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Abstract. The central issue we are investigating is based on a problem from

The Hong Kong (China) Mathematical Olympiad. It is basically about whether
a cosine ratio is expressible as a sum of rational numbers to powers of recip-

rocals of primes. In our project, we give the generalization of this problem by
using some tricks in elementary Number Theory and Galois Theory.

1. The Contest Problem

The central issue we are investigating is based on a problem from The Hong Kong
(China) Mathematical Olympiad. The problem is about whether a trigonometric
ratio is expressible in a certain form. Studying forms of numbers is indeed an active
research aspect in Number Theory. Being maniacs in Number Theory, we have
been deeply inspired by the elementary solution given by our trainer. Therefore,
we attempted to generalize the problem.

In this chapter, we would state the original problem as well as the generalization we
wish to attain. We also showed how we tackled the small prime cases by elementary
technique and the difficulties of large prime cases through such means.

1.1. The original problem, the case p = 7

Here comes the original problem, proposed by Dr. Li Kin Yin from HKUST.

THIS PROJECT IS GENEROUSLY SUPERVISED AND ADVISED BY DR.KOOPA
KOO TAK LUN FROM INTERNATIONAL MATHEMATICAL OLYMPIAD HONG

KONG COMMITTEE. THE CONTEST PROBLEM IS DUE TO DR.LI KIN YIN
FROM HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY.
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Problem 1. (CHKMO). Prove that cos
2π

7
is not of the form p+

√
q+ 3
√
r, where

p, q and r are rational numbers.

Proof. ( Due to Dr. Li )

Let ω = cos
2π

7
= 2 cos2

π

7
− 1. As cos

2π

7
> 0, we have cos

π

7
=

√
1 + ω

2
.

Using the fact that cos
4π

7
+ cos

3π

7
= 0, then transforming it by trigonometric

identity,

=⇒ 2 cos2
π

7
− 1 + 4

(
cos

π

7

)3
− 3 cos

π

7
= 0,

by substituting the above terms,

=⇒ 2ω2 − 1 + 4

(
1 + ω

2

) 3
2

− 3

(
1 + ω

2

) 1
2

=0

=⇒
√

1 + ω

2
(2(1 + ω)− 3) =1− 2ω2,

simplifying we have,

=⇒ (1 + ω)(4ω2 − 4ω + 1) =2− 8ω2 + 8ω4

=⇒ 8ω4 − 4ω3 − 8ω2 + 3ω + 1 =0

As ω = 1 is a trivial root, after factorization, we have

(ω − 1)(8ω3 + 4ω2 − 4ω − 1) = 0

Then we let P (x) = 8x3 + 4x2 − 4x− 1, by Rational Root Theorem,

P (1) = 8 + 4− 4− 1 = 7 6= 0

P (−1) = −8 + 4 + 4− 1 = −1 6= 0

P (
1

2
) = 1 + 1− 2− 1 = −1 6= 0

P (−1

2
) = −1 + 1 + 2− 1 = 1 6= 0

P (
1

4
) =

1

8
+

1

4
− 1− 1 = −13

8
6= 0

P (−1

4
) = −1

8
+

1

4
+ 1− 1 =

1

8
6= 0

P (
1

8
) =

1

64
+

1

16
− 1

2
− 1 = −91

64
6= 0

P (
1

8
) = − 1

64
+

1

16
+

1

2
− 1 = −29

64
6= 0

Therefore, P (x) = 0 has no rational roots.
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Assume ω is of the form p+
√
q+ 3
√
r, then ω is a root of Q(x) = (x− p−√q)3− r.

The coefficients of Q(x) are in K = {a+ b
√
q|a, b ∈ Q}. Since q ≥ 0, the coefficient

of x in Q(x) is 3(p2 + q + 2p
√
q), which is non-negative and irrational. However,

the coefficient of x in P (x) is −4. Hence P (x) 6= 8Q(x).

Let R(x) = P (x)−8Q(x). Since R(ω) = P (ω)−8Q(ω) = 0, ω is a root of R(x) = 0,
whose degree is 1 or 2, and the coefficients of it are in K.

Case 1. If deg(R(x)) = 1, we let R(x) = mx + n. As m,n are in K, ω = − n
m

is

also in K. (Here, we used a trivial fact that K is closed under division.)

Case 2. If deg(R(x)) = 2 and R(x) is a factor of P (x) in K[x], consider G(x) =
P (x)

R(x)
, then we have deg((G(x)) = 1 and G(x) ∈ K[x]. Therefore, the root of

G(x) = 0 is in K, which is also a root of P (x) = 0.

Case 3. If deg(R(x)) = 2 and R(x) is not a factor of P (x) in K[x], let r(x) be the
remainder when P (x) is divided by R(x). Since P (ω) = R(ω) = 0, clearly r(ω) = 0.
According to Division Algorithm, deg(r(x)) = 1 and the coefficients of ot are in K.
Therefore, ω is again in K.

In all three cases, P (x) has a root in K. Since P (x) does not have rational roots,
P (x) has an irrational root in K. Then P (x) is a product of degree 1 polynomial
and a degree 2 polynomial with both having rational coefficients. The degree 1
factor yields a rational root for P (x), which is absurd. Therefore, ω cannot of the
form p+

√
q + 3
√
r.

The central idea of this proof is making use of the Rational Root Theorem.
Therefore, we state its statement and the proof here [See reviewer’s comment (3)].

Theorem 2. (Rational Root Theorem). If

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∈ Z[x]

and f

(
p

q

)
= 0, where p, q ∈ Z and (p, q) = 1, then p divides a0 and q divides an.

Proof. As f

(
p

q

)
= 0, multiplying both side by qn−1, we have

qn−1f

(
p

q

)
=
anp

n

q
+N = 0,

where N ∈ Z. Therefore,
anp

n

q
∈ Z. As (p, q) = 1, we have q | an, as desired.
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Then, we consider

qnf

(
p

q

)
=anp

n + an−1p
n−1q + · · ·+ a1pq

n−1 + a0q
n = 0

=⇒ a0q
n =− p(anpn−1 + an−1p

n−2q + · · ·+ a1q
n−1).

Therefore, p | a0qn. As (p, q) = 1, we have p | a0. We are done.

After working on this CHKMO problem, we then doubted whether, in general,

cos
2π

p
, where p is a prime, is expressible as sum of rational numbers to the power

of reciprocal of primes. We first give the statement of our thought mathematically.

Theorem 3. Let p be an odd prime, then cos
2π

p
= a0 +a1 +a2 + · · ·+ak for some

k ∈ Z, where ai = d
1/pi
i , pi = ith prime, a0, di ∈ Q, if and only if p = 3 or 5.

The final goal of our project is to prove this theorem.

1.2. The case p = 3 and p = 5

Here we prove the sufficiency of our conjecture, which is relatively easy.

The case p = 3 is trivial as cos
2π

3
= −1

2
.

When p = 5, let ω = cos
2π

5
. Substituting θ =

2π

5
into

cos 5θ = 16 cos5 θ − 20 cos3 θ + 5 cos θ,

we have

1 = 16ω5 − 20ω3 + 5ω.

As ω = 1 is a trivial root, factorized we have,

=⇒ (ω − 1)(16ω4 + 16ω3 − 4ω2 − 4ω + 1) = 0

=⇒ 16ω2 + 16ω − 4− 4

ω
+

1

ω2
= 0

=⇒
(

4ω − 1

ω

)2

+ 4

(
4ω − 1

ω

)
+ 4 = 0

=⇒
(

4ω − 1

ω
+ 2

)2

= 0

=⇒ 4ω2 + 2ω − 1 = 0, as ω 6= 0

=⇒ ω =
−1±

√
5

4
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As 0 < ω < 1, ω =
−1 +

√
5

4
= −1

4
+

√
5

16
, as desired.

1.2.1. Failure, the case p = 11

We have tackled the cases p = 3, 5 and 7. The next one we want to deal with is
p = 11. Without any constructive thoughts, we thus tried to work similarly to the
original solution as follows,

When p = 11, we let ω = cos
2π

11
, then cos

π

11
=

√
1 + ω

2
.

Using the facts that cos 5θ = 16 cos5 θ− 20 cos3 θ+ 5 cos θ and cos
5π

11
+ cos

6π

11
= 0,

we have

16

(
ω + 1

2

) 5
2

− 20

(
ω + 1

2

) 3
2

+ 5

(
ω + 1

2

)
+ 4ω3 − 3ω = 0

=⇒
(
ω + 1

2

) 1
2

(4ω2 − 2ω − 1) = 3ω − 4ω3

=⇒ (ω − 1)(32ω5 + 16ω4 − 32ω3 − 12ω2 + 6ω + 1) = 0

We then similarly let P (x) = 32x5 + 16x4 − 32x3 − 12x2 + 6x+ 1.

Assume ω is of the form p+
√
q + 3
√
r + 5
√
s, then ω is a root of

Q(x) = (x− p−√q − 3
√
r)5 − s.

The coefficients of Q(x) are in

K = {a0 + a1
√
q + 1 + 2 3

√
r + a3

3
√
r2 + a4

√
q 3
√
r + a5

√
q

3
√
r2 : ai ∈ Q}.

Unfortunately, this seems to be abysmally complicated.

Therefore, we understand that it is almost impossible to attain the generalization
by elementary means. It is a must to seek alternative, or even advanced methods.
Knowing that we are struggling at this critical point, one of our trainers at IMOHK,
Dr. Koopa Koo Tak-Lun suggested us to study the Field Theory and Galois Theory.
He sensed that theories on those aspects may be a possible path for us to reach the
ultimate goal.

Indeed, we finally proved our conjecture using Galois Theory, without any painful
or tedious calculation.
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2. Essential background

In this chapter, we would go over all the necessary knowledge and theories we need
in attaining the generalization. This includes the Field Theory and Galois Theory.
Proofs of some theorems have been omitted to avoid redundancy.

2.1. Field Theory

In elementary terms, a field is defined as a commutative ring with identity such
that non-zero elements form a group under multiplication.

Example 4. Q,R and C are familiar examples of fields. In our project, fields like
Q(ζp) and Q(ζp + ζ−1p ) also appear frequently. (In this project, the notation ζn
denotes the primitive n-th roots of unity.)

Definition 5. (Field extension). If F ⊆ K are fields, then K is called a field
extension of F . We denote the degree of K/F by [K : F ]. If [K : F ] < ∞, then
K is called a finite extension of F . In particular, finite field extensions of Q are
called algebraic number fields.

The degree of K/F indeed means the dimension of K as an F -vector space. Also,
it denotes the degree of the minimal polynomial, which is defined as following.

Definition 6. (Minimal Polynomial). The minimal polynomial of an element α
over F is defined as the monic polynomial f ∈ F [x] such that f is irreducible over
F and f(α) = 0.

Example 7. Since the minimal polynomial of
√

2 over Q is x2 − 2 = 0, it implies
[Q(
√

2) : Q] = 2.

Degree consideration plays an important role in our proof. The central theorem
involved is called the Tower Law, which gives the relationship of degree in a series
of field extensions. It is a very convenient way for us to evaluate the degrees of
some sub-extensions along a field diagram.

Theorem 8. (Tower Law). Given M/L and L/K be field extensions, then

[M : K] = [M : L][L : K]

Proof. If either M/L or L/K is an infinite extension, then M contains infinitely
many independent vectors over K. Hence M/K is also an infinite extension, and so
both sides of the equation are infinite and therefore equal.
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K

L

M

basis {si}

basis {ri}

Otherwise M/L and L/K are both finite extensions. Let r1, r2, . . . , rp be a basis
for M/L and let s1, s2, . . . , sq be a basis for L/K. Then

RHS = [M : L][L : K] = pq.

We are going to show that risj forms a basis for M/K, since then

[M : K] = pq = RHS.

First, we check that risj spans. Pick m ∈M , since r1, r2, . . . , rp is a basis for M/L,
we may find a1, a2, . . . ap ∈ L such that

m = a1r1 + a2r2 + · · ·+ aprp.

On the other hand, as s1, s2, . . . , sq is a basis for L/K, ∀ai ∈ L, we may find
bi1, bi2, . . . , biq ∈ K such that

ai = bi1s1 + bi2s2 + · · ·+ biqsq

Then, we have

m =(b11s1 + b12s2 + · · ·+ b1qsq)r1 + · · ·+ (bp1s1 + bp2s2 + · · ·+ bpqsq)rp

=b11(s1r1) + b12(s2r1) + · · ·+ bpq(sqrp).

Therefore, m is a linear combination of risj over K, i.e. risj spans M/K.

Second, we shall check that risj is linearly independent over K. Suppose

b11(s1r1) + b12(s2r1) + · · ·+ bpq(sqrp) = 0

for some bij ∈ K. Then

(b11s1 + b12s2 + · · ·+ b1qsq)r1 + · · ·+ (bp1s1 + bp2s2 + · · ·+ bpqsq)rp = 0

Since r1, r2, . . . , rp are linearly independent over L, we have

bi1s1 + bi2s2 + · · ·+ biqsq = 0

for all i = 1, 2, . . . , p. By linear independence of s1, s2, . . . , sq over K again, bij = 0
for all i and j.

Thus, risj is a basis for M/K.
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As mentioned, one of the critical thoughts for us to attain the generalization is to
investigate the field Q(ζp + ζ−1p ) and its extension Q(ζp), where p is a prime. The
following is to derive the degrees of these fields over Q, using some classical tricks
in elementary number theory.

Theorem 9. (Eisenstein’s Irreducibility Criterion). Let

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

be a polynomial over a commutative unique factorization domain R. If there exists
a prime p ∈ R such that (i) p | an−1, . . . , a0, (ii) p - an and (iii) p2 - a0, then f(x)
is irreducible over R.

Proof. Suppose f(x) = (b0+b1x+· · ·+bpxp)(c0+c1x+· · ·+cqxq), where p, q ∈ (0, n).
Since a0 = b0c0, we have p | b0c0 and p2 - b0c0. Hence, p divides one but not both
of b0 and c0. WLOG, assume p | b0 and p - c0. Since p | an−1m. . . , a0 and p - an,
there exist bi such that p - bi. Let k be the smallest index such that p - bk. Let
m = max{k, q}. Consider ak = bkc0 + bk−1c1 + · · ·+ bk−mcm is divisible by p. Note
that p divides (bk−1c1 + · · · + bk−mcm) but does not divide bkc0, which yields a
contradiction.

Lemma 10. If p is a prime, then p divides

(
p

r

)
, where 0 < r < p.

Proof. Let N =

(
p

r

)
=
p

r

(
p− 1

r − 1

)
. Therefore, rN = p

(
p− 1

r − 1

)
≡ 0 (mod p). As

p is a prime and 0 < r < p, (p, r) = 1. The cancellation law asserts that N ≡ 0
(mod p). We are done.

Theorem 11. If p is a prime, then [Q(ζp) : Q] = p− 1.

Proof. Consider the polynomial f(x) = xp− 1 = (x− 1)(xp−1 +xp−2 + · · ·+x+ 1).
We claim that g(x) = xp−1 + xp−2 + · · · + x + 1 is irreducible over Q, and hence
[Q(ζp) : Q] = deg(g(x)) = p − 1. We know that g(x) is irreducible iff g(x + 1) is
irreducible. However,

g(x+ 1) =(x+ 1)p−1 + (x+ 1)p−2 + · · ·+ (x+ 1) + 1

=

p−1∑

i=0

((
p− 1

i

)
+

(
p− 2

i

)
+ · · ·+

(
i

i

))
xi

=

p−1∑

i=0

(
p

i+ 1

)
xi

Using Lemma 10, all coefficients of g(x + 1) except the leading coefficient are
divisible by p, and the constant term is p, which is not divisible by p2. Eisenstein’s
Irreducibility Criterion asserts that g(x + 1) is irreducible over Q. Hence, g(x) is
irreducible over Q.
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Theorem 12. If p is a prime, then [Q(ζp + ζ−1p ) : Q] =
p− 1

2
.

Proof. Clearly, Q(ζp) is a field extension of Q(ζp + ζ−1p ). Consider the following
field diagram.

Q

Q(ζp + ζ−1p )

Q(ζp)

We know that ζp is complex while ζp+ζ−1p is real, which implies Q(ζp) 6= Q(ζp+ζ−1p )

and [Q(ζp) : Q(ζp + ζ−1p )] = 2. With [Q(ζp) : Q] = p − 1, the Tower Law asserts

that [Q(ζp + ζ−1p ) : Q] =
p− 1

2
.

2.2. Galois Theory

Another essential tool in our project is Galois Theory. To define what Galois
extensions are, two important concepts should be introduced, the splitting field
and separable polynomial.

Definition 13. The extension L/F is called a splitting field for f(x) ∈ F [x] if L
is the smallest field that contains all roots of f(x) ∈ F (x).

Example 14. Q(
√

2) is the splitting field of f(x) = x2− 2, because it is clearly the

smallest field containing the two roots of f , namely ±
√

2.

Definition 15. A polynomial over F is called separable if all its roots are distinct.
Otherwise, it is inseparable.

With these definitions, we can now state what Galois extensions are.

Definition 16. A finite field extension E/F is Galois if E is a splitting field of
some separable polynomial f(x) ∈ F [x].

Example 17. Q(
√

2)/Q is clearly Galois because Q(
√

2) splits over Q. However,

Q( 3
√

2)/Q is not Galois because ζ3 /∈ Q( 3
√

2), i.e. Q( 3
√

2) does not split over Q.

Definition 18. (Galois Group). Let K be a field extension of F . The Galois group
Gal(K/F ) is the set of all F -automorphisms of K.
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Example 19. Gal(Q(
√

2)/Q) contains two functions, namely id and σ, where id

denotes the identity map and σ denotes the conjugation map, i.e. sending
√

2 to
−
√

2. Moreover, for all natural numbers n, Gal(Q(ζn)/Q) = {σi : (i, n) = 1},
where σi is defined by σi(α) = αi. [See reviewer’s comment (4)]

Theorem 20. For all natural numbers n,

Gal(Q(ζn)/Q) ∼= (Z/nZ)× and [Q(ζn) : Q] = φ(n).

[See reviewer’s comment (5)]

We shall omit the proof of this renowned isomorphism and interpret some useful
results based on it.

Lemma 21. Let p be a prime, then (Z/pZ)× is cyclic.

Proof. Suppose not, let l = be the l.c.m. of the order of a as a runs through
(Z/pZ)×. Then by assumption, we have l < p− 1. (otherwise, there exists an ele-
ment with order p− 1.) However, we also have al ≡ 1 (mod p) for all a. Therefore,
the equation xl − 1 ≡ 0 (mod p) has more than l solutions. This is a contradic-
tion.

Theorem 22. If p is an odd prime, then Gal(Q(ζp)/Q) is a cyclic group.

Proof. Using Theorem 20, Gal(Q(ζn)/Q) ∼= (Z/nZ)×. Moreover, since p is an
odd prime, according to the previous lemma, (Z/pZ)× is cyclic. We are done.

[See reviewer’s comment (6)]

Theorem 23. A finite normal extension K is cyclic over F if Gal(K/F ) is a cyclic
group.

1. If K is cyclic over F and E is a normal extension of F , where F ≤ E ≤ K,
then E is cyclic over F and K is cyclic over E.

2. If K is cyclic over F , then there exists unique field E, F ≤ E ≤ K, of degree
d over F for each divisor d of [K : F ].

Proof. ( Due to John B. Fraleigh )
(For 1.) Since K/F is a cyclic extension, by definition, Gal(K/F ) is a cyclic group.
As Gal(K/E) ≤ Gal(K/F ), it implies Gal(K/E) is also cyclic =⇒ K/E is also
cyclic extension. Since E is a normal extension of F , the Third Isomorphism The-
orem asserts that Gal(E/F ) ∼= Gal(K/F )/Gal(K/E) so Gal(E/F ) is isomorphic
to a factor group of cyclic group, and is thus cyclic. Therefore, E is cyclic over F .

(For 2.) By Galois Theory, we know that there is a one-to-one correspondence
between subgroups H of Gal(K/F ) and fields E = KH such that F ≤ E ≤ K.
Because Gal(K/F ) is cyclic, it contains precisely one subgroup of each order d that



EXPRESSIBILITY OF COSINES AS SUM OF BASIS 11

divides [Gal(K/F )] = [K : F ]. Such a subgroup corresponds to a field E where
F ≤ E ≤ K and [K : E] = d, so that [E : F ] = m = n/d. Now as d runs through
all divisors of n, the quotients m = n/d also run through all divisors of n, so we
are done.

The following theorem illustrates the relationship of a Galois extension and its
sub-extensions.

Theorem 24. If K/F is a Galois and abelian extension, then all the sub-extensions
between them are Galois.

Since (Q(ζp)/Q) ∼= (Z/pZ)× is abelian, Theorem 24 asserts that all the sub-
extensions of Q(ζp)/Q are Galois.

Another key to attain the generalization is the application of norm. We first give
the definition of norm.

Definition 25. If K/F is Galois with Galois group G, then for all a ∈ K, the

norm is given by NK/F (a) =
∏

σ∈G
σ(a).

Example 26. Consider Q(i)/Q, the norm of z = a+ bi ∈ Q(i) is given by

N(a+ bi) = (a+ bi)σ(a+ bi) = (a+ bi)(a− bi) = a2 + b2

Theorem 27. (Properties of norm) The norm is multiplicative, i.e.

for all α, β ∈ E, NE/F (α)NE/F (β) = NE/F (αβ).

Moreover, for all a ∈ F , NE/F (a) = a[E:F ].

Proof. For the later part, since a ∈ F , we have σn(a) = a, for all σn ∈ Gal(E/F ).

Thus, NK/F (a) =
∏

σ∈G
σ(a) = a[Gal(E/F )] = a[E:F ]. We are done.

Theorem 28. If σi ∈ Gal(Q(ζp)/Q), then σi(NE/F (α)) = NE/F (α) for all α ∈ E.

Proof. LetG = Gal(Q(ζp)/Q). Recall the definition of norm, NK/F (α) =
∏

σ∈G
σ(α).

Therefore, for all σi ∈ G, σi(NK/F (α)) = σi(
∏

σ∈G
σ(α)). Since G is a group, the fac-

tors on the right-hand side are permutated under composition of sigma-functions.
i.e. if G = {σ1, . . . , σn}, then

σi(G) = {σiσ1, . . . , σiσn} = {σ1, . . . , σn} = G.

Thus, σi(NK/F (α)) = σi(
∏

σ∈G
σ(α)) = σ(α). We are done.
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The above is a rough collection of concepts and theorems which we will use in order
to prove our conjecture. In the following chapter, we would attempt to re-solve the
contest problem by Galois Theory, followed by the proof of our generalization.

3. Success to the generalization

Before we attempt to approach the generalization, we should re-solve the original
problem by Galois Theory to see whether the new theories really work and how
brute calculation can be omitted.

3.1. The case p = 7 by Galois Theory

Problem. Prove that cos
2π

7
is not of the form p+

√
q + 3
√
r, where p, q and r are

rational numbers.

Proof. Suppose cos(2π/7) = p +
√
q + 3
√
r, where p, q and r are rational numbers.

Then, cos(2π/7) ∈ Q(
√
q, 3
√
r). Noting that , without loss of generality, we assume√

q and 3
√
r are not rational.

Consider the following field diagram,

Q

Q(
√
q) Q( 3

√
r)

Q(
√
q, 3
√
r)

2 3

Let [Q(
√
q, 3
√
r) : Q] = n. Since [Q(

√
q) : Q] = 2 and [Q( 3

√
r) : Q] = 3, both 2 and

3 divide n. Noting that

Q(
√
q, 3
√
r) = {a1 + a2

√
q + a3

3
√
r + a4

3
√
r2 + a5

√
q 3
√
r + a6

√
q

3
√
r2|ai ∈ Q}

Therefore, n ≤ 6. Thus, n = 6.

On the other hand, cos(2π/7) ∈ Q(ζ7 + ζ−17 ) = Q(2 cos(2π/7)). Consider the
following field diagram,
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Q

Q(ζ7 + ζ−17 ) = Q(cos(2π/7))

Q(ζ7)

3

2

Since [Q(ζ7) : Q] = 6 and [Q(ζ7) : Q(ζ7 + ζ−17 )] = 2, the Tower Law asserts that
[Q(ζ7 +ζ−17 ) : Q] = 3. Since [Q(ζ7 +ζ−17 ) : Q] 6= [Q(

√
q) : Q], Q(ζ7 +ζ−17 ) 6= Q(

√
q).

Then we consider Q(ζ7 + ζ−17 ,
√
q), using similar argument to the above, we have

[Q(ζ7 + ζ−17 ,
√
q) : Q] = 6. Therefore, [Q(ζ7 + ζ−17 ,

√
q) : Q] = [Q(

√
q, 3
√
r : Q] = 6.

Since [Q(ζ7 + ζ−17 ,
√
q) : Q] = [Q(

√
q, 3
√
r : Q] and we suppose that

cos(2π/7) ∈ Q(
√
q, 3
√
r),

Q(ζ7 + ζ−17 ,
√
q) = Q(

√
q, 3
√
r).

However, it is, indeed, impossible.

Q

Q(
√
q) Q(cos(2π/7))

Q(
√
q, cos(2π/7))

This is because, according to the above diagram, Q(ζ7 + ζ−17 )/Q is a Galois Exten-
sion, whereas Q(

√
q, 3
√
r)/Q generally, is not Galois (except q = −3). Contradiction

arises. [See reviewer’s comment (7)]

If q = −3, then Gal(Q(
√
−3, 3
√
r)/Q) ∼= S3, which is not cyclic. However,

Gal(Q(ζ7+ζ−17 )/Q) is cyclic as it is the subgroup of the cyclic group Gal(Q(ζ7)/Q).
Thus, q = −3 is absurd. [See reviewer’s comment (8)]
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Finally, we have tackled the problem successfully by Galois Theory, without any
brute calculations. Therefore, it gives hope to prove our theorem. The next two
lemmas are essential to our proof.

3.2. The First Lemma

We first recall the statement of the generalization we are working on.

Conjecture Let p be an odd prime, then cos
2π

p
= a0 +a1 +a2 + · · ·+ak for some

k ∈ Z, where ai = d
1/pi
i , pi = i th prime, a0, di ∈ Q, if and only if p = 3 or 5.

Suppose cos(2π/p) = a0 + a1 + a2 + · · · + ak. As cos(2π/p) ∈ Q(ζp + ζ−1p ), then

Q(ζp + ζ−1p ) is contained in K = Q(a1, a2, . . . , ak). Therefore, we can rephrase our
conjecture in algebraic language, as following.

Lemma 29. Let p be an odd prime. Q(ζp + ζ−1p ) is contained in K if and only if
p = 3 or 5.

[See reviewer’s comment (9)]

Proof. The sufficiency has been proved in Chapter 1. We now approach the neces-
sity. Consider the following field diagram,

Q

Q(ζp + ζ−1p ) = Q(cos(2π/p))

K = Q(a1, a2, . . . , ak)

Let J = {i|ai /∈ Q}. It is then obvious that n = [K : Q] =
∏

i∈J
pi, which is square-

free. Therefore, by Tower Law, [Q(ζp + ζ−1p ) : Q] =
p− 1

2
is also square-free.

Suppose q is a prime factor of
p− 1

2
.

Since the Galois Group of Q(ζp)/Q is isomorphic to the multiplicative group (Z/Zp)×,
it is a cyclic group. Therefore, Q(ζp)/Q is a cyclic extension. As Q(ζp + ζ−1p ) is

contained in Q(ζp), Q(ζp + ζ−1p )/Q is also a cyclic extension. Therefore, according
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to Theorem 23, for any prime q dividing
p− 1

2
= [Q(ζp + ζ−1p ) : Q]. there exists

a field F contained in Q(ζp + ζ−1p ) such that [F : Q] = q.

After this, we need another lemma, as shown in the next section.

3.3. The Second Lemma

Lemma 30. If F ⊆ Q(ζp + ζ−1p ) ⊆ K, then F = Q(ai), where pi = q.

Proof. Recall the field diagram we have so far,

Q

F

Q(ζp + ζ−1p ) = Q(cos(2π/p))

K = Q(a1, a2, . . . , ak)

Consider the norm. By Theorem 27, we have d
[K:F ]
i = NK/F (aqi ) = (NK/F (ai))

q.

Therefore, NK/F (ai) = d
[K:F ]/q
i = (d

1/q
i )[K:F ] = a

n/q
i . As

n

q
∈ Z, we have

NK/F (ai) ∈ Q(ai).

Since n is square-free and q is a prime, then

(
n

q
, q

)
= 1. By Bezout’s lemma,

there exist integers x and y such that

(
n

q

)
x+ qy = 1. Therefore,

ai = a
(n/q)x+qy
i = (aqi )

y(a
n/q
i )x = (dyi )(NK/F (ai))

x

As di ∈ Q, we have ai ∈ Q(NK/F (ai)).

As ai ∈ Q(NK/F (ai)) and NK/F (ai) ∈ Q(ai), we have Q(NK/F (ai)) = Q(ai).

For all α ∈ K, by Theorem 24, we have σn(NK/F (α)) = NK/F (α), for all σn ∈
Gal(K/F ). [See reviewer’s comment (10)] Thus, we have NK/F (α) ∈ F for all
α ∈ K. Clearly that ai ∈ K. Therefore, NK/F (ai) ∈ F .
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Q

Q(ai)

F

Since NK/F (ai) ∈ F , Q(NK/F (ai)) is contained in F , i.e. Q(ai) is contained in F .
Since q is a prime, degree consideration asserts that Q(ai) = F . [See reviewer’s
comment (11)] The second lemma is thus done.

3.4. Proof of the generalization

Finally, we turn back to our First Lemma. [See reviewer’s comment (12)] Renew
the field diagram according to the information we have up to this moment,

Q

F = Q(ai)

Q(ζp + ζ−1p ) = Q(cos(2π/p))

K = Q(a1, a2, . . . , ak)

Since Q(ζp)/Q is a Galois and abelian extension, all its sub-extensions are Galois.
It is clear that Q( q

√
di)/Q is a Galois Extension if and only if q = 2. The Second

Lemma asserts that 2 is the only prime divisor of
p− 1

2
. [See reviewer’s comment

(13)] As
p− 1

2
is square-free,

p− 1

2
= 2 or

p− 1

2
= 1 ⇐⇒ p = 3 or 5. Noting that

when
p− 1

2
= 1, it means Q( q

√
di) = Q. Thus, the First Lemma is also done.

Our conjecture is a trivial corollary of the First Lemma. If cos(2π/p) ∈ Q(ζp+ζ−1p ),

then Q(ζp + ζ−1p ) is contained in K = Q(a1, a2, . . . , ak), which happens if and only
if p = 3 or 5. We are done!
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4. Further investigation

After attaining the generalization, we want to investigate a bit further. Therefore,
we modified the statement of our results. Instead of a prime denominator, we want
to know what the situation becomes when it is replaced by a general natural number
n.

Therefore, the problem now becomes what natural numbers n would satisfy

cos(
2π

n
) = a0 + a1 + a2 + · · ·+ ak

for some k ∈ Z, where ai = d
1/pi
i , pi = ith prime and a0, di ∈ Q?

Unfortunately, we failed to work it out because there are some difficulties to adopt
our proof when we worked on composite denominator. However, we still state some
particular results of the modified problem.

4.1. Hurdles for the general case: composite numbers n

[See reviewer’s comment (14)]

We first recall the essential tricks we used when we proved the generalization with
a prime denominator.

Q

F = Q(ai)

Q(ζn + ζ−1n ) = Q(cos(2π/p))

K = Q(a1, a2, . . . , ak)

Referring back to the field diagram we had in Section 3.2, there are a few contribu-
tive and important steps, as follows.

1.
φ(n)

2
is square-free.

2. The existence of the subfield F . [See reviewer’s comment (15)]

Therefore, we take these two points as the criteria that a general composite number
n can satisfy our new conjecture.
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To simplify the wording used in the following two sections, we would call those

natural numbers n such that cos(
2π

n
) = a0 + a1 + a2 + · · · + ak as ”GOOD”,

otherwise as ”BAD”. For example, in previous chapter, we have proved that 3 and
5 are the only GOOD odd primes.

4.2. First Criterion: Square-free φ(n)/2

If cos(2π/n) = a0+a1+a2+· · ·+ak, then clearly cos(2π/n) ∈ K = Q(a1, a2, . . . , ak).

Q

Q(ζn + ζ−1n ) = Q(cos(2π/n))

K = Q(a1, a2, . . . , ak)

Since [Q(cos(2π/n)) : Q] = φ(n)/2, the Tower Law asserts that φ(n)/2 divides
[K : Q]. Since [K : Q] is square-free, φ(n)/2 has to be square-free too. Therefore,
those integers n which do not satisfy this condition would eventually become BAD.

The following is a result from Elementary Number Theory.

Theorem 31. If n is a composite and φ(n)/2 is square-free, then n ∈ S = {2kpiqj :
k ≤ 3, i ≤ 2, j ≤ 2}, where p and q are distinct odd primes.

Proof. Due to mutiplicativity of φ(n), we consider φ(pα)/2 = pα−1(p− 1)/2, where
p is an odd prime. If φ(pα/2) is square-free, then obviously α− 1 < 2 ⇐⇒ α < 3.
[See reviewer’s comment (16)] Since n is composite, α = 2.

When n = 2k, then φ(2k)/2 = 2k−2. Using similar argument as above would assert
that k − 2 < 2 ⇐⇒ k < 4.

We recall the fact that if d | n, then φ(d) | φ(n). Therefore, if n is divisible by
three distinct prime factors p, q and r, then φ(n) is divisible by φ(pqr). But then
φ(pqr)/2 = (p− 1)(q − 1)(r − 1)/2 is divisible by 4, implying n is BAD.

Thus, νp(n) ≤ 2, ν2(n) ≤ 3 and n is divisible by at most 2 distinct prime factors.
(Here νp(n) denotes the Legendre’s valuation function, denoting the largest power
of p dividing n.) In other words, n ∈ S = {2kpiqj : k ≤ 3, i ≤ 2, j ≤ 2}, where p
and q are distinct primes. [See reviewer’s comment (17)]

Indeed, we can reduce the size of the set S by observing that φ(4pq)/2 = (p−1)(q−1)
and φ(8p2)/2 = 2p(p− 1), which are both divisible by 4.
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4.3. Example: the case n = 15

In this section, we would illustrate how to use the first criterion to prove that n = 15
is BAD, which is actually quite straightforward.

Problem. Prove that cos
2π

15
is not of the form a0 +a1 +a2 + · · ·+ak, where k ∈ Z,

ai = d
1/pi
i , pi = ith prime and a0, di ∈ Q.

Proof. Similar to Section 3.1, we know that cos(2π/15) ∈ Q(ζ15 + ζ−115 ), and thus
Q(ζ15 + ζ−115 ) is contained in K = Q(a1, a2, . . . , ak).

Q

Q(ζ15 + ζ−115 ) = Q(cos(2π/15))

K = Q(a1, a2, . . . , ak)

Let J = {i|ai /∈ Q}. It is then obvious that n = [K : Q] =
∏
i∈J pi, which is square-

free. Therefore, by Tower Law, [Q(ζ15 + ζ−115 ) : Q] is also square-free. However,
[Q(ζ15 + ζ−115 ) : Q] = φ(15)/2 = 4 = 22, contradiction arises.

Performing similar proof, we can show that 16, 18, 20 are also BAD since
φ(16)/2 = 4, φ(18)/2 = 9 and φ(20)/2 = 4. They are obviously not square-free.

4.4. Second Criterion: Cyclicity of (Z/nZ)×

Another key step in our proof is to assert the existence of the field F in the following
field diagram,
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Q

F

Q(ζn + ζ−1n ) = Q(cos(2π/p))

K = Q(a1, a2, . . . , ak)

[See reviewer’s comment (18)]

The existence of F is guaranteed by the cyclicity of the extension Q(cos(2π/n))/Q,
which is ensured further by the cyclicity of Q(ζn)/Q. The extension Q(ζn)/Q is
cyclic if and only if Gal(Q(ζn)/Q) is cyclic. Since Gal(Q(ζn)/Q) ∼= (Z/nZ)×,
we are sufficient to find what natural numbers n would satisfy that (Z/nZ)× is
cyclic. (Z/nZ)× is cyclic if and only if there is an element α ∈ (Z/nZ)× such that
(Z/nZ)× =< α >. In language of elementary number theory, it means that α is a
primitive root modulo n.

Therefore, we can employ a classic result from elementary Number Theory con-
cerning existence of primitive root.

Theorem 32. (Primitive roots). There exists a primitive root modulo n if and
only if n = 1, 2, 4, pk, or 2pk, where p is an odd prime.

However, the second criterion is relatively meaningless because the converse of
Theorem 23 may not be correct. But this criteria can be used to justify what
composite numbers n are possible to be investigated along a similar proof given in
Chapter 3. For example, when n = 9, (Z/9Z)× is cyclic. We can show that 9 is
actually bad. We would illustrate it in the following section.

4.5. Example: the case n = 9

Problem. Prove that cos
2π

9
is not of the form a0 +a1 +a2 + · · ·+ak, where k ∈ Z,

ai = d
1/pi
i , pi = ith prime and a0, di ∈ Q.

Proof. Suppose cos(2π/9) = a0+a1+a2+· · ·+ak, where p, q, r are rational numbers.
Since 9 = 2× 32 , we know that (Z/nZ)× is cyclic. [See reviewer’s comment (19)]
Plus φ(9) = 6, therefore 3 is a factor of φ(9). By Lemma 29, there exists a field
F contained in Q(ζ9 + ζ−19 ) such that [F : Q] = 3.
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Q

F = Q(a2)

Q(ζ9 + ζ−19 ) = Q(cos(2π/9))

K = Q(a1, a2, . . . , ak)

Since pi = 3, we have i = 2. By Lemma 30, F = Q(a2). Clearly Q( 3
√
d2)/Q is not

Galois, contradiction arises.

In fact, the case of n = 14 and n = 18 can be tackled similarly since (Z/14Z)× and
(Z/18Z)× are both cyclic.

4.6. Summary

In Chapter 3, we have proved that 3 and 5 are the only GOOD odd primes. Al-
though we fail to generalize our theorem for the composite cases, we have given
two criteria to classify some composite numbers to be GOOD or BAD. However,
for those composites which cannot be classified by these two criteria, we have to
give independent proof. To end our project, we list out all the GOOD and BAD
natural numbers up to 20.

All the BAD numbers within this range are 7, 9, 11, 13, 14, 15, 16, 17, 18, 19, 20. The
rest are all GOOD, as shown in following,

n = 1,cos

(
2π

1

)
= 1;

n = 2,cos

(
2π

2

)
= −1;

n = 3,cos

(
2π

3

)
= −1

2
;

n = 4,cos

(
2π

4

)
= 0;
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n = 5,cos

(
2π

5

)
= −1

4
+

√
5

16
;

n = 6,cos

(
2π

6

)
= −1

2
;

n = 8,cos

(
2π

8

)
=

√
1

2
;

n = 10,cos

(
2π

10

)
=

1 +
√

5

4
;

n = 12,cos

(
2π

12

)
=

√
3

4
.
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Reviewer’s Comments

The paper under review addresses the following problem which was inspired by
one from a math competition: determine the odd primes p such that cos 2π

p can

be expressed as a sum
∑k
i=1 ai, where ai are of the form d

1
pi
i with pi being the

i-th prime and di rational. The authors first set the scene by stating the original
problem of showing that cos 2π

7 is not of the desired form, reproducing a proof by
Prof. Kin Yin Li which involves high school algebra, and pointing out the difficulties
of generalizing the elementary techniques employed in the original proof to the case
p = 11. Prompted by their advisor, the authors tackle the problem using Galois
theory instead, which is reviewed in Chapter 2 of the paper. Their solution, which
is the content of Chapter 3, makes ingenious use of the properties of Galois (in
particular, cyclotomic) extensions and their degrees. In particular, they show that,
if cos 2π

p is expressible in the desired form, then

1. Q(cos 2π
p ) ⊂ Q(a1, · · · , ak), and if q is a prime divisor of p−1

2 , which is shown

to be square-free, then there is a field F ⊆ Q(cos 2π
p ) such that [F : Q] = q,

2. F = Q(ai) for some 1 ≤ i ≤ n if F ⊆ Q(cos 2π
p ), and

3. Q(cos 2π
p ) and hence F are Galois extensions over Q.

They also observe that Q(ai) is Galois over Q if and only if pi = 2. As a result, they
prove that only when p = 3 or 5 can cos 2π

p be expressed in the desired form. In the

last chapter of their paper they explore the more general case where p is replaced
by a general natural number n, and manage to give partial results by carrying over
the salient points in their proof for the prime case.

In general, the paper is clearly written and well-organized. The authors are able
to formulate their problem and goal precisely, extract the relevant ingredients in
Galois theory they need and give a neat proof of the problem. However, the paper
is still riddled with some issues in presentation and typing, as well as grammatical
mistakes, which are listed below.

1. The reviewer has comments on the wordings, which have been amended in
this paper.

2. Though references are listed in the end of the paper, the authors should also
explicitly cite the references in the body of the paper wherever appropriate.

3. It is better to say ‘give its statement’ rather than ‘state its statement’.
4. ‘functions’ should be changed to ‘automorphisms’. ‘σi(α) = αi’ should be

changed to ‘σi(ζn) = ζin’.
5. The Euler totient function φ should be defined before stating Theorem 20.
6. It is a good idea to first define normal extension, and state the first sentence

of Theorem 23 (‘A finite normal extension...a cyclic group’) separately as the
definition of cyclic extension before stating Theorem 23.



24 KWOK WING TSOI, CHING WONG

7. It is better to say something along the line ‘Q(ζ7 + ζ−17 ,
√
q)/Q is a Galois

extension because both Q(ζ7 + ζ−17 )/Q and Q(
√
q)/Q are, whereas...’.

‘Contradiction arises’ should be deleted because at this point, the exceptional
case q = −3 has not been discussed and so we have not reached an absolute
contradiction. Only state this at the end of the proof.

8. It is not obvious to the reviewer why the first two sentences contradict each
other. The reviewer thinks it is better to replace the second sentence with
something along the line ‘However, Gal(Q(ζ7 + ζ−17 ,

√
−3)/Q) ∼= Z6’.

9. Lemma 29 should be stated as a theorem (say, Theorem 29) instead because
it is a rephrasing of the main result of the paper. As the proof following
the Lemma 29 is not actually its proof, it is better to state the following as
a lemma immediately proceeding the proof and after the rephrasing of the
main result.

Lemma If Q(ζp + ζ−1p ) is contained in K, then

(a) p−1
2 is square-free, and

(b) for any prime q which divides p−1
2 , there exists a field F ⊆ Q(ζp + ζ−1p )

such that [F : Q] = q.
10. ‘by Theorem 24’ should be changed to ‘by an easy generalization of Theo-

rem 28’. In fact what follows is obviously derived from a generalization of
Theorem 28 instead of Theorem 24 (not exactly Theorem 28 because it is
about the case of cyclotomic extensions only, whereas in the present situation
K may not be a cyclotomic extension). Alternatively, Theorem 28 can be
stated in its more general form which deals with any field extension, and in
this way ‘by Theorem 24’ can be changed to ‘by Theorem 28’.

11. Change ‘degree consideration asserts that...’ to ‘by degree consideration, we
have that...’

12. Change ‘First Lemma’ to ‘Theorem 29’.
13. Change ‘The Second Lemma’ to ‘The first two lemmata’.
14. It is confusing to use n to denote, on the one hand, the denominator as in

cos 2π
n and, on the other hand, the degree [K : Q] =

∏
i∈J pi as in the proof

of Lemma 29. Use another alphabet to denote the denominator.
15. It is a good idea to point out that the first criterion is a necessary condition for

n to be a good number. The second criterion is vague to the reviewer: what
kind of subfield is F? Is it of the form Q(ai) as in the second lemma, or does
it satisfy [F : Q] is a prime as in the first lemma? The reviewer believes the
authors mean that F is of the form specified in the second lemma. Besides it
is confusing to see that this second criterion is not the same as the condition
of cyclicity of (Z/nZ)× discussed in Section 4.4, the title of which claims that
the latter condition is the second criterion.

16. ‘φ(pα/2)’ should be changed to ‘φ(pα)/2’.
17. Insert ‘odd’ between ‘distinct’ and ‘prime’.
18. The tower diagram: change ‘p’ to ‘n’ or another alphabet.
19. What are p, q and r? The reviewer thinks the phrase ‘where p, q, r are

rational numbers’ should be deleted. Change ‘9 = 2× 32’ to ‘9 = 32’.


