ b)2 − q2(a+ b)2) 6= 0 (16)

guarantees (ap− bq)2, (aq + bp)2, (ap+ bq)2, (aq − bp)2 are distinct.

Now we only need to consider
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((cq + dp)2 − (ap− bq)2)((cq + dp)2 − (aq + bp)2)

×((cq + dp)2 − (ap+ bq)2)((cq + dp)2 − (aq − bp)2)

×((cq − dp)2 − (ap− bq)2)((cq − dp)2 − (aq + bp)2)

×((cq − dp)2 − (ap+ bq)2)((cq − dp)2 − (aq − bp)2)

×((cp− dq)2 − (ap− bq)2)((cp− dq)2 − (aq + bp)2)

×((cp− dq)2 − (ap+ bq)2)((cp− dq)2 − (aq − bp)2)

×((cp+ dq)2 − (ap− bq)2)((cp+ dq)2 − (aq + bp)2)

×((cp+ dq)2 − (ap+ bq)2)((cp+ dq)2 − (aq − bp)2)

6=0

⇐⇒ cq ± dp± ap± bq 6= 0, cq ± dp± aq ± bp 6= 0,

cp± dq ± ap± bq 6= 0, cp± dq ± aq ± bp 6= 0, (17)

where the sign can be choosen arbitrarily. Hence, these 32 numbers should be
nonzero.

From (17), we can get:

p

q
6=
∣∣∣∣
b± c
a± d

∣∣∣∣ ,
∣∣∣∣
b± d
a± c

∣∣∣∣ ,
∣∣∣∣
a± d
b± c

∣∣∣∣ or

∣∣∣∣
a± c
b± d

∣∣∣∣

From (15) and (16), we can get:

p

q
6=
∣∣∣∣
a+ b

a− b

∣∣∣∣ ,
∣∣∣∣
a− b
a+ b

∣∣∣∣ ,
∣∣∣∣
c+ d

c− d

∣∣∣∣ or

∣∣∣∣
c− d
c+ d

∣∣∣∣

If we take

p

q
> max

{∣∣∣∣
b± c
a± d

∣∣∣∣ ,
∣∣∣∣
b± d
a± c

∣∣∣∣ ,
∣∣∣∣
a± d
b± c

∣∣∣∣ ,
∣∣∣∣
a± c
b± d

∣∣∣∣ ,
∣∣∣∣
a+ b

a− b

∣∣∣∣ ,
∣∣∣∣
a− b
a+ b

∣∣∣∣ ,
∣∣∣∣
c+ d

c− d

∣∣∣∣ ,
∣∣∣∣
c− d
c+ d

∣∣∣∣
}
,

and have (p2 − q2)(c2 − d2)(a2 − b2) 6= 0, we can guarantee

(ap− bq)2 + (aq + bp)2 = (ap+ bq)2 + (aq − bp)2

= (cp− dq)2 + (cq + dp)2 = (cp+ dq)2 + (cq − dp)2

represent four representation of the sum of squares.

Since the denominators of
∣∣∣∣
b± c
a± d

∣∣∣∣ ,
∣∣∣∣
b± d
a± c

∣∣∣∣ ,
∣∣∣∣
a± d
b± c

∣∣∣∣ ,
∣∣∣∣
a± c
b± d

∣∣∣∣ ,
∣∣∣∣
a+ b

a− b

∣∣∣∣ ,
∣∣∣∣
a− b
a+ b

∣∣∣∣ ,
∣∣∣∣
c+ d

c− d

∣∣∣∣ ,
∣∣∣∣
c− d
c+ d

∣∣∣∣
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are positive integers,

max

{∣∣∣∣
b± c
a± d

∣∣∣∣ ,
∣∣∣∣
b± d
a± c

∣∣∣∣ ,
∣∣∣∣
a± d
b± c

∣∣∣∣ ,
∣∣∣∣
a± c
b± d

∣∣∣∣ ,
∣∣∣∣
a+ b

a− b

∣∣∣∣ ,
∣∣∣∣
a− b
a+ b

∣∣∣∣ ,
∣∣∣∣
c+ d

c− d

∣∣∣∣ ,
∣∣∣∣
c− d
c+ d

∣∣∣∣
}

≤ max{|a± b|, |a± c|, |a± d|, |b± c|, |b± d|, |c± d|}

To conclude, if we take
p

q
> max{|a± b|, |a± c|, |a± d|, |b± c|, |b± d|, |c± d|} and

have (p2 − q2)(c2 − d2)(a2 − b2)(a2 − c2)(a2 − d2) 6= 0, we can guarantee

(ap− bq)2 + (aq + bp)2 = (ap+ bq)2 + (aq − bp)2

= (cp− dq)2 + (cq + dp)2 = (cp+ dq)2 + (cq − dp)2

represent four representation of the sum of squares.

Thus,we have

Corollary 14. If
x

y
> max

(p,q)∈{l,i,j,k}2
{|rp ± rq|} and x, y, rl, rk, ri, rj are distinct

positive integers such that r2i + r2j = r2l + r2k, then

(rlx− rky)2 + (rly + rkx)2 = (rlx+ rky)2 + (rly − rkx)2

= (rix− rjy)2 + (riy + rjx)2 = (rix+ rjy)2 + (riy − rjx)2

represent four representation of the sum of squares.

Let P (n) be “there exist positive integers x1, x2, . . . , x2n such that

n∏

i=1

(x22i−1 +x22i)

can be expressed as a sum of two perfect squares in 2n−1 ways.”

For n = 1, it is trivial.

For n = 2,

2∏

i=1

(x22i−1 + x22i) = (x1x3 − x2x4)2 + (x1x4 + x2x3)2

= (x1x3 + x2x4)2 + (x1x4 − x2x3)2

If x1, x2, x3, x4 satisfy the condition in Corollary 11, then

(x1x3 − x2x4)2 + (x1x4 + x2x3)2 = (x1x3 + x2x4)2 + (x1x4 − x2x3)2

represent 2 ways of sum of squares.

∴ P (2) is true.
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Assume P (m) is true. i.e. there exist distinct positive integers x1, x2, . . . , x2m such

that
m∏

i=1

(x22i−1 + x22i) can be expressed as a sum of two perfect squares in 2m−1

ways.

For n = m+ 1,

there exist positive integers x1, x2, . . . , x2m such that

m∏

i=1

(x22i−1 +x22i) = r22i−1 + r22i

(i = 1, 2, 3, . . . , 2m−1), where r2i 6= r2j for all i 6= j (by induction assumption).

Take two distinct positive integers x2m+1, x2m+2 such that:

x2m+1

x2m+2
> max

(p,q)∈{2i−1,2i,2j−1,2j}2
{|rp ± rq|}

for all 0 < i < j < 2m−1 and x1, x2, . . . , x2m, x2m+1, x2m+2 are all distinct.

By Corollary 14, (r22i−1 + r22i)(x
2
2m+1 + x22m+2) generate 2m ways as a sum of two

perfect squares where (i = 1, 2, 3, . . . , 2m−1)

∴ P (m+ 1) is true.

By M.I., P (n) is true for all positive integers n.

As a result, we have

“Given a positive integer N , there exits a positive integer M such that it has N
essentially different representations of a sum of two perfect squares.”

[See reviewer’s comment (7)]

5. Summary and Conclusion

After a deep investigation of this magic squares of squares probelm, we found
out some interesting properties of magic squares of squares. We found that if the
greatest common divisor of all entries is equal to 1, the prime factors of central entry
are of the form p ≡ 1 (mod 4), the central entry must not be a square of a prime
number and the common prime factors of any two adjacent entries (if exist) are
not of the form p ≡ 3 (mod 4). These few facts which can help us rule out a large
possibilities of magic squares may help us to verify whether a computer-constructed
magic square is magic square of squares or not.

In addition, we found out a general (not all) solution to a2+b2 = c2+d2 = e2+f2 =
g2 +h2 = 2M2, which also may help us to find magic square of squares. In the last
part, we found out an interesting fact:
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“Given a positive integer N , there exits a positive integer M such that it has N
essentially different representations of a sum of two perfect squares.”

without using any difficult mathematical techniques, for example, Gaussian inte-
gers.

After all, we hope that our investigation can have a little constribution to the
advancement of Mathematics.

APPENDIX

Lemma 15.

a2 =

{
0 or 4 (mod 8) if a is even

1 (mod 8) if a is odd

Proof. If a is even, a = 2k for an integer k. a2 = 4k2. If k is odd, k = 2k1 + 1
where k1 is an integer.

a2 = 4k2 = 4(2k1 + 1)2 = 8(2k21 + 2k1) + 1 ≡ 1 (mod 8)

If k is even, k = 2k1,

a2 = 16k21 ≡ 0 (mod 8).

If a is odd, a = 2k + 1 for an integer k.

a2 = (2k + 1)2 = 4k2 + 4k + 1 = 4k(k + 1) + 1,

since for any two consecutive integers there must be exactly one of them is even,
k(k + 1) is even for any integer k.

∴ a2 = 4k(k + 1) + 1 ≡ 1 (mod 8)

Lemma 16. ∀a ∈ Z, such that g.c.d(a, p) = 1, ∃ a∗ ∈ Z, such that aa∗ ≡ 1
(mod p).

Proof. Firstly, we prove {1a, 2a, . . . , (p− 1)a} is a reduced residue system, where a
is an integer which is relatively prime to p.

Obviously g.c.d.(ai, p) = 1 (i = 1, 2, . . . , p− 1).

If ai ≡ aj (mod p) (i, j ∈ {1, 2, . . . , p − 1}) we have, a(i − j) ≡ 0 (mod p). Since
(a, p) = 1, i ≡ j (mod p).

So 1a, 2a, . . . , (p− 1)a represent p− 1 different residue classes. However, a reduced
residue system of p consists of p−1 different residue classes. Thus, we can conclude
that {1a, 2a, . . . , (p− 1)a} is a reduced residue system.
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∀a ∈ Z, such that g.c.d(a, p) = 1, {1a, 2a, . . . , (p−1)a} is a reduced residue system.
∴ ∃a∗ ∈ {1, 2, . . . , p− 1} such that aa∗ ≡ 1 (mod p).

Lemma 17. a
p−1
2 ≡

(
a

p

)
(mod p), where a, p are relatively prime and p is an

odd prime.

Proof. If a is a quadratic residue modulo p, by the definition of Legendre symbol,(
a

p

)
= 1 and a ≡ x2 (mod p) for an integer x where (x, p) = 1.

Thus, a
p−1
2 ≡ xp−1 ≡ 1 (mod p) (by Fermat’s little theorem)

∴ a
p−1
2 ≡

(
a

p

)
(mod p)

If a is a quadratic non-residue modulo p, by the definition of Legendre symbol,(
a

p

)
= −1. Let t be the primitive root of a: there exists a nonnegative integer m

such that a ≡ tm (mod p) (for the definition and application of primitive root see
website [11].)

By Fermat’s little theorem, ap−1 − 1 ≡ 0 (mod p).

So (a
p−1
2 − 1)(a

p−1
2 + 1) ≡ 0 (mod p).

Suppose (a
p−1
2 − 1) ≡ 0 (mod p), (a

p−1
2 m − 1) ≡ 0 (mod p). By the property of

primitive root, we have p − 1 | p− 1

2
m, that implies m is even which contradicts

(
a

p

)
= −1. Hence, we have a

p−1
2 + 1 ≡ 0 (mod p).

Lemma 18. If a2 + b2 ≡ 0 (mod p) and p is a prime s.t. p ≡ 3 (mod 4), then
a ≡ b ≡ 0 (mod p).

Proof. Assume p - a, by Lemma 16, ∃ a∗ ∈ Z, such that

aa∗ ≡ 1 (mod p), (a2 + b2)(a∗)2 ≡ 0 (mod p), (a∗b)2 ≡ −1 (mod p)

which means x2 ≡ −1 (mod p) is solvable ⇐⇒
(
−1
p

)
= 1.

However, by Lemma 17, x2 ≡ −1 (mod p) ⇐⇒ p ≡ 1 mod 4, contradiction.

∴ p | a, b2 ≡ −a2 (mod p), so p | b.
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Reviewer’s Comments

This paper investigates the property of the properties of a 3×3 magic square whose
entries are all square numbers. A magic square is a 3×3 matrix such that the sums
of each row, each column and each diagonals are the same. It is an open problem
whether such a magic square exists. If it does exist, the entries must be rather large
numbers.

The paper consists of 4 parts. Part I consists of some discussion of the properties
of the classical magic square. Part II gives some properties of a magic square
of squares. Part III is the main part of the paper, in which they discuss the
solvability of a related system of Diophantine equations. Part IV discusses an
extended problem: whether there exists arbitrary large number of distinct sum of
squares representations for the same number. They show that the answer is positive.
Besides modular arithmetic and some basic number theory, they make extensive and
repeated use of the Lagrange identity (a2 + b2)(c2 + d2) = (ac+ bd)2 + (ad− bc)2 =
(ac− bd)2 + (ad+ bc)2 in Part II, III and IV. Geometrically, this can be understood
as the fact that there are many possibilities for the length of a vector (possibly in
high-dimension Euclidean space) to be expressed as a sum of squares.

Here are the reviewer’s comments concerning the style and the mathematics in this
paper.

About the stylistic problems first. The typesetting in this paper is not very satisfac-
tory. It is hard to point out all the places where there are some stylistic problems.
The reviewer points out some:

I The reviewer has comments on the wordings, which have been amended in
this paper.

II The reviewer suggest renaming all the “Property” to “Proposition”, which is
more appropriate for a mathematics paper.

III The line ∀a ∈ Z, a2 ≡ · · · should be changed to ∀b ∈ Z, b2 ≡ · · · because
the symbol a has already been used (in the same sentence!) which leads to
confusion.

IV The notations in the first and second paragraph are not consistent. In the
first paragraph, they use the letters a to i, where immediately in the second
paragraph they use a to h together with k. It is suggested that they change
the a, · · · , i in the first paragraph to y1, · · · , y9 (which is consistent with Part
II), since they also use a, b, c, · · · , h and k in Theorem 9 in the same sense as
the second paragraph on Part III.

V The blue color of ± is not necessary.
VI Some more advanced mathematical terms such as “reduced residue system”

or “Legendre symbol” are not defined. While they use quite some pages to
prove rather elementary lemmas (like Lemma 15, 16), which perhaps can be
removed, it is somewhat unnatural for the author to assume that the reader
knows what the “Legendre symbol” is. Indeed, all the lemmas in the Appendix
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are standard and the reviewer thinks they should not reproduce the textbook
proofs in the paper. So the reviewer suggests the author either shortens the
proof or just cites the references for the proofs.

VII The references part is not satisfactory. First of all, except [9], they don’t
really cite any references in the paper. They just put a list of books, papers
and websites in the “References” part, but it doesn’t indicate how they are
relevant. This makes the list looks rather random. E.g. they don’t give any
hint how the book 華羅庚文集[數論卷二] , or the paper “Properties of Magic
Squares of Squares” is relavant.
Secondly, the style in the “References” is not consistent: they are not ordered
in any way I can recognize. Some omit the journal names, and the entries
shouldn’t be capitalized. This part should be rewritten completely, and the
references should be removed if they are not cited.

The followings are the reviewer’s comments on the mathematics in this paper.

1.

a2 + b2 ≡ 0 (mod 8)⇔ a ≡ b ≡ 0 (mod 2)

should be

a2 + b2 ≡ 0 (mod 8)⇔ a ≡ b ≡ 0 (mod 4).

Alternatively, it can also be changed to

a2 + b2 ≡ 0 (mod 8)⇒a ≡ b ≡ 0 (mod 2),

which is all that is needed in the proof.
2. Perhaps it should be remarked that the number 5 is not that special, it can

be extended to any prime p such that S ∩ 2S = {0}, where S is the set of
all the quadratic residues mod p and 2S := {2n (mod p) : n ∈ S}. This in
turn is equivalent to 2 being a quadratic nonresidue. By the law of quadratic
reciprocity, this is equivalent to p 6≡ ±1 (mod 8). As it has been shown in
Property 5 that p ≡ 1 (mod 4), this implies p ≡ 5 (mod 8). The smallest such
prime is of course 5, and the next one is 13. So Property 7 can be extended
as:
For a prime p ≡ 5 (mod 8) which divide y5, any entry adjacent to the central
one is not divisible by p.

3. The proof is written in a slightly complicated way. The reviewer suggests the
proof to be rewritten as follows.

We can assume a > c > p > d > b > 0. Equation (9) (Lagrange identity)
states that

4p4 = (a2 + b2)(c2 + d2) = (ad+ bc)2 + (ac− bd)2

= (ac+ bd)2 + (ad− bc)2. (**)

As given in (10),

(ac+ bd)(ad+ bc) = cd(a2 + b2) + ab(c2 + c2) = 2p2(ab+ cd),
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so we have p2|(ac+ bd)(ad+ bc). There are three cases.
Case A: p2|ac+ bd.
Note that ad − bc 6= 0 for otherwise (a, b) = n(c, d) which is impossible as
a2 + b2 = c2 + d2 and (a, b) 6= (c, d). So (**) implies ac + bd < 2p2 and so
ac + bd = p2. Put this in (**), 3p4 = (ad − bc)2 which is impossible as 3 is
not a square.
Case B: p2|ad+ bc. Same proof as Case A.
Case C: p|ac+ bd and p|ad+ bc.
In this case, (**) gives

ac− bd ≡ 0 (mod p),

which together with ac + bd ≡ 0 (mod p) implies bd ≡ 0 (mod p). So d ≡
0 (mod p) or b ≡ 0 (mod p), but this contradicts 0 < b < d < p .

4. The very last line should be changed to

= ((k1k3 − k2k4)k5+(k1k4 − k2k3)k6)
2

+ ((k1k3 − k2k4)k6−(k1k4 − k2k3)k5)
2

5. Theorem 9 is one of the highlights in this paper, in which they provide a
solution to the Diophantine equations

a2 + b2 = c2 + d2 = e2 + f2 = g2 + h2 = 2k2.

While rather non-trivial, there are some concerns about this result:
(a) It does not say anything about whether such solution constructed are

distinct (say if ti are distinct), although they compute the simplest non-
trivial case (Example 10) and find that they are distinct. They also give
some criteria for the solution to be distinct (Corollary 11 and Corollary
12) but they are not easy to be checked in practise.

(b) It also does not address whether they are all solution to this problem.
(c) Even if the solution a, · · · , h and k thus obtained are distinct, the magic

square problem is still not solved because there are additional equations
(equations (10) to (14) in the paper) to be satisfied, as already noticed
in the paper (Corollary 13). In fact, it seems quite unlikely that the yi
obtained from Theorem 9 by choosing arbitrary ti will solve the remaining
equations (10) to (14). Nevertheless, to my knowledge, the magic square
of squares is still an open problem.

6. (a) Change the second implication

⇔ 16a2b2c2d2(a2 − b2)2(c2 − d2)2(a2 − b2)2

× (a2(c− d)2 − b2(c+ d)2) · (a2(c+ d)2 − b2(c+d)2) 6= 0

to

⇔ 16a2b2c2d2(a2 − b2)2(c2 − d2)2(a2 − b2)2

× (a2(c− d)2 − b2(c+ d)2)(a2(c+ d)2 − b2(c−d)2) 6= 0



222 PAK HIN LI

(b) Change the last implication

abcd(a2 − b2)(c2 − d2)(a2(c− d)2 − a2(c+ d)2)

× (a2(c+ d)2 − b2(c+d)2) 6= 0

to

abcd(a2 − b2)(c2 − d2)(a2(c− d)2 − a2(c+ d)2)

× (a2(c+ d)2 − b2(c−d)2) 6= 0

7. They provide another non-trivial result by showing that given any positive n,
there is a number which has at least n distinct sum of squares representation.

First of all, the reviewer suggests putting this “fact” in “Theorem” or
“Proposition” form, for stylistic reason.

The idea of proof is essentially like this: if we already have a pair of distinct
representation a2 + b2 = c2 + d2, we can make use of the Lagrange identity:
for any p, q,

(a2 + b2)(p2 + q2) = (ap− bq)2 + (aq + bp)2

= (ap+ bq)2 + (aq − bp)2. (***)

Likewise, we also have

(c2 + d2)(p2 + q2) = (cp− dq)2 + (cq + dp)2

= (cp+ dq)2 + (cq − dp)2.
If these four representations are distinct, then we have found a new number
whose number of representations double the previous one! They then argue
that if p, q are more carefully chosen, then these representations are distinct.

In fact, this can be seen more geometrically as follows. If we normalize
(a, b) etc. to have unit length (i.e. divided by its length

√
a2 + b2), then the

Lagrange identity (***) is just the fact that 1 = cos2 α+sin2 α = cos2 β+sin2 β
where α (resp. β) is the angle between (a, b) and (p, q) (resp. (b, a) and
(p, q)). Thus what they are looking for is that given finitely many vectors
(say {(ai, bi)}ni=1), find a vector (p, q) which makes distinct angles with (ai, bi).
They find such a vector (p, q) by requiring it to have a steeper slope than all
those (ai, bi).

In fact, to relate this to the magic square problem, the reviewer thinks we
can change the statement to the following:
Given any n, there exists integers k and a1, b1, · · · , an, bn, all distinct, such
that

2k2 = a21 + b21 = · · · = a2n + b2n

for i = 1, · · · , n. This can be either proved by modifying their argument,
or by the following observation. It is known that there are infinitely many
primitive Pythagorean triples, so for any n, we can find distinct natural num-
bers x1, y2, · · · , xn, yn and k such that (xi

k ,
yi

k ) all lie on the unit circle. Take
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ai = |xi − yi| and bi = xi + yi, we have the polarization identity

a2i + b2i = (xi − yi)2 + (xi + yi)
2 = 2(x2i + y2i ) = 2k2.

The ai, bi thus obtained are all distinct.
8. In fact, the method above gives all the solution to the following problem: if
a, b, k ∈ Z satisfies

2k2 = a2 + b2, (***)

then they are of the form




a = m2 + 2mn− n2
b = m2 − 2mn− n2
k = m2 + n2

where m,n ∈ Z. The solution is nontrivial only if |m| 6= |n|. This follows from

the fact that all rational points on the unit circle are given by
(

m2−n2

m2+n2 ,
2mn

m2+n2

)

and the fact that for all solution to (***), (a+b
2k ,

a−b
2k ) are rational points lying

on the unit circle. We notice that there is a similar construction (see k5, k6)
in the proof of Theorem 9.

9. To go further, let us illustrate for example how to find all the solution to
problem

k2 = x21 + y21 = x22 + y22 = x23 + y23 . (****)

By the consideration in (8) above, it is easy to see that if we set




ki = m2
i + n2i

Xi = m2
i − n2i

Yi = 2mini

(cos θi, sin θi) =
(

Xi

ki
, Yi

ki

)
=
(

m2
i−n2

i

m2
i+n2

i
, 2mini

m2
i+n2

i

)

for mi, ni ∈ Z, then

(k1k2k3)
2

= [k1k2k3 cos θ1]
2

+ [k1k2k3 sin θ1]
2

= [k1k2k3 cos(θ1 + θ2)]
2

+ [k1k2k3 sin(θ1 + θ2)]
2

= [k1k2k3 cos(θ1 + θ2 + θ3)]
2

+ [k1k2k3 sin(θ1 + θ2 + θ3)]
2

are three distinct sum of square representation if and only if for distinct i, j,

(cosαi, sinαi) 6= (± cosαj ,± sinαj) and

(cosαi, sinαi) 6= (± sinαj ,± cosαj)

for αi :=
∑i

k=1 θk. Note also that the term inside each square bracket is an
integer (by compound angle formula). By geometric reason, this would give
all solution to (****).

Now, for any solution to (****), taking ai = xi − yi and bi = xi + yi will
give all the integer solution to

2k2 = a21 + b21 = a22 + b22 = a23 + b23.
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E.g. by taking (m1, n1) = (1, 2), (m2, n2) = (2, 3), (m3, n3) = (1, 3), we have

2 · 6502 = 9102 + 1302 = 2302 + 8902 = 3502 + 8502.

Similarly we can also find 4 pairs of distinct square representations this way,
e.g. by taking one more pair (m4, n4) = (1, 4), we find

2 · 110502 = 154702 + 22102 = 39102 + 151302

= 59502 + 144502 = 120502 + 99502.

It is clear that this construction can be extended to get any number of distinct
square representations.

This gives a more systematic and cleaner way to represent all the solution
to the problem in Theorem 9 and the “fact” in Part IV.


