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Abstract. This is an investigation on the ring of integer-valued polynomials

on the Gaussian integers and the ring of integer-valued continuous function on
rational integers, inspired by the results from integer-valued polynomials on the
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ian integer values while functions in the second ring map rational integers to
rational integers. This investigation explores their properties as rings, following

a chain of class inclusions, which includes the most commonly known domains.
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1. Introduction and Main Results

Integer-valued polynomials on the rational integers have been studied extensively by
mathematicians for little more than a century. In 1915, George Pólya showed that
the integer-valued polynomials are generated by the binomial polynomials. Subse-
quent studies showed that this set of polynomials formed an integrally closed and
non-Noetherian ring.

In this report, we attempt to generalize these results to include the Gaussian integers
and continuous functions, using mathematical tools that an average undergraduate
maths student has access to. We denote the set of integer-valued polynomials on
Gaussian integers by Int(Z[i]) and the set of integer-valued continuous functions on
rational integers by C(Z). We investigate the properties of these rings by following
two chains of class inclusions:

Rings ⊃ ID ⊃ Integrally Closed Domain ⊃ GCD Domain ⊃ UFD ⊃ PID ⊃ ED ⊃ Fields

Field =⇒ Artinian =⇒ Noetherian =⇒ ACCP

We obtain the following results:

• Theorem 1. Int(Z[i]) has a basis.
• Theorem 2. Int(Z[i]) is non-Noetherian.
• Theorem 3. Int(Z[i]) satisfies the ascending chain condition on principal

ideals.
• Theorem 4. Int(Z[i]) is an integrally closed domain.
• Theorem 5. Int(Z[i]) is not a GCD domain.
• Theorem 6. C(Z) does not satisfy the ACCP.
• Theorem 7. C(Z) is not a unique factorization domain.

2. Definitions and Prerequisites

Before we proceed to the crux of this paper, there is a need to define the terminology
used in this term. Here we provide an overview of ring theory and an introduction
to integer-valued polynomials.
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2.1. Overview of Ring Theory. Theorems and remarks in this section are book-
work, so their proofs are omitted.

Notation. Let ∗ : {a} × S → R be a binary operation. We define a ∗ S = {a ∗ s :
s ∈ S} and S ∗ a = {s ∗ a : s ∈ S}.

Definition (Group). A group is a triple (G, ·, e), where G is a set,· : G×G → G is
a function and e ∈ G is an element such that:

(1) For all a, b, c ∈ G, we have (a · b) · c = a · (b · c).
(2) For all a ∈ G, we have a · e = e · a = a.
(3) For all a ∈ G, there exists a−1 ∈ G such that a · a−1 = a−1 · a = e.

Definition (Subgroup). If (G, ·, e) is a group and H ⊂ G is a subset, then H is a
subgroup if

(1) e ∈ H,
(2) a, b ∈ H implies a · b ∈ H,
(3) · : H ×H → H makes (H, ·, e) a group.

Definition (Abelian group). A group G is abelian if a · b = b · a for all a, b ∈ G.

Definition (Ring). A ring is a quintuple (R,+, ·, 0, 1), where R is a set,+, · : R ×
R → R are binary operations and 0, 1 ∈ R are elements such that:

(1) (R,+, 0) is an abelian group.
(2) The operation · : R×R → R satisfies associativity (a · b) · c = a · (b · c) and

identity 1 · r = r · 1 = r.
(3) Multiplication distributes over addition, i.e.

r1 · (r2 + r3) = (r1 · r2) + (r1 · r3)
(r1 + r2) · r3 = (r1 · r3) + (r2 · r3)

Remark. The set of rational integers Z is a ring.

Definition (Commutative ring). A ring R is commutative if a · b = b · a for all
a, b ∈ R.

Definition (Subring). Let (R,+, ·, 0, 1) be a ring, and S ⊆ R be a subset. We say
S is a subring of R if 0, 1 ∈ S, and the operations +, · make S into a ring in its own
right. In this case we write S ≤ R.

Definition (Overring). We say R is an overring of S if S is a subring of R.

Definition (Unit). An element u ∈ R is a unit if there is another element v ∈ R
such that u · v = 1.

Definition (Field). A field is a non-zero ring F where every non-zero u ∈ F is a
unit.

Definition (Ideal). A subset I ⊂ R is an ideal, written I ◁R, if

(1) I is an additive subgroup of (R,+, 0).
(2) a ∈ I, b ∈ R implies a · b ∈ I.
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Definition (Generator of ideal). For an element a ∈ R, the ideal generated by a is

(a) = aR = {a · r : r ∈ R}◁R

In general, let a1, . . . , ak ∈ R, the ideal generated by a1, . . . , ak is

(a1, . . . , ak) = {a1r1 + · · ·+ akrk : r1, . . . , rk ∈ R}

Definition (Principal ideal). An ideal I is a principal ideal if I = (a) for some
a ∈ R.

Definition (Integral domain). A non-zero ring R is an integral domain if for all
a, b ∈ R, if a · b = 0, then a = 0 or b = 0.

Definition (Zero divisor). An element x ∈ R is a zero divisor if x ̸= 0 and there is
a y ̸= 0 such that x · y = 0 ∈ R.

Definition (Field of fractions). Let R be an integral domain. A field of fractions
F of R is a field with the following properties:

(1) R ≤ F .
(2) Every element of F may be written as a · b−1 for a, b ∈ R, where b−1 means

the multiplicative inverse to b ̸= 0 in F .

Remark. The set of rationals Q is the field of fractions of Z.

Definition (Division). For elements a, b ∈ R, we say a divides b, written a | b, if
there exists c ∈ R such that b = ac.

Definition (Associates). a, b ∈ R are associates if a = bc for some unit c.

Definition (Irreducible). a ∈ R is irreducible if a ̸= 0, a is not a unit, and if a = xy,
then x or y is a unit.

Definition (Prime). a ∈ R is prime if a is non-zero, not a unit, and whenever
a | xy, either a | x or a | y.

Remark. If r ∈ R is prime, then it is irreducible.

Definition (Euclidean domain). An integral domain R is a Euclidean domain if
there is a Euclidean function ϕ : R \ {0} → Z+ such that:

(1) ϕ(a · b) ≥ ϕ(b) for all a, b ̸= 0
(2) If a, b ∈ R, with b ̸= 0, then there are q, r ∈ R such that a = b · q + r and

either r = 0 or ϕ(r) < ϕ(b).

Definition (Principal ideal domain). A ring R is a principal ideal domain (PID) if
it is an integral domain, and every ideal is a principal ideal.

Theorem. Let R be a Euclidean domain. Then R is a principal ideal domain.

Definition (Unique factorization domain). An integral domain R is a unique fac-
torization domain (UFD) if

(1) Every non-unit may be written as a product of irreducibles;
(2) If p1 · p2 · · · · · pn = q1 · q2 · · · · · qm with pi, qj irreducible, then n = m, and

they can be reordered such that pi is an associate of qi.
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Theorem. Let R be a principal ideal domain. Then R is a unique factorization
domain.

Definition (GCD domain). d is a greatest common divisor (GCD) of a1, a2, . . . , an
if d | ai for all i, and if any other d′ satisfies d′ | ai for all i, then d′ | d. An integral
domain R is a GCD domain if any two elements of R have a greatest common divisor.

Theorem. Let R be a unique factorization domain. Then R is a GCD domain.

Theorem. Let R be a GCD domain. If p ∈ R is irreducible, then it is prime.

Definition (Polynomial). Let R be a ring. Then a polynomial with coefficients in
R is an expression

f = a0 + a1X + a2X
2 + · · ·+ anX

n

with ai ∈ R.

Definition (Degree of polynomial). The degree of a polynomial f is the largest m
such that am ̸= 0.

Theorem (Fundamental theorem of algebra). Let f ∈ (X) ◁ C[X] have degree n.
Counting repeated roots, f(x) = 0 has n roots in C.

Definition (Polynomial ring). We write R[X] for the ring formed by the set of all
polynomials with coefficients in R. The operations are performed the usual way.

Definition (Rational functions). Let F be a field. f is a rational function if f =
P

Q
for some P,Q ∈ F [X] and Q ̸= 0.

Theorem. Let F be a field. The set of rational functions in F forms a field F (X).

Remark. Let R be a ring and let K be its field of fractions. F (X) is the field of
fractions of R[X].

Definition (Integral element). Let a ∈ R and let S ≤ R. a is integral over S if
there exists f ∈ S[X] such that f(a) = 0. R is integral over S if every element of R
is integral.

Definition (Integrally closed domain). Let R be an integral domain and let K be
its field of fractions. R is an integrally closed domain if a ∈ K integral over R implies
a ∈ R.

Theorem. Let R be a GCD domain. Then R is an integrally closed domain.

Definition (Ascending chain condition). A ring satisfies the ascending chain con-
dition (ACC) if there is no infinite strictly increasing chain of ideals.

Definition (Noetherian ring). A ring that satisfies the ascending chain condition is
known as a Noetherian ring.

Definition (Finitely generated ideal). An ideal I is finitely generated if it can be
written as I = (r1, . . . , rn) for some r1, . . . , rn ∈ R.

Theorem. A ring is Noetherian if and only if every ideal is finitely generated.
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Definition (Descending chain condition). A ring satisfies the descending chain con-
dition (DCC) if there is no infinite strictly decreasing chain of ideals.

Definition (Artinian). A ring that satisfies the descending chain condition is known
as an Artinian ring.

Theorem. Let R be a Noetherian ring. Then R is an Artinian ring.

Theorem. If R is an Artinian integral domain, then R is a field.

Definition (Ascending chain condition on principal ideals). A ring satisfies the
ascending chain condition on principal ideals (ACCP) if there is no infinite strictly
increasing chain of principal ideals.

Definition (Generating set). Let R be a ring and let V ⊂ U ⊂ R[X]. V is a
generating set of U if for every f ∈ U , there exist f1, . . . , fn ∈ V and r1, . . . , rn ∈ R
such that f = r1f1 + · · ·+ rnfn.

Definition (Basis). Let R be a ring and let V ⊂ U ⊂ R[X]. V is a basis of U if V is
a generating set of U and if V is linearly independent, i.e. for every f1, . . . , fn ∈ V ,
r1f1 + · · ·+ rnfn = 0 implies r1 = · · · = rn = 0.

2.2. Integer-valued polynomials. We give a formal definition of what an integer-
valued polynomial is.

Definition (Integer-valued polynomials). Let D be an integral domain and let K be
its field of fractions. f ∈ K[X] is an integer-valued polynomial if f(a) ∈ D whenever
a ∈ D.

To proceed, we need to verify that Int(D) is indeed a ring.

Proposition 1. Integer-valued polynomials on an integral domain D, with quotient
field K, form a commutative ring Int(D) = {f ∈ K[X] : f(D) ⊂ D} with D[X] ⊂
Int(D) ⊂ K[X].

Proof. Let f, g, h ∈ Int(D).

(f + g) + h = f + (g + h)
f + g = g + f

(f · g) · h = f · (g · h)
f · g = g · f

f · (g + h) = f · g + f · h

Associativity, commutativity and distributivity are satisfied. We also have

0, 1 ∈ Int(D)
f + 0 = 0 + f = f
f · 1 = 1 · f = f
f + (−f) = 0

Additive identity, multiplicative identity and additive inverse exist. Moreover, if
r ∈ D, then f(r), g(r) ∈ D and thus (f + g)(r), (fg)(r) ∈ D. It follows that Int(D)
is a ring.
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Obviously, f ∈ Int(D) implies f ∈ K[X]. Moreover, since D is a ring, f ∈ D[X] and
a ∈ D implies f(a) ∈ D. So D[X] ⊂ Int(D) ⊂ K[X]. □

Proposition 2. Int(D) is an integral domain.

Proof. If f, g ∈ Int(D) and f, g ̸= 0, then there exists r ∈ D such that f(r), g(r) ̸= 0.
Since D is a integral domain, it follows that f(r)g(r) ̸= 0 and fg ̸= 0. There are no
nonzero zero divisors and so Int(D) is a integral domain. □

Proposition 3. Int(D) is not a field.

Proof. Obviously, X ∈ Int(D) and X ̸= 0. However, X−1 is not a polynomial and
X−1 /∈ Int(D). X is a nonzero element that has no multiplicative inverse in Int(D),
so Int(D) is not a field. □

Proposition 4. Int(D) is not Artinian.

Proof. (X) ⊃ (X2) ⊃ . . . is a strictly decreasing chain of ideals. □

Proposition 5. The field of fractions of Int(D) is K(X).

Proof. Int(D) ⊂ K[X] andK[X] ≤ K(X), so Int(D) ≤ K(X). Let f ∈ K(X). Since
K(X) is the field of fractions of D[X], f = ab−1 for some a, b ∈ D[X] ⊂ Int(D). □

3. Polynomials on Rational Integers

In this section, we recap some well-known facts about the ring of integer-valued
polynomials on rational integers. For proofs that are not entirely original, only a
simple sketch will be provided.

Proposition 6. The binomial polynomials(
X

n

)
=

X . . . (X − n)

n!
for n = 0, 1, . . .

form a basis of Int(Z).

Proof. (Sketch) Let B be the ring generated by the binomial polynomials, i.e.

B =

{
a1f1 + · · ·+ anfn : n ∈ N, ai ∈ Z, fi ∈

{(
X

m

)}
m∈N

}
We first show that every binomial polynomial is integer-valued, so B ⊂ Int(Z).
Next, by induction on n, we show that for any f ∈ Int(Z) of degree n, we can write

f =

n∑
i=0

ai

(
X

i

)
for some a0, . . . , an ∈ Z. Hence Int(Z) ⊂ B and Int(Z) = B. The

binomial polynomials form a basis of Int(Z) = B. □

By Hilbert’s basis theorem, the ring Z[X] is a Noetherian ring. However, Int(Z)
does not inherit this property.
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Proposition 7. Int(Z) is not Noetherian.

Proof. (Sketch) Let In =

((
X

1

)
, . . . ,

(
X

n

))
◁ Int(Z). It is possible to show that

for all prime p,

(
X

p

)
/∈ Im for all 1 ≤ m ≤ p − 1. It follows that for primes r < s,

Ir ⊂ Is is proper and that {Ip}p prime is a strictly increasing chain of ideals. □

This is significant since Int(Z) is one of the simpler and more natural textbook
examples of non-Noetherian rings.

Proposition 8. Int(Z) satisfies the ascending chain condition on principal ideals.

Proof. Let a1, a2, · · · ∈ Int(Z) such that (a1) ⊂ (a2) ⊂ . . . is a chain of ideals in
Int(Z). If am | an and am and an are not associates, then (an) ⊂ (am). Moreover,
an
am

/∈ Int(Z) and an /∈ (am). In fact, (an) ⊂ (am) is proper (i.e. (an) ̸= (am)) if and

only if am | an and am and an are not associates. Since the number of factors of a1
is finite, there exists N ∈ N such that aN , aN+1, . . . are equal up to associates. The
choice of a1, a2, . . . is arbitrary, so Int(Z) satisfies the ascending chain condition on
principal ideals. □

Next, we show that Int(Z) is integrally closed.

Proposition 9. Int(Z) is an integrally closed domain.

Proof. Let f ∈ Q(X) be non-zero and integral over Int(Z), i.e.
fn + gn−1f

n−1 + · · ·+ g1f + g0 = 0

where gj ∈ Int(Z) for j = 0, 1, . . . , n− 1. We can write f =
a

b
where a, b ∈ Z[X] are

non-zero and have no common factors. Then,

an + gn−1a
n−1b+ · · ·+ g1ab

n−1 + g0b
n = 0

Since a and b have no common factors in Z[X], by fundamental theorem of algebra,
we can find α ∈ C such that b(α) = 0 but a(α) ̸= 0.

(an + gn−1a
n−1b+ · · ·+ g1ab

n−1 + g0b
n)(α) = 0

an(α) + gn−1(α)a
n−1(α)b(α) + · · ·+ g1(α)a(α)b

n−1(α) + g0(α)b
n(α) = 0

an(α) = 0

We arrive at a contradiction. It follows that b must be constant and so f ∈ Z[X].
For all a ∈ Z, we have

fn(a) + gn−1(a)f
n−1(a) + · · ·+ g1(a)f(a) + g0(a) = 0

So f(a) is integral over Z. Since Z is integrally closed, f(a) ∈ Z for all a ∈ Z and so
f ∈ Int(Z). □

Lastly, recall that in a GCD domain, irreducible and prime are equivalent. We use
this to show that Int(Z) is not a GCD domain.

Lemma 1.

(
X

r

)
is irreducible but not prime.
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Corollary 1. Int(Z) is not a GCD domain, unique factorization domain, principal
ideal domain or Euclidean domain.

4. Polynomials on Gaussian Integers

Here we consider integer-valued polynomials on a domain that is not Z, namely the
set of Gaussian integers Z[i], which is defined below:

Definition (Gaussian integers). Z[i] = {a+ bi : a, b ∈ Z} where i =
√
−1 is the set

of Gaussian integers. Z[i] is a ring.

Definition (Gaussian rationals). Q(i) =
{a
b
: a, b ∈ Z[i]

}
= {a + bi : a, b ∈ Q} =

Q[i] is the set of Gaussian rationals. Q(i) is the field of fractions of Z[i].
Remark. 1,−1, i and −i are the units of Z[i],Q(i),Z[i][X],Q(i)[X] and Int(Z[i]).
Z[i] is a Euclidean domain, with Euclidean function f(a + bi) = a2 + b2. So Z[i] is
an integral domain and Int(Z[i]) is well-defined.

4.1. Construction of Basis. We know that the binomial polynomials form a basis
for Int(Z). This leaves us to contemplate whether Int(Z[i]) has a basis of similar
form. Moreover, if there really exists a basis for Int(Z[i]), what are the leading
coefficients of the terms of basis? To answer these questions, it makes sense for us
to consider the set of leading coefficients of polynomials of degree n within Int(Z[i]).
Lemma 2. For each non-negative n ∈ Z, let Rn be the union of 0 and the set of
leading coefficients of polynomials of degree n in Int(Z[i]), i.e.
Rn = {r ∈ Q(i) : rXn+rn−1X

n−1+· · ·+r0 ∈ Int(Z[i]) for some r0, . . . , rn−1 ∈ Q(i)}
Then Z[i] = R0 ⊂ R1 ⊂ · · · ⊂ Rp ⊂ Rp+1 ⊂ · · · ⊂ Q(i) and RpRq ⊂ Rp+q for all
p, q ∈ N.
Proof. By definition, Rn ⊂ Q(i). When n = 0, Rn = {r ∈ Q(i) : r ∈ Int(Z[i])} =
Z[i].

Let r ∈ Rp. Then there is an integer-valued polynomial f of degree p whose leading
coefficient is r. Xf is also an integer-valued polynomial. Xf has degree p + 1 and
leading coefficient r , so r ∈ Rp+1. Rp is a subset of Rp+1.

Let s ∈ Rq. There is an integer-valued polynomial g of degree q whose leading
coefficient is s. Then fg is an integer-valued polynomial of degree p + q and with
leading coefficient rs. It follows that RpRq is a subset of Rp+q. □

Obviously, each Rn is additive group. In Int(Z), Rn is generated by (n!)−1 and
n!Rn = Z. In Int(Z[i]), this is obviously not the case for all n, but we can achieve
something similar. To do this, we need the following lemma:

Lemma 3. Let y0, . . . , yn ∈ C. There exists a unique polynomial f ∈ C[X] with
degree n such that f(j) = yj for j = 0, 1, . . . , n. Moreover, we can write

f = N =

n∑
j=0

(
j∑

k=0

(−1)j−k

(
j

k

)
yk

)(
X

j

)
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Proof. Suppose two such polynomials f ̸= g exist. f − g has at most degree n,
so f − g has at most n roots. However, f(j) = g(j) = yj and (f − g)(j) = 0 for
j = 0, 1, . . . , n. We arrive at a contradiction. So if it exists, the polynomial is unique.

Now it suffices for us to check that N(m) = ym for m = 0, 1, . . . n.

N(m) =

n∑
j=0

(
j∑

k=0

(−1)j−k

(
j

k

)
yk

)(
m

j

)

=

n∑
j=0

j∑
k=0

(−1)j−km(m− 1) . . . (m− j + 1)

k!(j − k)!
yk

=

n∑
k=0

 n∑
j=k

(−1)j−km(m− 1) . . . (m− j + 1)

k!(j − k)!

 yk

=

n∑
k=0

n−k∑
j=0

(−1)j
m(m− 1) . . . (m− j − k + 1)

j! k!

 yk

=

m∑
k=0

m−k∑
j=0

(−1)j
m(m− 1) . . . (m− j − k + 1)

j! k!

 yk

= ym +

m−1∑
k=0

(m− k)!

k!
m. . . (m− k + 1)

m−k∑
j=0

(−1)j
(
m− k

j

) yk

= ym +

m−1∑
k=0

(m− k)!

k!
m. . . (m− k + 1)(1− 1)m−kyk

= ym

□

With this, we can show that n!Rn ⊂ Z[i].

Lemma 4. Let n ∈ Z be non-negative. There exists a ∈ Z[i] \ {0} such that
aRn ⊂ Z[i].

Proof. Consider aRn when a = n!. From previous result, a polynomial f ∈ Int(Z[i])
of degree n is uniquely determined by the values f(0), f(1), . . . , f(n):

f =

n∑
j=0

(
j∑

k=0

(−1)j−k

(
j

k

)
f(k)

)(
X

j

)

The leading coefficient of f is
1

n!

n∑
k=0

(−1)n−k

(
n

k

)
f(k).

(
n

k

)
is always a rational

integer and f(k) is by definition a Gaussian integer. So the leading coefficient of n!f
is a Gaussian integer. It follows that n!Rn ⊂ Z[i]. □

In fact, we can establish a stronger relation between aRn and Z[i].
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Lemma 5. Let n ∈ Z be non-negative and let a ∈ Z[i]. If aRn ⊂ Z[i], then
aRn ◁ Z[i].

Proof. Let q, r ∈ Rn. Then there is some f, g with degree n and leading coefficients
q, r respectively such that f, g ∈ Int(Z[i]). If q, r are distinct, f + g ∈ Int(Z[i]) has
degree n and leading coefficient q + r. So Rn is closed under addition. Moreover,
additive identity 0 and additive inverse −r belong inside Rn. Thus, Rn is an additive
subgroup of Z[i]. Lastly, for all s ∈ Z[i], sf ∈ Int(Z[i]) with degree n and leading
coefficient rs, so rs ∈ Rn. □

We have created an ideal of Z[i]. The next logical step would be to use the fact that
Z[i] is a principal ideal domain.

Lemma 6. Rn = anZ[i] for some a−1
n ∈ Z[i]. In fact, a−1

n divides n!.

Proof. Z[i] is a principal ideal domain, so since there is non-zero aRn ◁Z[i], aRn =
(b) = bZ[i] for some b ∈ Z[i]. By taking an = ba−1, an ∈ Q(i) and Rn = anZ[i].
Since Xn ∈ Int(Z[i]) and 1 ∈ Rn, a

−1
n ∈ Z[i]. Lastly, ann!Z[i] = n!Rn ⊂ Z[i], so

ann! ∈ Z[i]. □

Using this result and polynomial reduction, we can prove that Int(Z[i]) does in fact
have a basis.

Theorem 1. There is a set of polynomials f0, f1, . . . , with each fj having degree j
and leading coefficient aj , that forms a basis of Int(Z[i]).

Proof. Let fn ⊂ Int(Z) for n = 0, 1, . . . be a set of polynomials where the degree
of each fn is n and the leading coefficient is an. By observation, each fn has a
different degree of polynomial, so they must be linearly independent. Next, let g be
an integer-valued polynomial with degree m. It is possible to find bm ∈ Z[i] such
that g− bmfm has degree m−1, since Rn = anZ[i]. Repeat the process and we have
g = bmfm + · · ·+ b0f0. □

4.2. Ring structure. We use similar methods as in Int(Z) to prove some properties
that Int(Z[i]) has as a ring. The first thing is to prove that Int(Z[i]) is not Noetherian,

we need to construct a strictly increasing chain of ideals. However,

(
X

n

)
/∈ Int(Z[i])

for n > 2. We overcome this fact by considering f =
1

p

(
Xp2

−X
)
(Xp −X) ∈

Int(Z[i]) for positive rational Gaussian prime p instead.
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Lemma 7. There are infinitely many Gaussian primes which are integers.

Proof. Let p be prime in Z. If p = a2 + b2 for some non-zero a, b ∈ Z, then
p = (a + bi)(a − bi) and so p is not irreducible and not prime in Z[i]. On the
other hand, if p is not prime in Z[i], then p = uv for some non-units u, v ∈ Z[i].
Taking norms, p2 = |u|2|v|2. Since u and v are not units, |u|2 = |v|2 = |p|. By
taking u = a + ib, we have |p| = |u|2 = a2 + b2. So p is prime in Z[i] if and only if
|p| ≠ a2 + b2 for all non-zero a, b ∈ Z.

If |p| ≡ 3 (mod 4), then |p| ≠ a2 + b2 for all a, b ∈ Z \ {0}, since a square mod
4 can only be 0 or 1. Thus it suffices to show that there are infinitely many primes
in the form 4k + 3 where k is non-negative.

Suppose we have a list of positive primes p1, . . . , pm such that each pi ≡ 3 (mod 4).
Consider 4p1 . . . pm − 1. Note that if q ≡ 3 (mod 4) then q has at least one prime
factor p ≡ 3 (mod 4), and that 4p1 . . . pm − 1 is not divisible by p1, . . . , pm. So
we have found another prime pm+1 in the form 4k + 3 that is not on our list. By
repeating this process, we construct a set of infinitely many Gaussian primes. □

Lemma 8. Let p be an odd prime with p > 0 and p ≡ 3 (mod 4). Then the

polynomial f =
1

p

(
Xp2

−X
)
(Xp −X) ∈ Int(Z[i]).

Proof. Let a, b ∈ Z.

f(a+ bi) =
1

p

(
(a+ bi)p

2

− (a+ bi)
)
((a+ bi)p − (a+ bi))

=
1

p

 p2∑
j=0

(
p2

j

)
ap

2−j(bi)j − a− bi

 p∑
j=0

(
p

j

)
ap−j(bi)j − a− bi


=

1

p

(
ap

2

+ (bi)p
2

− a− bi
)
(ap + (bi)p − a− bi)

+
1

p

(
ap

2

+ (bi)p
2

− a− bi
) p−1∑

j=1

(
p

j

)
ap−j(bi)j

+
1

p
(ap + (bi)p − a− bi)

p2−1∑
j=1

(
p2

j

)
ap

2−j(bi)j

+
1

p

p−1∑
j=1

(
p

j

)
ap−j(bi)j

p2−1∑
j=1

(
p2

j

)
ap

2−j(bi)j

The latter three terms are Gaussian integers, since p divides

(
p

j

)
for j = 1, . . . , p−1.

Next, since p ≡ 3 (mod 4), (bi)p − bi = i(bp − b). By Fermat’s little theorem, p
divides ap − a and bp − b, so the first term in the equality is also a Gaussian integer.
f(a+ bi) ∈ Z[i] and so f ∈ Int(Z[i]). □
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We use functions in this form to construct a strictly increasing chain of ideals, which
proves that Int(Z[i]) is non-Noetherian.

Theorem 2. Int(Z[i]) is not Noetherian.

Proof. Let p1, p2, . . . be Gaussian primes which are positive rational integers. For

each n > 0, let fn =
1

pn

(
Xp2

n −X
)
(Xpn −X) and let In = (f1, . . . , fn)◁ Int(Z[i]).

Fix n > 0 and suppose fn+1 ∈ In. We can write

fn+1(x) =
g1(x)

m1
f1(x) + · · ·+ gn(x)

mn
fn(x)

where each gj ∈ Z[i][X] and mj ∈ N. Define aj = gj(0) for j = 1, . . . , n.

The coefficient of x2 in fn+1(x) is
1

pn+1
and the coefficient of x2 in

gj(x)

mj
fj(x)

is
aj

mjpj
. By comparing the coefficients of x2 on both sides, we have

1

pn+1
=

a1
m1p1

+ · · ·+ an
mnpn

For each j, aj = gj(0) and
gj
mj

∈ Int(Z[i]). So gj ∈ mj Int(Z[i]) and aj ∈ mjZ[i]. In

other words, there exists bj ∈ Z[i] such that aj = mjbj .

1

pn+1
=

b1
p1

+ · · ·+ bn
pn

pn+1 does not divide p1 . . . pn, so we arrive at a contradiction. It follows that fn+1 /∈
In, In+1 ̸= In for all n > 0, and I1 ⊂ I2 ⊂ . . . is a strictly increasing chain of ideals
in Int(Z[i]). Int(Z[i]) is not Noetherian. □

Theorem 3. Int(Z[i]) satisfies the ascending chain condition on principal ideals.

Proof. The proof is same as in Int(Z) except we take a1, a2, · · · ∈ Int(Z[i]). □

We follow the other chain of class inclusions. Observe that for Proposition 9,
the only property of Z that is relevant to the proof is that it is integrally closed.
Z[i] is also integrally closed (it is a GCD domain) and it is a subset of C, so the
fundamental theorem of algebra can be applied here.

Theorem 4. Int(Z[i]) is an integrally closed domain.

Proof. Let f ∈ Q[i](X) be non-zero and integral over Int(Z[i]), i.e.

fn + gn−1f
n−1 + · · ·+ g1f + g0 = 0

where gj ∈ Int(Z[i]) for j = 0, 1, . . . , n− 1. We can write f =
a

b
where a, b ∈ Z[i][X]

are non-zero and have no common factors. Then,

an + gn−1a
n−1b+ · · ·+ g1ab

n−1 + g0b
n = 0

Since a and b have no common factors in Z[i][X], by fundamental theorem of algebra,
we can find α ∈ C such that b(α) = 0 but a(α) ̸= 0.
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(an + gn−1a
n−1b+ · · ·+ g1ab

n−1 + g0b
n)(α) = 0

an(α) + gn−1(α)a
n−1(α)b(α) + · · ·+ g1(α)a(α)b

n−1(α) + g0(α)b
n(α) = 0

an(α) = 0

We arrive at a contradiction. It follows that b must be constant and so f ∈ Z[i][X].
For all a ∈ Z[i], we have

fn(a) + gn−1(a)f
n−1(a) + · · ·+ g1(a)f(a) + g0(a) = 0

So f(a) is integral over Z[i]. Since Z[i] is integrally closed, f(a) ∈ Z[i] for all a ∈ Z
and so f ∈ Int(Z[i]). □

To prove that Int(Z[i]) is not a GCD domain, it suffices to find an element that is
irreducible but not prime. This is not difficult:

Lemma 9.
1

2
(i+ 1)X(X − 1) is irreducible in Int(Z[i]).

Proof. Let r = a+ bi where a, b ∈ Z.

1

2
(i+ 1)r(r − 1) =

1

2
(1 + i)(a+ bi)(a− 1 + bi)

=
1

2
(a2 − 2ab− a− b2 + b) +

1

2
(a2 + 2ab− a− b2 + b)i

a2−a and b2− b are products of two consecutive integers. Thus a2−2ab−a− b2+ b

and a2 + 2ab − a − b2 + b are always even and
1

2
(i + 1)X(X − 1) ∈ Int(Z[i]). By

careful observation,
1

2
(i+ 1) is not a Gaussian integer and kX, k(X + 1) ∈ Int(Z[i])

if and only if k ∈ Z[i]. It follows that
1

2
(i+ 1)X(X − 1) cannot be expressed as the

product of two or more non-units and thus it is irreducible in Int(Z[i]). □

Theorem 5. Int(Z[i]) is not a GCD domain.

Proof. In a GCD domain, an element is prime if and only if it is irreducible.
1

2
(i+

1)X(X − 1) is irreducible and divides X(X − 1), but it does not divide X or X − 1.
1

2
(i+1)X(X − 1) is irreducible but not prime in Int(Z[i]), so Int(Z[i]) is not a GCD

domain. □

Corollary 2. Int(Z[i]) is not a unique factorization domain, a principal ideal domain
or a Euclidean domain.

5. Continuous Functions on Rational Integers

Another avenue of further investigation is to include integer-valued functions other
than polynomials. Since all polynomials are continuous, it makes sense to consider
the set of integer-valued continuous functions. For example, sin(πX) is one such
function.
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Definition (Continuous function). f : R → R is a continuous function if at every
a ∈ R, for all ϵ > 0 there exists δ > 0 such that |f(x) − f(a)| < ϵ whenever
a− δ < x < a+ δ.

Definition (Kernel). Let f : R → R. The kernel of f , written ker(f), is the set
{a ∈ R : f(a) = 0}.

In general, the sum, product and composition of any two continuous functions is
continuous, and the quotient of two continuous functions, if well-defined on R, is
also continuous. A sufficient (but not necessary) condition for the quotient to be
well-defined is the kernel of the divisor is empty.

Definition (Integer-valued continuous function). Let f : R → R be a function. f
is an integer-valued continuous function if f is continuous and f(Z) ⊂ Z.

Proposition 10. The set of integer-valued continuous functions R → R on the
rational integers forms a ring. We denote this ring by C(Z).

Proof. Obviously, addition is associative, commutative and distributive over mul-
tiplication, and multiplication is associative. Also, 0, 1 ∈ C(Z) and −f ∈ C(Z) if
f ∈ C(Z). Let f, g ∈ C(Z). f + g and fg are also continuous functions. We have
(f+g)(Z) ⊂ f(Z)+g(Z) ⊂ Z. Similarly, (fg)(Z) ⊂ f(Z)g(Z) ⊂ Z. f+g, fg ∈ C(Z),
the set is closed under multiplication and addition. □

We have thus verified that C(Z) is a ring. In fact, it is not difficult to observe
that C(Z) is an overring of Int(Z). Since this ring includes elements other than
polynomials, it may be interesting for us to investigate the units, associates, factors
and irreducibles.

Proposition 11. Let f ∈ C(Z). f is a unit if and only if f(Z) = {1} or {−1} and
ker(f) = ∅.

Proof. f is a unit if and only if there exists g ∈ C(Z) such that fg = 1. f(z)g(z) = 1
for all z ∈ Z, so it follows that f(Z) = {1,−1}. Moreover, f(r)g(r) = 1 for all r ∈ R.
Since f, g must be continuous, f(r), g(r) ̸= 0. In other words, ker(f) is empty. Lastly,
by the intermediate value theorem, if f(a) = 1 and f(b) = −1 for some a, b ∈ Z,
then f has a root, which contradicts ker(f) = ∅. Thus f(Z) = {1} or {−1}. □

Proposition 12. Let f, g ∈ C(Z). If f and g are associates, then ker(f) = ker(g)
and f(z) = g(z) for all z ∈ Z or f(z) = −g(z) for all z ∈ Z.

Proof. If f and g are associates, then f = gh for some unit h ∈ C(Z). By Propo-
sition 11, h(Z) = {1} or {−1} and ker(h) = ∅. We then have ker(f) = ker(gh) =
ker(g). Lastly, f(z) = g(z)h(z) for all z ∈ Z, which means f(z) = g(z) for all z ∈ Z
or f(z) = −g(z) for all z ∈ Z. □

However, the converse of this statement is not true: consider f(x) = |x| for −1 <

x < 1 and f(x) = 1 otherwise and g(x) =
√

|x| for −1 < x < 1 and g(x) = 1

otherwise. ker(f) = ker(g) = {0} and f(z) = g(z) for all z ∈ Z. But
f

g
is not a unit

and
g

f
is not continuous, so f and g are not associates.
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Lemma 10. Let f, g ∈ C(Z). If g divides f , then ker(g) ⊂ ker(f) and g(z) | f(z)
for all z ∈ Z and z /∈ ker(g).

Proof. Let g | f . f = gh for some h ∈ C(Z). For all z ∈ Z, f(z) = g(z)h(z),
so g(z) | f(z) if g(z) ̸= 0. Moreover, if g(a) = 0, then f(a) = g(a)h(a) = 0, so
ker(g) ⊂ ker(f). □

Lemma 11. Let f, g ∈ C(Z). If ker(g) is empty and g(z) divides f(z) for all z ∈ Z,
then g divides f .

Proof. Let h =
f

g
. Then h(z) =

f(z)

g(z)
for all z ∈ Z. g(z) divides f(z), so h is

integer-valued. Next, since ker(g) is empty,
f

g
is well-defined and continuous. Thus

h ∈ C(Z), f = gh and g divides f . □

Using this lemma, we can find functions that, excluding associates, has infinitely
many factors. In the following theorem, we give an example of such a function and
use it to prove that C(Z) does not satisfy the ACCP.

Theorem 6. C(Z) does not satisfy the ascending chain condition on principal ideals.

Proof. Let f0, f1, · · · ∈ C(Z) with the following:

f0(x) = 2, fn(x) =


2 for x ≤ 0 or x ≥ n+ 1

2− x for 0 < x < 1

1 for 1 ≤ x ≤ n

x− n+ 1 for n < x < n+ 1

for n = 1, 2, . . .

For each n, fn ∈ C(Z) and fn | fn−1. The chain of principal ideals (f0) ⊂ (f1) ⊂ . . .
is non-terminating. □

Corollary 3. C(Z) is not Noetherian.

Now we turn our attention to irreducible elements. We find a necessary and sufficient
condition for an element in C(Z) to be irreducible. This includes conditions on the
kernel of the function and the values that it can take.

Lemma 12. Let f ∈ C(Z). If ker(f) is not empty, then f is not irreducible.

Proof. Let f(a) = 0. Define functions g, h with the following: If there exists b > a
such that |f(b)| = 1 and |f(x)| < 1 for x ∈ (a, b), then let g(x) = 1 and h(x) = f(x)
for x > b. Similarly, if there exists c < a such that |f(c)| = 1 and |f(x)| < 1 for
x ∈ (c, a), then let g(x) = 1 and h(x) = f(x) for x < c. Lastly, for the remaining

values, let g(x) =
√
|f(x)| and h(x) = sgn(f(x))

√
|f(x)|.

One can verify that g, h are continuous and take integer values on integer points.
Moreover, since g(a) = h(a) = 0, ker(g), ker(h) are non-empty and thus g, h are not
units. f = gh, so f is not irreducible. □

Lemma 13. Let f ∈ C(Z). If |f(z)| ≠ 1 is composite for some z ∈ Z, then f is not
irreducible.
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Proof. Let f(z) = pq for some non-units p, q ∈ Z. Assume without loss of generality
that p > 0. Let g such that

g(x) =


1 for x < z − 1 or x > z + 1

p+ (p− 1)(x− z) for z − 1 ≤ x ≤ z

p+ (1− p)(x− z) for z < x ≤ z + 1

Obviously, g ∈ C(Z) is not a unit and h =
f

g
∈ C(Z). Moreover, h(z) = q is not a

unit in Z, so h is not a unit in C(Z). Since f = gh, f is not irreducible. □

Lemma 14. Let f ∈ C(Z). If |f(a)|, |f(b)| ≠ 1 for some distinct a, b ∈ Z, then f is
not irreducible.

Proof. If f(a) = 0, then f is not irreducible by Lemma 12.

If f(a) > 0, let g such that

g(x) =


1 for x < a− 1 or x > a+ 1

f(a) + (f(a)− 1)(x− a) for a− 1 ≤ x ≤ a

f(a) + (1− f(a))(x− a) for a < x ≤ a+ 1

If instead f(a) < 0, let

g(x) =


−1 for x < a− 1 or x > a+ 1

−f(a)− (f(a)− 1)(x− a) for a− 1 ≤ x ≤ a

−f(a)− (1− f(a))(x− a) for a < x ≤ a+ 1

Obviously, g ∈ C(Z) is not a unit and h =
f

g
∈ C(Z). Moreover, h(b) is not a unit

in Z, so h is not a unit in C(Z). Since f = gh, f is not irreducible. □

Proposition 13. Let f ∈ C(Z). f is irreducible if and only if ker(f) is empty and
for some a ∈ Z, f(Z \ {a}) = {1} or {−1} and f(a) is prime in Z.

Proof. By Lemmas 12, 13 and 14, f is irreducible only if ker(f) is empty and for
some a ∈ Z, f(Z \ {a}) = {1} or {−1} and f(a) is prime in Z.

Now suppose ker(f) is empty and for some a ∈ Z, f(Z \ {a}) = {1} and f(a) is
prime in Z. Suppose that f is not irreducible, i.e. f = gh for some non-units g, h.
ker(g), ker(h) ⊂ ker(f) = ∅, so ker(g), ker(h) are also empty. By Lemma 10, for all
z ∈ Z and z ̸= a, g(z)h(z) = f(z) = 1, so g(Z \ {a}), h(Z \ {a}) ⊂ {−1, 1}. Given
that ker(g) = ker(h) = ∅, by intermediate value theorem, we have g(Z \ {a}) =
h(Z \ {a}) = {1} or g(Z \ {a}) = h(Z \ {a}) = {−1}. Assume, WLOG, that it is
the former. Since f(a) = g(a)h(a) is prime and irreducible in Z, either g(a) = f(a)
and h(a) = 1 or g(a) = 1 and h(a) = f(a). In both cases, it contradicts g, h being
non-units. So f is irreducible.

If instead f(Z \ {a}) = {−1} and f(a) < 0, we arrive at a similar result. Either
g(Z \ {a}) = {1} and h(Z \ {a}) = {−1} or g(Z \ {a}) = {−1} and h(Z \ {a}) = {1}.
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In the first case, either g(a) = −f(a) and h(a) = −1 or g(a) = 1 and h(a) = f(a).
In the second case, either g(a) = f(a) and h(a) = 1 or g(a) = −1 and h(a) = f(a).
These all contradict g, h being non-units. f is irreducible.

Thus, if ker(f) is empty and for some a ∈ Z, f(Z \ {a}) = {1} or {−1} and f(a) is
prime in Z, then f is irreducible. □

Some elements cannot be expressed as a product of irreducibles and C(Z) is not a
UFD.

Theorem 7. C(Z) is not a unique factorization domain.

Proof. If f is the product of n irreducible elements, then f(Z \ S) = {1} or {−1}
for some finite set S ⊂ Z with |S| ≤ n. As such, any nonzero constant non-unit
function cannot be factorized into a product of irreducibles. It follows that C(Z) is
not a UFD. □

6. Discussion

In this paper, we have shown that Int(Z[i]) has a basis, is integrally closed and non-
Noetherian, satisfies the ACCP, but is not a GCD domain; and that C(Z) does not
satisfy the ACCP and is not a UFD. Our results lead us to question whether these
properties hold for different but similarly defined rings:

6.1. Polynomials on Algebraic Integers. What if we consider polynomials on
rings of algebraic integers Z[a] other than Z and Z[i]? In particular, Z[a] = {r0 +
r1a + · · · + rn−1a

n−1 : r0, . . . , rn−1 ∈ Z} where a ∈ C is the root of some degree n
monic polynomial with coefficients in Z. One would expect that as a ring Int(Z[a])
has the same properties as Int(Z[i]) and Int(Z). We have the following propositions:

Proposition 14. Int(Z[a]) has a basis.

Proof. (Outline) Similar to Theorem 1, we can show that the union of zero and the
set of leading coefficients of degree n polynomials is equal bnZ[a] for some b−1

n ∈ Z[a],
so Int(Z[a]) is generated by a set of polynomials f0, f1, . . . where each deg fj = j
and bn is the leading coefficient of fj . □

Proposition 15. Int(Z[a]) satisfies the ascending chain condition on principal ideals.

Proof. Polynomials have a finite number of factors and (b) ⊂ (c) if and only if b
divides c, so every increasing chain of principal ideals eventually stabilizes. □

Proposition 16. Int(Z[a]) is an integrally closed domain.

Proof. (Outline) Z[a] is a subset of C and so the fundamental theorem of algebra
applies. Moreover, Z[a] is an integrally closed domain, so by following the same
steps as the proofs of Proposition 9 and Theorem 4, we arrive at our desired
result. □

We also make the following claims:

Claim 1. Int(Z[a]) is non-Noetherian.
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Claim 2. Int(Z[a]) is not a GCD domain.

It is harder to use similar methods as before to prove these claims. To address the

first claim, we pose this question: is f = p−1(Xp2 − X)(Xp − X) an element of
Int(Z[a]) for prime p ∈ N? This may be difficult to determine since we need to
consider the powers of the sum of more than two terms.

Next, for the second claim, we must contemplate how we can construct an ele-
ment that is irreducible but not prime in Int(Z[a])? For example, if a =

√
2, then

X2(X − 1)

2
is an irreducible element that is not prime, and if a =

√
d for square-free

d > 0, then
X2(X − 1) . . . (X − d+ 1)

d
is irreducible and not prime. In fact, we have

the following:

Lemma 15. If f ∈ Int(Z[a]) has degree n > 2, leading coefficient z−1 where z ∈ Z[a]
is not a unit and zf has a factor g with 1 < deg g < n, then f is not prime.

Proof. zf = gh where h ∈ Int(Z[a]) and 1 < deg h < n. f divides zf but does not
divide g or h, since deg g,deg h < n. So f is not prime. □

If we can find an irreducible element f that satisfies this criteria, then we can prove
that Int(Z[a]) is not a GCD domain.

6.2. Continuously Differentiable Functions on Rational Integers. On the
other hand, what happens if, aside from continuity, we impose additional conditions
on the integer-valued functions, such as differentiability? Let Cn(Z) be the set of
continuous integer-valued functions f such that the derivatives f ′, f”, . . . , f (n) exist
and are continuous. Also let C∞(Z) be the set of infinitely differentiable integer-
valued functions with continuous derivatives. C∞(Z) and each Cn(Z) are rings and
we have

C(Z) = C0(Z) ⊃ C1(Z) ⊃ · · · ⊃ Cn(Z) ⊃ Cn+1(Z) ⊃ · · · ⊃ C∞(Z) ⊃ Int(Z)

Lemma 16. Let f : R → R with f(x) = 1+ exp

(
1− 1

x(2− x)

)
for 0 < x < 2 and

f(x) = 1 otherwise. Then f ∈ C∞(Z).

Proof. If a, b ∈ C∞(Z), then a ◦ b ∈ C∞(Z). Let u(x) = exp
(
−x−1

)
for x > 0 and

u(x) = 0 otherwise. u is infinitely continuously differentiable, so f(x) = 1+eu(x(2−
x)) is also infinitely continuously differentiable. Lastly, since f(1) = 2 and f(z) = 1
for all z ∈ Z \ {1}, f ∈ C∞(Z). □

With this we construct a set of functions g0, g1, · · · ∈ C∞(Z) such that gn divides
gm whenever n < m. As a result, we have the following propositions:

Proposition 17. C∞(Z) and Cn(Z) for n ∈ N do not satisfy the ascending chain
condition on principal ideals.
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Proof. Consider function g(x) = f(x − 2k) for 2k ≤ x < 2k + 2, k ∈ Z. For each
non-negative integer n, let gn(x) = 1 for 0 ≤ x ≤ 2n and gn(x) = g(x) otherwise.
We have g0 = g and gn divides gm for all n < m. (g) ⊂ (g1) ⊂ . . . is a strictly
increasing chain of principal ideals. □

Corollary 4. C∞(Z) and Cn(Z) are not Noetherian.

Proposition 18. C∞(Z) and Cn(Z) are not unique factorization domains.

Proof. If C∞(Z) is an UFD, then up to associates, C∞(Z) has a finite number of
factors, which is not the case for g(x) = f(x− 2k) for 2k ≤ x < 2k + 2, k ∈ Z. □

6.3. Continuous Functions on Gaussian Integers. Lastly, what happens if we
consider the ring of continuous functions C → C which are integer-valued on the
Gaussian integers C(Z[i])? It is essentially a higher dimensional version of C(Z),
so one can imagine that they share similar properties with regards to its units,
irreducibles and ring structure.

Proposition 19. The units of this ring are functions f such that
f(Z[i]) ⊂ {1,−1, i,−i} and ker(f) = ∅.

Proof. If f is a unit, then fg = 1 for some g ∈ C(Z[i]) and f(z)g(z) = 1 for all
z ∈ Z[i], which implies that ker(f) = ∅ and f(z) = 1,−1, i or −i for all z ∈ Z[i].
On the other hand, if f(Z[i]) ⊂ {1,−1, i,−i} and the kernel of f is empty, then

1

f
is continuous and integer-valued on Z[i]. □

Note that we cannot force f to map the Gaussian integers to exactly one of the units
because the intermediate value theorem does not apply for functions on C. Next,
we find that Lemmas 10 and 11 also apply for C(Z[i]). In particular, to prove the
following lemmas, we can simply follow the exact same line of argument as before.

Lemma 17. g divides f in C(Z[i]) only if ker(g) ⊂ ker(f) and g(z) | f(z) for all
z ∈ Z[i], z /∈ ker(g).

Proof. If f = gh for some h ∈ C(Z[i]), then g(a) = 0 implies f(a) = g(a)h(a) = 0
and g(z) divides g(z)h(z) = f(z) if z ∈ Z[i] and g(z) ̸= 0. □

We have found a necessary condition for g | f and we then state a sufficient condition.

Lemma 18. Let f, g ∈ C(Z[i]). If ker(g) is empty and g(z) divides f(z) for all
z ∈ Z[i], then g divides f .

Proof. ker(g) is empty, so
f

g
must be continuous. g(z) divides f(z) for all z ∈ Z[i],

so
f

g
is integer-valued. f =

f

g
g where

f

g
∈ C(Z[i]), so g divides f . □

With this we can again construct a strictly increasing chain of principal ideals.

Proposition 20. C(Z[i]) does not satisfy the ascending chain condition on principal
ideals.
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Proof. Let f0, f1, · · · : R → R with the following:

f0(x) = 2, fn(x) =


2 for x ≤ 0 or x ≥ n+ 1

2− x for 0 < x < 1

1 for 1 ≤ x ≤ n

x− n+ 1 for n < x < n+ 1

for n = 1, 2, . . .

We extend these functions to g0, g1, · · · : C → C by taking gn(x) = fn(Re(x)). For
each n, gn ∈ C(Z[i]) and gn | gn−1. The chain of principal ideals (g0) ⊂ (g1) ⊂ . . .
is non-terminating. □

Corollary 5. C(Z[i]) is not Noetherian.

Lemma 19. Any function with non-empty kernel is not irreducible.

Proof. Let f ∈ C(Z[i]) with f(a) = 0. Let g(x) =
∣∣∣√f(x)

∣∣∣ for |f(x)| < 1 and

g(x) = 1 otherwise. Let h(x) = 0 for f(x) = 0 and h(x) =
f(x)

g(x)
otherwise. g and h

are continuous and integer-valued and g(a) = h(a) = 0, so g and h are non-units in
C(Z[i]). Thus f = gh is not irreducible. □

Lemma 20. Let f ∈ C(Z[i]). If f(z) is composite in Z[i] for some z ∈ Z, then f is
not irreducible.

Proof. Let p be a proper factor of f(z), i.e. p is not a unit or an associate of f(z).
Assume without loss of generality that Re(p) > 0. Let g(x) = |x− z|(1− p) + p for
|x − z| < 1 and g(x) = 1 otherwise. g is continuous, integer-valued and not a unit.
Moreover, g divides f and g is not an associate of f since g(z) = p is a proper factor
of f(z). So f is not irreducible. □

Lemma 21. Let f ∈ C(Z[i]). If f(a) and f(b) are not units for distinct a, b ∈ Z[i],
then f is not irreducible.

Proof. Let r be an associate of f(a) with Re(r) > 0. Let g(x) = |x − a|(1 − r) + r

for |x − a| < 1 and g(x) = 1 otherwise. g,
f

g
∈ C(Z[i]) where g(a) and

f

g
(b) are

non-units. So f is not irreducible. □

Proposition 21. The irreducibles of this ring are functions with empty kernel which
map one Gaussian integer to a Gaussian prime and all other Gaussian integers to
the units {1,−1, i,−i}.

Proof. By Lemmas 19, 20 and 21, any irreducible f must have an empty kernel
and if f(a), f(b) are non-units for some a, b ∈ Z[i], then a = b and f(a) is a Gaussian
prime. Moreover, since any irreducible must not be a unit, such a always exists.

On the other hand, if f has empty kernel and for some a ∈ Z[i], f(a) is a Gaussian
prime and f(Z[i] \ {a}) ⊂ {1,−1, i,−i}. Now suppose f = gh. Then ker(g) =
ker(h) = ker(f) = ∅. Moreover, since f(a) is prime, one of g(a) and h(a) is a unit
and the other is an associate of f(a). It follows that one of g and h is a unit and
the other is an associate of f . f is irreducible. □
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Proposition 22. C(Z[i]) is not a unique factorization domain.

Proof. If f is the finite product of some irreducibles in C(Z[i]), then f(Z[i] \ S) ⊂
{1,−1, i,−i} for some finite set S. Non-zero non-unit constant functions cannot be
expressed as a finite product of irreducibles and so no unique factorization exists. It
follows that C(Z[i]) is not a UFD. □
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REVIEWERS’ COMMENTS

This paper studied integer-valued polynomials, by which the author means a poly-
nomial f whose values on the set of integers are integers, i.e. f(Z) ⊂ Z. The main
goal of the paper was to study the algebraic properties of the ring of such polyno-
mials, and also extend the results by replacing Z by Z[i], addressing several issues
about whether the ring of (Gaussian) integer-valued polynomials is Noetherian, in-
tegrally closed, GCD or not. Reviewers think that the author has a good commend
on ring theory.
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