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Abstract. The presented project aims at having an insight on one of the most

famous, hard but beautiful problems in number theory—Catalan’s Conjecture
(This conjecture has become a theorem in 2002). Throughout this project,

very advanced techniques and results established are avoided. Most of the re-

sults established in this report only require the concepts in elementary number
theory, for example: divisibility and congruence. Yet, these techniques can be

used delicately to establish a number of particular cases.

1. Introduction

Catalan’s Conjecture is a four-variable Diophantine equation. At the first glance,
starting to develop approaches from the original statement would be extremely
difficult. Also, it is difficult to get a rough idea or insight towards the problem.
Under this situation, the first problem-solving strategy should be “looking at sim-
pler cases”, i.e. reducing the number of constraints and variables in the original
conjecture. However, solving the particular cases is not completely an easy task, a
number of techniques have to be developed and they have to be used wisely.

The project is divided into 3 stages, throughout the progress of the stages, stronger
and more complicated results are obtained.

Stage 1: Elementary techniques in solving Diophantine equations are used to
obtain several weaker starter problems, such as 3m − 2n = 1 and x2 − 2y = 1

Stage 2: Applying merely the same methods in Stage 1 to the three-variable cases,
the desired results cannot be obtained conveniently. Here, several helpful theorems
are introduced, such as Zsigmondy’s theorem.
Results like xr − 1 = pn (p is a prime) are derived.
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Stage 3: The discussions on Catalan’s Conjecture are extended to generalized
form, i.e. xr − ys = n (n is a positive integer). The directions of my future studies
on this topic are introduced.

2. Investigation Background

Before stating Catalan’s Conjecture, perfect power (of natural numbers) is first
defined.

Definition 1 (perfect power). A natural number is called a perfect power if it
can be written in the form ab, where a and b are natural numbers with b ≥ 2.

The first several terms of perfect power sequence are:

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, . . .

Conjecture 2 (Catalan’s Conjecture). The only two consecutive perfect
powers are 8 and 9

Equivalently, it can be stated in the argument of Diophantine euqation:
The only positive integral solution (x, y, r, s) with x, y, r, s ≥ 2 of the
Diophantine equation xr − ys = 1 is (3,2,2,3)

This was conjectured by French and Belgian mathematician Eugène Charles Cata-
lan in 1844. For the later 160 years, numerous results using the concepts in advanced
number theory were established. Some of the remarkable results are:

1. The Diophantine equation xp + 1 = yq, where p and q are primes with p 6= 2
has positive integral solution if and only if both of the following conditions
hold1:
(1) x+ 1 = psq−1yq1, xp+1

x+1 = pyq2, y = psy1y2, where gcd(y1, y2) = 1, p - y1y2

(2) y− 1 = qtp−1xp1, y
p−1
y−1 = qxp2, x = qtx1x2, where gcd(x1, x2) = 1, q - x1x2

2. (KE Zhao2, 1965) The Diphantine equation y2 − 1 = xp, where p is an odd
prime, has no positive integral solution if p ≥ 4.3

1A result from the Chinese book ‘About Indeterminate Equation’(談談不定方程), written by

Ke Zhao(柯召) and Sun Qi(孫琦).
2Ke Zhao (柯召) (1910-2002) is a Chinese mathematician.
3A result from the book ‘About Indeterminate Equation’.
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3. (Preda Mihǎilescu4, 2000-2003) Consider the Diophantine equation xp −
yq = 1 where p and q are odd primes. We have5

pq−1 ≡ 1 (mod q2)
qp−1 ≡ 1 (mod p2)

(1)

p ≡ 1 (mod q)
q ≡ 1 (mod p)

(2)

p < 4q2

q < 4p2
(3)

4. Let p and q be odd prime. For p ≤ 41 or q ≤ 41, the equation xp − yq = 1
has no positive integral solution.

Preda Mihǎilescu used the results in 3.(1), (2) and (3), as well as 4, to prove that
xp−yq = 1 has only one solution (x, y, p, q) = (3, 2, 2, 3). This leads to the complete
proof of Catalan’s Conjecture in 2001 (published in 2002). A conjecture has become
a theorem!

4Preda Mihǎilescu is a Romanian mathematician (1955-), who gave the complete proof of

Catalan’s Conjecture in 2002.
53 and 4 are the result stated in the book ‘Catalan’s Conjecture’, written by Rene Schoof and

was published in 2008 by Springer (Universitext series). It is a complete historical note on the

researches and developments of Catalan’s Conjecture.
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3. Motivation

When I first saw Catalan’s Conjecture, I listed out the perfect powers in ascending
order, 1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144 . . . I observed that
the difference between the consecutive terms keep increasing and decreasing. I
thought if we consider sufficiently large number of perfect powers, there should be
a great chance to have two consecutive perfect powers with difference 1 other than
(3,2,2,3).

However, the result in 2002 told us that is impossible, and (3,2,2,3) is the unique
solution. Therefore, this result is very amazing in my point of view. I decided
to carry out investigation in this topic. After reading some parts of the book
Catalan’s Conjecture [8], I knew that this topic is really deep and complicated.
Many profound results have been established. But this should not be the end of
my attention on this classical problem. I have not seen a number of special cases
being proved in the book, as well as the Internet.

As a result, I decided to use my knowledge on elementary number theory to solve
some of the particular cases which was developed in my mind in order to gain a
deeper understanding on Catalan’s Conjecture

I first consider the special solution 32 − 23 = 1 and the following observations were
made:

1. 2 and 3 are consecutive numbers, i.e. we have consecutive bases and exponents
in the particular solution.

2. 2 and 3 are both prime numbers.

These observations were helpful in making a number of special cases, which will be
discussed in the following pages.

Notation Note : All of the solution described in each equation are positive integers
greater than 1 (without otherwise specified).
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4. Stage 1

In this section, the elementary techniques in solving Diophantine equations are
employed. The examples of these techniques are factorization, modular arithmetic
and inequality bounding. Here, factorization and modular arithmetic are the most
useful techniques. They are very effective to establish two-variable special cases.

Using modular arithmetic is an effective way to prove a Diophantine equation has
no integral solution or a solution in certain form is not a solution. This can be
done by taking congruence of certain natural number to both sides of the equation,
showing they are unequal, contradiction arises.

However, only 32 − 23 = 1 is a solution, is taking congruence to both sides of
the equations (special cases) not suitable? The answer is negative. Although it
cannot help reducing the range of all possible solutions, it is helpful to determine
the odd-even parity of certain variables.

Theorem 3. The equation 3m − 2n = 1 has only one positive integral solution
(m,n), where both m and n are larger than 1.

Lemma 4. If 3a ≡ 1 (mod 8), then a is a positive even integer.

Proof. We consider the contrapositive of the statement ‘If a is a positive odd integer,
then 3a 6≡ 1 (mod 8)’.
Let a = 2k + 1, where k is a non-negative integer.
3a = 32k+1 = 3(9k) ≡ 3(1k) ≡ 3 6≡ 1 (mod 8)

Proof of Theorem 3. Rewrite the equation as 3m = 1 + 2n. When n ≥ 3, taking
(mod 8) to both sides of the equation, we have 3m ≡ 1 (mod 8). By the above
lemma, m is a positive even integer. Let m = 2k, where k is a positive integer.
Then

2n = 3m − 1 = 32k − 1 = (3k + 1)(3k − 1)

As LHS is a prime factorization, we have
{

3k + 1 = 2a

3k − 1 = 2b
(*)

where a and b are some positive integers with n = a+ b (Note: a and b cannot be
zero, otherwise giving non-integral k).

Subtract the two equations, we have 2a − 2b = 2. Clearly, there is only one such
pair, i.e. (a, b) = (2, 1). Substituting back into (*), we have k = 1. Hence, m = 2
and n = 3 is a solution of the equation.
Clearly, the case of n = 2 gives no positive integral solution.
(m.n) = (2.3) is the only solution to the equation.

Similarly, we can establish the following theorems:
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Theorem 5. The equation x2 − 2y = 1 has only one positive integral solution.

Theorem 6. The equation 3x − y3 = 1 has only one positive integral solution.

Proof of Theorem 5. 2y = x2 − 1 = (x+ 1)(x− 1). Then
{
x+ 1 = 2a

x− 1 = 2b

where a and b are positive integers with y = a+ b.
This implies 2a − 2b = 2 again. So, (a, b) = (2, 1) and (x, y) = (3, 3).

Proof of Theorem 6. 3x = y3 + 1 = (y + 1)(y2 − y + 1)
{
y + 1 = 3a

y2 − y + 1 = 3b

where a and b are positive integers with x = a+ b.
Substituting the first equation into the second one, we have

(3a − 1)2 − (3a − 1) + 1 = 3b

32a − 3a+1 + 3 = 3b.

When a ≥ 1 and b ≥ 2, taking (mod 9) to both sides of the equation, we have 3 ≡ 0
(mod 9), which is impossible.
So, the case left to check is (a, b) = (1, 1). This gives y = 2 and hence x = 2
i.e. The only positive integral solution is (x, y) = (2, 2)

We have seen that the two-variable cases can be established conveniently through
elementary number theory, except x2 − y3 = 1. Although we can factorize x2 − 1
or y3 + 1, we do not have a prime factorization of the remaining expression. My
idea towards this equation will be described later.

After discussing the two-variable cases, it is natural for us to extend the above ap-
proaches to three-variable cases. However, the situation becomes more complicated
and the method of factorization is different.

Theorem 7. The equation px − yp = 1 has only one positive integral solution
(p, x, y), where p is a prime and x, y are greater that 1.

Proof. For p = 2, we have y2 = 2x − 1.
If x ≥ 3, then y2 ≡ −1 (mod 8). But y2 ≡ 0, 1 (mod 8) for any integers y.
Contradiction.
Clearly, x = 2 gives no solution.
Therefore, p = 2 does not give any solution.

For odd prime p, we have

px = 1 + yp = (1 + y)(1− y + y2 − . . .+ yp−1)
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So,

{
1 + y = pa

1− y + y2 − . . .+ yp−1 = pb

where a and b are positive integers with x = a+ b

Substituting the first equation into the second one,

1− (pa − 1) + (pa − 1)2 − . . .+ (pa − 1)p−1 = pb

Expanding LHS and collecting all the 1’s, we have

p− pa + (p2a − 2pa) + . . .+ (pa(p−1) − . . .− (p− 1)pa) = pb

Clearly, LHS is divisible by p. After dividing both sides by p, we have

1− pa−1 + (p2a−1 − 2pa−1) + . . .+ (pa(p−1)−1 − . . .− (p− 1)pa−1) = pb−1 (*)

If a ≥ 2 and b ≥ 2, then LHS is not divisible by p but RHS is divisible by p.
Contradiction.

If a = 1 and b ≥ 2, then LHS of (*) becomes

1− p(p− 1)

2
+ p+ . . .+

(
pp−2 − . . .+ (p− 1)(p− 2)

2
p
)

Except 1− p(p−1)
2 , all the other terms are divisible by p. Also, RHS is also divisible

by p.

So, for odd prime p such that p - 1− p(p−1)
2 , contradiction occurs.

p | 1− p(p−1)
2 if and only if p(2m+ p− 1) = 2 for some integer m. Then, we must

have p = 2. This contradicts with our assumption that p is an odd prime.
So, the case of a = 1 and b ≥ 2 yields no solution.

We claim that 1− y + y2 − . . .+ yp−1 ≥ 1 + y (**)

i.e. b ≥ a
This is equivalent to 1+yp

1+y ≥ 1 + y or yp−1 − y − 2 ≥ 0.

Let f(y) = yp−1 − y − 2.
Then f ′(y) = (p− 1)yp−2 − 1 and f ′′(y) = (p− 1)(p− 2)yp−3.

f ′(y) = 0 if and only if y = ( 1
p−1 )

1
p−2 .

By second derivative test, f attains minimum at y = ( 1
p−1 )

1
p−2 . Clearly, ( 1

p−1 )
1

p−2 <

2. So f is monotonic increasing for y ≥ 2.
i.e. f(y) ≥ f(2) = 2p−1 − 4 ≥ 0, where equality holds if and only if y = 2 and
p = 3.
The claim is proved. The case of a ≥ 2 and b = 1 yields no solution.
The case left is (a, b) = (1, 1). This gives the equality of (**). So, y = 2 and p = 3.
It is easy to check that (p, x, y) = (3, 2, 2) is a solution of the equation.

I have tried to apply the method used in Theorem 7 to prove several similar, but
more general cases of Catalan’s Conjecture.
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One of the example is
The equation xm−1 = pn has only one positive integral solution (p, x,m, n), where
p is a prime, x, m and n are positive integers greater than 1.

Idea
Factorizing LHS first, we have

pn = xm − 1 = (x− 1)(1 + x+ x2 + . . .+ xm−1)

Then

{
x− 1 = pa

1 + x+ x2 + . . .+ xm−1 = pb

where a and b are non-negative integers with a+ b = n
Clearly, b 6= 0

If a 6= 0, then by the similar arguments in the proof of Theorem 7, we can only
have p | m. The odd-even parity of the variables can neither be derived. This result
is not sufficient to give a complete proof of this equation. The method in Stage 1
fails for a number of cases of Catalan’s Conjecture.
Similarly, the method does not work for 3n − xy = 1.

Therefore under this situation, it is forced to start other approaches to prove more
strong and complicated results. [See reviewer’s comment (3) and (4)] At some time
I believed that there is no simpler method. However, after I start to work on Stage
2, I re-thought about the elementary proofs of some complicated results, and I
obtained one of them successfully and a very useful idea. Because the approaches
involved are similar to that in this section, I attached the proof here.

Theorem 8. The equation xy − 2n = 1 has only one positive integral solution
(x, y, n), where x, y and n are positive integers greater than 1.

Proof. Rewrite and factorize the equation:

2n = xy − 1 = (x− 1)(1 + x+ x2 + . . .+ xy−1)

If x− 1 = 1 or x = 2, then y = 1 and n = 0.
This does not give a desired solution.

If x− 1 = 2a, where a is a positive integer, then both sums in the two brackets of
RHS are even. Also x is a positive odd integer.

For the sum in the second brackets of RHS to be even, the number of terms y in
the second brackets has to be even.
Let y = 2k, where k is a positive integer. Then, we have

2n = xy − 1 = x2k − 1 = (xk + 1)(xk − 1){
xk + 1 = 2b

xk − 1 = 2c
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where b and c are positive integers.
Subtract both of the equations, we have 2b − 2c = 2, (b, c) = (2, 1).
So, xk = 3. This implies x = 3 and k = 1. We also have y = 2 and n = 3.
Therefore, the equation has only one solution (x, y, n) = (3, 2, 3)

From the proof of Theorem 3 and Theorem 8, proving r is even in the equation
xr − ys = 1, where x, y, r, s can be variables or constants, is a convenient way to
give an elementary proof. The same strategy is employed in the proof of Theorem
9. In fact, Theorem 9 is the most tedious case I have encountered when using
elementary methods.

Theorem 9. The equation (x+1)y−xz = 1 has only one positive integral solution
(x, y, z), with x, y, z larger than 1

Idea
Since 1 = (x+ 1)y − xz ≡ −(−1)z (mod x+ 1), z is odd.
Then,

(x+ 1)y = 1 + xz = (1 + x)(1− x+ x2 − . . .+ xz−1)

(x+ 1)y−1 = 1− x+ x2 − . . .+ xz−1

If x is odd, then (x+ 1)y−1 is even, but 1− x+ x2 − . . .+ xz−1 is odd.
Contradiction.
Hence, x is even.

Moreover, xz = (x+ 1)y − 1 = x(1 + (x+ 1) + (x+ 1)2 + . . .+ (x+ 1)y−1)

xz−1 = 1 + (x+ 1) + (x+ 1)2 + . . .+ (x+ 1)y−1

Since x is even, xz−1 is even. 1 + (x+ 1) + (x+ 1)2 + . . .+ (x+ 1)y−1 is also even.
So, the number of terms y in the sum must be even.
Therefore, we have

((x+ 1)k + 1)((x+ 1)k − 1) = xz (*)

where k = 1
2y is a positive integer.

If k is odd, then the first factor in (*) can be further factorized into:

(x+ 2)[1− (x+ 1) + (x+ 1)2 − . . .+ (x+ 1)k−1]

Then, we must have x+ 2 | xz

Originally, I thought there are only small number of cases (of x) for this relation
to hold.

Note that gcd(x, x+ 2) = 2 as x is even. Hence,
{
x = 2mp
x+ 2 = 2q

or

{
x = 2p
x+ 2 = 2mq
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where m is a positive integer greater than 2, p and q are coprime odd positive
integers.

Since x+ 2 | xz, gcd(xz, x+ 2) = x+ 2.
For the first case, we have gcd(xz, x+ 2) = 2. So x = 0, which is impossible.
For the second case, we have gcd(xz, x+ 2) = 2min(m,z).
On the other hand, we have gcd(xz, x+ 2) = x+ 2 = 2mq.
Therefore, q = 1.

However, I still have not solved the second case, and I found there exist infinitely
many x (any x in the form 2m − 2 and z ≥ m) such that x + 2 | xz. This is the
major difficulty I have to overcome. Note that a sound proof will be given in Stage
2.

However, I thought the idea of considering the G.C.D. between two factors can be
useful, but minute details have to be considered.

I have tried to apply this idea to the equation x2 − y3 = 1
Rewrite the equation as

y3 = x2 − 1 = (x+ 1)(x− 1)

gcd(x+ 1, x− 1) = 1 if x is even

Therefore,

{
x+ 1 = p3

x− 1 = q3

where p and q are positive odd coprime integers.
Then, subtract the two equations and by simple fatorization, the system gives no
solution.

gcd(x+ 1, x− 1) = 2 if x is odd.

Therefore,

{
x+ 1 = 23a+2p3

x− 1 = 2q3

where p and q are positive odd coprime integers, a is a non-negative integer.
Then, we have

23a+1p3 − q3 = 1

Putting r = 2ap, then the equation becomes 2r3 − q3 = 1

Then, a natural question to be asked is that ‘ Is the last equation much easier to be
proved than the original equation ?’. I believe the answer is ‘yes’. The RHS of the
last equation is a homogeneous polynomial of degree 3, and it can be factorized in
domain other than integral one. However, this involved higher knowledge of algebra
to do so. After I read some books of abstract algebra, I still cannot give a complete
proof.

But it is known that the last equation will not have infinitely many integral solu-
tions. This can be deduced from a result from Axel Thue (1909):
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Theorem 10 (Thue’s Theorem6). Let f(x) = anx
n + an−1xn−1 + . . . + a1x + a0

be an irreducible polynomials in the integral (i.e. rational) domain and its degree is
at least 3. Then consider the Diophantine equation

f(x, y) = anx
n + an−1x

n−1y + . . .+ a1xy
n−1 + a0y

n = m

where m is a non-zero integer.
It has only finitely many integral solutions.

Clearly, f(x) = 2x3 − 1 is irreducible in integral domain, so by Thue’s theorem,
2r3 − q3 = 1 has only finitely many solution.

Further investigations are required in the scope of using the factorization in other
domains to solve several special cases of Catalan’s Conjecture.

6based on the book ‘An Introduction to Diophantine Equation’ (p.103) written by Titu An-

dreescu and Dorin Andrica, published by Gil Publishing House in 2002.
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5. Stage 2

There are still many cases we have not proved yet. Moreover, as we have seen in
the previous section, solving the three-variable equations can be painstaking. So,
are there any simpler methods that can help us to solve some of the Diophantine
equations, especially one with exponential variables? Fortunately, the answer is
definite in the special cases of Catalan’s Conjecture.

One of the key features in Catalan’s Conjecture is that its Diophantine equation
can be re-written to involve the expressions 1±xn, or more generally an±bn. These
expressions contribute to several important properties in number theory in which
they are very useful in solving Diophantine equations.

Definition 11. We define the function υp(x) to be the largest power of prime p in
the prime factorization of positive integer x.
In other words, a = υp(x) if pa | x and pa+1 - x

Basic properties

1. υp(xy) = υp(x) + υp(y)

2. υp(x+ y) ≥ min(υp(x), υp(y))

3. υp(x
y) = yυp(x)

Lemma 12 (Lifting the Exponent (LTE) Lemma). 7

(i) let x and y be integers, n be a positive integer and p be an odd prime such
that p | x− y, but p - x, y
Then υp(x

n − yn) = υp(x− y) + υp(n)

(ii) Let x and y be integers, n be an odd positive integer and p be an odd prime
such that p | x+ y, but p - x, y
Then υp(x

n + yn) = υp(x+ y) + υp(n)

(iii) Let x and y be odd integers such that 4 | x− y, n be a positive integer.
Then υ2(xn − yn) = υ2(x− y) + υ2(n)

(iv) Let x and y be odd integers and n be an even positive integer.
Then υ2(xn − yn) = υ2(x− y) + υ2(x+ y) + υ2(n)− 1

7There are still some parts of LTE Lemma being omitted because they are ir-

relevant to the main theorems in this project. For more information, please visit

http://www.artofproblemsolving.com/Resources/Papers/LTE.pdf, written by Amir Hossein Par-
vardi. The proof can also be found there. Note that the notation in the Definition follows that

in the website
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LET Lemma (i) and (ii) are the most useful. They can usually reduce the
number of possibilities of certain variables greatly.

The idea and the proof of LET Lemma is simple and elementary, just using
congruence and basic factorization, but its field of application is very wide. Firstly,
we return back to Theorem 7. A much simpler proof will be given as follow:

Rewrite the equation as: px = 1 + yp (*)

For odd prime p, we have px = 1 + yp = (1 + y)(1− y + y2 − . . .+ yp−1)
Clearly, p | 1 + y, p - 1 and p - y (Otherwise if p | y, then 0 ≡ 1 (mod p),
Contradiction)
By LTE Lemma (ii),

υp(p
x) = υp(1 + yp) = υp(1 + y) + υp(p) = υp(1 + y) + 1

x = υp(1 + y) + 1

Hence 1− y + y2 − . . .+ yp−1 = p

Or

1 + yp

1 + y
=p

yp − py + (1−p) = 0

Let f(y) = yp − py + (1− p). Then f ′(y) = pyp−1 − p and f ′′(y) = p(p− 1)yp−2.
For positive y, f ′(y) = 0 if and only if y = 1.
By second derivative test, f attains minimum at y = 1. So, f is monotonic increas-
ing for y ≥ 1. But y is a positive integer larger than 1.

So, f(y) ≥ f(2) = 2p−3p+1. Clearly, for p ≥ 3, the rightmost expression is greater
than or equal to 0.
f(y) = 0 holds if and only if p = 3 and y = 2.

Substituting p = 3 and y = 2 into original equation (*), we have x = 2.

The part of p = 2 is essentially the same as the proof in Stage 1. LTE Lemma
(iii) and (iv) cannot be used here.

However, I have found the other much useful and much simpler lemma to prove
much diverse results after I used LTE Lemma for some time. Again, it is based on
the expression an± bn. We can prove that equation does not hold for large number
of cases, and we only have to check for the exceptions (bad pairs) in the following
lemma:

Lemma 13 (Zsigmondy’s theorem). 8

8The Zsigmondy’s theorem, Pisolve, Art of Problem Solving (mathlinks)

http://www.artofpromblemsolving.com/Forum/download/file/php?id=34511
Zsigmondy’s theorem, Wikipedia

http://en.wikipedia.org/wiki/Zsigmondy%27s theorem
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1. If a, b and n are positive integers, where a > b, gcd(a, b) = 1 and n ≥ 2, then
an − bn has at least one prime factor which does not divide ak − bk for any
positive integer k < n,
with the following exception:

(i) a = 2, b = 1 and n = 6.
(ii) n = 2 and a+ b is a power of 2.

2. If a, b and n are positive integers, where a > b and n ≥ 2, then an + bn has at
least one prime factor which does not divide ak + bk for any positive integer
k < n,
with the exception: a = 2 and b = 1

The proof of Theorem 7 can be much simpler (than using LTE Lemma):

px = 1 + yp

Note that x > 1 and y > 1.
By Zsigmondy’s theorem, there exists one prime factor of 1 + yp which does not
divide 1 + y, with the exception y = 2 and p = 3.
However, the only prime factor of 1 + yp is p based on the equation. The prime
factor not dividing 1 + y is p.
So, for the general case9 (i.e. not the exception case), 1+y = 1, which is impossible.
So, we are left to consider the case of y = 2 and p = 3, which gives x = 2

For the proof of Theorem 8, it can be done as follows:
Rewrite the equation as xy − 1 = 2n.
Clearly, x and 1 are coprime and y > 1. Similar to the argument of the proof of
Theorem 7 using Zsigmondy’s theorem, 2 is the prime factor of xy − 1 not
dividing x− 1 for the general case. So, x− 1 = 1 or x = 2. But it is easy to verify
that this does not yield desired solution.
For the exception cases,

(i) x = 2 and y = 6. This pair of (x, y) does not yield integral n.

(ii) y = 2 and x+ 1 = 2m, where m is a positive integer. This implies

(2m − 1)2 − 1 = 2n

i.e. 2m+1(2m−1 − 1) = 2n

2m−1 − 1 must be a power of 2 (including 1). So, m = 2. This gives the
solution (x, y, n) = (3, 2, 3).

Another advantage of Zsigmondy’s theorem over the factorization method in
Stage 1 is that we do not have to determine the odd-even parity of the variables,
in which these processes can be painstaking.

9The term ‘general case’ will also be used in the later proofs.
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Recall that we have not solved the equation 3n − xy = 1 in Stage 1. I have failed
to use LTE Lemma to solve it in the early stage of Stage 2. However by using
the technique of Zsigmondy’s theorem the proof becomes easy.

Theorem 14. The equation 3n − xy = 1 has only one positive integral solution
(x, y, n), where x, y and n are greater than 1.

But in fact, we can generalize the statement of Theorem 14 very easily, by re-
placing the ‘3’ in the equation by a prime ‘p’. The proof is essentially the same as
that of Theorem 14.

Theorem 15. The equation pn − xy = 1 has only one positive integral solution
(p, n, x, y), where x, y, n are positive integers larger than 1 and p is a prime.

Proof. Rewrite the equation as pn = 1 + xy.
With the similar arguments as before, p is the prime factor of 1 + xy not dividing
1 + x. This case is impossible to occur.
The only exception left is x = 2 and y = 3. Clearly, this yields p = 3 and n = 2.

Naturally, we would also want to generalize Theorem 8:

Theorem 16. The equation xy − pn = 1 has only one positive integral solution
(p, n, x, y), where x, y, n are positive integers larger than 1 and p is a prime.

Proof. Rewrite the equation as xy − 1 = pn.
By Zsigmondy’s theorem, p is the prime factor xy − 1 not dividing x− 1 for the
general case, so x = 2. The equation becomes:

2y − 1 = pn

or 2y = 1 + pn

We use Zsigmondy’s theorem again to get 2 - 1 + p for the general case. So,
p = 2. But this does not yield any desired solution.
Checking the exceptional case p = 2 and n = 3. This case also gives no solution.

Then, we are left to consider the exceptional case of xy − 1.

(i) x = 2 and y = 6. This case gives no solution.

(ii) y = 2 and x+ 1 = 2m, where m is a positive integer.

(2m − 1)2 − 1 = pn

This is equivalent to

2m+1(2m−1 − 1) = pn

Clearly, 2 | pn. This implies 2 | p, i.e. p = 2.
The remaining part is essentially the same as that in the proof of Theorem 8
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using Zsigmondy’s theorem.
Therefore, (p, n, x, y) = (2, 3, 3, 2).

We can also prove Theorem 9 (the most complicated case encountered in Stage
1) by using Zsigmondy’s theorem.

Resrite the equation as
(x+ 1)y = 1 + xz

For the general case, there exists a prime p such that p | 1 + xz but p - 1 + x.
Then RHS is divisible by p but LHS does not. Contradiction.
So, it suffices to consider the case x = 2 and z = 3.
This gives y = 2.



TOWARDS CATALAN’S CONJECTURE 17

6. Stage 3

After having a look on the book ‘Catalan’s Conjecture’ [8] and ‘Primary cyclotomic’
units and a proof of Catalan’s conjecture10, I understand that the proof of four-
variable Catalan’s equation without any constraints on the variables involves a
lot of advanced techniques and numerous deep results have been done before the
complete proof came out in 2002.

In fact, in my project, the results pn−xy = 1 and xy−pn = 1 were the best results I
have established in some sense (four-variable with one constraint)— although they
are not the hardest to be proved. In my opinion, further removing the constraint
‘p is a prime’ or replacing it with a stronger condition will be much difficult to
do, possibly beyond the scope of elementary number theory. They cannot be done
by using the above methods. For example: though Zsigmondy’s theorem is a
really useful result in my project, it depends much on prime factorization and the
expression an ± bn.

However, I was still very interested in this amazing conjecture. I wanted to inves-
tigate more on the case on the general Catalan’s equation, i.e. replacing the ‘1’ in
the Catalan’s equation by arbitrary positive integer n. Definitely, it is much harder
to solve or even using the techniques in the previous stages to investigate on the
special case.

In fact, ‘1’ is a really amazing integer chosen in the original conjecture, as well as
it is really important in my research procedures. It is because Catalan’s equation
can be written to involve the expression 1 + xn or 1 − xn. The former one can
be factorized for any odd positive integer, while the later one can be factorized for
any positive integer. After factoring the expressions, we may consider the prime
factorization.

Moreover, for example: the equation 5n−3b = 2 cannot be solved using the methods
in Stage 1 because we can deduce both a and b are odd easily. (It is well-known
that it can be solved by Pell’s equation11).

Of course, we have to add some constraints in the study of this section. The results
are relatively weak compared to the previous sections.

The first question to the generalized Catalan’s conjecture is ‘Are there any n such
that the Catalan’s equation has infinitely many positive integral solutions (greater
than 1) (x, y, r, s) ?’. I believe that it is quite difficult to answer. Perhaps it is
related to abc conjecture, which is still not yet proven:

10written by Preda Mihǎilescu, on Kuwait Foundation Lecture 30, please visit
https://www.dpmms.cam.ac.uk/seminars/Kuwait/abstracts/L30.pdf

11The proof can be found on http://www.math.ust.hk/∼makyli/190 2010Sp/190 LectNt-

rev.pdf p.71
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Conjecture 17. abc conjecture12 (Oesterlé-Masser conjecture) For every
ε > 0, there exist only finitely many triples (of course can be none) (a, b, c) of
coprime positive integers such that

a+ b = c

and c > [rad(abc)]1+ε

where rad(n) is defined by:

Definition 18. Let pa11 . . . pakk be the prime factorization of n will all ai’s not equal
to 0. Then rad(n) = p1 . . . pk.

If abc conjecture is proven to be true, then the answer to the question is ‘no’.
However, abc conjecture is an extremely comlicated proposition in number theory–
although it is highly related to many famous theorems or conjectures13 in number
theory.

The other question is ‘Are there any n such that the Catalan’s equation has no
positive integral solution larger that 1 ?’. Again, it is difficult to answer.

However, considering weaker statements, for example: fixing r and s to be some
positive integers, say 2 and 3 respectively. This is a well-known solved problem and
the equation is called Mordell’s equation14, i.e. y2−x3 = n15 (fixed positive integer
n). It has been proven that Mordell’s equation only has finitely many integral
solutions for any n.

Moreover, is there any n that gives no solution to Mordell’s equation ? The answer
is also yes and it is well-known that there are various form of n giving no solution
and the proofs are elementary, just using the property of congruence and Legendre
symbol. For example: n = (4b− 1)3 − 4a2, where a and b are integers such that a
does not have prime factor p ≡ −1 (mod 4)16

As I have mentioned before, the following theorems established are weak. I was
wondering about whether there are n’s giving no solution to generalized Catalan’s
theorem (special case).
For example:

12based on the epymt lecture notes (Number Theory and Cryptography) written by Prof. Li

Chun Che Charles.
13For example: Fermat’s Last Theorem, of course Catalan’s Conjecture.
14With reference to the Chinese book ‘About Indeterminate Equation’ (談談不定方程), written

by Ke Zhao (柯召) and Sun Qi (孫琦) (p.45-61)

and Wikipedia ‘Moredell curve’ 〈http://en.wikipedia.org/wiki/Mordell%27s equation〉
15It is an elliptic curve
16‘About Indeterminate Equation’ (談談不定方程), written by Ke Zhao (柯召) and Sun Qi (孫

琦) (p.46)
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Theorem 19 (Concerning cubic n in the equation). The equation pn − a3 = b317

has no positive integral solution greater than 1 with p 6= 2, 3.

Proof. Here, we employ Fermat’s Method of Descent to p 6= 2, 3 (so contradiction
occurs in later part).
We also use similar strategy to that in Stage 1.
Rewrite the equation as

pn = a3 + b3 = (a+ b)(a2 − ab+ b2)

Then, {
a+ b = pc

a2 − ab+ b2 = pd
(*)

where c and d are non-negative integers with sum equal to n.
From the second equation,

pd = (a+ b)2 − 3ab = p2c − 3ab (**)

As a and b are positibe integers, pc = a+ b ≥ 2. So, c 6= 0.
If d = 0, then c = n and a2 − ab+ b2 = 1.
Claim: a2 − ab+ b2 = 1 if and only if a = b = 1

Proof.

a2 − ab+ b2 ≥ 2ab− ab = ab ≥ 1

Clearly, equality holds if and only if a = b = 1.

Hence, pn = 2, which implies p = 2 and n = 1. However in the condition of this
theorem, n 6= 1. Contradiction. So, d 6= 0.

Also, if d = 2c, then from (**), we have a = 0 or b = 0. Contradiction.

So, from (**), we can deduce that p | 3ab.
If p 6= 3, then we have p | a or p | b18.
Without loss of generality, assume p | a. Form the first equation of (*), p | a also
implies p | b.
Let a = pa1 and b = pb1, where a1 and b1 are positive integers.
Then pn = a3 + b3 becomes pn−3 = a31 + b31.
Repeat the above arguments until the power of p becomes 0,1 or 2.
Let k be the number of steps (repeating arguments) required to get to cases in
which the power of p becomes 0, 1 or 2. (k is a positive integer) Denote that ‘a’
and ‘b’ by ak and bk respectively.

17A problem form the exercise (Q.2) of the notes ‘Diophantine Equation’ form math database

http://www.mathdb.org/notes download/elementary/number/ne N3.pdf. No solution was given
in the notes

18by Euclid’s Lemma
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Suppose the power of p becomes 0 and 1. For the first case, we get (ak, bk) equal
to (1,0) or (0,1). Then, a or b is equal to 0. Contradiction.
For the second case, we can factorize a3k+b3k. So, p will not be prime except (ak, bk)
is equal to (1,1). Contradiction. For the case of (1,1), we have a = b = pk, it yields
p = 2 after putting back into the original equation. Contradiction.

Suppose the power of p becomes 2. ak + bk and a2k − akbk + b2k both cannot be 1,
otherwise for the first case, a or b is equal to 0; for the second case (ak, bk) is equal
to (1,1), it has been proved that contradiction occurs.
However, the solution of ak + bk = a2k − akbk + b2k must be (2,2) , (2,1) or (1,2)
because

ak + bk = (ak + bk)2 − 3akbk ≥ (ak + bk)2 − 3(
ak + bk

2
)2 =

1

4
(ak + bk)2

So, 4 ≥ ak + bk. By checking (ak, bk) is equal to (2,2) , (2,1) or (1,2).
(a, b) is equal to (2pk, 2pk), (2pk, pk) or (pk, 2pk). The first one yields p = 2 and the
later two yield p = 3. So, ak+bk = a2k−akbk+b2k = p cannot occur. Contradiction.

Therefore, for p 6= 2, 3, the equation has no solution.

Since I have proved this theorem some years ago (at that time I did not know
Zsigmondy’s theorem), I gave a very complicated, but elementray proof. Of
course, using Zsigmondy’s theorem, we have a delightful and more general proof:

If we have a = b, then pn = 2a3. It is trivial that p = 2. So, a is also a power of 2,
and let a = 2m, where m is a positive integer.
We have, (a, b, p, n) = (2m, 2m, 2, 3m+ 1), where m is any integer.

Otherwise, without loss of generality, assume a > b.
Then, by Zsigmondy’s theorem, p - a+ b, a+ b = 1. Contradiction.
It remains to consider the exceptional case, a = 2 and b = 1. They give p = 3 and
n = 2.

Theorem 20. 19 The equation 3n − xk = yk has unique positive integral solution,
where n, x, k are greater than 1, where x and y are coprime.

Proof. We have 3n = xk + yk.
If k is even, then xk and yk are both perfect squares. As for any integer m, we have
m2 ≡ 0, 1 (mod 3). So for any positive integers a and b, 3 | a2 + b2 if and only if
3 | a and 3 | b.
So, gcd(x

k
2 , y

k
2 ) ≥ 3. This contradicts with the assumption that x and y are

coprime. So, k is odd. RHS can be factorized in integral coefficients.

Clearly, x 6= y. Then by Zsigmondy’s theorem, 3 - x+ y.
Therefore, x+ y = 1. Contradiction.

19From the article ‘LTE lemma’ p.6. However, I gave an alternative proof here.
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It remains to consider the special case, (x, y) is equal to (1, 2) or (2, 1), and k = 3.
Then, we get n = 2.

For the case that x and y are not coprime, let their G.C.D. be d, which is greater
than 1. Also, let x = dx1 and y = dy1, where x1 and y1 are coprime.
We have

dk(xk1 + yk1 ) = 3n

So, d = 3a, where a is a positive integer with n− ka ≥ 1 (otherwise contradiction).

xk1 + yk1 = 3n−ka

Then by using Theorem 20, (x1, y1) is equal to (1,2) or (2,1), k = 3 and n−ka = 2.
So, (x, y) is equal to (2(3a), 3a) or (3a, 2(3a)), k = 3 and n = 3a+ 2

7. Summary

After finishing the three stages of studying, we establish a number of special cases
ranging from two to four-variable equations. Also, a short journey towards gener-
alized Catalan’s Conjecture has been taken.

In Stage 1, factorization, congruence and prime factorization were the main tools
to study the special cases.

In Stage 2, LTE Lemma and Zsigmondy’s theorem were used to develop much
stronger theorems.

In Stage 3, the study on Catalan’s Conjecture was extended, the ‘1’ in the equation
was replaced by any positive integer ‘n’. Some further discussions were taken place
and two theorems were successfully proved.

8. Conclusions

Although a number of special cases have been successfully established, it is far from
the end of my investigation. Firstly, several cases have been thought but I could
not complete the proof, only a little idea has been developed. I have to complete
the proofs in the future study. Especially, it is important to explore the possibility
of using the concept of abstract algebra to solve Diophantine equations. Also, I
hope that the constraints of the proved theorems can be weaker so as to step closer
to the original Catalan’s Conjecture.

Secondly, I hope that I can figure out the elementary proofs of some of the special
cases. I believe that we can prove them without using the strong Zsigmondy’s the-
orem. The reason to do so is that the proof of Zsigmondy’s theorem requires a little
higher concept, for example: properties of cyclotomic polynomials and arithmetic
functions.
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Thirdly, there is still a large margin in the generalized Catalan’s Conjecture in my
opinion. Deeper and stronger results should be developed.
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Reviewer’s Comments

This paper is well written. The following is a list of corrections and stylistic sug-
gestions.

1. The reviewer has comments on the wordings, which have been amended in
this paper.

2. Punctuation marks are missing in most of the formulas in this paper.
3. “more” should be deleted.
4. “strong and complicated” should be rewritten as “stronger and more compli-

cated”.


