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Abstract. The traditional sieve of Eratosthenes gives a simple algorithm
for finding all prime numbers. However, prime numbers seem appear unpre-

dictably but with regular population ratio in the ranges of integers, as Gauss
found a density function of prime numbers within a range of x. On the other

hand, there are a few methods of classification of prime numbers. We devel-

oped a new classification of prime numbers by prime number trees. In the
prime number trees, the followed number is generated by attaching a digit

either 1, 3, 7, or 9 to the right hand side of the preceding prime number. If the

number generated remains prime, then the process is continued, otherwise it
is stopped. The prime number trees group prime numbers with similar digits

together and show the elegancy of a shorthand of prime numbers. This method

also shows a regular classification of prime numbers.

Part A. Prime Number Trees in the Decimal Number System

1. Introduction

1.1. Prime numbers

The traditional sieve of Eratosthenes gives a simple algorithm for finding all prime
numbers. However, prime numbers seem appear unpredictably but with regular
population ratio in the ranges of integers, as Gauss found the density function of

prime numbers within a range of x to be ≈ 1

lnx
[2]. On the other hand, there are

a few methods of classification of prime numbers. This is probably due to the lack
of understanding the properties of prime numbers. No formulae has been found
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to compute prime numbers successfully. For example, Fermat numbers, Mersenne
numbers are not all prime. Fermat Little Theorem only gives the property of prime
numbers but not a method of inspecting a number to be prime.

1.2. Classification of Prime Numbers

According to Erdős -Selfridge’s classification of prime numbers [1], there are infinite
classes of prime numbers with each class containing infinite prime numbers. In each
class, there is not a clear regulation of appearing of prime numbers. This is shown
in Chapter 2.

We developed a new classification of prime numbers by prime number trees. In the
prime number trees, the followed number is generated by attaching a digit either
1, 3, 7, or 9 to the right hand side of the preceding prime number. If the number
generated remains prime, then the process is continued, otherwise it is stopped. For
example, the prime number tree of 2 contains 2, 23, 233, 2333, 23333, which are all
prime. The prime number trees group prime numbers with similar digits together
and show the elegancy of a shorthand of prime numbers. This method also shows
a regular classification of prime numbers.

2. Traditional Classification of Prime Numbers

2.1. Erdős -Selfridge’s Classification of Prime Numbers

Paul Erdős and John Selfridge classified prime numbers as follows. For p to be a
prime number,

(i) if the largest prime factor of p + 1 is 2 or 3, then p is in Class 1,

(ii) if the largest prime factor of p + 1 is in class c, then p is in Class (c + 1).

2.2. Classes of Prime Numbers

Class 1: 2, 3, 5, 7, 11, 17, 23, 31, 47, 53, 71, 107, 127, 191, 383, . . .
e.g. For the prime number p = 3, p + 1 = 4 = 2× 2 , the largest

prime factor of (p + 1) is 2. Then p = 3 is in Class 1.

For the prime number p = 5, p + 1 = 6 = 2 × 3, the largest
prime factor of (p + 1) is 3. Then p = 5 is in Class 1.

Prime numbers in Class 1 are of the form 2i3j−1 for i ≥ 0 and j ≥ 0.
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Class 2: 13, 19, 29, 41, 43, 59, 61, 67, 79, 83, 89, 97, 101, 109, 131,
137, 139, . . .
e.g. For the prime number p = 13, p + 1 = 14 = 2× 7, the largest

prime factor of (p + 1) is 7, which is in Class 1. Then p = 13
is in Class 2.

Class 3: 37, 103, 113, 151, 157, 163, 173, 181, 193, 227, 233, 257, 277,
311, 331, 337, . . .
e.g. For the prime number p = 37, p+ 1 = 38 = 2× 19, the largest

prime factor of (p + 1) is 19, which is in Class 2. Then p = 37
is in Class 3.

Class 4: 73, 313, 443, 617, 661, 673, 677, 691, 739, 757, 823, 887, 907,
941 . . .
e.g. For the prime number p = 73, p+ 1 = 74 = 2× 37, the largest

prime factor of (p + 1) is 37, which is in Class 3. Then p = 37
is in Class 4.

Therefore, the Erdős-Selfridge classification of primes classifies prime numbers ac-
cording to their neighbours.

3. Classification of Prime Numbers by Prime Number Trees

3.1. Prime Number Trees

The Prime Number Tree is a sequence or a family of prime numbers. It starts from
a prime number and ends again with a prime number. In a prime number tree,
the followed number is generated by attaching 1, 3, 7 or 9 to the right hand side
of the preceding prime number and it remains prime. The sequence ends when no
more prime number can be generated by doing so. e.g. 2, 23, 233, 2333, 23333 are
all prime. However, 233331, 233333, 233337 and 233339 are no longer prime. The
prime number tree of 2 is shown below.
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Table 1. Prime Number Tree of 2. The prime number tree ends
when no more prime number can be generated.

Definition 1. Scheme of Odd Unit Integers Plus Multiple of Ten (SOUIPMT)
If a new prime number is produced by multiplying an old prime number by 10 and
followed by an addition of either 1, 3, 7 or 9, this new prime number is said to be
generated by the Scheme of Odd Unit Integers Plus Multiple of Ten (SOUIPMT).

e.g. p1 = 2 is prime, p2 = 10 × 2 + 3 = 23 is also prime. p2 is said to be
generated by SOUIPMT.

Definition 2. Fundamental Prime Number A fundamental prime number is
a prime number which cannot be generated by SOUIPMT.

e.g. The prime number 23 = 10 × 2 + 3. It can be generated by SOUIPMT.
Therefore, 23 is not a fundamental prime number.

e.g. The prime number 89 = 10 × 8 + 9. Since 8 is not prime, 89 cannot be
generated by SOUIPMT. Therefore, 89 is a fundamental prime number.

Definition 3. Tail Prime Number A tail prime number is a prime number which
cannot generate a new prime number by SOUIPMT.

e.g. 23333 is prime. However, 233331, 233333, 233337, 233339 are all composite.
Therefore, 23333 is a tail prime number.
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Definition 4. Prime Number Tree A prime number tree is composed of prime
number sequences which start from the same fundamental prime number and the
followed prime numbers generated by SOUIPMT, one by one. The sequences end
with different tail prime numbers so that there are many branches in it.

The prime number trees of 3, 5 and 7 are shown below.

Table 2. Prime Number Tree of 3

Table 3. Prime Number Tree of 5



138 MAN HIM HO, CHUN LAI YIP, YAT WONG, YIN KEI TAM

Table 4. Prime Number Tree of 7

Definition 5. Alone Prime Number An alone prime number is a prime num-
ber tree containing only the fundamental prime number. The fundamental prime
number is also the tail prime number.

A list of alone prime numbers is shown in Table 5 below.

89 389
107 443
167 457
251 461

Table 5. Alone prime numbers

3.2. Properties of Tail Prime Numbers

For tail prime numbers or alone prime numbers p, particularly with p ≡ 2 (mod 3),
we can construct four composite numbers as q1 = 10p+1, q2 = 10p+3, q3 = 10p+7
and q4 = 10p + 9 such that
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



10p + 1 = p1 × n1,

10p + 3 = p2 × n2,

10p + 7 = p3 × n3,

10p + 9 = p4 × n4,

where p1, p2, p3 and p4 are the smallest odd prime factors whereas n1, n2, n3 and
n4 are odd positive integers greater than 1. It is found that q3 − q1 = 6 and

p3 × n3 − p1 × n1 = 6, (1)

which is an indefinite linear Diophantine equation with conditions 10p+1 = p1×n1

and 10p+7 = p3×n3. The solution to the equation (1) can be found as p3 = p1 = 3
and n3 − n1 = 2. Hence q1 = 10p + 1 = 3n1, which is a multiple of 3.

In this case there are two remarks.

1. For p to be a tail prime number and p ≡ 1 (mod 3), it does not imply the
solution to equation (1) is p3 = p1 = 3 and n3−n1 = 2. The counter-example
is the tail prime number p = 3793 with 37931 ≡ 2 (mod 3), 37937 ≡ 2
(mod 3), 37933 ≡ 0 (mod 7) and 37939 ≡ 0 (mod 11).

2. If the results p3 = p1 = 3 and n3 − n1 = 2 are given and with the same
condition, it does not imply p must be prime. q = 2009 is a counter-
example. 20091, 20093, 20097 and 20099 are all composite and 20091 ≡ 0
(mod 3), 20097 ≡ 0 (mod 3). However, 2009 is not prime.

Theorem 6. Theorem of Tail Prime Number Let p be a tail prime number
with p ≡ 2 (mod 3). Then q1 = 10p+1, q2 = 10p+3, q3 = 10p+7 and q4 = 10p+9
all are odd composite numbers by the definition of tail prime number. Let





10p + 1 = p1 × n1,

10p + 3 = p2 × n2,

10p + 7 = p3 × n3,

10p + 9 = p4 × n4,

where p1, p2, p3 and p4 are the smallest odd prime factors whereas n1, n2, n3 and n4

are odd positive integers. Then q3 − q1 = 6 = p3 × n3 − p1 × n1. The solution to
the equation is if and only if p3 = p1 = 3 and n3 − n1 = 2.

[See reviewer’s comment (2)]

Proof. We prove “if” first [See reviewer’s comment (3)]. For p ≡ 2 (mod 3) and
10p+1 = p1×n1, p1×n1 ≡ 10p+1 (mod 3). Since 10p+1 ≡ 1 ·p+1 ≡ 1 ·2+1 ≡ 0
(mod 3), p1 × n1 ≡ 0 (mod 3). It is either p1 ≡ 0 (mod 3) or n1 ≡ 0 (mod 3).
Similarly, p3 × n3 ≡ 10p + 7 ≡ 1 · p + 1 ≡ 1 · 2 + 1 ≡ 0 (mod 3). It is either p3 ≡ 0
(mod 3) or n3 ≡ 0 (mod 3). Since p1 and p3 are the smallest odd prime factors,
p3 = p1 = 3. q3 − q1 = 6 = p3 × n3 − p1 × n1 = 3(n3 − n1). Then n3 − n1 = 2.
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We then prove “only if” [See reviewer’s comment (4)]. When p3 = p1 = 3 and
n3 − n1 = 2, p3 × n3 − p1 × n1 = 3(n3 − n1) = 3(2) = 6.

Since alone prime numbers are tail prime numbers, they also satisfy Theorem 6.
Some tail prime numbers with their factorizations are shown below in Table 6.

Tail prime number Number
generated by
SOUIPMT

Smallest prime
factor

Other factor

53 ≡ 2 (mod 3) 531 3 177
533 13 41
537 3 179
539 7 77

89 ≡ 2 (mod 3)+ 891 3 297
893 19 47
897 3 299
899 29 31

107 ≡ 2 (mod 3)+ 1071 3 357
1073 29 37
1077 3 359
1079 13 83

113 ≡ 2 (mod 3) 1131 3 377
1133 11 103
1137 3 379
1139 17 67

167 ≡ 2 (mod 3)+ 1671 3 557
1673 7 239
1677 3 559
1679 23 73

179 ≡ 2 (mod 3) 1791 3 597
1793 11 163
1797 3 599
1799 7 257

251 ≡ 2 (mod 3)+ 2511 3 837
2513 7 359
2517 3 839
2519 11 229

Table 6. For every alone prime number p with p ≡ 2
(mod 3), 10p + 7 and 10p + 1 have a common prime factor 3 and
the difference of their remaining factors is 2. “+” means that the
tail prime number is also an alone prime number.
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Definition 7. Prime Number Tree Branch
Define prime number tree branch

[p; d1d2d3 . . . dn−1dn] ≡ {p, pd1, pd1d2, . . . , pd1d2 . . . dn−1, pd1d2 . . . dn−1dn},
where p is a fundamental prime number, di’s are either 1, 3, 7 or 9. All set elements
are prime.

In a prime number tree, prime number tree branches are prime number sequences
starting with the same fundamental prime number but ending with different tail
prime numbers. There are many branches in a prime number tree.

In Table 1, the prime number tree of 2 contains six branches, i.e.

[2;3333],

[2;3339],

[2;3399339],

[2;393],

[2;399333], and

[2;9399999].

2 is the fundamental prime number whereas 23333, 23339, 23399339, 2393, 2399333
and 29399999 all are tail prime numbers.

Definition 8. Length of Prime Number Tree The length of a prime number
tree is defined as the number of primes in the longest branch of the prime number
tree. Let the longest branch be [p; d1d2d3 . . . dn−1dn], where p is a fundamental
prime number, and di’s are either 1, 3, 7 or 9. The branch contains n+1 prime
numbers. The length of the prime number tree is defined as L = n + 1.

e.g. In the prime number tree of 2, the longest branches are [2;3399339] and
[2;9399999]. They both contain 8 prime numbers. The length of the prime
number tree of 2 is defined as 8.

Theorem 9. Classification of Prime Numbers by Prime Number Trees
Prime number trees give a complete classification of all prime numbers.

Proof. p is a prime number. Suppose it is a fundamental prime number in the
decimal number system, p = d1d2d3 . . . dn, where di’s are either 0,1,2,3, . . . ,8, or 9,
which are unit decimal integers, for i = 1 to n, and di 6= 0. The final digit dn is
either 1,3,7 or 9. Then p must produce a prime number tree by SOUIPMT and p
is in it.
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If p is not the fundamental prime number, there exists integers k and f, k ≥ f ≥ 1,
p = 10 × d1d2d3 . . . dfdf+1 . . . dk + u, where df+1 to dk and u are either 1, 3, 7 or

9, d1d2d3 . . . df is a fundamental prime number defined similar to the above. p is

then belonged to the prime number tree of d1d2d3 . . . df . Therefore, prime number
trees contain and classify all prime numbers in the decimal number system.

Theorem 10. Uniqueness of Prime Numbers in Prime Number Trees
Every prime number belongs to a unique prime number tree and prime number
trees do not intersect.

Proof. Suppose p is prime. If p is an alone prime number, then it is unique. If p
is not an alone prime number, suppose it belongs to two different prime number
trees. Let p = 10 × p1d1d2 . . . dk + u and p = 10 × p2e1e2 . . . em + u, where k and
m are some positive integers, u, d1 to dk, e1 to em are either 1,3,7, or 9, p1 and p2
are different fundamental prime numbers. Then

0 = p− p = (10× p1d1d2 . . . dk + u)− (10× p2e1e2 . . . em + u),

0 = 10× (p1d1d2 . . . dk − p2e1e2 . . . em),

p1d1d2 . . . dk = p2e1e2 . . . em.

Contradiction! Therefore, p1 = p2,m = k, di = ei for i = 1 to k. Thus p belongs
to a unique prime number tree. Since every prime number p belongs to a unique
prime number tree, prime number trees do not intersect.

Conjecture 11. Finite Length of Prime Number Trees There is no prime
number tree with infinite length.

For every fundamental prime number ph = h1h2 . . . hm for some positive integer
m, it is believed there exists a tail prime number pt = h1h2 . . . hmd1d2d3 . . . dn, for
some positive integer n, generated by SOUIPMT, in the longest prime number tree
branch, in every prime number tree such that

10× h1h2 . . . hmd1d2d3 . . . dn + 1,

10× h1h2 . . . hmd1d2d3 . . . dn + 3,

10× h1h2 . . . hmd1d2d3 . . . dn + 7 and

10× h1h2 . . . hmd1d2d3 . . . dn + 9

all are composite. The length of the prime number tree is n + 1, which is believed
to be finite.
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Part B. Prime Number Trees in the Binary Number System

4. Binary Prime Number Trees

4.1. Binary Prime Number Trees

Let p be a prime number in the binary number system. e.g. p = 2 = 10(2). Similar
to the prime number trees in the decimal number system shown in Part A, the
prime number trees in the binary number system are also found and the length
of the binary prime number trees can be proved to be finite. Alone binary prime
number trees are significantly increased in amount.

Definition 12. Prime Number Tree in the Binary Number System A prime
number tree in the binary number system is a sequence of prime numbers. The
sequence starts from a fundamental prime number. The following prime numbers
are generated by attaching the digit 1 to the right hand side of the preceding prime
number. The sequence ends at the tail prime number which cannot generate next
prime number.

The number generated by attaching the digit 0 to the right hand side of the pre-
ceding prime number must be even and non-prime so that this option is excluded.

e.g. 10(2) = 2, 101(2) = 5, 1011(2) = 11, 10111(2) = 23, 101111(2) = 47 are all
prime but 1011111(2) = 95 is composite.

Some binary prime number trees are shown below.

(i) Prime number tree of 10(2) = 2

[10; 1111](2) = {10(2), 101(2), 1011(2), 10111(2), 101111(2)}

(ii) Prime number tree of 11(2) = 3

[11; 1](2) = {11(2), 111(2)}

(iii) Prime number tree of 1101(2) = 13

[1101; ](2) = {1101(2)} which is alone.

Details of binary prime number trees of 2 to 97 are listed in the Table 7 below.
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Prime Number in
Binary Number

System
Binary Prime Number Trees

10(2) = 2 101(2) = 5 1011(2) = 11 10111(2) = 23 101111(2) = 47

11(2) = 3 111(2) = 7

101(2) = 5 ∗
111(2) = 7 ∗

1011(2) = 11 ∗
1101(2) = 13 (alone)

10001(2) = 17 (alone)

10011(2) = 19 (alone)

10111(2) = 23 ∗

11101(2) = 29
111011(2)

= 59

11111(2) = 31 (alone)

100101(2) = 37 (alone)

101001(2) = 41
1010011(2)

= 83

10100111(2)
= 167

101011(2) = 43 (alone)

101111(2) = 47 *

110101(2) = 53
1101011(2)

= 107

111011(2) = 59 ∗
111101(2) = 61 (alone)

1000011(2) = 67 (alone)

1000111(2) = 71 (alone)

1001001(2) = 73 (alone)

1001111(2) = 79 (alone)

1010011(2) = 83 ∗

1011001(2) = 89 10110011(2)
= 179

101100111(2)
= 359

1011001111(2)
= 719

10110011111(2)
= 1439

101100111111(2)
= 2879

1100001(2) = 97 (alone)

Table 7. Binary prime number trees of 2 to 97. “(alone)” means
it is an alone binary prime number tree. “*” means it is included
in a preceding binary prime number tree.

4.2. Finite Length of Binary Prime Number Trees

The length of decimal prime number trees is not yet known to be finite or infinite.
It is probably to be finite by inspecting the prime number trees we worked out,
even the amount of prime number trees is still a small number. However, in the
binary number system we can prove that the length of binary prime number trees
to be finite easily.

Theorem 13. (Fermat Little Theorem) Let p be a prime, and let a be any
number with a 6≡ 0 (mod p), then ap−1 ≡ 1 (mod p).

We skipped the proof since it is a well-known theorem and it can be found easily
in textbooks such as J. H. Silverman’s book [3].
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Theorem 14. (Theorem of Finite Length of Binary Prime Number Trees)
The length of every binary prime number tree is finite.

Proof. Let p be a fundamental prime number in the binary number system. Con-
struct a binary number q by attaching (p− 1) digits of 1 to the right hand side of
p. i.e.

q =p 111 . . . 11︸ ︷︷ ︸
(p−1)1s

(2),

q =p× 2p−1 + (2p−2 + 2p−3 + · · ·+ 2 + 1) = p× 2p−1 +
2p−1 − 1

2− 1
,

q =p× 2p−1 + 2p−1 − 1.

By Theorem 13 (Fermat Little Theorem), 2p−1 ≡ 1 (mod p). Let 2p−1 = p · h for
some positive integer h. Then

q = p× 2p−1 + p · h = p(2p−1 + h).

q is divisible by p. Hence q is composite. According to Definition 8 of the length
of a prime number tree, let L be the length of the binary prime number tree of q,
L ≤ p. Then the length of the binary prime number tree is finite. This applies to
every binary prime number tree.

4.3. Prime Number Trees in the Ternary Number System

The first few prime numbers in the ternary number system is

2 = 2(3), 3 = 10(3), 5 = 12(3), 7 = 21(3), . . .

We are interested in the length of prime number trees in the ternary number system.
Cases of ternary prime number trees are shown below.

Case (I) p = 2(3) = 2.

20(3) and 22(3) are even. 21(3) = 7 is prime, which is included in Case (III).

Case (II) p = 10(3) = 3.

100(3), 101(3) are composite, 102(3) = 11 is prime, which is included in Case
(III).

Case (III) p ≥ 12(3) = 5.

In this case, p ≥ 12(3) = 5 and p is odd.

p0(3) = 3 × p is composite. p1(3) = 3 × p + 1 is even and then compos-
ite.
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p2(3) = 3× p + 2 is odd. Construct a ternary number q by attaching (p− 1)
digits of 2 to the right hand side of p. Note that such a ternary number q
is always odd. We then have to apply Fermat Little Theorem to find out its
odd-even parity.

q =p 22 . . . 22︸ ︷︷ ︸
(p−1)2s

(3)

=p× 3p−1 + (3p−2 + 3p−3 + · · ·+ 3 + 1)

=p× 3p−1 +
3p−1 − 1

3− 1
.

By Fermat Little Theorem, 3p−1 ≡ 1 (mod p) for p ≥ 5. Let 3p−1 − 1 = p,
for some positive integer w. Since 3p−1 − 1 is even and p is odd, w is even.

q = p 22 . . . 22︸ ︷︷ ︸
(p−1)2s

(3) = p× 3p−1 +
1

2
(p · w),

which is divisible by p and then q is composite.

Hence, in this case, a ternary prime number tree starting from a fundamental
prime number p ≥ 12(3) = 5 must be finite in length.

From cases (I), (II) and (III), we conclude that the length of every ternary prime
number tree is finite.

We hope the various concepts in prime number trees can give some insights to the
understanding of prime numbers.
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APPENDIX A

List of Decimal Prime Number Trees

Prime
Numbers

Decimal Prime Number Trees

2 23 233 2333 233333

23339

2339 23399 233993 2339933 23399339

239 2393

2399 23993 239933 2399333

29 293 2939 29399 293999 2939999 29399999

3 31 311 3119 31193

313 3137 31379

317

37 373 3733 37337 373379 3733799 37337999

37339 373393

3739 37397

379 3793

3797

5 53

59 593 5939 59393 593933 5939333 59393339

59399 593993

599

7 71 719 7193 71933 719333

73 733 7331

7333 73331

739 7393 73939 739391 7391913 73939133

739393 7393931

7393933

739397

739399

79 797

11 113

13 131 1319

137 1373

139 1399 13997

13999 139991 1399913 13999133

1399919

139999 1399999

17 173 1733 17333

179

19 191 1913 19139

193 1931 19319

1933 19333 193337

197 1973 19739

1979 19793 197933 1979339 19793393 197933933 1979339333

1979339339

199 1993 19937 199373

199379

1997 19973 199739

1999 19991

19993 199931

199933 1999331 19993319

1999339

19997

23 *

29 *

31 *

37 *

41 419

43 431

433 4337

4339 43391

43397
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43399

439 4391 43913 439133 4391339

4397 43973

47 479 4793 47933

47939

4799

53 *

59 *

61 613 6131

6133 61331

61333 613337 6133373

61339

617 6173

619 6197 61979 619793

6199 61991

67 673 6733 67339 673391

673397

673399 6733997

6737

677 6779

71 *

73 *

79 *

83 839

89 (alone)

97 971 9719

977

101 1013 10133 101333

1033 10333 103333 1033337

1033339 10333391

1037

1039 10391 103913 1039139

103919

10399 103991

103993 1039931

103997 1039979 10399793 103997939 1039979393

1039979399 10399793993 103997939939

107 (alone)

109 1091

1093 10937 109379

10939 109391

109397

1097 10973

10979 109793 1097933

133 *

127 1277

1279 12791 127913 1279133 1279133

12799 127997

131 *

137 *

139 *

149 1493 14939 149393

149399

1499

151 1511

157 1571

1579 15791

15797

163 1637

167 (alone)

173 *

179 *

181 1811 18119 181193 1811939

181199 1811993

191 *

193 *

197 *

199 *

211 2111

2113 21139

223 2237

2239 22391 223919

22397

227 2273 22739 227393
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227399 2273993

229 2293 22937 229373

2297 22973 229739

233 *

239 *

241 2411 24113

2417 24179 241793 2417939 24179399

251 (alone)

257 2579 25793 25793

25799 257993 2579939

263 2633 26339 263399

269 2693

2699 26993 269939 2699393

271 2711

2713

2719 27191 271919 2719193 27191939

27197

277 2777 27773

27779 277793

281 2819

283 2833

2837

293 *

307 3079

311 *

313 *

317 (alone)

Table A1. Decimal prime number trees. “(alone)” means it is
an alone prime number. “*” means it is included in a preceding
decimal prime number tree.
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Reviewer’s Comments

The presentation of this paper is very good. The following is a list of corrections
and stylistic suggestions.

1 The reviewer has comments on the wordings, which have been amended in
this paper.

2 “The solution to the equation is if and only if” should be rewritten as “The
equation has a unique solution”.

3 “We prove “if” first” should be deleted.
4 “We then prove “only if”.” should be deleted.




