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Abstract. In this project, we study Poincaré disk model of hyperbolic geom-
etry and compare it with Euclidean geometry we have learnt in school. We

investigate some basic properties of the model and derive some theorems com-

parable to those in Euclidean geometry.
The main objective of our work is to construct four common (non-Euclidean)

tangents to two circles with Euclidean compass and Euclidean straightedge,
as well as two other construction problems, in Poincaré disk model. With

non-Euclidean transformations, we can transform a point to anywhere inside

the Poincaré disk, with lengths and angles preserved. So we first focus on per-
forming the transformation by compass and straightedge, and then solve the

problems with a centre of the circle placed at the centre of the disk. Finally we

can transform the picture back to the given position by the inverse function.

1. Introduction

In secondary school, we learn Euclidean Geometry, which is based on Ele-
ments by Euclid. It is the geometry in our daily life, and people used to
think it as the geometry of our world. But is it the only geometry?

As the fifth postulate is much more complicated than the other four, it
is hard for many mathematicians to accept. Many people tried to deduce
the fifth postulate from the other four postulates, but they did not succeed.

After centuries of trials, people developed some new ideas. Russian mathe-
matician Nikolai Ivanovich Lobachevsky (1792-1856) assumed that the fifth
postulate was not true and replaced it by the following statement: “Given

1This work is done under the supervision of the authors’ teacher, Mr. Chun-Yu Kwong.
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any line L and a point P not on L, there are infinitely many lines through
P that do not meet L.” He then successfully developed a new geometry, the
hyperbolic geometry (also called Lobachevskian geometry).

When we started to do our project, we tried to investigate whether the
theorems in geometry we have learnt in school are true in non-Euclidean
geometry. Lacking time and background knowledge, we chose to work on
Poincaré disk model of hyperbolic geometry first, instead of proving or dis-
proving those theorems in general situations.

In the course of our work, we used Excel to calculate the Cartesian equations
of hyperbolic lines and circles. This helped us find easily that many theo-
rems about circles are not valid in Poincaré model. We were also interested
in the existence of Euler line and nine-point circle, but found that both do
not exist.

Our interest then shifted to construction problems. We learnt methods to
construct hyperbolic lines (d-lines) and circles using Euclidean compass and
straightedge, from “Compass and Straightedge in the Poincaré Disk” written
by Chaim Goodman-Strauss. Bearing in our minds that in Poincaré model,
circles were Euclidean circles while lines were circular arcs, we thought that
the construction problems of tangents to circles in Poincaré model should
be interesting.

We have solved three construction problems by Euclidean compass and
straightedge in our project, namely,

1. construction of the tangent to a circle at a point,
2. construction of the tangents to a circle from an external point,
3. construction of the four common tangents to two circles.

In the process, we tried to imitate those methods used in Euclidean geom-
etry to construct tangents to circles. But the methods we use in Euclidean
geometry require the fact that the angle in a semi-circle is a right angle,
which is not true in non-Euclidean case. Finally, we developed the method
of construction in a totally different way.

We tried all construction methods described in this report using Sketch-
pad, and most of the figures in the report were drawn with this software.
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2. Hyperbolic Geometry and Poincaré Disk Model

2.1. From Euclidean to non-Euclidean Postulates

In Euclid’s Elements, propositions in geometry are deduced from the follow-
ing five Euclidean postulates[1]:

Postulate 1. A straight line segment can be drawn joining any two points.

Postulate 2. Any straight line segment can be extended indefinitely in
a straight line.

Postulate 3. Given any straight line segment, a circle can be drawn having
the segment as radius and one endpoint as centre.

Postulate 4. All right angles are congruent.

Postulate 5. (Parallel Postulate) If two lines are drawn which intersect
a third in such a way that the sum of the inner angles on one side is less
than two right angles, then the two lines inevitably must intersect each other
on that side if extended far enough,

or equivalently,

given any straight line and a point not on it, there exists one and only one
straight line which passes through that point and never intersects the first
line, no matter how far they are extended.

The fifth postulate is lengthy and not as trivial as the other four. Many
mathematicians felt uncomfortable with it and tried to deduce it from the
other postulates, or reduce it into a simpler statement. In 1829, Nikolai
Ivanovich Lobachevsky (1792-1856) published a book describing a consis-
tent geometry with the parallel postulate replaced by the Non-Euclidean
Parallel Postulate[2]:

“Given any straight line L and a point P not on L, there are at least two
straight lines which pass through P and do not meet L.”
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2.2. Möbius Transformations

Definition 2.1. [3] The extended complex plane is the union of the Eu-
clidean plane and one extra point, the point at infinity.

Definition 2.2. A generalized circle in the extended complex plane is a
set that is either a circle or an extended line. (l Y t8u is an extended line
if l is a line.)[4]

Definition 2.3. [4] The cross ratio of four complex numbers z1, z2, z3

and z4 is defined as rz1, z2; z3, z4s �
pz1 � z3qpz2 � z4q

pz2 � z3qpz1 � z4q
.

Definition 2.4. [4] In the extended complex plane, a Möbius transfor-
mation is a bijective function that preserves the cross ratio of any four
points in the plane.

In the following, we will show that a Möbius transformation preserves

1. generalized circles,
2. the angle between two arcs, and
3. inversion.

General Form of Möbius transformations

Theorem 2.5. [4] If f is a Möbius transformation in the extended complex
plane, then there exist complex constants a, b, c and d such that fpzq �
az � d

cz � d
.

Proof. Let w � fpzq be a Möbius transformation, w1 � 0, w2 � 1, w3 � 8.
By the fact that f is surjective, there are three points z1, z2 and z3 such
that w1 � fpz1q, w2 � fpz2q and w3 � fpz3q. By the fact that f is in-
jective, z1, z2 and z3 are three different points. Since a Möbius transfor-
mation preserves cross ratio, for any z P C Y t8u pz � z1, z2, z3q, we have
rz1, z2; z3, zs � r0, 1;8, ws.

If z1, z2, z3 are all not equal to 8, then
pz1 � z3qpz2 � zq

pz2 � z3qpz1 � zq
�

1� w

�w
and
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hence w �
z1 � z

pA� 1qz � z1 �Az2
, where A �

z1 � z3

z2 � z3
.

If z3 � 8, then
z2 � z

z1 � z
�

1� w

�w
and hence w �

z1 � z

z1 � z2
.

Similarly, it is easy to deduce that w �
z2 � z3

z � z3
when z1 � 8 and w �

z � z1

z � z3
when z2 � 8.

Therefore, in any condition, the general form of Möbius transformation is

w �
az � b

cz � d
where a, b, c, d are complex constants.

Remark We can verify that a function of the form fpzq �
az � b

cz � d
is a

Möbius transformation.

Preservation of Generalized Circles

Theorem 2.6. [4] A Möbius transformation maps a generalized circle in
the extended complex plane to a generalized circle.

Proof. Let w � fpzq be a Möbius transformation. Let C be a generalized cir-
cle in the extended complex plane, and fpCq � tz P CY8 | z � fpuq, u P Cu
be the image of C. We are going to prove that fpCq is also a generalized
circle in the extended complex plane.

It is easy to prove that four distinct points are concyclic if and only if
their cross-ratio is real. (If one of the points is at infinity, then they are
concyclic means that the three other points are collinear.)

For three arbitrary points z1, z2, z3 on C, let wi � fpziq, i � 1, 2, 3. For
any point z on C other than z1, z2, z3 as f is a Möbius transformation,
we have rz1, z2; z3, zs � rw1, w2;w3, fpzqs. Since z1, z2, z3 and z are con-
cyclic, rz1, z2; z3, zs is real. Thus rw1, w2;w3, fpzqs is also real and hence w1,

w2, w3 and fpzq are also concyclic. Let C̃ be the generalized circle passing

through w1, w2, w3. Then z P C implies that fpzq P C̃, and hence fpCq � C̃.

Consider a variable point w (w � w1, w2, w3) on C̃, as f�1 is also a Möbius
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transformation, we also have

rw1, w2;w3, ws � rf�1pw1q, f
�1pw2q; f

�1pw3q, f
�1pwqs

� rz1, z2; z3, f
�1pwqs.

So w P C̃ implies that f�1pwq P C, and hence f�1pC̃q � C. Thus C̃ � fpCq.

Hence fpCq � C̃ and the result follows.

Preservation of Angle between Two Circular Arcs

Theorem 2.7. [4] Let C1 and C2 be arcs of two intersecting generalized
circles with a unique common end point and this common end point is not
at infinity. If f is a Möbius transformation, then the angle between C1 and
C2 is equal to that between fpC1q and fpC2q.

Proof. Let z1 be the common end point of C1 and C2 and z11 � fpz1q. Let
z2 be the other intersection point of the circle containing C1 and the circle
containing C2. The angle between the two arcs is argrz1, z2; ζ1, ζ2s.

Let C 1

j � fpCjq, ζ
1

j � fpζjq, j � 1, 2; z12 � fpz2q. Obviously, z11 and z12
are the intersection points of images of the circles containing C1 and C2. ζ 11
and ζ 12 are other terminal points of C 1

1 and C 1

2 is argrz11, z
1

2; ζ 11, ζ
1

2s.

Since f preserves the cross-ratio of four points,

argrz1, z2; ζ1, ζ2s � argrz11, z
1

2; ζ 11, ζ
1

2s

and hence it preserves angles.

Introduction of Inversion

Definition 2.8. Let C be a circle, with centre z0 and radius r. For a
point z � z0, and a half-line l starting from z0 and passing through z,
define the inverse point z� of z with respect to C as the point on l satisfying
|z� z0| � |z

�� z0| � r2. Besides, we define the inverse point of z0 as 8, and
vice versa.
If C is an extended line lYt8u, then z� is the inverse point of z with respect
to C if l is the perpendicular bisector of the line segment joining z and z�.

Theorem 2.9. [4] If C is an extended line, the proof is simple. let C be a
circle in the extended complex plane. Let z� be the inverse point of z with
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respect to C, and z� � z. Then any generalized circle passing through z and
z� is orthogonal to C.

Proof. Let C be a generalized circle in the extended complex plane, with
centre z0 and radius r.

Case 1 z � z0 and z� � z0

Let C1 be a generalized circle passing through z and z� with centre z1, and
intersecting C at ζ1 and ζ2.

Then |ζ1 � z0|
2 � r2 � |z � z0| � |z

� � z0|. By the Intersecting Chords
Theorem (Appendix A), the line z0ζ1 touches C1, thus z0ζ1Kζ1z1. But z0ζ1

is the radius of C, so ζ1z1 is also a tangent to C, thus C is orthogonal to C1

at ζ1. Similarly, C is also orthogonal to C1 at ζ2.

Case 2 z � z0 or z� � z0

Since tz, z�u � tz0,8u, a generalized circle passing through z and z� is a
straight line passing through the centre of C, obviously, it is orthogonal to
C. Hence the result follows.

Theorem 2.10. [4] Let C be a generalized circle in the extended complex
plane. Let z� be the inverse point of z with respect to C, and z� � z.
Then any generalized circle passing through z and orthogonal to C must
pass through z�.

The proof is similar to that of Theorem 2.9.

Theorem 2.11. [4] Let C be a generalized circle in the extended complex
plane with equation αzz̄� β̄z�βz̄�γ � 0, where α, γ P R and αγ   |β|2. If
z� is the inverse point of with respect to C, then we have αz�z̄�β̄z��βz̄�γ �
0.

Proof. Let z� be the inverse point with respect to C � tz P C : |z�z0| � ru.
Then we have |z � z0| � |z

� � z0| � r2.

As z, z�, z0 are collinear, there exists k ¡ 0 such that z � z0 � kpz� � z0q.
Then

|z � z0| � |z
� � z0| � k|z� � z0|

2

� kpz� � z0qpz
� � z0q

� rkpz� � z0qspz
� � z0q

� pz � z0qpz
� � z0q.
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So we have pz̄ � z̄0qpz
� � z0q � r2, i.e. z�z̄ � z̄0z

� � z0z̄ � |z0|
2 � r2 � 0.

Since the equation of C can be written as zz̄ � z̄0z � z0z̄ � |z0|
2 � r2 � 0,

the result follows in this case.

Let L be the straight line β̄z � βz̄ � γ � 0, where γ P R and β � 0.
Let u be a variable point on L. If z� is the inverse point z with respect to
L, then we have |u� z| � |u� z�|.

Hence

pu� zqpū� z̄q � pu� z�qpū� z̄�q

uū� uz̄ � ūz � zz̄ � uū� uz̄� � ūz� � z�z̄�

pz̄� � z̄qu� pz� � zqū� zz̄ � z�z̄� � 0

Comparing the coefficients with kpβ̄u� βū� γq � 0 where k � 0, we get

kβ̄ � z̄� � z̄ (1)

kβ � z� � z (2)

kγ � zz̄ � z�z̄� (3)

From (2), we have kβ � z̄�� z̄. By (1), kβ̄ � kβ and hence k P Rzt0u. Then

β̄z� � βz̄ � γ

�
1

k
pz̄� � z̄qz� �

1

k
pz� � zqz̄ �

1

k
pzz̄ � z�z̄�q

� 0.

Hence z� satisfies αz�z̄� β̄z�� βz̄� γ � 0, where C is a circle if α � 0 and
is a straight line if α � 0.

By the above theorem, if the equation of C is αzz̄ � β̄z � βz̄ � γ � 0, then
the inverse transformation with respect to C can be written as

z� � �
βz̄ � γ

αz̄ � β̄
pα, γ P R, αγ   |β|2q.

If we let fpzq � �
β̄z � γ

αz � β
, then z� � fpzq.

Therefore, an inverse transformation is the conjugate of a Möbius
transformation.

An immediate consequence is that an inverse transformation maps the cross
ratio of any 4 points into its conjugate, as rz�1 , z

�

2 ; z�3 , z
�

4 s � rz̄1, z̄2; z̄3,
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z̄4s � rz1, z2; z3, z4s.

Preservation of Inversion

Theorem 2.12. [4] Let w � fpzq be a Möbius transformation and C be a
generalized circle in C Y8. If z�0 is the inverse point of z0 with respect to
C, then w�

0 � fpz�0 q is the inverse point of w0 � fpz0q with respect to fpCq.

Proof. Let C1 be a generalized circle passing through z0 and z�0 . Then C1 is
orthogonal to C. By properties of Möbius transformations, fpCq and fpC1q
are orthogonal circles. Also, fpC1q passes through w0 and w�

0 .

Suppose that there is another generalized circle C2 passing through z0 and
z�0 . Then fpC2q is also a circle orthogonal to fpCq and passing through w0

and w�

0 . By Theorem 2.10, any generalized circle which passes through w0

and is orthogonal to fpCq must passes through the inverse point of w0, so
the inverse point of w0 with respect to fpCq must lie on fpC1q and fpC2q,
and this point must be w�

0 .

2.3. Poincaré Model

Notation 2.13. We denote the Poincaré unit disk by D � tz P C : |z|  
1u and its circumference by U � tz P C : |z| � 1u

Definition 2.14. [3] A d-line is that part of a generalized circle which
meets U at right angles and which lies in D.

A d-line passing through two given points always exists and is unique (Con-
struction 4.5)

Definition 2.15. [3] Two d-lines that do not meet in D are parallel if the
generalized Euclidean circles of which they are parts meet at a point on U .

Definition 2.16. [3] Two d-lines that do not meet in D are ultra-parallel
if the generalized Euclidean circles of which they are parts do not meet on
U .

Definition 2.17. [3] The angle between two d-lines passing through a
point A in D is the Euclidean angle between their tangents at A.

Definition 2.18. [4] For any two points pz1, z2q, there exists a unique d-
line l passing through them. Let ζ1 and ζ2 be the terminal points of l in
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which ζ1 and ζ2 are on U . (ζ1 is nearer to z1 and ζ2 is nearer to z2). The
non-Euclidean/hyperbolic distance between this two points is defined by

dpz1, z2q �

$&
%

logrz1, z2; ζ1, ζ2s
�1 � log

|z2 � ζ1||z1 � ζ2|

|z1 � ζ1||z2 � ζ2|
if z1 � z2

0 if z1 � z2

.

It is easy to verify that dpz1, z2q is well-defined.

Note If z1, z2 interchange, dpz2, z1q � log
|z1 � ζ2||z2 � ζ1|

|z2 � ζ2||z1 � ζ1|
� dpz1, z2q.

When |z1| Ñ 1, z1 Ñ ζ1 and hence dpz1, z2q Ñ 8 (similar for |z2| Ñ 1).

When z1 � 0 and z2 � r p0   r   1q, dp0, rq � log

����pr � 1qp0� 1q

p0� 1qpr � 1q

���� �
log

1� r

1� r
.

Theorem 2.19. Let z1 and z2 be two points on a d-line l with end-points
n1 and n2, where n1 is closer to z1 and n2 is closer to z2. If z3 is a point
on l between z1 and z2, then dpz1, z3q � dpz3, z2q � dpz1, z2q.

Proof. By definition,

dpz1, z3q � log
|z3 � n1||z1 � n2|

|z1 � n1||z3 � n2|

and

dpz3, z2q � log
|z2 � n1||z3 � n2|

|z3 � n1||z2 � n2|
.

Therefore,

dpz1, z3q � dpz3, z2q � log
|z3 � n1||z1 � n2|

|z1 � n1||z3 � n2|
� log

|z2 � n1||z3 � n2|

|z3 � n1||z2 � n2|

� log
|z2 � n1||z3 � n2|

|z3 � n1||z2 � n2|

|z2 � n1||z3 � n2|

|z3 � n1||z2 � n2|

� log
|z2 � n1||z1 � n2|

|z1 � n1||z2 � n2|

� dpz1, z2q.

Definition 2.20. A circle is the locus of all the points which have the same
hyperbolic distance (radius) from a fixed point (centre).
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2.4. Non-Euclidean Transformations

Definition 2.21. [4] Let f be a bijective function on D. If f preserves the
hyperbolic distance between two points, i.e. dpz1, z2q � dpfpz1q, fpz2qq for
all z1, z2 P D, then f is called a non-Euclidean transformation.

Theorem 2.22. [4] If f is a Möbius transformation such that fpDq � D,
then f is a non-Euclidean transformation.

Proof. As f preserves circles and angles between arcs, it transforms d-lines
to d-lines. Since the hyperbolic distance between two points depends on the
cross ratio and f preserves cross ratios, f preserves hyperbolic distances. So
it is a non-Euclidean transformation.

Corollary 2.23. [4] Let f be a Möbius transformation of the form fpzq �

eiθ
z � z0

1� z̄0z
, where z0 is a point inside D and θ is a real constant. Then f is

a non-Euclidean transformation.

Proof. If fpzq � eiθ
z � z0

1� z̄0z
,

|fpzq|2 �
pz � z0qpz̄ � z̄0q

p1� z̄0zqp1� z0z̄q

�
|z|2 � z0z̄ � zz̄0 � |z0|

2

1� z0z̄ � zz̄0 � |z0|2|z|2

� 1 if |z| � 1.

Hence fpUq � U . As fpz0q � 0, we have fpDq � D. So f is a non-Euclidean
transformation.

Note If fpzq � eiθ
z � z0

1� z̄0z
and gpzq �

z � z1

1� z̄1z
, then g�1 � f is a non-

Euclidean transformation that transforms z0 to z1.

Corollary 2.24. [4] Given any two points u and v in the Poincaré disk,

the hyperbolic distance between the points is dpu, vq � log

�
1�

|u� v|

|1� ūv|



�

log

�
1�

|u� v|

|1� ūv|



.

Proof. Let f be the function fpzq � eiθ
z � u

1� ūz
, where θ is a real constant

such that fpvq is a positive real number. Note that fpuq � 0.
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Let r � fpvq. Then r � |fpvq| �
|u� v|

|1� ūv|
. Here f is a non-Euclidean

transformation and hence
dpu, vq � dpfpuq, fpvqq

� dp0, rq

� log
1� r

1� r

� log

�
1�

|u� v|

|1� ūv|



� log

�
1�

|u� v|

|1� ūv|



.

Theorem 2.25. [4] A hyperbolic circle in Poincaré model is a Euclidean
circle.

Proof. Let C be a hyperbolic circle with hyperbolic centre z0 and hyperbolic

radius r. Let f be the Möbius transformation fpzq �
z � z0

1� z̄0z
. Then f is a

non-Euclidean transformation. Therefore, for any z P C,

dpz, z0q � r

dpfpzq, fpz0qq � dpfpzq, 0q � r

r � log
1� |fpzq|

1� |fpzq|

|fpzq| �
er � 1

er � 1

So fpCq is a Euclidean circle and C � f�1pfpCqq is also a Euclidean circle.

Theorem 2.26. [4] The inversion with respect to a circle which is orthogonal
to U is a non-Euclidean transformation.

Proof. Let C be a generalized circle which is orthogonal to the unit circle
U . Since an inversion is the conjugate of a Möbius transformation (Theo-
rem 2.11), it also preserves angles, and transforms a generalized circle to a
generalized circle.

Let f be the inversion with respect to C. As C is orthogonal to U , the
inverse of an arbitrary point on U with respect to C also lies on U . So
fpUq � U and thus fpDq � D. Since an inversion preserves circles and
angles between arcs, f transforms d-lines to d-lines.

Let z1 and z2 be two arbitrary points inside D such that z1 � z2. Construct
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a circle C 1 through z1 and z2 that is orthogonal to U , and intersecting U at
ζ1 and ζ2 , with ζ1 nearer to z1 while ζ2 nearer to z2. We have

rz1, z2; ζ1, ζ2s � rfpz1q, fpz2q; fpζ1q, fpζ2qs.

Since the four points are concyclic, the cross ratios above must be real
numbers. Therefore,

rz1, z2; ζ1, ζ2s � rfpz1q, fpz2q; fpζ1q, fpζ2qs.

From the definition of hyperbolic distance in Poincaré model, we have

dpz1, z2q � dpfpz1q, fpz2qq.

So f preserves the hyperbolic distance and is a non-Euclidean transforma-
tion.

Theorem 2.27. Given two arbitrary points which are the inverse of each
other with respect to a d-line, the d-line is the hyperbolic perpendicular bi-
sector of the d-line (segment) joining the points.

Proof. Let A be a point and γ be a d-line in the Poincaré disk such that A
is not on γ. Let A1 be the inverse of A with respect to γ, then the d-line
joining A and A1 is orthogonal to γ(Theorem 2.9), i.e. AA1Kγ.

Let B be the intersection of AA1 and γ. Since B is a point on γ, it is
the inverse of itself with respect to γ. By Theorem 2.26, the inversion with
respect to γ is a non-Euclidean transformation. As this inversion trans-
forms the segment AB to the segment A1B, the two segments are equal in
(hyperbolic) length. Hence, γ is the hyperbolic perpendicular bisector of
AA1.

3. More on Poincaré Model

3.1. Hyperbolic Triangles

Theorem 3.1. [4] The sum of the angles in a triangle must be less than π.

Proof. Let w1, w2, w3 be any three points in the unit disk, 4w1w2w3 be the
triangle described by the d-lines joining them. By a suitable non-Euclidean
transformation, we can transform the triangle, with angles and lengths of
sides preserved, so that w1 coincides with the origin. Without loss of gener-
ality, suppose that w1 � 0. Then the sides with end point w1 lie on radii of
the Poincaré disk. Denote the interior angles of the hyperbolic triangle at
w1, w2, w3 by α ,β ,γ respectively.
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Construct also the Euclidean triangle with vertices w1, w2, w3. Denote
its interior angles at w1, w2, w3 by α1 ,β1 ,γ1 respectively.

Figure 1

As shown in Figure 1, α � α1, β   β1, γ   γ1. Since α1 � β1 � γ1 � π, we
have α� β � γ   π.

Take any three points ζ1, ζ2, ζ3 on the circumference of the unit disk, mark
the vectors from the origin to these points and take any three points z1, z2,
z3 on the vectors respectively. Let α, β ,γ be the interior angles of 4z1z2z3.

Figure 2

When z1, z2, z3 tend to ζ1, ζ2, ζ3 along their vectors, the angles α, β, γ tend
to 0.

When z1, z2, z3 tend to the origin along their vectors, the d-lines joining z1,
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z2, z3 tend to Euclidean straight lines, and the angle sum α�β�γ tend to π.

Theorem 3.1 implies that there is no rectangle in Poincaré model. A rec-
tangle can be divided into two triangles by its diagonal, and hence the sum
of its interior angles should be less than π � π � 2π. However, a rectangle
should have four right angles, with a sum of 4� π

2 � 2π.

Note In Euclidean geometry, there are 5 rules for the congruence of tri-
angles, namely, SAS, SSS, ASA, AAS and RHS. All these 5 rules are valid in
Poincaré model. Besides, we can prove that when two hyperbolic triangles
have equal corresponding angles, they are congruent to each other (AAA).

The proof of these six rules of congruence can be found in Appendix B.

3.2. Properties of Parallel Lines

Theorem 3.2. [4] A straight line cuts another two straight lines with the
corresponding angles equal if and only if this straight line passes through the
mid-point of a common perpendicular line within the region bounded by those
two straight lines.

Proof. Let l and l1 be any two straight lines with a common perpendicular
line h, l2 be another straight line which cuts l and l1 at z1 and z11 respectively
and passes through the mid-point of the common perpendicular line (Figure
2.3).

=z1z0z2 � =z
1

1z0z
1

2 (vertically opposite angles)

z0z2 � z0z
1

2 (given)

=z1z2z0 � =z
1

1z
1

2z
1

0 (given)

Therefore, 4z0z1z2 � 4z0z
1

1z
1

2. pASAq

Therefore, =z0z1z2 � =z0z
1

1z
1

2. p4z0z1z2 � 4z0z
1

1z
1

2q

So the corresponding angles are equal as vertically opposite angles are equal.

Let l and l1 be any two straight lines, l2 be another straight line which
cuts l and l1 at z1 and z11 respectively and makes the corresponding angles
equal. Let z0 be the mid-point of z1z

1

1. Draw a line h which passes through
z0 and is perpendicular to l(Figure 3).
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Figure 3

Since vertically opposite angles are equal, we have

=z0z1z2 � =z0z
1

1z
1

2

z0z1 � z0z
1

1 (given)

=z1z0z2 � =z
1

1z0z
1

2 (vetically opposite angles)

Therefore, 4z0z1z2 � 4z0z
1

1z
1

2. pASAq

Therefore, =z1z2z0 � =z
1

1z
1

2z0 and z2z0 � z12z0. p4z0z1z2 � 4z0z
1

1z
1

2q

Therefore, h is also perpendicular to l1 and z0 is the mid-point of within h
the region bounded by l and l1.

This theorem holds not only in hyperbolic geometry, but also in Euclidean
geometry and spherical geometry, with the number of common perpendicu-
lar lines differing only.

In the following, we will discuss more basic properties of parallel lines in
the Poincaré model (hyperbolic geometry). The main results are:

1. The existence of common perpendicular line of two d-lines implies that
the 2 d- lines are ultra-parallel, and vice versa.

2. Any two d-lines have at most one common perpendicular line.

Consequently, from our theorems and these results we have:
“If a line cuts another two straight lines with corresponding angles equal,
the two straight lines are ultra-parallel, which means one would not meet the
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other one”, which is a tool in proving AAA rule of congruence of triangles
(Appendix B) in Poincaré model.

Theorem 3.3. [4] Let l be a d-line and w be a point that does not lie on l.
If l1 is a d-line parallel to l and passing through w, then the angle ω between

l1 and the perpendicular from w to l is given by sinω �
1

cosh d
, where d is

the perpendicular non-Euclidean distance between w and l.

Proof. Draw a d-line h from w perpendicular to l, which cuts l at z0. Then
d is the non-Euclidean distance between w and z0. First consider the case
when l is part of the real axis, z0 � 0, w � ρi where ρ is a positive real
number, and l1 meets l at 1. Then h is part of the imaginary axis.

Figure 4

We have d � log

�
0� i

ρi� i
�
ρi� i

0� i



� log

�
1� ρ

1� ρ



. Thus ρ �

ed � 1

ed � 1
.

Draw the Euclidean tangent of l1 at w, which cuts the real-axis at σ. We
have

σ � ρ tanω, |ρi� σ| �
ρ

cosω
.

Noting that l1 meets the real axis at 1, we have |ρi� σ| � 1� σ. Hence

ρ tanω �
ρ

cosω
� σ � p1� σq � 1

ρ� ρ sinω � cosω
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Squaring both sides, we have pρ2 � 1q sin2 ω � 2ρ2 sinω � pρ2 � 1q � 0.

Solving for sinω, we have sinω �
1� ρ2

1� ρ2
.

Since ρ �
ed � 1

ed � 1
,

sinω �
2

ed � e�d
�

1

cosh d
.

For the general case, we can transform l to a part of the real axis and w to
a point on the positive imaginary axis by a non-Euclidean transformation,
and then use the above argument to prove the theorem.

Remark The angle ω above is called the angle of parallelism for per-
pendicular distance d. It depends only on d and it is a continuous, strictly
decreasing function of d which takes all values in the interval p0, π2 q.

Theorem 3.4. [4] The non-Euclidean distance from a point on a d-line to
another d-line which is parallel to the first one tends to 0 when this point
tends to the point where the two d-lines meet at U � tz P C : |z| � 1u; and
tends to infinity when this point tends to another end of the line.

Proof. Without loss of generality, assume l is the interval p�1, 1q on the real
axis.

Figure 5

Let l1 be a d-line which is parallel to l and meets U at ζ1 � 1 and ζ2.
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Let z be a point on l1 and denote the non-Euclidean distance from z to
l by dpz, lq. By symmetry, we have dpz, lq � dpz̄, lq. By Theorem 2.19,
dpz, lq � dpz̄, lq � dpz, z̄q.

Hence

dpz, lq �
1

2
dpz, z̄q

�
1

2
log

�
1�

|z � z̄|

|1� z2|



�

1

2
log

�
1�

|z � z̄|

|1� z2|




�
1

2
log

�
1�

2|y|

|1� z||1� z|



�

1

2
log

�
1�

2|y|

|1� z||1� z|




�
1

2
log

�
1�

2 sin θ

|1� z|



�

1

2
log

�
1�

2 sin θ

|1� z|



,

where y is the imaginary part of z and θ is the angle between the real axis
and the Euclidean straight line joining z and ζ1.

When z P l1 tends to ζ1, θ Ñ 0. So dpz, lq Ñ
1

2
logp1q �

1

2
logp1q � 0.

When z P l1 tends to ζ2 � �1, sin θ Ñ
|ζ2 � 1|

2
, hence

2 sin θ

|1� z|
Ñ

2|ζ2 � 1|

2|1� ζ2|
�

1 and therefore dpz, lq Ñ 8.

Theorem 3.5. The non-Euclidean distance from a point on a d-line to
another d-line which is ultra-parallel to the first one tends to infinity when
this point tends to either end of the line.

The proof is similar to that of Theorem 3.4.

Theorem 3.6. [4] Let l be a d-line and z0 be a point that does not lie on l.
The non-Euclidean distance between z0 and a point on l is the least when it
is the perpendicular distance from z0 to l.

Proof. Let l be a d-line, z0 be a point that does not lie on l, h be the d-
line passing through z0 and perpendicular to l. Suppose that l meets h at z10.

Without loss of generality, let l be the line that ends at 1 and -1, and
z0 be ρi, where ρ ¡ 0. Then the perpendicular line h from z0 to l lies on
the imaginary axis and z10 � 0.

We have dpz0, lq � dpz0, z
1

0q �
1� ρ

1� ρ
.
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For any point z on l, we have z̄ � z and hence

dpz0, zq � log
1� |ρi� z|{|1� zρi|

1� |ρi� z|{|1� zρi|
.

For all z P R,
|ρi� z|

|1� zρi|
�

a
ρ2 � z2a
1� z2ρ2

¥

a
ρ2 � z2ρ4a
1� z2ρ2

� ρ.

As
1� t

1� t
�

2

1� t
� 1 is increasing on p0, 1q,

log
1� ρ

1� ρ
¤ log

1� |ρi� z|{|1� zρi|

1� |ρi� z|{|1� zρi|
.

Hence dpz0, lq ¤ dpz0, zq for all z P I.

The equality holds if and only if z is the foot of the perpendicular.

Therefore, the perpendicular distance dpz0, lq of z0 to l is the shortest dis-
tance from z0 to any point on l.

Corollary 3.7. For any right-angled triangle in Poincaré model, the hy-
potenuse is the longest side among its three sides.

Theorem 3.8. [4] Two straight lines are ultra-parallel if and only if they
have a common perpendicular line.

Proof. Let l and l1 have a common perpendicular line h, which cuts l and
l1 at z0 and z10 respectively. Let ω be the angle of parallelism of z10 with

respect to l, then 0   ω  
π

2
(Theorem 3.3). Therefore, the angle made by

l1 and h is within ω to π � ω, that means l1 is ultra-parallel with l.

Let l and l1 be two d-lines which are ultra-parallel.

When a point z1 P l1 moves along l1 and tends to the boundary of the
Poincaré disk at either end of l1, dpz1, lq tends to infinity (Theorem 3.5).
Since dpz1, lq is a continuous function of z1, it has a minimum at some point
z10 P l

1. Let z0 be the foot of perpendicular from z10 to l. i.e.

dpz10, lq ¤ dpz1, lq for all z1 P l1.

Since dpz1, lq ¤ dpz1, zq for all z P l and for all z1 P l1, we have

dpz10, lq ¤ dpz1, zq for all z P l and for all z1 P l1.
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In particular,
dpz10, lq ¤ dpz1, z0q for all z1 P l1.

Since dpz0, l
1q � dpz0, z

1q for some z1 P l1, we have

dpz10, z0q � dpz10, lq ¤ dpz0, l
1q.

But we also have dpz10, z0q ¥ dpz0, l
1q, therefore, dpz0, l

1q � dpz0, z
1

0q and z10
is the foot of perpendicular from z0 to l1. Hence the d-line joining z0 and z10
is a common perpendicular line to l and l1.

From the non-existence of rectangle, there is one and only one common per-
pendicular line to two d-lines.

By Theorems 3.2 and 3.8, if a line cuts another two straight lines with
corresponding angles equal, then the two straight lines are ultra-parallel.

3.3. Tangents to Circles

Theorem 3.9. Let C be a circle with hyperbolic centre at z0. If a d-line l
is a tangent to C at w, then lKz0w.

Proof. Assume that l is not perpendicular to z0w, then there exists a point
w1 on l such that lKz0w

1. Since w1 is outside the circle, z0w
1 is longer then

z0w. But as we know that the hypotenuse is the longest side of a right-angled
triangle, z0w should be longer than z0w

1. This leads to a contradiction. So
l is perpendicular to z0w.
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Figure 6

Corollary 3.10. If we define the angle between a hyperbolic circle and a d-
line as the angle between their Euclidean tangents at the intersection, then
from Theorem 3.9, a hyperbolic radius of a circle is always perpendicular to
the circle as the circle and its tangent at the point of contact have a common
Euclidean tangent.

Theorem 3.11. If two tangents l and l1 are drawn from an external point
z to a circle with centre z0, then

(i) the lengths of the tangents are equal;
(ii) the two tangents subtend equal angles at the centre;
(iii) the line joining the centre of the circle and the external point bisects

the angle included by the tangents.

Proof. Let w, w1 be the points where the tangents meet the circle. Consider
the hyperbolic triangles 4z0wz and 4z0w

1z.

=z0wz � =z0w
1z �

π

2
(Theorem 3.9)

z0w � z0w
1 (radii of the circle)

z0z � z0z (common side)

Hence 4z0wz � 4z0w
1z. (RHS)

Therefore,
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Figure 7

(i) zw � zw1

(ii) =zz0w � =zz0w
1

(iii) =z0zw � =z0zw
1

4. Constructions in Poincaré Disk

4.1. Elementary Constructions

Construction 4.1. Construct a circle passing through three non-collinear
points.

1. Three points A, B and C are given.
2. Draw line segments AB and BC.
3. Construct the perpendicular bisectors of AB and BC.
4. The point of intersection of the two perpendicular bisectors is the centre

of the circle.
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Figure 8

Construction 4.2.a. [5] Construct the inverse point of a given point with
respect to a circle C with centre O, where the given point lies outside the
circle.

1. A circle C centred at O and a point B, which is outside C, are given.
2. Draw circle C 1 with OB as a diameter.
3. C and C 1 intersect at points P and Q.
4. Join PQ to meet OB at a point A, which is the inverse of B.

Figure 9
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Explanation of Construction 4.2.a

4OPB � 4OAP

So,
OP

OB
�
OA

OP
i.e. OA �OB � OP 2

By definition, A is the inverse of B.

Construction 4.2.b. [5] Construct the inverse point of a given point with
respect to a circle C with centre O, where the given point lies inside the
circle.

1. A circle C centred at O and a point A, which is outside C, are given.
2. Draw a line passing through O and A.
3. Through A draw a line perpendicular to OA, intersecting C at two

points. Name one of them as P .
4. Draw a perpendicular line to OP at P .
5. The lines drawn in Step 2 and Step 4 will intersect a point B, which is

the inverse of A.

Figure 10
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Explanation of Construction 4.2.b

4OPB � 4OAP

So,
OP

OB
�
OA

OP
i.e. OA �OB � OP 2

By definition, B is the inverse of A.

Construction 4.3. [5] Given two orthogonal circles, construct the inverse
of a point, which lies on one of the circles, with respect to the other circle.

1. Two orthogonal circles C and C 1, with centres O and O1 respectively,
are given. Point A lies on C 1.

2. Draw the line OA.
3. The line will intersect C 1 again at B, and this is the inverse of A with

respect to C. (Theorem 2.10)

Figure 11

Construction 4.4. Given a circle C and a point A outside C, construct a
circle C2 which has the centre at A and is orthogonal to circle C.

1. A circle C with centre O and a point A are given.
2. Draw a circle C2 with AO as a diameter.
3. Let P be a point of intersection of C2 and C.
4. Draw a circle C2 with centre A and radius AP . This circle is orthogonal

to C.
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Figure 12
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4.2. Hyperbolic Straightedge and Compass Constructions

Construction 4.5. Construct a d-line passing through two given points
inside the Poincaré disk.

1. Points A and B in the Poincaré disk are given.
2. Construct the inverse A1 of A with respect to U by Construction 4.2.b.
3. Draw a circle C 1 passing through A1, A and B by Construction 4.1.
4. The portion of C 1 inside the Poincaré disk is the d-line.

Note The centre of C 1 is called the pole of the d-line.

Figure 13

Construction 4.6. [5] Construct a d-line AB when point A, point B and
their polars are given.
N.B. The polar of a point A in D is the Euclidean perpendicular bisector of
A and its inverse, which is also the locus of the poles of d-lines that pass
through A. (Theorems 2.9 and 2.10)

1. Let P be the intersection point of the polars of A and B.
2. Draw a circle with centre P and radius PA.
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3. The portion of the circle in Step 2 inside D is the d-line passing through
A and B.

Figure 14

Explanation of Construction 4.6
The polar of a point inside the Poincaré disk is the locus of the poles of
d-lines passing that point. So the intersection of the polars of A and B is
the pole of the d-line passing through both A and B.

Construction 4.7. [5] Construct a hyperbolic circle with hyperbolic centre
A and passing through B, where B is not the centre of the Poincaré disk.

1. Points A and B in Poincaré disk are given.
2. Construct the d-line passing through A and B.
3. Draw the Euclidean tangent at B to the d-line, intersecting Euclidean

line OA at a point E.
4. Draw a Euclidean circle with E as centre and EB as radius. It is a

hyperbolic circle centred at A.

Explanation of Construction 4.7
By Theorem 2.25, a hyperbolic circle is also a Euclidean circle. In Euclidean
geometry, we know that the radius is perpendicular to the circumference of a
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Figure 15

circle. By Corollary 3.10, the hyperbolic radius AB is also perpendicular to
the circumference of the hyperbolic circle. Therefore, when we construct the
Euclidean tangent of the d-line AB at B, it will pass through the Euclidean
centre of the circle.
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Construction 4.8. Construct a hyperbolic circle with given hyperbolic cen-
tre and passing through the centre of the Poincaré disk.

Figure 16

Let A be the hyperbolic centre of the required circle and OB be a diameter
of the circle. If the Euclidean length of OA and OB are r and s respectively,

then log
1� s

1� s
� 2 log

1� r

1� r
and hence s �

2r

1� r2
.

Construct a Euclidean circle with centre O and radius s. Its intersection
point with OA produced B . The required circle is the Euclidean circle with
diameter OB.

Note We can construct Euclidean lengths which are the products or the
quotients of other given lengths by constructing similar triangles[6].

4.3. Elementary Constructions in the Poincaré Model

Construction 4.9.a. [5] Construct the perpendicular bisector of a segment
AB (d-line).

1. Points A and B inside Poincaré disk are given.
2. Construct the inverses of A and B with respect to U .
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3. Draw a Euclidean line through AB and a Euclidean line through the
inverses of A and B.

4. The lines intersect at a point E, which is the pole of the d-line (per-
pendicular bisector) we want.

5. Using Construction 4.4, construct a circle with Euclidean centre at E
that is orthogonal to U . The hyperbolic perpendicular bisector of AB
is a part of this circle.

Figure 17

Explanation of Construction 4.9.a
Let γ be the perpendicular bisector of AB. By Theorem 2.27, B is the
inverse of A with respect to γ. With respect to γ, the inverses of A and B
with respect to U are inverses of each other. So if we draw two Euclidean
lines, one passing through A and B and one passing through the inverses of
A and B with respect to U , the lines intersect at a point E, which is the
pole of γ.

Construction 4.9.b. [5] Construct the perpendicular bisector of a segment
AB (d-line).

1. Points A and B inside Poincaré disk are given.
2. Use Construction 4.7 to construct two hyperbolic circles, one with cen-

tre A and passing through B, one with centre B and passing through
A.

3. The two hyperbolic circles will intersect at two points.
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4. Use Construction 4.5 to construct a d-line passing through the intersec-
tion points found in step 3. This d-line is the hyperbolic perpendicular
bisector of AB.

Figure 18

Construction 4.10. [5] Given a triangle ABC and a segment A1B1 such
that AB � A1B1, construct a triangle A1B1C 1 which is congruent to 4ABC.

The construction is the same as in Euclidean geometry.

1. 4ABC and points A1 and B1 are given, with AB � A1B1.
2. Construct the perpendicular bisector γ1 of A and A1.
3. Locate the inverse B2 of B with respect to γ1.
4. Construct the line γ2 passing through A1 and the mid-point of B1B2.

Since A1B1 � A1B2, γ2 is the perpendicular bisector of B1B2.
5. Construct the inverse C2 of C with respect to γ1 and then the inverse

of C2 with respect to γ2. This is the point C 1 we want.

Note that AC � A1C2 � A1C 1, BC � B2C2 � B1C 1, AB � A1B2 � A1B1.
So 4ABC � 4A1B1C 1.
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Figure 19

Figure 20

The above transformation is independent of the position of C. So for any
point C in the Poincaré disk, we have 4ABC � 4A1B1C 1, which means
that the transformation is length-preserving. Hence it is a non-Euclidean
transformation.
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Construction 4.11. [5] Construct a hyperbolic circle with hyperbolic centre
A and radius equal to a hyperbolic length of BC.

1. A, B and C inside Poincaré disk are given.
2. Construct the perpendicular bisector γ of the segment BA by Con-

struction 4.9.
3. Construct the inverse P of C with respect to γ.
4. Draw the circle by using Construction 4.7, with hyperbolic centre A

and hyperbolic radius AP .

Figure 21

5. Construction of non-Euclidean Tangents to Circles

In this section, we are going to do three construction problems, namely,

1. to construct a tangent to a circle at a point;
2. to construct tangents from an external point to a circle;
3. to construct common tangents of two given circles using the methods

discussed in Section 4.

5.1. Tangent at a Point

Given a circle C1 � D, with non-Euclidean centre B and a point A on C1,
construct a tangent to C1 at A. (Figure 22)



104 C.Y. LI, F. LI, K.C. LI, C.S. POON

Figure 22

1. Construct a circle centred at O with non-Euclidean radius AB (Con-
struction 4.11) and on it take an arbitrary point B1. We have OB1 �
AB.

2. Construct a non-Euclidean circle C 1

1 centred at B1 and passing through
O. (Figure 23)

Figure 23
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3. Construct a straight line L1 which is perpendicular to OB1 at O. It is
the tangent to C 1

1 at O. (Figure 24)

Figure 24

4. Arbitrarily take a point E1 on L1. Use Construction 4.10 to locate a
point E such that 4BAE � 4B1OE1. The d-line joining A and E is
the non-Euclidean tangent to C1 at A. (Figure 25)

Figure 25
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5.2. Tangents from an External Point

Given a circle D, with hyperbolic centre B, and an external point A P D,
construct the two tangents from A to C1. (Figure 26)

Figure 26

1. Locate a point B1 such that OB1 � AB. This can be done by using
Step 1 in 5.1. Use construction 4.11 to draw a circle C 1

1 with centre at
B1 and radius equal to that of C1. (Figure 27)
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Figure 27

2. Construct the tangents from O to C 1

1, which are indeed Euclidean tan-
gents, by the following steps:
(a) Locate the Euclidean centre X of C 1

1.
(b) Construct a circle with diameter OX to meet C 1

1 at E1 and F 1.
(c) OE1 and OF 1 are the tangents. (Figure 28)

Figure 28

3. By Construction 4.10, construct 4ABE congruent to 4OB1E1. Then
the d-line passing through A and E is a tangent to C1. We can draw
another tangent AF similarly. (Figure 29)
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Figure 29

This construction can be carried out through another way, by using a theo-
rem which is very important to our project:

Theorem 5.1. Let U be a unit circle centred at O, and C be another circle
with centre also at O and radius r, where r   1. If there is a circle orthogonal

to U and touching C externally, then the radius of this circle is
1� r2

2r
.

Proof. Let R be the radius of the circle which is orthogonal to U and touches
C externally.

Figure 30
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As shown in Figure 30, we have R2�12 � pR�rq2 (Pythagorean Theorem).

Simplifying this equation, we have R �
1� r2

2r
.

Given a Euclidean length r, we can construct a line segment of length

R �
1� r2

2r
using compass and straightedge. Thus Theorem 5.1 provides a

convenient way to construct tangents.

To construct tangents from an external point to a circle, we can use the
following method:

1. Instead of transforming A to O, we transform the picture so that B
goes to O. Suppose that A goes to A2 and the circle C1 goes to C2

1 .
(Figure 31)

Figure 31

2. Let the Euclidean radius of C1 be r. Construct a segment of length

R �
1� r2

2r
. Construct a circle centred at O with radius R � r and a

circle centred at A2 with radius R. The intersection of the circles are
the poles of the two tangents to C2

1 from A2.
3. Transform the whole picture back to the original position.

5.3. Common Tangents to Two Circles

Given two circles C1, C2 � D, with hyperbolic centres A, B respectively,
construct 4 common tangents of C1 and C2. (Figure 32)
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Figure 32

1. Using Construction 4.11, we can translate one hyperbolic centre, say A,
to O and with hyperbolic distance OB1 equal to that of AB. (where
O, B1 are the images of A, B respectively.) Also, we can construct
hyperbolic circles C 1

1, C 1

2 with centres at O, B1 and hyperbolic radii
the same as C1, C2 respectively. (Figure 33)

Figure 33
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2. Construct the line OB1. Let the Euclidean centre of C 1

2 be X. Let
the Euclidean radii of C 1

1, C 1

2 be r1, r2 respectively. By Theorem 5.1,
the Euclidean radii R of the 4 common tangents are equal, which is
determined only by r1.

Figure 34
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Figure 35

3. Construct Euclidean straight lines between poles of the 4 common tan-
gents and O, X as in Figure 36. By sum and difference of radii, the
Euclidean distances are R� r1, R� r2, R� r2. Then the poles of the
4 common tangents can be located using a Euclidean compass.

Figure 36
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4. As we have r1, we can work out R and thus we can construct the com-
mon tangents with radii R from the centres located. (Figure 37).

Figure 37

5. Arbitrarily locate two points on each common tangent. Then we can
translate back C 1

1, C 1

2 to C1, C2 using Construction 4.10, and the two
points on each common tangents are translated under the same trans-
formation. Finally, we construct 4 d-lines passing through those corre-
sponding points; these are the 4 common tangents to C1, C2. (Figure
38)

Figure 38
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6. Conclusion

When we were considering the construction of tangents, we faced some dif-
ficulties. We tried to use the well-known methods in Euclidean geometry,
but found at once that they are inadequate as the diameter does not sub-
tend a right angle on the circumference in non-Euclidean geometry. All our
attempts failed until we realized that the Euclidean radius of a tangent, to
a circle centred at the origin, depends only on the radius of the circle (The-
orem 5.1).

The construction methods are not only proved but also carried out by
ourselves. We have done all the constructions with Sketchpad. We have
improved some of our construction methods by doing this. Sometimes we
thought a method was correct, but when we tried to do the construction,
we found that something was missing. For example, if we want to trans-
late a point to the origin, we have to construct a circle passing through the
origin. But the usual construction of non-Euclidean circles did not work in
this situation. So we worked to find a method to do that, which appeared
in Construction 4.8 of this report.

Appendix A. Intersecting Chords Theorem

For any circle, if from a point P which is not on the circle, two lines are drawn
to meet the circle at A, B and C, D respectively, then PA �PB � PC �PD.
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In particular, if C and D coincide at T ,i.e., PT is a tangent to that circle,
then PA � PB � PT 2.

The converse is also true.

Appendix B. Congruence of Triangles

In this appendix, we are going to investigate the conditions of congruence
of triangles in Poincaré Model. The proofs are actually similar to those in
Euclidean geometry.

In Euclid’s Elements, the congruence theorems for triangles were put on
proposition I.4(SAS), I.8(SSS) and I.26(ASA), and the concept of superpo-
sition was used. But such a concept is not clear. So we decide to follow
David Hilbert’s axioms in “The Foundations of Geometry”, and start the
work from an axiom of congruence of triangles.

First of all, there are only 23 � 8 possible combinations for congruence
of triangles, which are: SSS, AAA, SSA, AAS, SAS, ASA, SAA, ASS. But
SSA, AAS are equivalent to ASS, SAA respectively.

Here, we use Hilbert’s Axiom of congruence and a consequence of the axioms
of congruence[7].

“If, in two triangles ABC and A1B1C 1 the congruence AB � A1B1, AC �
A1C 1 and =BAC � =B1A1C 1 hold, then the congruence =ABC � =A1B1C 1

and =ACB � =A1C 1B1 also hold.”

“If, for two triangles ABC and A1B1C 1, the congruence AB � A1B1, AC �
A1C 1 and =A � =A1 hold, then the two triangles are congruent to each
other.”
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Therefore we accept SAS as a condition of congruence of triangles.

We are going to investigate the other five combinations.

Some of the proofs require Proposition 7 of Euclid’s Elements Book I (Propo-
sition I.7):

“Let ABC be a triangle and D be a point on the same side of AB as C. If
AC � AD and BC � BD, then C and D are the same point.”

We will prove this later.

B.1. The ASA Rule

Proof. Let =CAB � =FDE, AB � DE, =CBA � =FED. Assume that
4ABC is not congruent to 4DEF . Then BC � EF , otherwise 4ABC �
4DEF (SAS). Without loss of generality, we may assume that BC ¡ EF .
Let G be a point on BC such that BG � EF .

4ABG � 4DEF (SAS)

=GAB � =FDE p4ABG � 4DEF q
=CAB � =FDE (given)
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Hence =GAB � =CAB.

Therefore, AG and AC are the same line. Since AC and BC intersect
at both C and G, C and G are the same point. Then BC � BG � EF ,
which contradicts our assumption. So 4ABC � 4DEF .

B.2. The SSS Rule

Proof. Let AB � DE, BC � EF , AC � DF . Assume that 4ABC is
not congruent to 4DEF . Then =ABC � =DEF , otherwise 4ABC �
4DEF (SAS). Without loss of generality, we may assume that =ABC  
=DEF . Construct a point G such that =ABG � =DEF and BG � EF .

4ABG � 4DEF (SAS)

AG � DF p4ABG � 4DEF q
AC � DF (given)

Hence AG � AC.

BG � EF p4ABG � 4DEF q
BC � EF (given)

Hence BC � BG.

Thus AC � AG, BC � BG, and both C and G are on the same side
of the base AB. From Euclid’s Elements, Proposition I.7, C and G are the
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same point; BC and BG are the same line. Therefore, =ABG � =ABC �
=DEF , which contradicts our assumption. So 4ABC � 4DEF .

B.3. The AAS Rule

Proof. Let =CAB � =FDE, =ABC � =DEF , BC � EF . Assume that
4ABC is not congruent to 4DEF . Then AB � DE, otherwise 4ABC �
4DEF (SAS). Without loss of generality, we may assume that AB ¡ DE.
Let G be the point on AB such that GB � DE.

4GBC � DEF (SAS)

=CGB � =FDE p4GBC � 4DEF q
=CAB � =FDE (given)

Hence =CAB � =CGB.

=CAG�=CGA � =CAB �=CGA

� =CAB � pπ �=CGBq p=s on a straight line)

� =CAB � pπ �=CABq

� π

Since AC and GC intersect at C, the angle sum of 4AGC ¥ π, which is im-
possible in hyperbolic geometry. Hence A and G are the same point. There-
fore, AB � GB � DE, which contradicts our assumption. So 4ABC �
4DEF .
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B.4. The AAA Rule

Proof. Let =CAB � =FDE, =ABC � =DEF , =ACB � =DFE. As-
sume that 4ABC is not congruent to 4DEF . Then AB � DE, otherwise
4ABC � 4DEF (ASA). Without loss of generality, we may assume that
AB ¡ DE. Let G be the point on AB such that AG � DE. Let H be a
point such that =AGH � =DEF and =GAH � =EDF .

Since =AGH � =DEF and =ABC � =DEF , =ABC � =AGH and hence
BC and GH are ultra-parallel (and do not intersect). Thus H lies on the
line segment AC, and BCHG will form a quadrilateral.

4AGH � 4DEF (ASA)

=AHG � =DFE p4AGH � 4DEF q
=ACB � =DFE

Hence =ACB � =AHG.

The angle sum of BCHG

� =BGH �=ABC �=GHC �=ACB

� pπ �=AGHq �=ABC � pπ �=AHGq �=ACB

� pπ �=ABCq �=ABC � pπ �=ACBq �=ACB

� 2π

Divide BCHG into two triangles, then at least one of them has the angle
sum ¥ π, which is impossible in hyperbolic geometry. Thus 4ABC �
4DEF .
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B.5. SSA and Congruence

Proof. Let BC � EF , AC � AF , =BAC � =EAF . Assume that 4ABC is
not congruent to 4AEF . ThenAB � AE, otherwise 4ABC � 4AEF (SAS).
Without loss of generality, we may assume that AB ¡ AE. Let G be the
point on AB such that AG � AE.

4AGC � 4AEF (SAS)

GC � EF p4AGC � 4AEF q
BC � EF (given)

Hence BC � GC.

We can construct a pair of triangles which satisfy the SSA condition but
are not congruent. Let the centre of the Poincaré disk be O. Construct a
circle centred at O to get two points B and C which are equidistant from
O and B, O, C are not collinear. There exists a d-line passing through B
and C. On this d-line, choose an arbitrary point A which is not between
B and C. Then 4OAB and 4OAC satisfy the SSA condition but are not
congruent.
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Therefore, SSA does not imply the congruence of two triangles.

B.6. Proof of Euclid’s Proposition I.7

In the proof of SSS congruence, we have used Proposition I.7 of Euclid’s
Elements. Commentators over the centuries pointed out that Euclid’s proof
of this proposition was incomplete[8].

Theorem B.1. The angles at the base of an isosceles triangle are equal

Proof. Let 4ABC be an isosceles triangle which AB � BC. Consider
4ABC and 4CBA.

AB � BC

=ABC � =CBA

BC � AB

Hence 4ABC � 4CBA(SAS). =BAC � =BCA(4ABC � 4CBA).
Therefore, the base angles of an isosceles triangle are equal.

Theorem B.2. In an isosceles triangle, the angle bisector of the angle op-
posite to the base is the perpendicular bisector of the base.

Proof. Let 4ABC be an isosceles triangle which AB � BC. Draw the
angle bisector of =ABC to meet the base AC at D. Consider 4ABD and
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4CBD.

AB � BC

=ABD � =CBD

BD � BD

Hence 4ABD � 4CBD(SAS).

AD � CD p4ABD � 4CBDq
=ADB � =CDB p4ABD � 4CBDq

=ADB �=CDB � π p=s on a staight line)

Hence =ADB � =CDB �
π

2
.

Therefore, the bisector of the angle opposite to the base of an isosceles
triangle is the perpendicular bisector of the base.

Since the line joining two points is unique, we can say that in an isosceles
triangle, the line joining the mid-point of the base and its opposite vertex
is the bisector of the angle at the vertex and the perpendicular bisector of
the base.

Proof of Proposition I.7. Let ABC be a triangle and D be a point on the
same side of AB as C such that AC � AD and BC � BD. Suppose that
C and D are not the same point.

Join CD. Since AC equals AD and BC equals BD, both 4ACD and
4BCD are isosceles triangles with the base CD.

Let M be the midpoint of CD, then AM and BM are both perpendicu-
lar bisectors of CD and hence they are the same line. Thus A, B and M
are collinear, which is impossible as C and D lie on the same side of AB.

So C and D are the same point.

In Euclidean Geometry, if the hypotenuse and one other side of a right-
angled are equal to the hypotenuse and one side of another right-angled
triangle, then the two triangles are congruent (RHS). RHS is a special case

of SSA when the angle has a measurement of
π

2
. The RHS rule is also

valid in hyperbolic geometry and it is valuable as it contains the concept of
measurement. So we put this part as an extension.
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B.7. The RHS Rule

Proof. Let =ABC � =DEF �
π

2
, BC � EF , AC � DF . Assume that

4ABC is not congruent to 4DEF . Then AB � DE, otherwise 4ABC �
4DEF (SAS). Without loss of generality, we may assume that AB ¡ DE.
Let G be a point on AB such that GB � DE.

4GBC � 4DEF (SAS)

GC � DF 4GBC � 4DEF
AC � DF (given)

Hence AC � GC. Therefore, 4AGC is an isosceles triangle.

Take H as the mid-point of the base AG. Then the line joining C and

H will be the perpendicular bisector of AG, and =AHC �
π

2
. Now we

have =ABC � =AHC �
π

2
, and the lines HC and BC are ultra-parallel.

But they meet at the point C, and this leads to a contradiction. Therefore,
4ABC � 4DEF .
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