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Abstract. For operators A, it is sometimes possible to define eAt as an

operator in and of itself provided it meets certain regularity conditions. Like
eλx for ODEs, this operator is useful for solving PDEs involving the operator

A. We call the set of eAt a semigroup generated by A. In this paper, we discuss

the properties of semigroups generated by the fractional integral, an operator
appearing in PDEs in increasingly many fields, over Bochner-Lebesgue spaces.
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1. Introduction

The fractional integral is an extension to the ordinary integrals to a non-integer
order and has numerous applications in modelling various phenomena such as vis-
coelasticity, fractionally-damped systems, and diffusion. [KST06] A prominent
definition for the fractional integral is the Riemann-Liouville integral which can be
derived from the Grünwald-Letnikov fractional derivative or the Cauchy formula
for repeated integration and is defined, for order α, by:

x0
Jαx f(x) =

1

Γ(α)

∫ x

x0

f(t)(x− t)α−1dt

where f is a function which maps the interval [x0, x1] to a Banach Space X (which
can be the real numbers, Euclidean vectors or even Lp functions), and x0 ≤ x ≤ x1.
[CJ21, Definition 5]

Semigroups are mappings from positive reals to L (F ), the set of all continuous
linear operators in F → F . For a given one-parameter semigroup T, they satisfy
the properties T (t+ s) = T (t)T (s) and T (0) = I, where I is the identity operator
on F. [Bát+11, Definition 2.1] These two properties can allow one to reveal a lot
of information about the given semigroup T (t). The semigroups can be further
categorised into different types of semigroups, such as C0-semigroups and analytic
semigroups, depending on the properties they possess. The infinitesimal generator,
A, of a one-parameter semigroup, T , is defined to have domain D (A) := {f ∈ F |
T (·)f is differentiable in [0,∞)}. Furthermore, if f ∈ D (A), then:

Af :=
d

dt
T (t)f

∣∣∣∣
t=0

= lim
h→0+

T (h)f − f
h

This property is highly useful, as by treating a function f(x, t) as a time-varying
vector f(t), it allows one to investigate partial fractional differential equations
through the lens of C0-semigroups. [Bát+11] For example, for an operator A, the
solution to the abstract Cauchy problem

{
ḟ(t) = Af(t)
f(0) = 0

Is known to be

f(t) = T (t)f(0)

where T is the semigroup generated by A. It is also known that a linear opera-
tor is the infinitesimal generator of a uniformly continuous semigroup, a type of
one-parameter semigroup, if and only if the operator is also bounded. Normally,
derivatives appear in a PDE, but to ensure the well-behavedness of the semigroup
generated, we instead use the fractional integral operator, x0

Jαx , as the infinitesimal
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generator of a unique one-parameter semigroup, which we intend to study in this
paper.

In this paper, we will use the theory of one-parameter semigroups in order to
separately the properties of the semigroup generated by the fractional integral. We
use the theory on Bochner-Lebesgue spaces Lp(x0, x1;X) to investigate semigroups
generated by Riemann-Liouville fractional integrals, namely its boundedness and
well-behavedness.

2. Preliminaries of Bochner-Lebesgue Spaces and C0-semigroups

In this section, we will present some well known definitions and results regarding the
classical Bochner-Lebesgue spaces, one-parameter semigroups and the Riemann-
Liouville fractional integral, which will be of utter importance throughout our
study and analysis of the semigroup generated by the fractional integral.

Definition 2.1. [CJ21, Definition 1] Let E be a subspace in Rn, M be a σ-algebra
and µ be a measure in (E,Σ). The representation (E,M,µ) is called a measure
space. Let X be a Banach space. Then:

(i) A step function ϕ : E → X, where X is an arbitrary Banach space, is
Bochner measurable if ϕ−1({s}) ∈M, ∀s ∈ X. Furthermore,
if µ(ϕ−1({s})) <∞, then the function is also integrable in E.

(ii) A Bochner measurable and integrable step function ϕ : E → X is a simple
function if and only if it can be expressed as a summation1,

ϕ =

n∑
j=0

ajχAj

and its integral is defined as,∫
E

ϕ dµ =

n∑
j=1

ajµ(Aj)

(iii) A function f : E → X is Bochner measurable if there exists a sequence
{ϕn(x)}∞n=1 of simple functions such that ϕn(x)→ f(x) as n→∞
in the topology of X, for almost every x ∈ E.

(iv) A function f : E → X is Bochner integrable if there exists a sequence
{ϕn(x)}∞n=1 of simple functions such that,

lim
n→∞

∫
E

‖ϕn(x)− f(x)‖Xdµ = 0.

1Where χAj is the indicator function of the set Aj , {aj} is such that ∀j aj ∈ X and Aj is

chosen such that ∀j, Aj ⊂ E; ∀i 6= j, Ai ∩Aj = φ and
⋃n
j=1 Aj = E.
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Lemma 2.2. We have the following two results from these definitions:

(i) Consider I ⊂ R. If f : I → X is a Bochner measurable function and
g : R → R is a Lebesgue measurable function, then we their convolution
R× I 3 (t, s) 7→ g(t− s)f(s) is Bochner measurable.

(ii) A function f : I → X is Bochner integrable if, and only if, f is Bochner
measurable and ‖f‖X ∈ L1(I;µ). This allows us to introduce the concept
of Bochner-Lebesgue spaces, as defined below.

Definition 2.3. [CJ21, Definition 3] Consider 1 ≤ p ≤ ∞. Lp(I;X) denotes the
space of all Bochner measurable functions f : I → X in which ‖f‖X ∈ Lp(I;R).2

Lp(I;X) is a Banach space with the norm,

‖f‖Lp(I;X) =

{[∫
I
‖f(s)‖pXds

] 1
p , if 1 ≤ p <∞

ess sups∈I ‖f(s)‖X , if p =∞

From this, we can define an operator norm:

Definition 2.4. [CJ21] Consider a linear operator A ∈ L (Lp(x0, x1;X)). Then,
we define its operator induced norm as

‖A‖L (Lp(x0,x1;X)) := sup
f∈Lp(x0,x1;X)

‖Af‖Lp(x0,x1;X)

‖f‖Lp(x0,x1;X)

Because the notation is cumbersome, we will denote the operator norm of bounded
linear operators as simply ‖ · ‖, unless there is potential for confusion between
different norms.

Under this norm, L (Lp(x0, x1;X)) becomes a Banach space. That being said, this
is not the only topology that we can define. We also introduce the strong operator
topology :

Definition 2.5. [Bát+11] Consider a sequence (An) consisting of elements of
L (Lp(x0, x1;X)).

(i) (An) uniformly converges to A iff

lim
n→∞

‖An −A‖L (Lp(x0,x1;X)) = 0

(ii) (An) strongly converges to A iff for all f ∈ Lp(x0, x1;X),

lim
n→∞

‖Anf −Af‖Lp(x0,x1;X) = 0

2Lp(I;R) represents the classical Lebesgue space.
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The different definitions of convergence implies different notions of open sets, and
different topologies on L (Lp(x0, x1;X)). Uniform convergence is convergence in
the topology induced by the operator norm, while convergence in the strong operator
topology is precisely strong convergence.

Note that uniform convergence implies strong convergence, but not vice versa.

We note that many theorems regarding properties of Lebesgue integrals also carry
over to Bochner integrals. In particular:

Theorem 2.6. (Fubini’s Theorem for Bochner integrals) [Hyt+16, Proposition
1.2.7] Given σ-finite measure spaces S, T (that is, the measure spaces are a count-
able union of elements in their σ-algebras) and Banach space X, if f : S × T → X
is a function such that

∫
S×T
‖f(s, t)‖X dµ(s, t) <∞

then,

∫
S×T

f(s, t) dµ(s, t) =

∫
S

∫
T

f(s, t) dµ(t) dµ(s) =

∫
T

∫
S

f(s, t) dµ(s) dµ(t)

Theorem 2.7. [CJ21, Theorem 53] (Leibniz integral rule) Suppose f : S×T → X
be a Bochner measurable function, which is Bochner integrable with respect to the
second variable, and the functions φ, ψ : S → T be differentiable. Suppose further
that the partial derivative of f(s, t) exists for almost every (s, t) ∈ S × T then the
following holds:

d

ds

∫ φ(s)

ψ(s)

f(s, t)dt = f(t, φ(s))φ′(s)− f(t, ψ(s))ψ′(s) +

∫ φ(s)

ψ(s)

∂

∂s
f(s, t)dt

We also list some useful inequalities for studying norms:

Corollary 2.8. [CJ21, Theorem 46] (Minkowski’s inequality for integrals) Suppose
that S and T are measure spaces, the function f : S×T → R is Lebesgue measurable
and let 1 ≤ p ≤ ∞. Then,[∫

T

∣∣∣∣∫
S

f(s, t)ds

∣∣∣∣p dt]
1
p

≤
∫
S

[∫
T

|f(s, t)|pdt
] 1
p

ds
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The following theorem is an immediate consequence of the above (Minkowski’s
inequality for integrals).

Theorem 2.9. [CJ21, Theorem 48] Suppose the function f : [t0, t1] → X is
Bochner integrable and g : R → [0,∞) is a locally Lebesgue integrable function.
If 1 ≤ p ≤ ∞ and 0 ≤ h ≤ t1 − t0 then the following inequality holds:[∫ t1−t0−h

0

[∫ r

0

g(s)‖f(r + t0 − s)‖Xds
]p
dr

] 1
p

≤
∫ t1−t0−h

0

g(s)

[∫ t1−t0−h

s

‖f(r + t0 − s)‖pXdr

] 1
p

ds

Theorem 2.10. (Hölder’s inequality) Let E be a measure space, 1 ≤ p, q ≤ ∞ be
numbers such that 1

p + 1
q = 13 and functions f, g : E → C be measurable functions.

Then the following inequality holds:

‖fg‖L1(E) ≤ ‖f‖Lp(E)‖g‖Lq(E)

We now give some classical definitions and results regarding the theory of one-
parameter semigroups, which is a powerful tool used in functional analysis and will
be critical to our study.

Definition 2.11. [Bát+11, Definition 2.1] Let T : [0,∞)→ L (X) be a mapping.
Then:

(i) T is said to have the semigroup property if, for all t, s ∈ [0,∞),

T (t+ s) = T (t)T (s)

and4

T (0) = I

(ii) Suppose the function T : [0,∞) → L (X) has the semigroup property. If
the mapping:

t 7−→ T (t)f ∈ X
is continuous ∀f ∈ X, then T is a strongly continuous one-parameter
semigroup of bounded linear operators on Y.5

We also have the following property of Bochner-Lebesgue spaces:

Theorem 2.12. [Neu21, Lemma 2.5] Let I = (x0, x1). Then, for each f ∈
Lp(I;X) and ε > 0, there exists a function φε ∈ C∞(I;X) such that ‖f −
φε‖Lp(I;X) < ε.

3We define 1
∞ = 0

4I is the identity operator on X
5T can equivalently be called a C0-semigroup on X.
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We first introduce a lemma regarding sets of bounded operators:

Lemma 2.13. [Bát+11, Theorem 2.28] (Uniform Boundedness Principle) Let X,Y
be a Banach space and let S be a subset of L (X,Y ). Then, if for all x ∈ X, we
find

sup{‖Ax‖ | A ∈ S} <∞

we say S is uniformly bounded - that is,

sup{‖A‖ | A ∈ S} <∞

Theorem 2.14. [Bát+11, Proposition 2.2] Let T : [0,∞) → L (X) be a C0-
semigroup. Then ∀t ≥ 0,

(i) T is locally bounded, meaning,

sup
s∈[0,t]

‖T (s)‖ <∞

(ii) There exists constants M ≥ 1 and ω ∈ R such that the following inequality
holds:

‖T (t)‖ ≤Meωt

Where the semigroup T is said to be of type (M,ω) if it satisfies the above
inequality with the particular constants M and ω.

Proof. For a fixed function f ∈ X, T (·)f is continuous on [0,∞) and, thus, bounded
on compact intervals [0, t]:

sup
s∈[0,t]

‖T (s)f‖ <∞

Therefore, by Lemma 2.13,

=⇒ sup
s∈[0,t]

‖T (s)‖ <∞

This gives us our first result (i). The second result follows from the first, as we
now define:

M := sup
s∈[0,1]

‖T (s)‖ <∞

Let t ≥ 0 be arbitrary and t = n+ r, where n ∈ N and r ∈ [0, 1). This allows us to
obtain:

‖T (t)‖ ≤ ‖T (r)T (1)n‖ ≤M‖T (1)‖n ≤M(‖T (1)‖+ 1)n

≤M(‖T (1)‖+ 1)t = Meωt

where we set ω := ln(‖T (1)‖+ 1), which completes the proof for the second result.
�
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Definition 2.15. [Bát+11, Definition 2.7] The infinitesimal generator A of a semi-
group T is defined to have domain

D (A) := {f ∈ F | T (·)f is differentiable in [0,∞)} ⊆ X

Furthermore, if f ∈ D (A), then:

Af :=
d

dt
T (t)f

∣∣∣∣
t=0

= lim
h→0+

T (h)f − f
h

We will now present some important properties of the infinitesimal generator of
one-parameter semigroups.

Theorem 2.16. [Bát+11, Proposition 2.9] Let T : [0,∞) → L (X) be a C0-
semigroup in X and A : D (A)→ X be its infinitesimal generator. Then:

(i) A is a linear operator in D (A).

(ii) for f ∈ X∫ t

0

T (s)f ds ∈ D (A) and T (t)f − f = A

(∫ t

0

T (s)f ds

)
(iii) For f ∈ D (A) then we have that T (t)f ∈ D(A) and,

d

dt
T (t)f = AT (t)f = T (t)Af

We will now introduce a further classification of one-parameter semigroups, known
as uniformly continuous semigroups, which will be significant to this study.

Theorem 2.17. [CJ21, Definition 25] A uniformly continuous semigroup is a
strongly continuous one-parameter semigroup T such that:

lim
t→0+

‖T (t)− I‖ = 0

and can be expressed as,
T (t) = eAt

where, A, its infinitesimal generator, is bounded and defined to have a domain
D (A) = X. Conversely, an operator A : X → X is the generator of a uniformly
continuous semigroup given by:

T (t) := eAt

if and only if A is a bounded linear operator.
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Finally, we show that the fractional integral is a bounded linear operator when
mapping from Lp(x0, x1;X) to Lp(x0, x1;X):

Theorem 2.18. [CJ21, Theorems 11, 12] (Boundedness of Riemann-Liouville in-
tegral) The Riemann-Liouville fractional integral operator is a bounded linear op-
erator from Lp(x0, x1;X) into itself for all 1 ≤ p ≤ ∞ and its bound is given
by:

‖x0
Jαx f‖Lp(x0,x1;X) ≤

[
(x1 − x0)α

Γ(α+ 1)

]
‖f‖Lp(x0,x1;X)

Proof. We will present this proof in the form of several algebraic manipulations.
Firstly, we define a dummy variable s such that s = x−t, which allows us to obtain:

Γ(α)‖x0
Jαx f‖Lp(x0,x1;X) = Γ(α)

[∫ x1

x0

‖x0
Jαx f(x)‖pXdx

] 1
p

≤
[∫ x1

x0

[∫ x

x0

(x− t)α−1‖f(t)‖Xdt
]p
dx

] 1
p

=

[∫ x1

x0

[∫ x−x0

0

sα−1‖f(x− s)‖Xds
]p
dx

] 1
p

Now we define r such that x = r + x0 and by applying Theorem 2.9 we obtain:

Γ(α)‖x0J
α
x f‖Lp(x0,x1;X) ≤

[∫ x1−x0

0

[∫ r

0

sα−1‖f(r + x0 − s)‖Xds
]p
dr

] 1
p

≤
∫ x1−x0

0

[∫ x1−x0

0

‖f(r + x0 − s)‖pXdr
] 1
p

ds

Finally, by defining l such that r = l + s− t0 we acquire:

Γ(α)‖x0J
α
x f‖Lp(x0,x1;X) ≤

∫ x1−x0

0

sα−1

[∫ x1−s

x0

‖f(l)‖pXdl
] 1
p

ds

≤
[∫ x1−x0

0

sα−1

] [∫ x1−s

x0

‖f(l)‖pXdl
] 1
p

=

[
(x1 − x0)α

α

]
‖f‖Lp(x0,x1;X)

=⇒ ‖x0
Jαx f‖Lp(x0,x1;X) ≤

[
(x1 − x0)α

Γ(α+ 1)

]
‖f‖Lp(x0,x1;X)

�

Thus, by Theorem 2.17, this ensures that the fractional integral is the infinitesimal
generator of a unique one-parameter semigroup.
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We present a few results regarding Gamma functions from:

Lemma 2.19. [NIS23, Equation 5.11.3] (Stirling’s approximation)

Γ(z) ∼
√

2π

z

(z
e

)z
Lemma 2.20. [NIS23, Equation 5.11.12]

Γ(z + a)

Γ(z)
∼ za

Remark 2.21. From numerical computation, we also find that for x > 0, min{Γ(x)} ≈
0.885603 with x ≈ 1.46163. We henceforth define min{Γ(x)} := min{Γ(x)|x ∈
R, x > 0}.

We also define the digamma function as ψ(z) := Γ′(z)
Γ(z) . We have:

Lemma 2.22. [Wei21, Equation 25] For integer n ∈ Z,

ψ(n) = −γ +

n−1∑
k=1

1

k

Lemma 2.23. [Wei21, Equation 16] As x→∞,

ψ(x) ∼ lnx

Furthermore, by the log-convexity of the log-Gamma function, the digamma func-
tion is monotonically increasing.

Finally, we present a function that appears often in the study of fractional Riemann-
Liouville integrals:

Definition 2.24. The Mittag-Leffler function Eα,β is defined as

Eα,β(t) =

∞∑
k=0

tk

Γ(αk + β)

If β is not specified, it is equal to 1.

Remark 2.25. We can show that for α > 0, the sequence αk + β is strictly
increasing with α. Then, by the ratio test, we have

lim
k→∞

tk+1

Γ(αk + β + α)

Γ(αk + β)

tk
= lim
k→∞

t
Γ(αk + β + α)

Γ(αk + β)
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Using Lemma 2.20,

lim
k→∞

t
Γ(αk + β + α)

Γ(αk + β)
= lim
k→∞

t(αk + β)−α = 0

Hence the Mittag-Leffler function converges for all α > 0.

3. The spectrum and resolvent of x0
Jαx

In this section, we explain the definition of the resolvent and its applications in C0-
semigroups.6 We also explicitly calculate a closed form expression for the resolvent
of the fractional integral.

Definition 3.1. [Bát+11, Definition 2.22] Let A be a closed operator defined on
the linear subspace D (A) of a Banach space X. Then,

(i) The spectrum of A is the set:

σ(A) := {λ ∈ C | λI −A : D (A)→ X is not bijective}

(ii) The resolvent set is the set:

ρ(A) := {λ ∈ C | λI −A : D (A)→ X is bijective}

(iii) If λ ∈ ρ(A), then (λI − A) is also injective, meaning that its algebraic
inverse (λI − A)−1 exists and is known as the resolvent of set A at point
λ, denoted as:

R(λ,A) := (λI −A)−1

(iv) The spectral radius of A is defined as:

r(A) := max{|λ| | λ ∈ σ(A)}

We present a useful lemma for finding the spectrum:

Lemma 3.2. Let A be a bounded operator. Then,

r(A) = lim
n→∞

‖An‖ 1
n

We first provide method of computing the resolvent operator of a set:

Theorem 3.3. (Neumann series) Suppose A is an operator acting on Banach space
X and λ ∈ C is a number such that λ ∈ ρ(A) and |λ| < r(A). Then, the series

1

λ

∞∑
k=0

Ak

λk

converges towards the resolvent operator R(λ,A).

6For more details on resolvents, see [Smi15].
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Finally, we cite an important theorem:

Theorem 3.4. (Hille-Yosida Theorem) [Rud91, Theorem 13.37] Let T be a uni-
formly continuous semigroup of type (M,ω) with the infinitesimal generator A.
Then, for all λ ∈ R where λ > ω.

‖R(λ,A)n‖ ≤ M

(λ− ω)n

The proof in its entirety can be found in Section 7.

Given all of these results, we can begin studying the spectrum of the operator Jα

for α > 0.

Theorem 3.5. The spectrum of x0
Jαx is the set {0}.

Proof. First, we note that x0J
α
x is not injective. This is because for every g ∈

Lp(x0, x1;X), there exists f such that x0J
α
x f = g only if g(x0) = 0.

Now, using Lemma 3.2 and Theorem 2.18, we find that

r (x0
Jαx ) = lim

n→∞
‖x0

Jαnx ‖
1
n

Lp(x0,x1;X) ≤ lim
n→∞

[
(x1 − x0)αn

Γ(αn+ 1)

] 1
n

= lim
n→∞

(x1 − x0)α

[Γ(αn+ 1)]
1
n

Using Stirling’s approximation, we find that

r (x0
Jαx ) = lim

n→∞
(x1 − x0)α(2π(αn+ 1))−

1
2n

(
e

αn+ 1

)α+ 1
n

≤ lim
n→∞

(
e

αn+ 1

)α
= 0

Hence, the spectral radius of x0
Jαx is 0 and the series converges.

�

Remark 3.6. Notably, for fractional derivatives, the spectrum is unbounded. For
example, for the second derivative on functions with domain [x0, x1], the spectrum
consists of the points −x1−x0

2π n2 for n ∈ N.

Now we explicitly find the resolvent operator:

Theorem 3.7. For f ∈ Lp(I;X), and for λ 6= 0,

R (λ, x0
Jαx ) f(x) =

1

λ

[
f(x) +

∫ x

x0

∂

∂x
Eα
(
λ−1(x− s)α

)
f(s) ds

]
ds.
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Proof. Because λ 6= 0, we can apply Theorem 3.3:

x0JxR (λ, x0J
α
x ) f(x) =

1

λ

∞∑
k=0

λ−kx0
J1+kα
x

=
1

λ

∞∑
k=0

∫ x

x0

λ−k(x− s)kα

Γ(kα+ 1)
f(s) ds

R (λ, x0
Jαx ) f(x) =

1

λ

d

dx

∞∑
k=0

∫ x

x0

λ−k(x− s)kα

Γ(kα+ 1)
f(s) ds

We can consider the summation as integration over N with the counting measure.

∫
N×[x0,x]

∥∥∥∥λ−k(x− s)kα

Γ(kα+ 1)
f(s)

∥∥∥∥
X

d(s, k) =

∫ x

x0

∞∑
k=0

λ−k(x− s)kα

Γ(kα+ 1)
‖f(s)‖X ds

=

∫ x

x0

Eα
(
λ−1(x− s)α

)
‖f(s)‖X ds

≤ Eα
(
λ−1(x− x0)α

) ∫ x

x0

‖f(s)‖X ds

Which is less than ∞ by Lemma 2.2.

Hence, we can apply Fubini’s Theorem (2.6):

R (λ, x0
Jαx ) f(x) =

1

λ

d

dx

∫ x

x0

∞∑
k=0

λ−k(x− s)kα

Γ(kα+ 1)
f(s) ds

=
1

λ

d

dx

∫ x

x0

Eα
(
λ−1(x− x0)α

)
f(s) ds

=
1

λ

[
f(x) +

∫ x

x0

∂

∂x
Eα
(
λ−1(x− s)α

)
f(s) ds

]

The last line resulting from applying Theorem 2.7.

�

4. Boundedness of the semigroup generated by the fractional
integral

In this section, we will apply Theorem 3.4 to determine an exact bound for the
size (operator norm) of the semigroup generated by the fractional integral, which
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we will define as:

Φ(α, t) := ex0
Jαx t =

∞∑
k=0

x0J
kα
x

tk

k!

Lemma 4.1. Let

Af(x) =

∫ x

x0

∂

∂x
Eα
(
λ−1(x− s)α

)
f(s) ds

Then the semigroup generated by Jα is of type (1, ω) iff for all λ such that <(λ) > ω,
we have

‖A‖ ≤
∞∑
k=1

ω

λ

Proof. Suppose ‖R (λ, x0
Jαx )‖ < 1

λ−ω . Then,∥∥∥(λI −x0
Jαx )

−n
∥∥∥ ≤ ∥∥∥(λI −x0

Jαx )
−1
∥∥∥n =

1

(λ− ω)n

Hence, it suffices to show that ‖R (λ, x0
Jαx )‖ < 1

λ−ω .

Now note that by the triangle inequality, ‖R (λ, x0J
α
x )‖ ≤ 1

|λ| (‖I‖+‖A‖) = 1
|λ| (1+

‖A‖). Hence, it is sufficient to show that

1

λ
(1 + ‖A‖) ≤ 1

λ− ω

1 + ‖A‖ ≤ |λ|
λ− ω

‖A‖ ≤ λ

λ− ω
− 1

=
ω

λ− ω

=

∞∑
k=1

ωk

λk

�

We note a lemma for finding the norm of an operator:

Lemma 4.2. Suppose there exists an operator S ∈ L (Lp(x0, x1;X)) such that for
f ∈ Lp(x0, x1;X) we find a.e. that if:

Sf(x) =

∫ x

x0

g(x− s)f(s) ds
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Then, for all 1 ≤ p ≤ ∞,

‖S‖L (Lp(x0,x1;X)) ≤
∫ x1−x0

0

|g(w)| dw

Proof. First, consider the case 1 < p <∞. Set w = x− s :

[∫ x1

x0

‖Sf(x)‖pX dx

] 1
p

=

[∫ x1

x0

∥∥∥∥∫ x

x0

g(x− s)f(s) ds

∥∥∥∥p
X

dx

] 1
p

≤
[∫ x1

x0

[∫ x

x0

|g(x− s)|‖f(s)‖X ds
]p

dx

] 1
p

≤

[∫ x1

x0

[∫ x−x0

0

|g(w)|‖f(x− w)‖X dw
]p

dx

] 1
p

Now set x = r + x0:[∫ x1

x0

‖Sf(x)‖pX dx

] 1
p

≤
[∫ x1−x0

0

[∫ r

0

|g(w)|‖f(r + x0 − w)‖X dw
]p

dr

] 1
p

We then apply Corollary 2.8 (as p 6=∞) to the RHS:[∫ x1

x0

‖Sf(x)‖pX dx

] 1
p

≤
∫ x1−x0

0

|g(w)|
[∫ x1−x0

w

‖f(r + x0 − w)‖pX dr
] 1
p

dw

Notice that r + x0 − s ranges from x0 to x1 − w. Hence,[∫ x1−x0

w

‖f(r + x0 − w)‖pX dr
] 1
p

≤
[∫ x1

x0

‖f(x)‖pX dx
] 1
p

giving us

[∫ x1

x0

‖Sf(x)‖pX dx

] 1
p

≤
∫ x1−x0

0

|g(w)|‖f‖Lp(x0,x1;X) dw

= ‖f‖Lp(x0,x1;X)

∫ x1−x0

0

|g(w)| dw
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Hence, by definition of the operator norm, we find

‖S‖L (Lp(x0,x1;X)) ≤
∫ x1−x0

0

|g(w)| dw

Now we consider the L∞ case.

‖Sf(x)‖X =

∥∥∥∥∫ x

x0

g(x− s)f(s) ds

∥∥∥∥
X

≤
∫ x

x0

g(x− s)‖f(s)‖X ds

Using Theorem 2.10 we find

‖Af(x)‖X ≤
∫ x

x0

g(x− s)‖f(s)‖X ds ≤
∣∣∣∣∫ x

x0

g(x− s) ds
∣∣∣∣ ess sup
s∈[x0,x]

‖f(s)‖X

Now we apply the substitution w = x− s:∣∣∣∣∫ x

x0

g(x− s) ds
∣∣∣∣ =

∣∣∣∣∫ 0

x−x0

g(w) dw

∣∣∣∣
=

∣∣∣∣∫ x−x0

0

g(w) dw

∣∣∣∣
≤
∫ x−x0

0

|g(w)| dw

Hence we conclude

‖Sf(x)‖X ≤
∫ x−x0

0

|g(w)| dw ess sup
s∈[x0,x]

‖f(s)‖X

ess sup
x∈[x0,x1]

‖Sf(x)‖X ≤
∫ x−x0

0

|g(w)| dw ess sup
x∈[x0,x1]

‖f(s)‖X

‖S‖L (L∞(x0,x1;X)) ≤
∫ x−x0

0

|g(w)| dw

Which concludes our proof.

�
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We first find the norm of A:

Theorem 4.3.

‖A‖L (Lp(x0,x1;X)) ≤ Eα
(
λ−1(x1 − x0)α

)
− 1

for all 1 ≤ p ≤ ∞.

Proof. From lemma 4.2 we find that

‖A‖L (Lp(x0,x1;X)) ≤
∫ x1−x0

0

∣∣∣∣ ∂∂wEα (λ−1(x− s)α
)∣∣∣∣ dw

Because Eα is an increasing function, we find

‖A‖L (Lp(x0,x1;X)) ≤
∫ x1−x0

0

∂

∂w
Eα
(
λ−1(x− s)α

)
dw

≤ Eα
(
λ−1(x− x1)α

)
− Eα(0)

= Eα
(
λ−1(x− x1)α

)
− 1

�

Then we set appropriate bounds on ω resultingly:

Theorem 4.4. Let Φ be the semigroup generated by the operator x0J
α
x . Then, for

all Lp spaces where 1 ≤ p <∞, Φ is a type (1, ω) semigroup for all

ω ≥ (x1 − x0)α

Γ(α+ 1)

that is,

‖Φ(α, t)‖L (Lp(x0,x1;X)) ≤ e
(x1−x0)α

Γ(α+1)
t
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Proof. We apply the series definition on the norm of A as found above:

Eα
(
λ−1(x1 − x0)α

)
− 1 =

∣∣∣∣∣
∞∑
k=1

λ−k(x1 − x0)αk

Γ(αk + 1)

∣∣∣∣∣
=

∞∑
k=1

(x1−x0)αk

Γ(αk+1)

λk

=

∞∑
k=1

(x1−x0)αk

Γ(αk+1)

λk

Which means Φ is of type ω as long as ωk ≥ (x1−x0)αk

Γ(αk+1) ⇒ ω ≥ (x1−x0)α

Γ
1
k (αk+1)

for all

integer k ≥ 1.

The denominator is not constant, and we wish to minimise it to get a lower bound
on ω. Consider the log of the function

log Γ
1
k (αk + 1) =

log Γ(αk + 1)

k

Define f(αk) = log Γ(αk + 1). Then we take the derivative:

d

dk

f(αk)

k
=
αkf ′(αk)− f(αk)

k2

Consider the numerator. Recall that the Gamma function is log-convex, so f is
convex and b > a⇒ f ′(b) > f ′(a). Hence, by Mean Value Theorem

f(αk)− f(0)

αk − 0
=
f(αk)

αk
= f ′(c) < f ′(αk)

Where c ∈ (0, αk). Therefore, αkf ′(αk) > f(αk), so f(αk)
k is an increasing function

and minimised at k = 1. Therefore, as log is monotone, Γ
1
k (αk + 1) is minimised

at k = 1, where it is equal to Γ(α+ 1).

Hence, for ω ≥ (x1−x0)α

Γ(α+1) , we have

∞∑
k=1

ωk

λk
≥ Eα

(
λ−1(x1 − x0)α

)
− 1 ≥ ‖A‖L (Lp(x0,x1;X))

which by Lemma 4.1 implies Φ is of type (1, ω).

�
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Remark 4.5. Here, we demonstrated a method of computing the type of T in
general.

Since it is now known that Φ is a strongly continuous semigroup of type (1, ω),
this means that it also fits into another classification of one-parameter semigroups,
known as quasi-contraction semigroups, which we will now use to determine an
alternative bound for the semigroup we are investigating.

Definition 4.6. [Rud91, Theorem 2.15, Definition 13.1] An operator A : X → Y
is closed if its graph (the set {x,Ax | x ∈ X}) is a closed subset of X × Y . For
Banach spaces, an operator is closed iff it is continuous.

Definition 4.7. [Bát+11, Proposition 6.2] An operator A is closable if it has an
extension that is closed. 7 Furthermore, the smallest possible extension of A is
called the closure of A and is denoted as Ā.

Lemma 4.8. An operator A is closed iff for every sequence of functions fn ∈ D (A)
such that fn → 0, Afn → 0.

Theorem 4.9. [Bey07, Theorem 5.7] (Lumer-Phillips theorem) Suppose that an
operator A is closable. Then, Ā generates a strongly continuous semigroup T on
X such that the following exponential bound is satisfied:

‖T (t)‖X ≤ eωt

if and only if A is quasi-accretive8 with bound −ω and Ran(A− λ) is dense in X,
for some λ ∈ (−∞,−ω). In this case, the semigroup T is called quasi-contractive.

Theorem 4.10. [Bey07, Theorem 5.10] Suppose that an operator A is closed and
is the infinitesimal generator of a strongly continuous quasi-contraction semigroup
T : D (A) → X. Then, the following inequality holds for all f ∈ D (A) and some
a ∈ [0, 1), b ∈ [0,∞):

‖Tf‖ ≤ a‖Af‖+ b‖f‖

Theorem 4.11. For 1 ≤ p < ∞ and some a ∈ [0, 1), b ∈ [0,∞), we have for all
t ≥ 0

‖Φ(α, t)‖L (Lp(x0,x1;X)) ≤
a(x1 − x0)α

Γ(α+ 1)
+ b

Proof. By theorem 2.12 it is known that the set of smooth functions with f(x0) = 0
form a dense subset of Lp(x0, x1;X). Furthermore, since it is now known that x0J

α
x

generates a strongly continuous quasi-contraction semigroup, by theorem 4.10 we

7An operator B is an extension of A if D (A) ⊆ D (B) and B |D(A)= A.
8An operator A is said to be quasi-accretive with bound a if and only if ‖(A+λ)f‖ ≥ |λ−a|‖f‖

for all λ ∈ [0,∞) and f ∈ D (A).
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can set x0
Jαx as the closure of a certain operator A. Then, by definition of the

closure of A, it is obvious that, for all f ∈ D (A):

Af = x0
Jαx1

f

which, when inserted into the inequality from theorem 4.10, gives for all f ∈ D (A)

‖Φ(α, t)f‖L (Lp(x0,x1;X)) ≤ a‖x0J
α
x f‖Lp(x0,x1;X) + b‖f‖Lp(x0,x1;X)

Thus, by definition of the operator norm and the boundedness of the fractional
integral (theorem 2.18), we obtain

‖Φ(α, t)‖L (Lp(x0,x1;X)) ≤
a(x1 − x0)α

Γ(α+ 1)
+ b

�

Corollary 4.12. x0J
α
x generates a semigroup of type (M, 0).

Proof. Consider, for α > 0,

f(α) =
(x1 − x0)α

Γ(α+ 1)
, f(α+ 1) =

(x1 − x0)α+1

Γ(α+ 2)
=

(x1 − x0)α+1

(α+ 1)Γ(α+ 1)

It is clear that under this definition,

‖Φ(α, t)‖L (Lp(x0,x1;X)) ≤ amax{f(α)}+ b

The f(α) > f(α + 1) iff x1 − x0 < α + 1 ⇒ α > x1 − x0 − 1, and conversely the
f(α + 1) is larger iff α + 1 < x1 − x0. Hence, we conclude that f(α) is largest at
some α ∈ (x1 − x0 − 1, x1 − x0).

Suppose x1 − x0 ≥ 1. We find9

f(α) <
(x1 − x0)x1−x0

Γm

If x1 − x0 < 1, then

f(α) <
1

Γm

In all cases, we find that f(α) is bounded. Because a, b does not vary with t, we
find that x0

Jαx must be bounded.

�

We will now introduce another classification of one-parameter semigroups, known
as analytic semigroups, which we will then apply to determine the continuity and
analytic properties of the semigroup generated by the fractional integral.

9See Remark 2.21 for the definition of Γm.
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5. Well-behavedness of the semigroup generated by x0
Jαx

In this section, we discuss the convergence properties of T (α, t) := eJ
αt. We first

discuss how the operator varies with t.

Definition 5.1. [Bát+11, Definition 9.1] For θ ∈
(
0, π2

]
, consider the sector

Σθ := {z ∈ C\{0} | | arg(z)| < θ}
Then, an operator T : Σθ ∪{0} → L (X) is an analytic semigroup of angle θ if the
following conditions are satisfied:

(i) T : Σθ → L (X) is holomorphic.

(ii) ∀z, w ∈ Σθ, the identities below hold

T (z)T (w) = T (z + w)

and
T (0) = I

(iii) For all θ′ ∈ (0, θ) and f ∈ X we have

lim
z→0
z∈Σθ′

T (z)f = f

(iv) If for all θ′ ∈ (0, θ) we find that

sup lim
z∈ΣΘ′

‖T (z)‖ <∞

then we say that T is a bounded linear semigroup.

The generator, A, of the analytic semigroup T is defined to be the same generator
as in the restriction T : [0,∞)→ L (X).

In particular, semigroups generated by bounded linear operators A are examples
of analytic semigroups.

Theorem 5.2. Let A be a bounded linear operator and define

T (z) := ezA =

∞∑
n=0

znAn

n!

Then, T is an analytic semigroup with θ = π
2 .

Proof. First, note that

∥∥∥∥∥
∞∑
n=0

znAn

n!

∥∥∥∥∥ ≤
∞∑
n=0

∥∥∥∥znAnn!

∥∥∥∥ ≤ ∞∑
n=0

(|z|‖A‖)n

n!
= e|z|‖A‖

Hence,
∑∞
n=0

znAn

n! converges and Merten’s Theorem applies.
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We next show that the semigroup property continues to hold for z, w ∈ Σθ.

ezAewA =

∞∑
i=0

ziAi

n!

∞∑
j=0

wjAj

j!

=
∞∑
n=0

n∑
i=0

ziwn−iAn

i!(n− i)!

=

∞∑
n=0

n∑
i=0

(
n

i

)
ziwn−i

An

n!

=

∞∑
n=0

n∑
i=0

(z + w)nAn

n!

= e(z+w)A

Next, we show limz→0 ‖T (z)− I‖ = 0.

Consider any ε > 0. Let δ = min
(

ε
2‖A‖ ,

1
‖A‖

)
. Suppose |z| < δ. Then, |z|‖A‖ < 1

and

∥∥∥∥∥
∞∑
n=0

znAn

n!
− I

∥∥∥∥∥ =

∥∥∥∥∥
∞∑
n=1

znAn

n!

∥∥∥∥∥
≤
∞∑
n=1

∥∥∥∥znAnn!

∥∥∥∥
≤
∞∑
n=1

(|z|‖A‖)n

n!

<

∞∑
n=1

(|z|‖A‖)n

2n−1

<

∞∑
n=1

|z|‖A‖
2n−1

= 2|z|‖A‖ < ε

Hence limz→0 ‖T (z) − I‖ = 0, so limz→0 ‖T (z)f − f‖ = 0 for any f ∈ L (X) and
limz→0 T (z)f = f .

Finally, we prove that T ′(z) exists for z ∈ Σθ, implying T is holomorphic over Σθ.
First, we find by the semigroup property that

lim
h→0

T (z + h)− T (z)

h
= T (z) lim

h→0

T (h)− I
h
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Since T (z) is bounded, it suffices to show that limh→0
T (h)−I

h is convergent. We
claim that this limit is equal to A.

Consider any ε > 0. Let δ = min
(

ε
‖A‖2 ,

1
‖A‖

)
. Then, if |h| < δ,

∥∥∥∥∥
∑∞
n=0

hnAn

n! − I
h

−A

∥∥∥∥∥ =

∥∥∥∥∥
∑∞
n=1

hnAn

n!

h
−A

∥∥∥∥∥
=

∥∥∥∥∥
∞∑
n=1

hn−1An

n!
−A

∥∥∥∥∥
=

∥∥∥∥∥
∞∑
n=0

hnAn+1

(n+ 1)!
−A

∥∥∥∥∥
=

∥∥∥∥∥
∞∑
n=1

hnAn+1

(n+ 1)!

∥∥∥∥∥
≤ ‖A‖

∞∑
n=1

∥∥∥∥ hnAn

(n+ 1)!

∥∥∥∥
≤ ‖A‖

∞∑
n=1

(|h|‖A‖)n

(n+ 1)!

≤ ‖A‖
∞∑
n=1

|h|‖A‖
2n

≤ ‖A‖|h|‖A‖ < ε

Hence we conclude that T (z) is holomorphic and T ′(z) = T (z)A.

�

Hence, this ensures that, by extending t to complex numbers, Φ(α, t) is an analytic
semigroup of angle π

2 .

Furthermore, we can extend the argument in theorem 4.10 and corollary 4.12 to
show that that Φ(α, z) when extended to z ∈ Σπ

2
is bounded, showing that Φ is a

bounded analytic semigroup.

Remark 5.3. Weaker conditions, such as strong continuity or local Lipschitz con-
tinuity for any δ < |z|, easily follow from the fact that a semigroup T is analytic.
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We also note a simple corollary:

Corollary 5.4. Let K be an integer with real part > 0. Let S(z) = T (α,Kz), where
T is an analytic semigroup. Then S too is an analytic semigroup with θ = π

2 .

Proof. First, if <(z) > 0, then <(Kz) > 0, so S(z) is well defined. Also, S(z)S(w) =
T (α,Kz)T (α,Kw) = T (α,K(z + w)) = S(z + w). We have limz→0 S(z) =
limz→0 T (α,Kz) = T (α, limz→0Kz) = I by analyticity of T w.r.t. t, and fi-
nally we have S′(z) = K ∂

∂zT (α, z) = KJαT (α, z) by chain rule. Hence, S(z) is a
semigroup. �

The analyticity of the semigroup T is useful for showing that the solutions to PDEs
involving x0J

α
x are well-behaved. For example,

Theorem 5.5. [RR04, Theorem 12.44] Consider the inhomogeneous ODE

u̇(t) =x0 KJ
α
x1
u(t) + f(t), u(0) = u0

Where <(K) > 0. Then, u̇(t) and x0
Jαx u(t) are θ-Holder continuous for any 0 <

θ < 1.

We can also prove stronger results on its boundedness. For example,

Theorem 5.6. [Bát+11, Proposition 9.17] As x0
Jαx generates a bounded analytic

semigroup, we find

sup
t>0
‖tx0J

α
x Φ(α, t)‖ <∞

Next, we talk about the properties of Φ w.r.t. α. Because Jα does not form a
uniformly continuous semigroup, we are unable to make conditions that are as
strong. However, we note the following:

Theorem 5.7. For α > 0 and 1 < p ≤ ∞, Φ(α, z) is Lipschitz-continuous. That
is, there exist δ,M > 0 such that

α1, α2 ∈ (α− δ, α+ δ)⇒ ‖Φ(α1, z)− Φ(α2, z)‖ ≤M |α1 − α2|

Proof. WLOG let α1 ≤ α2. The series representation of Φ(α1, z),Φ(α2, z) converge
absolutely in the norm topology. Hence a.e. we can write
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‖Φ(α1, z)f(x)− Φ(α2, z)f(x)‖X

=

∥∥∥∥∥
∞∑
n=1

zn

n!

∫ x

x0

[
(x− s)nα1−1

Γ(nα1)
− (x− s)nα2−1

Γ(nα2)

]
f(s) ds

∥∥∥∥∥
X

≤
∞∑
n=1

|z|n

n!

∫ x

x0

∣∣∣∣ (x− s)nα1−1

Γ(nα1)
− (x− s)nα2−1

Γ(nα2)

∣∣∣∣ ‖f(s)‖X ds

Note that
∂

∂β

(x− s)β−1

Γ(β)
=
wβ−1(logw − ψ(β))

Γ(β)

Hence, by mean value theorem,

‖Φ(α1, z)f(x)− Φ(α2, z)f(x)‖X

=

∞∑
n=1

|z|n

(n− 1)!

∫ x

x0

(x− s)nα′−1| log(x− s)− ψ(nα′)|
Γ(nα′)

|α2 − α1|f(s) ds

For some α′ ∈ (α1, α2) ⊂ (α− δ, α+ δ).

Consider the case x1 − x0 ≥ 1. Using lemma 4.2, we find for 1 ≤ p ≤ ∞:

‖Φ(α1, z)− Φ(α2, z)‖L (Lp(x0,x1,X))

≤
∞∑
n=1

|z|n

(n− 1)!

∫ x1−x0

0

wnα
′−1| logw − ψ(α′)|

Γ(nα′)
|α2 − α1| dw

‖Φ(α1, z)− Φ(α2, z)‖L (Lp(x0,x1,X))

≤ |α2 − α1|
∞∑
n=1

|z|n

(n− 1)!

∫ 1

0

w(α−δ)−1(ψ(n(α+ δ))− logw)

Γ(nα′)
dw

+ |α2 − α1|
∞∑
n=1

|z|n

(n− 1)!

∫ x1−x0

1

wnα
′−1| logw − ψ(nα′)|

Γ(nα′)
dw
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Consider the first sum. We can rewrite as

∞∑
n=1

|z|n

(n− 1)!

[∫ 1

0

wnα
′−1ψ(n(α− δ))

Γ(nα′)
−
∫ 1

0

wnα
′−1 logw

Γm

]
dw

=

∞∑
n=1

|z|n

Γm(n− 1)!

[
ψ(n(α+ δ))

(α− δ)
+

1

(α− δ)2

]

Because α > δ, the integrals converge. From Lemma 2.23, ψ(n((α + δ))) ∼ lnn+
ln(α+ δ). The ratio of consecutive terms is

|z|n+1

Γmn!

[
ln(n+1)+ln(α+δ)

(α−δ) + 1
(α−δ)2

]
|z|n

Γm(n−1)!

[
lnn+ln(α+δ)

(α−δ) + 1
(α−δ)2

] =
|z|
n

(α− δ)(ln(n+ 1) + ln(α+ δ)) + 1

(α− δ)(lnn+ ln(α+ δ)) + 1

We can clearly see that the left fraction converges to 0 as n approaches infinity.
Furthermore, we find asymptotically (α − δ)(ln(n + 1) + ln(α + δ)) + 1 ∼ (α −
δ)(lnn+ ln(α+ δ)) + 1 + α−δ

n , so the right fraction converges to 1. Hence, by the
ratio test, the first sum converges to a finite number that we shall label K.

Now consider the second sum:

∞∑
n=1

|z|n

n!

∫ x1−x0

1

wnα
′−1| logw − ψ(nα′)|

Γ(nα′)
dw

For large enough n, we know that ψ(n(α − δ)) < log(x − s). Hence, | logw −
ψ(nα′)| < ψ(n(α− δ)) for large enough n. Hence, for large enough n, the nth term
is at most

|z|n

n!

∫ x1−x0

1

wnα
′−1ψ(nα′)

Γ(nα′)
<
|z|n

n!

(x1 − x0)n(α+δ)ψ(n(α+ δ))

Γ(n(α− δ) + 1)

The ratio of consecutive terms as n→∞ is

lim
n→∞

|z|n+1(x1−x0)(n+1)(α+δ)ψ((n+1)(α+δ))
(n+1)!Γ((n+1)(α−δ)+1)

|z|n(x1−x0)n(α+δ)ψ(n(α+δ))
n!Γ(n(α−δ)+1)

= lim
n→∞

|z|(x1 − x0)α+δ

(n+ 1)

Γ(n(α− δ) + 1)

Γ((n+ 1)(α− δ) + 1)

ψ(n(α− δ) + 1)

ψ((n+ 1)(α− δ) + 1)

= lim
n→∞

|z|(x1 − x0)α+δ

(n+ 1)
(n(α− δ) + 1)−(α+δ) · 1

= 0
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Hence, by ratio test, the second sum also converges. Say it converges to L.

We find

‖Φ(α1, z)− Φ(α2, z)‖ < |α1 − α2|(K + L) = M |α1 − α2|

If x1 − x0 ≤ 1, we take K = M with the same α.

Hence, there exists M, δ > 0 satisfying the properties, and Φ(α, z) is locally
Lipschitz-continuous. �

Remark 5.8. We note that the only condition on δ we have defined is that it is
smaller than α. Then, M is a function of δ.

We can also prove strong continuity w.r.t. α:

Theorem 5.9. For every α ≥ 0, f ∈ Lp(x0, x1;X), we find

lim
h→0
‖Φ(α+ h, z)f − Φ(α, z)f‖Lp(x0,x1;X) = 0

Proof. Local Lipschitz continuity for α > 0 implies strong continuity for α > 0
(Suppose M, δ′ satisfy the local Lipschitz condition. For every ε > 0, just set
δ = min

{
ε
M , δ′

}
). Hence, we only need to check α = 0, i.e. show that for every ε,

there exists δ such that

lim
h→0+

‖Φ(h, z)f − ezf‖Lp(x0,x1;X) = 0

Recall that Jα is known to be uniformly continuous. Hence, for every ε0, there
exists a δ0 such that

0 < h < δ0 ⇒ ‖Φ(h, z)f − ezf‖Lp(x0,x1;X) < ε0

Now let ε0 = εe−|z|

2‖f‖Lp(x0,x1;X)
and set δ correspondingly. If x1 − x0 ≥ 1, then let k

be the smallest integer such that

|z|k

k!

(
1 + e|z|[x1−x0−1]

)
<

εe−|z|

2‖f‖Lp(x0,x1;X)

Otherwise, let k be the smallest integer such that

|z|k

k!

(
1 +

1

x1 − x0

)
<

εe−|z|

2‖f‖Lp(x0,x1;X)
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(This is possible as |z|
k

k! is a decreasing function that approaches 0 as k →∞.) Let

δ = min
{
δ0
k ,

1
k

}
.

Then, we have:

‖Φ(h, z)f − ezf‖Lp(x0,x1;X)

≤
k−1∑
n=0

|z|n

n!
‖x0J

nh
x f − f‖Lp(x0,x1;X) +

∞∑
n=k

|z|n

n!
‖x0J

nh
x f − f‖Lp(x0,x1;X)

≤
k−1∑
n=0

|z|n

n!
ε0 +

∞∑
n=k

|z|n

n!
‖x0J

nh
x f‖Lp(x0,x1;X) +

∞∑
n=k

|z|n

n!
‖f‖Lp(x0,x1;X)

≤ e|z|ε0 +

∞∑
n=k

|z|n

n!

(x1 − x0)hn

Γ(nh)(x1 − x0)
‖f‖Lp(x0,x1;X) +

|z|k

k!

∞∑
n=0

|z|n

n!
‖f‖Lp(x0,x1;X)

<e|z|ε0 +
|z|k(x1 − x0)hk−1

k!

∞∑
n=0

(
|z|(x1 − x0)h

)n
n!

‖f‖Lp(x0,x1;X)

+
|z|k

k!
‖f‖Lp(x0,x1;X)e

|z|

=
ε

2
+
|z|k(x1 − x0)hk−1

k!
e|z|(x1−x0)h‖f‖Lp(x0,x1;X) +

|z|k

k!
‖f‖Lp(x0,x1;X)e

|z|

=
ε

2
+
|z|k

k!
‖f‖Lp(x0,x1;X)e

|z|
(

1 + (x1 − x0)hk−1e|z|[(x1−x0)h−1]
)

If x1 − x0 ≥ 1, then because hk < 1,

|z|k

k!
‖f‖Lp(x0,x1;X)e

|z|
(

1 + (x1 − x0)hk−1e|z|[(x1−x0)h−1]
)

<
|z|k

k!
‖f‖Lp(x0,x1;X)e

|z|
(

1 + e|z|[(x1−x0)−1]
)
<
ε

2

Otherwise,

|z|k

k!
‖f‖Lp(x0,x1;X)e

|z|
(

1 + (x1 − x0)hk−1e|z|[(x1−x0)h−1]
)

<
|z|k

k!
‖f‖Lp(x0,x1;X)e

|z|
(

1 + (x1 − x0)−1e0|z|
)
<
ε

2

In either case, we find

‖Φ(h, z)f − ezf‖Lp(x0,x1;X) <
ε

2
+
ε

2
= ε

which concludes the proof. �
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We can additionally consider Φ as taking an input from (α, z) ∈ R0×C0 as a vector
equipped with the Euclidean norm, and consider properties w.r.t. these. It turns
out that we can extend our prior result on strong continuity forward.

Theorem 5.10. For f ∈ Lp(x0, x1;X), (α, z),∈ R0×C0, for all ε > 0, there exists
δ > 0 such that

(α′, z′) ∈ R0×C0, 0 < ‖(α′, z′)−(α, z)‖ < δ ⇒ ‖Φ(α′, z′)f−Φ(α, z)f‖Lp(x0,x1;X) < ε

Proof. By local Lipschitz continuity, we know that there exists 0 < δ′α such that if
|α′ − α| < δ′α, then

‖Φ(α′, z′)f − Φ(α, z′)f‖Lp(x0,x1;X) < M |α′ − α|

Now set δα = min
{

ε
2M , δ′α

}
.

Furthermore, by the analytic properties of Φ, we find for all ε > 0, there exists
δz > 0 such that

‖Φ(α, z′)f − Φ(α, z)f‖Lp(x0,x1;X) <
ε

2

Next, set δ = min {δα, δz}. We find that |α′ − α|, |z′ − z| < δ. Then

‖Φ(α′, z′)f − Φ(α, z)f‖Lp(x0,x1;X)

≤ ‖Φ(α′, z′)f − Φ(α, z′)f‖Lp(x0,x1;X) + ‖Φ(α, z′)f − Φ(α, z)f‖Lp(x0,x1;X)

<
ε

2
+
ε

2
= ε

Which concludes the proof. �

6. Conclusion

In this paper, we have defined the semigroup generated by the fractional integral
Φ and determined some of its important properties, primarily through the use of
the theory of one-parameter semigroups. In section 3, we were able to explicitly
calculate a closed form expression of the resolvent of the fractional integral, which
then paved the way for section 4, where we then determined the exponential bound
of Φ, noticing that it was a strongly continuous semigroup of type (1, ω). This then
enabled us to realise that the fractional integral is the infinitesimal generator of a
strongly continuous quasi-contraction semigroup, allowing us to then show Φ is of
type (M, 0). We then moved onto section 5, whereby we demonstrated that, by
extending t to complex numbers, Φ is a bounded analytical semigroup of angle π

2 ,
which allowed us to then show the well-behavedness of Φ in the form of Lipschitz
continuity and strong continuity, with respect to α, t as well as both.
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7. Appendix

Theorem 7.1. [Bát+11] Let X be a Banach space and A be a closed linear oper-
ator10 with domain D (A) ⊆ X. Then each of the following hold:

(i) The resolvent set ρ(A) is open, which implies that its complement σ(A) is
closed.

(ii) For λ ∈ ρ(A), the mapping

λ 7−→ R(λ,A)

is complex differentiable and ∀n ∈ N,

dn

dλn
R(λ,A) = (−1)nn!R(λ,A)n+1

Theorem 7.2. [Bát+11] Let T be a uniformly continuous semigroup with the
generator A. Then ∀λ ∈ C and t < 0,

e−λtT (t)f − f = (A− λI)

∫ t

0

e−λsT (s)f ds

Proof. It can easily shown that e−λtT (t) is also a uniformly continuous semigroup
with the generator (A− λI) as, by Definition 1.8:

e−λtT (t) = e−λteAt = e(A−λI)t

Thus, by part (ii) of Theorem 2.16,

e−λtT (t)f − f = (A− λI)

∫ t

0

e−λsT (s)f ds

�

Theorem 7.3. [Bát+11] Let T be a uniformly continuous semigroup of type (M,ω)
with the infinitesimal generator A. Then the following hold, given <(λ) > ω:

(i) ∀f ∈ X and λ ∈ C,

R(λ,A)f =

∫ ∞
0

e−λsT (s)f ds

(ii) ∀f ∈ X, λ ∈ C and n ∈ N,

R(λ,A)nf =
1

(n− 1)!

∫ ∞
0

sn−1e−λsT (s)f ds

(iii) (Hille-Yosida Theorem) ∀λ ∈ R,

‖R(λ,A)n‖ ≤ M

(λ− ω)n

10A linear operator A is closed if its domain D(A) is complete with respect to the graph norm

‖f‖A = ‖f‖+ ‖Af‖, for f ∈ D (A).
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Proof. From Theorem 7.2, we have that:

e−λtT (t)f − f = (A− λI)

∫ t

0

e−λsT (s)f ds

∴ lim
t→∞

(e−λtT (t)f − f) = (A− λI)

∫ ∞
0

e−λsT (s)f ds

Since it is given that λ > ω, the first term in the limit tends to 0 as t→∞ and we
have,

−f = (A− λI)

∫ ∞
0

e−λsT (s)f ds

∴ f = (λI −A)

∫ ∞
0

e−λsT (s)f ds

⇒ R(λ,A)f = (λ−A)−1(λ−A)

∫ ∞
0

e−λsT (s)f ds

=

∫ ∞
0

e−λsT (s)f ds

Thus, (i) is proved. Now, notice that, by rearranging the identity in part (ii) of
Theorem 7.1 and by Theorem 2.7, as well as part (i) of this theorem, we have

R(λ,A)nf =
(−1)n−1

(n− 1)!

dn−1

dλn−1
R(λ,A)f

=
(−1)n−1

(n− 1)!

∫ ∞
0

∂n−1

∂λn−1
(e−λsT (s)f) ds

=
(−1)n−1

(n− 1)!

∫ ∞
0

(−1)n−1sn−1e−λsT (s)f ds

=
1

(n− 1)!

∫ ∞
0

sn−1e−λsT (s)f ds

Hence, we have shown that part (ii) holds. Finally, we can prove part (iii) we can
apply part (ii) of Lemma 1.4 and part (ii) of this theorem to form the following
inequality:

‖R(λ,A)nf‖ ≤ 1

(n− 1)!

∫ ∞
0

sn−1e−λsMeωs‖f‖ ds

≤ M‖f‖
(n− 1)!

∫ ∞
0

sn−1e(ω−λ)s ds

Now notice that the integral on right hand side of the last inequality is actually
the Laplace transform of sn−1, given by

L{sn−1}(λ− ω) =
(n− 1)!

(λ− ω)n

By substituting this into our inequality, we obtain,

‖R(λ,A)nf‖ ≤ M

(λ− ω)n
‖f‖



34 KYAN KA HIN CHEUNG, ETHAN JON YI SOH

⇒ ‖R(λ,A)n‖ ≤ M

(λ− ω)n

which concludes the proof for the Hille-Yosida Theorem. �
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The paper presents a discussion of the Grünwald-Letnikov fractional derivative in
the context of analyzing the semigroup for solving a PDE. In particular, Bochner-
Lebesgue spaces and Bochner integrals are also covered.

The main results are about the boundedness and well-behaved properties of the
semi-group for the fractional integral. The authors have given an explicit calculation
of the resolvent of the fractional integral. The theory on Bochner-Lebesgue spaces
is used to study semigroups generated by Riemann-Liouville fractional integrals.
Precisely, they identified the spectrum and provide an explicit formula for the resol-
vent of the fractional integral. Then they define a continuous semigroup, generated
by the fractional integral, and study its analytic properties through estimating the
asymptotics of the semigroup.
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able works in peer-reviewed journals.

35


	Front
	1a Title
	1b Gold
	1. Introduction
	2. Preliminaries of Bochner-Lebesgue Spaces and C0-semigroups
	3. The spectrum and resolvent of the alpha-order integral
	4. Boundedness of the semigroup generated by the fractional integral
	5. Well-behavedness of the semigroup generated by the alpha-order integral
	6. Conclusion
	7. Appendix
	8. Acknowledgements
	References

	1c Referee
	2a Title
	2b Silver
	2c Referee
	3a Title
	3b Bronze
	3c Referee
	4a Title
	4b HM_DBS
	4c Referee
	5a Title
	5b HM_HKUGA
	1. Introduction
	1.1. Motivation
	1.2. Literature Review

	2. -NbDb Number Base System
	2.1. Number System and Expansion Definitions
	2.2. Integer and Terminating expansion
	2.3. Primary Recurring Expansion and Complete Residue System Theorem
	2.4. Reverse Algorithm - A second proof for the Complete Residue System theorem
	2.5. Number of representation in the form of terminating or recurring expansion

	3. Non-terminating, non-recurring expansion for pq in the Number System with Base -NbDb
	4. Conclusion and Area for Further Research
	References
	5. Appendix

	5c Referee
	6a Title
	6b HM_Pui_Ching
	1. Introduction
	1.1. Motivation
	1.2. Literature review
	1.2.1. Infinite light source
	1.2.2. Finite light source

	1.3. Setting Up the Main Question

	2. Groundwork
	3. The Generalized Problem
	3.1. Parameters Altering Edge Projection
	3.1.1. Arbitrary Position of Edge
	3.1.2. Arbitrary Position of Light Source

	3.2. Mean Shadow Calculation and Assembling Full Shape
	3.2.1. Anti-derivative
	3.2.2. Sign-changing Point
	3.2.3. Definite Integral
	3.2.4. Simplification
	3.2.5. Mean Shadow Theorem
	3.2.6. Reassembling Complete Shape

	3.3. Numerical Verification

	4. Analysis
	4.1. Symmetry in Our Formula
	4.2. Performance Comparison

	5. Concave Shapes
	Appendix
	Acknowledgements
	Reference

	6c Referee
	7a Title
	7b HM_SPCC
	7c Referee

