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ON THE PRIME NUMBER THEOREM
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Abstract. It is possible to prove the Prime Number Theorem(PNT) by el-

ementary methods. A. Selberg sketched his original elementary proof in a
paper in 1949. This article is an attempt to complete the proof of the PNT

by following the ideas in Selberg’s paper.2

1. Introduction

This article is divided into 7 sections, namely:

1. Introduction

2. Background of the Prime Number Theorem

3. Basic Facts, Definitions and Theorems

4. Selberg’s Original Proof

5. Results related to the Prime Number Theorem

6. Conjectures related to the Prime Number Theorem

7. Conclusion

1This work is done under the supervision of the author’s teacher, Mr. Wai-Man Ko.
2The abstract is added by the editor.
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To explain these subtitles, first let me briefly mention my experiences in
doing this project.

In fact, at the beginning I was not doing this topic. As I intended to work
on the field of number theory, at first I either tried to find some interesting
problems and thought about it, or tried to generalize some existing the-
orems. However, what I discovered in the first few months was that the
problems I solved are too easy, or that the problems, though hard enough,
are too particular and not so meaningful, or that the facts I obtained are
actually some known results, or that the things I intended to work on are
too difficult for me.

After a long period of choosing topics, I finally worked on problems con-
cerning primes. During the time of research, I thought about a few prob-
lems. What I found was that the Prime Number Theorem(PNT) is actually
very sharp. Many interesting results which are hard to prove directly are
just consequences of the PNT. As I knew that the few existing proofs of
PNT either use some advanced knowledge such as complex analysis or are
elementary but quite long, I tried to prove the PNT on my own.

However, it is certainly too hard for me. Later when I read a paper written
by Atle Selberg, I found that the historic ‘completely’ elementary proof of
Selberg is indeed not his first proof of PNT. Hence instead of proving PNT
on my own, I followed the sketched route mentioned by Selberg in the paper,
and completed it.

To make this article self-contained, in sections 2 and 3 I will include the
background of the PNT and some essential knowledge in analytic number
theory. People who are familiar with them can jump to section 4, where
Selberg’s original proof will be completed. In sections 5 and 6 I will give my
comments on the PNT and some results concerning primes.

2. Background of the Prime Number Theorem

The Prime Number Theorem is probably one of the most important the-
orems in mathematics. It was first conjectured by Gauss and Legendre
independently in the late 18th century, and was proved independently by
Hadamard and Poussin in 1896. The simplest and most common form of
the PNT is: If πpxq is the number of primes not exceeding x, then

lim
xÑ8

πpxq log x

x
� 1,
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where log is the natural logarithm.

In other words,

πpxq � x

log x
.

The proofs of Hadamard and Poussin used methods from complex analysis.
In that time, many mathematicians believed that the PNT is a ‘deep’ the-
orem and it could not be proved by using elementary methods.

In 1948, A. Selberg proved an asymptotic formula:¸
p¤x

plog pq2 �
¸
pq¤x

log p log q � 2x log x�Opxq, (1)

where p, q run over all primes. This result is strong, though it is a conse-
quence of the very famous Prime Number Theorem. However, what surprises
us is that Selberg proved it with a completely elementary method! So we
may use it to work out an elementary proof of some results obtained in
analytic number theory, which previously looked inaccessible by elementary
methods.

A few months later, P. Erdos successfully used this formula to prove a gen-
eralization of the Bertrand Postulate: For all real positive c, there exists
real positive δpcq such that

πpp1� cqxq � πpxq ¡ δpcq x

log x
, (2)

(It is also a consequence of the Prime Number Theorem and we will prove
it later). Erdos sent this proof to Selberg, who, two days later, successfully
used (1) and (2) to prove the Prime Number Theorem! This proof is very
important and meaningful, since Selberg and Erdos proved the theorem just
using elementary techniques (i.e. without using complex analysis), which
showed that the belief of mathematicians in the past is wrong! Later they
jointly simplified the proof.

In 1949, Selberg published his proof in the Annals of Mathematics. How-
ever he chose to write his simplified proof (‘simple’ is in the sense that it
avoids the concept of lower and upper limits) but just sketched his primary
proof (Selberg commented that the two proofs are pretty different). As I
think the original proof he sketched is much more direct and clear than the
simplified one, so I decide to complete Selberg’s original proof and my work
is presented in this article.



42 Y.P. TSOI

3. Basic Facts and Theorems

In this section, some essential basic facts, definitions and theorems which
will appear in Selberg’s original proof are introduced. Readers who are
familiar with number theory can skip this part.

Theorem 3.1. (Abel’s identity) For any arithmetical function apnq, let

Apxq �
$&
%
¸
n¤x

apnq if x ¥ 1,

0 if 0 ¤ x ¤ 1.

If f is continously differentiable on the interval ry, xs where 0   y   x, then¸
y n¤x

apnqfpnq � Apxqfpxq �Apyqfpyq �
» x
y
Aptqf 1ptqdt. (3)

Proof. Using integration by parts we get¸
y n¤x

apnqfpnq �
» x
y
fptqdAptq

� rfptqAptqsxy �
» x
y
Aptqdfptq

� Apxqfpxq �Apyqfpyq �
» x
y
Aptqf 1ptqdt.

Corollary 3.2. (Euler’s Summation Formula) If f is continuously dif-
ferentiable on the interval ry, xs where 0   y   x, then¸
y n¤x

fpnq �
» x
y
fptqdt�

» x
y
pt�rtsqf 1ptqdt�fpxqprxs�xq�fpyqprys�yq. (4)

Proof. Let the apnq in (3) equal 1 for all n P N. Then¸
y n¤x

fpnq � fpxqrxs � fpyqrys �
» x
y
rtsf 1ptqdt.

On the other hand, using integration by parts we have» x
y
tf 1ptqdt � rtfptqsxy �

» x
y
fptqdt � xfpxq � yfpyq �

» x
y
fptqdt.

Combining them we obtain the famous Euler’s Summation Formula.



ON THE PRIME NUMBER THEOREM 43

Notice that both theorem 3.1 and corollary 3.2 may or may not work when
doing approximations. Sometimes the terms Apxqfpxq � Apyqfpyq esti-

mates
¸

y n¤x
apnqfpnq better, but sometimes the term

» x
y
fptqdt estimates¸

y n¤x
fpnq better. Of course, sometimes both of them don’t work and give

a large error term.

Experiences told us that it is hard to deal with the function πpxq. How-
ever some mathematicians later found a relation which links πpxq and the
so-called Chebyshev’s ϑ-function together:

Definition 3.3. (Chebyshev’s ϑ-function) For x ¡ 0, we define the
Chebyshev’s ϑ-function by

ϑpxq �
¸
p¤x

log p,

where p runs over all primes.

Theorem 3.4. For x ¥ 2 we have

ϑpxq � πpxq log x�
» x
2

πptq
t
dt (5)

and

πpxq � ϑpxq
log x

�
» x
2

ϑptq
t log2 t

dt. (6)

Proof. Define apnq in theorem 3.1 as follows:

apnq �
#

1 if n is a prime,

0 otherwise.

Then

ϑpxq �
¸

1 n¤x
apnq log n � πpxq log x� πp1q log 1�

» x
1

πptq
t
dt,

which proves (5) as πptq � 0 for t   2.

Next, define bpnq � apnq log n and take a real k where 1   k   2, then

πpxq �
¸

k n¤x

bpnq
log n

� ϑpxq
log x

� ϑpkq
log k

�
» x
k

ϑptq
t log2 t

dt,
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which proves (6) as ϑptq � 0 for t   2.

Now let’s see the integral part of (5). What is its order of magnitude when

assuming πpxq � x

log x
? The following lemma can prove that it is indeed

Op x

log x
q.

Lemma 3.5. If x ¥ y ¡ 1, then» x
y

dt

logn t
� Op x

logn x
q. (7)

In particular,

» x
y

dt

log t
� Op x

log x
q.

Proof. Since

0 ¤
» x
y

dt

logn t
�
» ?x
y

dt

logn t
�
» x
?
x

dt

logn t
¤

?
x

logn y
� x�?

x

logn
?
x
� Op x

log x
q,

which proves (7).

It is then easy to see that ϑpxq � x if πpxq � x

log x
. In fact the converse is

also true.

Theorem 3.6. The following relations are equivalent:

lim
xÑ8

πpxq log x

x
� 1 (8)

lim
xÑ8

ϑpxq
x

� 1 (9)

Proof. Divide both sides of (5) by x. If (8) is true,

πptq
t

� 1

t
Op t

log t
q � Op 1

log t
q,

so by lemma 3.5,

1

x

» x
2

πptq
t
dt � Op1

x

» x
2

dt

log t
q � Op 1

log x
q � op1q.

Hence (8) implies (9).
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Conversely, divide both sides of (6) by
x

log x
. If (9) is true, ϑptq � Optq,

so by lemma 3.5,

log x

x

» x
2

ϑptq
t log2 t

dt � Op log x

x

» x
2

1

log2 t
dtq � Op 1

log x
q � op1q.

Hence (9) implies (8).

Now two more functions and a few theorems will be introduced. The easiest
ones will be stated without proof. They will be used in section 4.

Definition 3.7. (Mangoldt function Λpnqq For n P N, Λpnq is defined
as follows:

Λpnq �
#

log p if n � pm for some m ¥ 1

0 otherwise

Definition 3.8. (Chebyshev’s ψ-function) For x ¡ 0, we define the
Chebyshev’s ψ-fucntion by

ψpxq �
¸
n¤x

Λpnq.

Theorem 3.9. If F pxq �
¸
n¤x

fpnq, we have

¸
n¤x

fpnq
�x
n

�
�
¸
n¤x

F px
n
q. (10)

Proof. Consider an array of numbers as follows:

fp1q, fp1q, fp1q, . . . , fp1qlooooooooooooooomooooooooooooooon
rxs

fp2q, fp2q, . . . , fp2qlooooooooooomooooooooooon
rx{2s

fp3q, . . . , fp3qlooooooomooooooon
rx{3s

. . .
fprxsq

Summing them row by row gives the L.H.S. of the formula and summing
them column by column gives the R.H.S. of the formula.
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Theorem 3.10. For x ¡ 0, we have¸
n¤x

ψpx
n
q �

¸
n¤x

Λpnq
�x
n

�
� logrxs! � x log x� x�Oplog xq. (11)

Proof. The first two equalities are trivial. The first one uses theorem 3.9
while the second one uses the unique factorization of integers. The last one
uses Euler’s summation formula as follows:

logrxs! �
¸
n¤x

log n

�
» x
1

log tdt�
» x
1

t� rts
t

dt� log xprxs � xq

� x log x� x� 1�
» x
1

t� rts
t

dt�Oplog xq

� x log x� x�Op
» x
1

1

t
dtq �Oplog xq

� x log x� x�Oplog xq.
Theorem 3.11. ¸

d|n
µpdq �

�
1

n

�
(12)

where µ is the Möbius function.

Theorem 3.12.

Λpnq �
¸
d|n
µpdq log

n

d
. (13)

Proof. Use the Möbius inversion formula.

Theorem 3.13. If s ¡ 0 and s � 1,¸
n¤x

1

ns
� x1�s

1� s
� ζpsq �Opx�sq (14)

where ζ is the Riemann zeta function.

Proof. Use Euler’s summation formula.

Theorem 3.14. For x ¡ 0, we have

0 ¤ ψpxq � ϑpxq  
?
x log2 x

2 log 2
.
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Proof.

0 ¤ ψpxq � ϑpxq �
¸

n¤log x{ log 2
ϑpx 1

n q � ϑpxq

�
¸

2¤n¤log x{ log 2
ϑpx 1

n q

 
¸

2¤n¤log x{ log 2
x

1

n log x
1

n

  log x

log 2

?
x log

?
x

�
?
x log2 x

2 log 2

Finally, we come to a beautiful theorem which was proved by H.N. Shapiro
in 1950. Its corollaries play an important role in the original proof of Selberg.

Theorem 3.15. (Shapiro’s Tauberian Theorem) If apnq is a nonnega-
tive arithmetical function such that, for x ¥ 1,¸

n¤x
apnq

�x
n

�
� x log x�Opxq. (15)

then

(a) for x ¥ 1, we have ¸
n¤x

apnq
n

� log x�Op1q; (16)

(b) there is a constant M ¡ 0 such that¸
n¤x

apnq ¤Mx for all x ¥ 1;

(c) there is a constant m ¡ 0 and an x0 ¡ 0 such that¸
n¤x

apnq ¥ mx for all x ¥ x0.

Proof. Let

Apxq �
¸
n¤x

apnq, Bpxq �
¸
n¤x

apnq
�x
n

�
.
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Then

Bpxq � 2Bpx
2
q �

¸
n¤x

apnq
�x
n

�
� 2

¸
n¤x{2

apnq
� x

2n

�

�
¸

n¤x{2
apnqp

�x
n

�
� 2

� x
2n

�
q �

¸
x{2 n¤x

apnq
�x
n

�

¥
¸

x{2 n¤x
apnq

�x
n

�

� Apxq �Apx
2
q,

i.e.

Apxq �Apx
2
q ¤ Bpxq � 2Bpx

2
q (17)

but from (15) we know that

Bpxq � 2Bpx
2
q � x log x�Opxq � 2px

2
log

x

2
�Opx

2
qq � Opxq.

Hence from(17) we can find a constant M 1 such that

Apxq �Apx
2
q ¤M 1x for all x ¥ 1.

So

Apxq �
8̧

i�0

pAp x
2i
q �Ap x

2i�1
qq ¤

8̧

i�0

M 1 x
2i
� 2M 1x.

(b) is then proved by letting M � 2M 1.
Next, as

�x
n

�
� x

n
�Op1q and

¸
n¤x

apnq � Opxq by (b), so

Bpxq �
¸
n¤x

apnq
�x
n

�

�
¸
n¤x

apnqpx
n
�Op1qq

� x
¸
n¤x

apnq
n

�Op
¸
n¤x

apnqq

� x
¸
n¤x

apnq
n

�Opxq.

By (15) we get¸
n¤x

apnq
n

� 1

x
pBpxq �Opxqq � 1

x
px log x�Opxqq � log x�Op1q,
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which proves (a).
Finally we wrtie

¸
n¤x

apnq
n

� log x�Rpxq.

(a) tells us that |Rpxq|   K for some K ¡ 0. If x ¡ αx ¥ 1, then

¸
αx n¤x

apnq
n

�
¸
n¤x

apnq
n

�
¸
n¤αx

apnq
n

� log x�Rpxq � logαx�Rpαxq
¥ � logα� 2K.

Obviously we can choose a suitable α such that

¸
αx n¤x

apnq
n

¤
¸

αx n¤x

apnq
αx

¤ 1

αx
Apxq.

Therefore Apxq ¤ mx for m � α and x ¥ x0 � 1

α
.

Corollary 3.16. For x ¥ 1, we have

¸
n¤x

Λpnq
n

� log x�Op1q (18)

and

¸
p¤x

log p

p
� log x�Op1q. (19)

Also there are positive constants M , m, M 1 and m1 such that ϑpxq ¤ Mx
for all x ¥ 1 and ϑpxq ¥ mx for all sufficiently large x, and ψpxq ¤ M 1x
for all x ¥ 1 and ψpxq ¥ m1x for all sufficiently large x.
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Proof. (18) is trivial in view of theorem 3.10 and theorem 3.15. For (19),
we use Euler’s summation formula:

¸
n¤x

Λpnq
�x
n

�
�
¸
p¤x

log p
8̧

m�1

�
x

pm

�

�
¸
p¤x

log p

�
x

p

�
�
¸
p¤x

log p
8̧

m�2

�
x

pm

�

¤
¸
p¤x

log p

�
x

p

�
�
¸
p¤x

log p
8̧

m�2

x

pm

�
¸
p¤x

log p

�
x

p

�
� x

¸
p¤x

log p

ppp� 1q

¤
¸
p¤x

log p

�
x

p

�
� x

8̧

n�2

log n

npn� 1q .

By the integral text,
8̧

n�2

log n

npn� 1q converges, so x
8̧

n�2

log n

npn� 1q � Opxq.
Hence ¸

n¤x
Λpnq

�x
n

�
�
¸
p¤x

log p

�
x

p

�
�Opxq.

By theorem 3.10 we get

¸
p¤x

log p

�
x

p

�
�
¸
n¤x

Λpnq
�x
n

�
�Opxq � x log x�Opxq.

By letting the apnq in theorem 3.15 as follows:

apnq �
#

log n if n is a prime,

0 otherwise,

(19) follows immediately.

4. Selberg’s Original Proof

First of all, we prove an asymptotic formula (Theorem 4.2) discovered by A.
Selberg in 1948 using a method (Lemma 4.1) given by Tatuzawa and Iseki in
1951. In fact, most of the existing elementary proofs of the Prime Number
Theorem are based on this formula.
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Lemma 4.1. Let F be a real- or complex-valued function defined on p0,�8q,
then

F pxq log x�
¸
n¤x

F px
n
qΛpnq �

¸
d¤x

µpdqGpx
d
q, (20)

where

Gpxq � log x
¸
n¤x

F px
n
q. (21)

Proof. By theorem 3.11 and theorem 3.12, we have

F pxq log x �
¸
n¤x

F px
n
q log

x

n

�
1

n

�
�
¸
n¤x

F px
n
q log

x

n

¸
d|n
µpdq

and ¸
n¤x

F px
n
qΛpnq �

¸
n¤x

F px
n
q
¸
d|n
µpdq log

n

d
.

So

F pxq log x�
¸
n¤x

F px
n
qΛpnq �

¸
n¤x

F px
n
qr
¸
d|n
µpdq log

x

n
�
¸
d|n
µpdq log

n

d
s

�
¸
n¤x

¸
d|n
F px
n
qµpdq log

x

d

�
¸
d¤x

µpdq log
x

d

¸
q¤x{d

F px{d
q
q

�
¸
d¤x

µpdqGpx
d
q

Theorem 4.2.

ϑpxq log x�
¸
p¤x

ϑpx
p
q log p � 2x log x�Opxq, (22)

where p runs through all primes less than or equal to x.

Proof. By lemma 4.1 and theorem 3.10, when F1pxq � ψpxq we have

G1pxq � log x
¸
n¤x

ψpx
n
q

� x log2 x� x log x�Oplog2 xq.
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And when F2pxq � x� C � 1 where C is the Euler’s constant, we have

G2pxq � log x
¸
n¤x

px
n
� C � 1q

� x log x
¸
n¤x

1

n
� pC � 1q log x

¸
n¤x

1

� x log xplog x� C �Op1

x
qq � pC � 1q log xpx�Op1qq

� x log2 x� x log x�Oplog xq.
Hence we have G1pxq �G2pxq � Oplog2 xq, which implies G1pxq �G2pxq �
Op?xq.

By theorem 3.13,¸
d¤x

µpdqG1px
d
q �

¸
d¤x

µpdqG2px
d
q �

¸
d¤x

µpdqrG1px
d
q �G2px

d
qs

� Op
¸
d¤x

c
x

d
q

� Op?x
¸
d¤x

1?
d
q

� Opxq,
so we have ¸

d¤x
µpdqG1px

d
q �

¸
d¤x

µpdqG2px
d
q �Opxq.

Therefore, by the Shapiro’s theorem and formula(18), we have

ψpxq log x�
¸
n¤x

ψpx
n
qΛpnq

� px� C � 1q log x�
¸
n¤x

px
n
� C � 1qΛpnq �Opxq

� x log x� x
¸
n¤x

Λpnq
n

� pC � 1qψpxq �Opxq

� x log x� xplog x�Op1qq �Opxq
� 2x log x�Opxq.

Finally define an arithmetical function Λ1pnq by

Λ1pnq �
#

log n if n is a prime

0 otherwise
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and consider the expression

pψpxq � ϑpxqq log x�
¸
n¤x

ψpx
n
qΛpnq �

¸
p¤x

ϑpx
p
q log p

� pψpxq � ϑpxqq log x�
¸
n¤x

ψpx
n
qpΛpnq � Λ1pnqq �

¸
p¤x

pψpx
n
q � ϑpx

n
qqΛ1pnq.

By theorem 3.14,
pψpxq � ϑpxqq log x � opxq. (23)

By corollary 3.16,¸
n¤x

ψpx
n
qpΛpnq � Λ1pnqq � Opx

¸
n¤x

pΛpnq
n

� Λ1pnq
n

qq � Opxq. (24)

By theorem 3.15 and theorem 1 of reference [4],¸
p¤x

pψpx
n
q � ϑpx

n
qqΛ1pnq � Op?x

¸
n¤x

Λ1pnq?
n
q.

As ¸
n¤x

Λ1pnq?
n

�
¸
p¤?x

log p?
p
�

¸
?
x p¤x

log p?
p

¤
¸
p¤?x

log p� 1?
x

¸
?
x p¤x

log p

¤ ϑp?xq � 1?
x
ϑpxq

� Op?xq,
we have ¸

p¤x
pψpx

n
q � ϑpx

n
qqΛ1pnq � Op?x

¸
n¤x

Λ1pnq?
n
q � Opxq. (25)

Combining (23), (24) and (25), we get

pψpxq � ϑpxqq log x�
¸
n¤x

ψpx
n
qΛpnq �

¸
p¤x

ϑpx
p
q log p � Opxq,

or
ϑpxq log x�

¸
p¤x

ϑpx
p
q log p � 2x log x�Opxq.

From this asymptotic formula, P. Erdös proved a result about the number
of primes between two numbers (Theorem 4.3). Its proof(see reference [2])
is omitted here as it is quite lengthy. this result is found to be useful when
giving an elementary proof of the PNT.
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Theorem 4.3. For an arbitrary positive real number δ, there exists a con-
stant Kpδq ¡ 0 such that

πpx� δxq � πpxq ¡ Kpδq x

log x
.

Now a series of lemmas will be proved. Using them we can prove an equiv-
alent form of the Prime Number Theorem as stated in theorem 3.6.

Lemma 4.4. Let lim inf
xÑ8

ϑpxq
x

� a and lim sup
xÑ8

ϑx

x
� A. We have a�A � 2.

Proof. Choose those xÑ8 such that
ϑpxq
x

Ñ a. From (22) we get

1

x log x

¸
p¤x

ϑpx
p
q log p � 2� a� op1q.

However by the definition of A, for arbitrary ε ¡ 0 we can find an x0 ¡ 0
such that

1

x log x

¸
p¤x

ϑpx
p
q log p   pA� εqx

x log x

¸
p¤x

log p

p

for x ¡ x0. By corollary 3.16,¸
p¤x

log p

p
� log x�Op1q,

hence

2� a� op1q � 1

x log x

¸
p¤x

ϑpx
p
q log p   A� ε� op1q,

which implies 2� a ¤ A� ε.

As ε is arbitrary, we get 2� a ¤ A or 2 ¤ a�A.

If we choose those xÑ8 such that
ϑpxq
x

Ñ A at the beginning, by similar

arguments we can get 2 ¥ a�A. Therefore, a�A � 2.

Lemma 4.5. For arbitrary ε ¡ 0, we can choose a xÑ8(cf. Reviewer’s
Comments 1) such that ϑpxq Ñ ax and

ϑpx
p
q ¡ pA� εqx

p

except for a set I satisfying ¸
pPI

log p

p
� oplog xq.
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Similarly, we can choose an x1 Ñ8 such that ϑpx1q Ñ Ax1 and

ϑpx
1

p
q ¡ pa� εqx

1

p

except for a set I 1 satisfying¸
pPI 1

log p

p
� oplog xq.

Proof. For the first statement, if it is false, then there exists a set I such

that
¸
pPI

log p

p
¡ c1 log x and

ϑpx
p
q ¤ pA� εqx

p
for all p P I.

However, by theorem 4.2 and corollary 3.16,

p2� aqx log x�Opxq �
¸
p¤x

ϑpx
p
q log p

�
¸
pPI

ϑpx
p
q log p�

¸
pRI

ϑpx
p
q log p

¤
¸
pPI
pA� εqx log p

p
�
¸
pRI
pAx
p
� opx

p
qq log p

� c1pA� εqx log x�Ap1� c1qx log x� opx log xq
� A� c1εx log x� opx log xq

which contradicts that a�A � 2. Hence the first statement is proved. The
second one can be prove by similar arguments.

Using the notations in lemma 4.5, if we can find x, x1, p and p1 such that

x

p
  x1

p1
  p1� εqx

p
,

then we have

pA� εqx
p
  ϑpx

p
q ¤ ϑpx

1

p1
q   pa� εqx

1

p1
  pa� εqp1� εqx

p
,

which implies
pA� εq   pa� εqp1� εq.

As ε is arbitrary, we have A ¤ a. Together with lemma 4.4, lim
xÑ1

ϑpxq
x

� 1.

Hence the Prime Number Theorem is proved.
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However I just found that there are flaws in my original proof of the ex-
istence of such x, x1, p and p1(cf. Reviewer’s Comments 2). A proof of
this fact seems to be present in [2].

5. Results related to the Prime Number Theorem

This section contains some of my views on the Prime Number Theorem and
results related to it. They may look discrete and have no obvious relations
between each other. In fact most of them are problems I encountered when
I was working on the proof of the PNT. It is possible that they have already
been thought about by some people before.

First of all let us talk about the order of magnitude of the function πpxq.
Someone may wonder how Gauss and Legendre could conjecture πpxq �
x{ log x, as the distribution of primes is so irregular while x{ log x is such a
‘regular’ function. Was this discovery just a coincidence with no reason be-
hind? Or did Gauss and Legendre have extraordinary ability of observation
when they were facing the table of primes? At first I wondered too, but what
I found later is that it is indeed very natural to conjecture πpxq � x{ log x!

The sieve of Eratosthenes is probably the earliest efficient method for finding
primes. Together with the inclusion-exclusion principle, it is easy to deduce
that

πpxq � πp?xq � 1 � rxs �
¸

p1¤?x

�
x

p1

�
�

¸
p1 p2¤?x

�
x

p1p2

�

� . . .� p�1qn
�

x

p1 . . . pn

�
(26)

where n � πp?xq, pipi � 1, 2, . . . , nq are primes not larger than x and rxs is
the floor function. For the L.H.S., due to the large difference between the
orders of magnitude of x and

?
x, one may expect πpxq�πp?xq�1 � πpxq (It

is actually true and is an easy consequence of the PNT). For the R.H.S., one
may also expect it has the same order of magnitude as the expression with
floor functions removed. (However this looks untrue from the calculations
with a computer, which show that they differ by a constant factor close to
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1.) Hence it is natural to guess

πpxq � rx�
¸

p1¤?x

x

p1
�

¸
p1 p2¤?x

x

p1p2
� . . .� p�1qn x

p1 . . . pn
s

� x
¹
p¤?x

p1� 1

p
q

� x¹
p¤?x

p

p� 1

� x¹
p¤?x

p
8̧

m�0

1

pm
q
.

Using the idea in Euler’s proof of having infinitely many primes, one can
expect

πpxq � x¹
p¤?x

p
8̧

m�0

1

pm
q
� x

x̧

n�1

1

n

� x

log x
!

This deduction is of course not rigorous, and it is wrong actually! However
it really suggests us that πpxq � x{ log x is a good guess! At least there
is a close relationship between the functions πpxq and x{ log x. By direct
calculation one may verify that it is indeed true.

After I got this idea, I spent some time on investigating them. Here are
some observations:

Data 5.1. Let

fpxq � x¹
p¤?x

p
8̧

m�0

1

pm
q
� x

log x
� log x

¹
p¤x

p1� 1

p
q.

Values of fpxq:

x fpxq x fpxq
102 1.05261 1010 1.12258
104 1.10816 1012 1.12288
106 1.11858 1014 1.12291
108 1.12154
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It is natural to guess lim
xÑ8 log x

¹
p¤x

p1 � 1

p
q exists and approximately equals

1.23. If it is true, it certainly implies

lim
xÑ8

rxs �
¸

p1¤?x

�
x

p1

�
�

¸
p1 p2¤?x

�
x

p1p2

�
� . . .� p�1qn

�
x

p1 . . . pn

�

x
¹
p¤?x

p1� 1

p
q

� 0.81.

In real situation, it is very hard to deal with the floor functions in (26).
Using this formula I can only prove this very weak result:

Theorem 5.2. (Euclid’s Second Theorem) The number of primes is
infinite.

Proof. Apply the inequality x� 1   rxs ¤ x to (26), we get

rxs �
¸

p1¤?x

�
x

p1

�
�

¸
p1 p2¤?x

�
x

p1p2

�
� . . .� p�1qn

�
x

p1 . . . pn

�

¡ x� 1�
¸

p1¤?x

x

p1
�

¸
p1 p2¤?x

x

p1p2
� C

πp?xq
2 �

¸
p1 p2 p3¤?x

x

p1p2p3
� � �

� x
¹
p¤?x

p1� 1

p
q � 2πp

?
xq�1

and

rxs �
¸

p1¤?x

�
x

p1

�
�

¸
p1 p2¤?x

�
x

p1p2

�
� . . .� p�1qn

�
x

p1 . . . pn

�

  x�
¸

p1¤?x

x

p1
� C

πp?xq
1 �

¸
p1 p2¤?x

x

p1p2
�

¸
p1 p2 p3¤?x

x

p1p2p3

� C
πp?xq
3 � � � �

� x
¹
p¤?x

p1� 1

p
q � 2πp

?
xq�1.

Hence¹
p¤?x

p1� 1

p
q � 2πp

?
xq�1 ¡ πpxq � πp?xq � 1 ¡

¹
p¤?x

p1� 1

p
q � 2πp

?
xq�1.
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If there are only finitely many primes, πpxq�πp?xq� 1 � 1 for large x and

2πp
?
xq�1 and

¹
p¤?x

p1�1

p
q are constants. However, x

¹
p¤?x

p1�1

p
q�2πp

?
xq�1 Ñ

8 when xÑ8, which leads to a contradiction! so the number of primes is
infinite.

In section 2 I have mentioned the Erdös proved a generalization of the
Bertrand’s Postulate using Selberg’s asymptotic formula. Actually it is just
an easy consequence of the powerful Prime Number Theorem.

Theorem 5.3. (Bertrand’s Postulate) For each n ¥ 2, there is a prime
p such that n   p   2n.

Proof. See reference [6]

Theorem 5.4. (Generalization of Bertrand’s Postulate) Given arbi-
trary c ¡ 0, there exists Kpcq ¡ 0 such that

πpp1� cqxq � πpxq ¤ Kpcq x

log x

for sufficiently large x.

Proof. As
p1� cqx

logpp1� cqxq � Op x

log x
q
, by the Prime Number Theorem,

πpp1� cqxq � πpxq

� r p1� cqx
logpp1� cqxq � op p1� cqx

logpp1� cqxqqs � r x

log x
� op x

log x
qs

� p1� cqx
logpp1� cq � log x

� x

log x
� op x

log x
q.

Choose a c1 such that c ¡ c1 ¡ 0. For sufficiently large x,

p1� cqx
logpp1� cq � log x

¡ p1� cqx
p1� c1q log x

.

Hence

πpp1� cqxq � πpxq ¡ p1� cqx
p1� c1q log x

� x

log x
� op x

log x
q

� c2
x

log x
� op x

log x
q,

where c2 is a constant. The theorem then follows.
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Many results can be proved by Bertrand’s Postulate. For example, the
following interesting theorem is its easy consequence.

Theorem 5.5. If n is a natural number, then n! is never a power of any
interger.

Proof. When n � 1, 2, 3 the theorem is obvious. When n ¥ 4, by Bertrand’s
Postulate there is a prime p such that rn{2s   p   2rn{2s. As 2p ¡ n, p}n!.
Hence n! is never a power of any integer.

For Selberg’s original proof, I think his asymptotic formula is not necessary.
Although it is very sharp, it came out very unnaturally. I guess there are
other much more natural ways to deduce the PNT without using it.

6. Conjectures Related to the Prime Number Theorem

This section contains some ‘phenomena’ I observed when doing this project.
They look true but I could not prove them. Some of them were mentioned
in the last section, but I write them here once again. These conjectures
are arranged in the order of increasing difficulty according to my opinions.
Some of them might be conjectured by someone in the past.

1. Are the following two asymptotic formulae true?

For positive real n, ¸
p¤x

logn p

p
� logn

n
�Op1q.

For positive integer n ¥ 2 (it may be true for positive real n ¡ 1?),¸
p¤x

log p
n
?
p
� n

n� 1
x

n�1

n .

Comment: Let

fnpxq �
¸
p¤x

logn p

p
� logn x

n

and

gnpxq � p
¸
p¤x

log p
n
?
p
q � p n

n� 1
x

n�1

n q.
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Corollary 3.16 states that f1pxq � Op1q. For other n, see the following data:

x f2pxq x f2pxq x f2pxq
10 �0.94941 104 �2.41264 107 �2.55145
102 �1.86573 105 �2.50292
103 �2.24543 106 �2.54396

x f3pxq x f3pxq x f3pxq
10 �1.57446 104 �8.65602 107 �10.1818
102 �5.04098 105 �9.54964
103 �7.33604 106 �10.063

x f4pxq x f4pxq x f4pxq
10 �3.03632 104 �40.6969 107 �57.905
102 �16.3872 105 �49.5742
103 �30.2508 106 �56.0253

x f0.1pxq x f0.1pxq x f0.1pxq
10 �9.68887 104 �9.78022 107 �9.78177
102 �9.76466 105 �9.78139
103 �9.7769 106 �9.78174

x f3{2pxq x f3{2pxq x f3{2pxq
10 �0.860821 104 �1.54845 107 �1.59068
102 �1.33465 105 �1.57718
103 �1.48888 106 �1.5888

x g2pxq x g2pxq x g2pxq
10 0.40788 104 0.961092 107 0.998071
102 0.731126 105 0.985598
103 0.894516 106 0.994534

x g3pxq x g3pxq x g3pxq
10 0.469714 104 0.979088 107 0.999215
102 0.789371 105 0.993294
103 0.930852 106 0.997517

x g1.1pxq x g1.1pxq x g1.1pxq
10 0.108999 104 0.504932 107 0.735068
102 0.256633 105 0.597177
103 0.391766 106 0.673431

I was inspired by Corollary 3.16 to conjecture this two formulae. They seem
true but I did not work on them at all. I am not sure whether they are easy
or not.

2. Is ϑpxq   x�Opxq for all x ¥ 1?
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Comment: By using a computer we can see that ϑpxq   x for 1 ¤ x ¤
1, 000, 000. Moreover, the value of ϑpxq � x seems unbounded below. As
the performances of ϑpxq and ψpxq are similar3 , I also tested whether ψpxq
has similar performance as ϑpxq. However it turned out that this is wrong.
Certainly, if this is true, then it immediately gives another proof of the PNT,

as lim inf
xÑ8

ϑpxq
x

� lim sup
xÑ8

ϑpxq
x

� 2 and lim sup
xÑ8

ϑpxq
x

¤ 1 imply

lim inf
xÑ8

ϑpxq
x

� lim sup
xÑ8

ϑpxq
x

� lim
xÑ8

ϑpxq
x

� 1.

Also this inequality can be used to prove a problem stated in conjecture 4.

3. Is the following generalization of Shapiro’s Tauberian Theorem true?

Let apnq be a nonnegative arithmetical function such that¸
n¤x

apnq
�x
n

�
� x log x�Kx� opxq

for all x ¥ 1, where K is a constant. Then for x ¥ 1 there exists a constant
K 1 such that ¸

n¤x

apnq
n

� log x�K 1 � op1q.

Comment: This generalization seems true when apnq � log n or apnq � Λpnq,
and I guess it is true for general apnq. However, no matter whether it is true
for general apnq or it is true for apnq � Λpnq or apnq � log n, the PNT will
be an easy consequence.

4. Does πpx� c1x
c2q � πpxq tend to infinity for all c1, c2 ¡ 0?

Comment: Tested with a computer, it seems to be true (I tested it for
1 ¤ x ¤ 1, 000, 000). The case c1 ¡ 0, c2 ¥ 1 is an easy consequence of
the Prime Number Theorem. If it is true for some c2 such that c2   0.5,
it implies the unsolved problem: for n ¡ 1, there is a prime p such that
n2   ppn� 1q2. It is surely an extremely difficult problem.

Another interesting problem is to find some functions fpxq such that πpx�
fpxqq � πpxq is bounded. I tried fpxq � logn x. Tested with a computer, it
seems to be bounded for small n. However, when I tested it with n equal to
2.xxx, it seems to grow very very slow! An even harder problem is: what n

3It is well-known that both of the relations ϑpxq � x and ψpxq � x are equivalent to the PNT.

However ψpxq{x converges faster to 1 than ϑpxq{x when xÑ8.
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will make πpx� logn xq � πpxq unbounded? The following are some related
data:

x πpx� log xq � πpxq x πpx� log xq � πpxq
10 1 106 1
102 2 107 0
103 0 108 1
104 2 109 2
105 1 1010 1

x πpx� log2 xq � πpxq x πpx� log2 xq � πpxq
10 2 108 17
102 5 109 23
103 7 1010 19
104 8 1011 34
105 9 1012 27
106 14 1013 30
107 12

x πpx� log3 xq � πpxq x πpx� log3 xq � πpxq
10 4 107 254
102 20 108 360
103 49 109 431
104 84 1010 513
105 130 1011 633
106 202 1012 758

The case n � 1 is relatively easy. it is easy to prove that it does not tend

to infinity by establishing a bounded subsequence: Let x �
m¹
i�1

pi � pm�1,

where pi are primes. By the Prime Number Theorem, ϑppmq   2pm for large
m. So

πpx� log xq � πpxq ¤ πpx� ϑppmqq � πpxq ¤ πpx� 2pm�1 � 1q � πpxq ¤ 2.

Proving πpx � log xq � πpxq is bounded for all x is much more difficult. If
conjecture 2 is true, we can prove that πpx� log xq � πpxq � 0 for infinitely
many x by choosing pm such that pm�1�pm is larger than the upper bound
of ϑppmq � pm and using similar arguments as above.
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7. Conclusion

The real time I spent on this report is very little. It was mainly because
I used most of the time to prepare my AL public examination and the
IMO2006 until the end of July. Most of my work came out in August.

After reading this article, one may feel that it looks like a report rather
than a research, as the topic I did is not new and I did not obtain any
meaningful result. The topics and problems concerning primes are still to
hard for me now. My present knowledge does not allow me to get any nice
things in this stage.

My completion of Selberg’s proof may look trivial and easy to mathemati-
cians. However, to me it is not easy at all. I did spend a long time to work
out the details of the proof on my own. No matter how people evaluate this
article, I think I have gained a lot in the process, and I love number theory
more now! In this article I only used the most fundamental knowledge in
analytic number theory. In the future I will certainly learn deeper in this
field, and also in algebraic number theory.

In section 6, I stated a few ‘conjectures’. In fact many conjectures came
out of my mind when I was working on this topic. Conjecturing something
is easy but proving something is hard! In the future I will continue to work
on conjectures 1,2 and 3. They are meaningful and they look solvable. I
wish I can enter the final, and I will have obtained some concrete results for
sharing in December!
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Reviewer’s Comments

1. In the statement of lemma 4.5, it is not standard in Mathematics to
say “choose a xÑ8” and “choose a x1 Ñ8”.

2. On page 15, last paragraph of section 4, the author should clarify
whether such proof exists.


