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Abstract. This study explores Egyptian fractions, focusing on parametriza-
tion to construct a unified approach to open problems in this field. The
paper introduces a symmetric parametrization for Egyptian fraction equations,
demonstrating its effectiveness through three applications. It also investigates
conjectures related to the shortest length of Egyptian expansion and the Gen-
eralized Erdös-Straus conjecture, and explores connections with semiperfect
numbers. The research leverages Geometry to transform Egyptian equations
into a parametrized system, offering a novel perspective on tackling open
problems with and within the field of Egyptian fractions.
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1. Introduction

Egyptian fraction is one of the oldest branches of Number theory, involving the
representation of nonzero fractions as a sum of distinct unit fractions. For more
historical background, please refer to [4]. Despite centuries of study, these problems
persistently present challenges.

Definition 1.1. A non-zero fraction m

n
is said to have l as its shortest length of

Egyptian expansion if m
n

can be expressed as a sum of a minimum of l distinct
unit fractions.
Conjecture 1 (Generalized Erdös Conjecture). For every integer a ≥ 1, there
exists a solution to the Diophantine equation a

n
= 1
x

+ 1
y

+ 1
z
for n > n0, where n0

is a constant depending on a.
The original conjecture is a special case, where a = 4 and n0(4) = 1.

Conjecture 2. Do there exist finite or infinitely many nonzero fractions with a
given shortest length of Egyptian expansion?

The conjecture’s successful proof historically hinges on examining various modular
identities on n, first enumerated by Mordell [7]. However, no definitive results
indicate a particular set of fractions sharing the same shortest Egyptian expansion
length.

Transitioning from these open problems, we navigate to an intriguing intersection
of semiperfect numbers and Egyptian fractions. This connection, though well-known,
is explored in [3].

Prompted by a philosophical question—If Egyptian fractions are a form of
Diophantine equations, can we construct a unified approach to these open prob-
lems?—This paper presents a significant achievement: a natural, symmetric parametriza-
tion for Egyptian fraction equations. The derivation of this parametrization will be
discussed, and its value showcased through applications in three separate Egyptian
fractions fields, marking remarkable progress

2. Egyptian parametrization formula

2.1. Motivations of Egyptian parametrization. Most Diophantine equations
do not share trivial patterns in solutions from their original forms. For example, the
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famous Pythagorean triple a2 + b2 = c2. But Euclid’s formula reveals the following
identity:

(x2 − y2)2 + (2xy)2 = (x2 + y2)2

and indeed the following parametrization
(1) a = x2 − y2, b = 2xy, c = x2 + y2

covers all primitive Pythagorean triples. Since x, y are restricted to integers only,
a, b, c can be seen as the results of substituting different combinations of free integer
variables (x, y). Therefore (1) is called Euclid’s formula. Also, notice that the
parametrized pair (x, y) is symmetric, meaning that exchanging (x, y) into (y, x)
in (1) makes no difference. One of the famous methods to discover (1) is using
coordinate geometry and considering rational points on a unit circle.

Figure 1. Geometric model of finding rational points on a unit
circle, source: from Wikipedia

The derivation of (1) is skipped because Pythagorean triples are not studied ob-
jects of this paper. Nevertheless, We are interested in searching for parametrization
of the general Diophantine Egyptian equation

(2) m

n
= 1
x1

+ ...+ 1
xl

Despite pure interest, we have strong reasons why parametrization is preferred.
When l = 3, (2) is equivalent to solve for the Diophantine equation
(3) mx1x2x3 = n(x1x2 + x1x3 + x2x3)
Any variables x1, x2, x3 exist in 3 terms in (3). If we choose x1 to be the subject,

x1 = nx2x3

mx2x3 − nx2 − nx3

The three-term denominator leads to a difficult understanding of x1. Hence, the
objectives for Egyptian parameterization are:

(1) To have fewer parameterized variables than the original in (2).
(2) To decrease the solving complexity of the parametrized equation(s) com-

pared to the original.
(3) To ensure the parameterized variables are symmetric, meaning the ex-

change of parametrized variables’ values doesn’t affect solutions to (2).
The subsequent subsections will reveal that, while the first objective may not

be fully achievable, the third is certainly attainable. The accomplishment of the
second objective, believed to be viable, is demonstrated in Section 3.
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2.2. Case Studies on Two-Term and Three-Term Egyptian expansions.
In this subsection, we aim to identify a suitable parametrization of Egyptian
fraction expansion through a case study approach using Geometry. Unlike previous
researchers, we propose that preprocessing and transforming the Diophantine
equation (2) of different lengths l into a parametrized system can offer advantages
during the solving process.

Geometric models representing unit fractions as sums of unit fractions have
previously been established in an HLMA paper [2]. To aid understanding and
maintain clarity, these models will be conveniently represented in Proposition 2.1
and 2.3.

Proposition 2.1. In Figure 1, AC//BD//FE. Let AC = x, BD = y, FE = n.
Then

(4) 1
n

= 1
x

+ 1
y

Figure 2. Geometric model of 4

Proof. By AC//BD//FE, 4CEF ∼ 4CDB and 4DEF ∼ 4DCA. Therefore,
n

x
= a

a+ b
,

n

y
= b

a+ b

Notice
n

x
+ n

y
= a

a+ b
+ b

a+ b
= 1 ⇐⇒ 1

n
= 1
x

+ 1
y

�

The above geometric model has not suggested directions of parametrization
yet. However, if we focus on variables a and b in Figure 2.2 only, a beautiful
and symmetric parametrization of two terms Egyptian fraction expansion can be
obtained.

Proposition 2.2. In Figure 2.2,
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(i) 1
ab

= 1
b(a+ b) + 1

a(a+ b)
(ii) ab, (a+ b)a, (a+ b)b ∈ N iff a2, b2, ab ∈ N

Proof. (i) Recall
a

a+ b
= n

x
,

b

a+ b
= n

y

Then n : x : y = ab : b(a+ b) : a(a+ b). Combining with Proposition 2.1,
that 1

n
= 1
x

+ 1
y
, we have

1
ab

= 1
a(a+ b) + 1

b(a+ b)
The parametrization when n = ab, x = a(a+ b), y = b(a+ b) is symmetric
because the values of a and b can interchange with each other.

(ii) The proof is obvious by (a+ b)a− ab = a2, (a+ b)b− ab = b2.
�

Remark 1. Proposition 2.2(i) revealed the Egyptian parametrization on (4).
However, we need algebraic skills, i.e. Proposition 2.2(ii) to identify the natures of
a, b to solve (4).

Example 2.1. The following demonstrates how to find all solutions to the Dio-
phantine equation

1
12 = 1

x
+ 1
y

Pick n = ab = 12. By Proposition 2.2(ii),
x = a(a+ b) and y = b(a+ b) with a2, b2 ∈ N

Notice that x, y are allowed to exchange their values. Without loss of generality,
assume a ≤ b.

a2, b2 ∈ N⇐⇒

{
a = 1,

√
2,
√

3, 2,
√

6, 3
b = 12, 6

√
2, 4
√

3, 6, 2
√

6, 4
Then the following are all solutions.

x y a b

13 156 1 12
14 84

√
2 6

√
2

15 60
√

3 4
√

3
16 48 2 6
18 36

√
6 2

√
6

21 28 3 4



104 TAM HEI TUNG

Notice that if we pick a, b ∈ N with gcd(a, b) > 1, gcd(ab, a(a+ b), b(a+ b)) > 1
and cause the solution to be degenerated. For example, if a = 2 and b = 6,

1
12 = 1

16 + 1
48 ⇐⇒

1
3 = 1

4 + 1
12

meaning that the solution (16, 48) solving (4) when n = 12 is an enlargement of
(4, 12) solving (4) when n = 3. To a certain extent, we may regard (16, 48) as a
"meaningless" solution.

Now we start the study on three-term Egyptian expansion.

Proposition 2.3. Figure 3 depicts 3 excircles of 4ABC with radii r1, r2, r3 and
corresponding centres K,M,N respectively. Let n be the radius of the inscribed
circle of 4ABC. Then

1
n

= 1
r1

+ 1
r2

+ 1
r3
.

Figure 3. Geometric model of 3 fractions

Proof. Consider the quadrilateral of MABC.
Area of 4ABC = Area of quadrilateral MABC −Area of 4MAC

By definition of tangent,
Area of quadrilateral MABC = Area of 4MAB + Area of 4MBC

= ABr2

2 + BCr2

2
Also, we have

Area of 4ABC = ABn

2 + BCn

2 + ACn

2
Therefore,

(AB +BC +AC)n
2 = (AB +BC −AC)r1

2



ON THE PARAMETRIZATION OF EGYPTIAN FRACTIONS 105

r2 = (AB +BC +AC)n
AB +BC −AC

By a similar argument, we will obtain

r1 = (AB +BC +AC)n
AB +AC −BC

and r3 = (AB +BC +AC)n
BC +AC −AB

And we have
1
r1

+ 1
r2

+ 1
r3

= AB +AC −BC
(AB +BC +AC)n + AB +BC −AC

(AB +BC +AC)n + BC +AC −AB
(AB +BC +AC)n = 1

n

�

In the context of a three-term Egyptian expansion, achieving a symmetric
parametrization akin to Proposition 2.2 is not straightforward due to the numerous
possible length and area-related quantities present in Figure 3. To allow "geometry
to reveal the truth," we propose to further adapt the circle-excircles model on the
coordinate plane using linear transformations, including translation and rotation.
This adjustment aims to minimize the number of free variables derived from the
coordinates of points, enabling us to redefine length-related quantities in the original
model using these coordinates. The following strategy is potentially the most
effective for this placement.

Refer to Figure 4 for visualization. We fix the center of the inscribed circle at
the origin and align AB parallel to the x-axis. With points A and B given, the
intersection point C is determined by the extended tangents. In this placement,
while the x-coordinates of A and B are free variables, the y-coordinates of A and
B are identical and equal to −n. Hence, we only need two free-moving variables,
which are the x-coordinates of A and B.

Proposition 2.4. Figure 4 is formed by Figure 3 with the center of the inscribed
circle having radius n at the origin. A(x1,−n) and B(x2,−n) are on the line
y = −n. , where x1 < −n, x2 > n. Then

(5) r3 = −x1x2

n

Proof. In Figure 4, the slope of LAO is − n

x1
and the slope of LBO is − n

x2
.

By properties of incentre and excircles of triangles, FN bisects ∠CAF , and OA
bisects ∠CAB. Also ∠CAF + ∠CAB = 180◦.

Therefore, NA ⊥ OA and similarly, NB ⊥ OB.
Consequently, the slope of LAN and LBN are x1

n
and x2

n
respectively.

Therefore, equations of LAN and LBN are as follows:
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Figure 4. Geometric model of 3 fractions on coordinate plane

LAN : y + n

x− x1
= x1

n
LBN : y + n

x− x2
= x2

n

y = x1(x− x1)
n

− n y = x2(x− x2)
n

− n

N is the intersecting point of LAN and LBN .
x1(x− x1)

n
− n = x2(x− x2)

n
− n

x = x1 + x2

Substituting x = x1 + x2 into LAN , we have

y = x1[(x1 + x2)− x1]
n

− n

y = x1x2

n
− n

Therefore, the coordinates of N can be determined as
(
x1 + x2,

x1x2

n
− n

)
.

Recall that N is the center of the excircle below y = −n. The radius of the
incircle is OL = n.

The radius of this excircle is exactly −
(x1x2

n
− n

)
− n = −x1x2

n
. �

Now the readers should notice that we did not express r1 and r2 in terms of x1
and x2. The reason is that although we can further express r1 and r2, the formula
has lost its beauty from symmetry. Indeed the formulas for r1 and r2 can also be
beautiful after further revealing length relations in 4ABC.

Proposition 2.5. In Figure 5, D,H,L are the points on the inscribed circle that
touch 4ABC and n is the radius of the inscribed circle. Denote CH = CD = a ,
LB = BH = b, LA = AD = c. Then
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(i) n2 = abc

a+ b+ c
,

(ii) r1 = ab

n
, r2 = ac

n
, r3 = bc

n
.

Figure 5. Geometry model in Proposition 2.2 with a, b, c

Proof. (i)
Area of 4ABC = Area of 4BOC + Area of 4AOC + Area of 4AOB

= 1
2n(a+ b) + 1

2n(a+ c) + 1
2n(b+ c)

= n(a+ b+ c)
Also by Heron’s formula, we have

Area of4ABC

=
√
s(s−BC)(s−AC)(s−AB)

where s = AB +BC +AC

2 = a+ b+ c

=
√
s(s− (a+ b))(s− (a+ c))(s− (b+ c))

=
√

(a+ b+ c)c× b× a

Therefore, n(a+ b+ c) =
√

(a+ b+ c)abc

By squaring both sides of the above equation, we obtain n2 = abc

a+ b+ c
.

(ii) From Proposition 2.3, we know that the radius of the excircle below y-axis,
denoted as r3, is given by −x1x2

n
.

By substituting −x1 = c, x2 = b, we can find that the radius of r3 is bc
n
.

Now rotate 4ABC about the origin such that BC lies on the horizontal
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line y = −n. As a result, the center and the radius of the excircle below
the horizontal axis are replaced by the original K and r1 respectively.

Since HC = a,BH = b, the radius for r1 can be expressed as ab
n
.

By using a similar argument, we can deduce that the radius of r2 is ac
n
.
�

Therefore, combining the Proposition 2.5(i) and 2.5(ii), we have our final formula:

n2 = abc

a+ b+ c
, x = ab

n
, y = ac

n
and z = bc

n
.

Combining with Proposition 2.3,

(6) 1
abc

n(a+ b+ c)

= 1
ab

n

+ 1
ac

n

+ 1
bc

n

with n2 = abc

a+ b+ c
is a symmetric parametrization of three terms Egyptian

fractions expansion.
Drawing parallels to Proposition 2.2(ii), we aim to adopt an algebraic approach to

ascertain the characteristics of variables a, b, c in the aforementioned parametriza-
tion. Intriguingly, while a, b, c might not necessarily be integers, they are required
to appear in surd form with common irrational parts. Moreover, we can establish a
bijection between any integer triple (x, y, z) that satisfies the Egyptian expansion
equation m

n
= 1
x

+ 1
y

+ 1
z
and integer triples that are closely associated with the

above parametrization. These methodologies are elaborated in the following sections.
For ease of reference, we introduce the following set of notations.

Definition 2.1. Given m,n ∈ N.

(i) SolE3(m) = { (x, y, z) ∈ N3 | m
n

= 1
x

+ 1
y

+ 1
z
}

(ii) SolI3(m) = { (a∗, b∗, c∗) ∈ R+3 | n2 = ma∗b∗c∗

a∗ + b∗ + c∗
, n|a∗b∗, n|a∗c∗,

n|b∗c∗ }

(iii) SolP3(m) = { (a, b, c) ∈ N3 | n2 = mσabc

a+ b+ c
, n|abσ, n|acσ, n|bcσ ∃σ ∈ N }

We are going to establish the bijective relations between these sets in the following.

Proposition 2.6. Let E−1 : SolI3(m) −→ SolE3(m) be a mapping such that

E−1(a∗, b∗, c∗) =
(
a∗b∗

n
,
a∗c∗

n
,
b∗c∗

n

)
for a fixed n ∈ N. Then E−1 is bijective.

Proof. We first need to prove that E−1 is well-defined. Take (a∗, b∗, c∗) ∈ SolI3(m).
The check is directed by setting x = a∗b∗

n
, y = a∗c∗

n
, z = b∗c∗

n
.

1
x

+ 1
y

+ 1
z

= n(a∗ + b∗ + c∗)
a∗b∗c∗

= n
(m
n2

)
= m

n
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by the definition of (a∗, b∗, c∗) ∈ SolI3(m).

∴ (x, y, z) =
(
a∗b∗

n
,
a∗c∗

n
,
b∗c∗

n

)
∈ SolE3(m)

(1) To prove the surjectivity of E, observe

E−1
(√

nxy

z
,

√
nxz

y
,

√
nyz

x

)
= (x, y, z) ∀ x, y, z ∈ R+3

Now we need to check that ∀(x, y, z) ∈ SolE3(m),
(√

nxy

z
,

√
nxz

y
,

√
nyz

x

)
∈

SolI3(m).
The first condition of SolE3(m) requires a direct expansion on

ma∗b∗c∗

a∗ + b∗ + c∗
=

m

√
nxy

z

√
nxz

y

√
nyz

x√
nxy

z
+
√
nxz

y
+
√
nyz

x

=
m

√
nxyz

z2

√
nxyz

y2

√
nxyz

x2√
nxyz

z2 +
√
nxyz

y2 +
√
nxyz

x2

= mn
1
x

+ 1
y

+ 1
z

= n2 by using m

n
= 1
x

+ 1
y

+ 1
z

The divisibility conditions in SolE3(m) are valid by observing that any product

of two terms from
√
nxy

z
,

√
nxz

y
,

√
nyz

x
are integers (by cancellation) and are

multiples of n.
Therefore, for all (x, y, z) ∈ SolE3(m). By substitution. there exists a∗, b∗, c∗

such that

(E−1) E−1(a∗, b∗, c∗) =
(
a∗b∗

n
,
a∗c∗

n
,
b∗c∗

n

)
= (x, y, z)

Hence, E−1 is surjective.
(2) To prove injectivity of E−1, suppose

a∗1b
∗
1

n
= a∗2b

∗
2

n
a∗1c
∗
1

n
= a∗2c

∗
2

n
b∗1c
∗
1

n
= b∗2c

∗
2

n
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for some (a∗1, b∗1, c∗1), (a∗2, b∗2, c∗2) ∈ SolI3(m). By rearranging terms, we have a
∗
1
a∗2

=

b∗2
b∗1

= c∗1
c∗2

= a∗2
a∗1

, implying that a∗21 = a∗22 . Therefore, a∗1 = a∗2 by a∗1, a∗2 ∈ R+. Then,

obviously b∗1 = b∗2 and c∗1 = c∗2. Hence E−1 is injective.
(1) and (2) implies that E−1 is bijective. �

Remark 2. Hence E : SolE3(m) −→ SolI3(m) is also bijective and

(E) E(x, y, z) =
(√

nxy

z
,

√
nxz

y
,

√
nyz

x

)
Lemma 2.1. If m

n
= 1
x

+ 1
y

+ 1
z
for some x, y, z ∈ N, then nxy

z
,
nxz

y
,
nyz

x
∈ N.

Proof. Consider mxyz = n(xy + xz + yz), by rearranging terms, we have
nxy

z
= mxy − nx− ny ∈ N

Similarly, nxz
y
,
nyz

x
∈ N. �

Proposition 2.7. It is given that (a∗, b∗, c∗) = E(x, y, z) for some (x, y, z) ∈ N3

and m

n
= 1
x

+ 1
y

+ 1
z
. Then a∗ = a

√
σ, b∗ = b

√
σ, c∗ = c

√
σ for some a, b, c, σ ∈ N

and σ is square-free.

Proof. After mapping (E) on (x, y, z), a∗ =
√
nxy

z
, b∗ =

√
nxz

y
and c∗ =

√
nyz

x
.

By Lemma 2.1, nxy
z
,
nxz

y
,
nyz

x
∈ N and let

√
nxy

z
= a
√
σ1,

√
nxz

y
= b
√
σ2,√

nyz

x
= c
√
σ3 such that σ1, σ2, σ3 are square-free. We want to show σ1 = σ2 = σ3.

Consider √
nxy

z√
nxz

y

=
a
√
σ1

b
√
σ2

√
σ1√
σ2

= by

az

Since y, z, a, b ∈ N, σ1, σ2 are square-free,
√
σ1√
σ2

= by

az
∈ Q iff

√
σ1√
σ2

= 1 iff σ1 = σ2

∴ σ1 = σ2

Similarly, we have σ2 = σ3, σ1 = σ3, therefore σ1 = σ2 = σ3. �
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Theorem 2.1 (Three-term Egyptian parametrization formula). Fixed n ∈ N.
Denote√
nxy

z
= a
√
σ,

√
nxz

y
= b
√
σ,

√
nyz

x
= c
√
σ where a, b, c, σ ∈ N, σ is square-free.

Define another bijective mapping T : SolI3(m) −→ SolP3(m) such that
T (a
√
σ, b
√
σ, c
√
σ) = (a, b, c)

Then T ◦ E : SolE3(m) −→ SolP3(m) is also bijective, and is given by

(EGY +
3 ) T ◦ E(x, y, z) =

(√
nxy

σz
,

√
nxz

σy
,

√
nyz

σx

)
= (a, b, c)

The inverse bijective mapping E−1 ◦ T−1 : SolP3(m) −→ SolI3(m) is given by

(EGY −3 ) E−1 ◦ T−1(a, b, c) =
(
abσ

n
,
acσ

n
,
bcσ

n

)
= (x, y, z)

Proof. The map T is well-defined because a, b, c, σ ∈ N are well-defined by Proposi-
tion 2.7 and injective by that σ is square-free. T is also bijective by observing

n2 = m(a
√
σ)(b
√
σ)(c
√
σ)

(a
√
σ) + (b

√
σ) + (c

√
σ)

= mσabc

a+ b+ c

(a
√
σ, b
√
σ, c
√
σ) and (a, b, c) satisfy divisibility conditions of SolI3(m) and SolP3(m)

respectively given that (a
√
σ, b
√
σ, c
√
σ) ∈ SolI3(m). Hence T is bijective.

Also, E is bijective by Proposition 2.6.
Combining the above, T ◦E is bijective, an hence the inverse mapping E−1 ◦T−1.

Interested readers may work on the explicit form of T−1. �

Theorem 2.1 tells us that solving m

n
= 1
x

+ 1
y

+ 1
z
is equivalent to solving the

Diophantine system for unknowns (a, b, c) in

(7)


n2 = mσabc

a+ b+ c

x = σab

n
, y = σac

n
, z = σbc

n

for some σ ∈ N

x, y, z are arbitrary until a, b, c are decided. Then (x, y, z) are exactly the triples
solving the m-E3 equation on n. Efforts will be made to solve such a system in
Section 3.

Example 2.2. Correspondence between (a, b, c) and (x, y, z)

We will use an example to show the correspondence between (a, b, c) and (x, y, z).
We will fix m = 1, n = 7, and find solutions of 1

7 = 1
x

+ 1
y

+ 1
z
by computer program.

One set of solutions that we obtained is x = 8, y = 57, z = 3192. Using the inverse
bijective mapping of E−1 ◦ T−1 as mentioned in Theorem 2.1,

a =
√
nxy

σz
, b =

√
nxz

σy
, c =

√
nyz

σx

By substituting x, y, z into the formulas, we will obtain a = 1, b = 56, c = 399. σ is



112 TAM HEI TUNG

the unique square-free integer that ensures a, b, c to be integers. In this case, σ = 1.
Below is a list of (a, b, c, σ) after a part of the solutions is transformed using the
same mapping.

σ x y z a b c

1 8 57 3192 1 56 399
2 8 58 1624 1 28 203
3 9 33 693 1 21 77
5 10 25 350 1 14 35
6 12 18 252 1 14 21

Curious readers may see that the variable a maintains 1 and c is always a multiple
of 7. These observations eventually contributed to solving (7) in Section 3.

2.3. General Egyptian parametrization on m

n
= 1
x1

+ ... + 1
xl
. Continuing

from the last section, we aspire to leverage the insights gained from the successful
two and three fractions Egyptian expansions to establish a robust, symmetric
parametrization for m

n
= 1
x1

+ ...+ 1
xl

. However, upon investigating a l-dimensional
model for a general Egyptian equation, we encountered two phenomena:

(1) Such a geometric model does exist, and the relationships between the
inscribed sphere of a l-dimensional simplex and its (l + 1) exspheres are
detailed in [10].

(2) Contrarily, we cannot derive a parametrization from [10].
The reason why a higher-dimensional model is unamenable to our parametrization

goal is far from trivial, leading to a standstill in progress for several months.
Eventually, we attempted to hypothesize a parametrization formula for l = 4 and
we found that by setting

a2 = nxyz

w
, b2 = nxyw

z
, c2 = nxzw

y
, d2 = nyzw

x

From a, b, c, d formulae, we change the subjects to x, y, z and w to obtain

x2 = abc

nd
, y2 = abd

nc
, z2 = acd

nb
, w2 = bcd

na
We substitute x, y, z, w into the Egyptian fraction equation in 4 terms as follows:

1
n

= 1
x

+ 1
y

+ 1
z

+ 1
w

n3 = abcd

(a+ b+ c+ d)2 · · · · · · (∗)

Such parametrization exhibits symmetric properties among x, y, z, w and we believe
(*) should be the parametrization that we are looking for, despite that (*) is found
in algebraic testing and observations. Now we look at the geometric model as shown
in the figure below.

The properties in the figure can be linked with a, b, c, and d. These properties
may include various aspects like side lengths, areas, or coordinates. However, upon
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Figure 6. Geometric model of 1
n = 1

x1
+ 1

x2
+ 1

x3
+ 1

x4
, n is the

radius of the inscribed sphere and r are radii of exshperes

examining (*), we note that the dimension of n is 3, while the dimension on the
right-hand side is 4 − 2 = 2. Due to this mismatch in dimensions, we posit that
integrating a, b, c, and d into the geometric model could be exceptionally complex.
Curious readers can utilize the radii information from [10] to explore geometric
paths towards unveiling Egyptian parametrization.

Subsequently, after a series of algebraic attempts, we will infer the general form
of m

n
= 1
x1

+ 1
x2

+ ... + 1
xl

and formally substantiate that our conjecture on (*)
indeed presents a correct parametrization.

Definition 2.2. Given m,n ∈ N

(i) SolEl(m) =
{

(x1, x2, ..., xl) ∈ Nl | m
n

= 1
x1

+ 1
x2

+ ...+ 1
xl

}
(ii) SolIl(m)

=

(α∗1, α∗2, ..., α∗l ) ∈ R+l | nl−1 =
ml−2

l∏
i=1

α∗i(
l∑
i=1

α∗i

)l−2 ,

l−2
√√√√√ l∏

i=1
α∗i

nα∗j
l−2 ∈ N, j = 1, 2, ..., l


(iii) SolPl(m)

=

(α1, α2, ..., αl) ∈ Nl | nl−1 =
ml−2σ

l∏
i=1

αi(
l∑
i=1

αi

)l−2 ,

l−2
√√√√√√σ

l∏
i=1

αi

nαl−2
j

∈ N, j = 1, 2, ..., l

,

for some σ ∈ N

We will establish the bijective relations between these sets in the following.

Proposition 2.8. Let E−1 : SolIl(m) → SolEl(m) be a mapping such that

E−1(α∗1, α∗2, ..., α∗l ) =


l−2√√√√√ l∏

i=1
α∗i

nα∗l
l−2 ,

l−2√√√√√ l∏
i=1

α∗i

nα∗l−1
l−2 , ...,

l−2√√√√√ l∏
i=1

α∗i

nα∗1
l−2

 for a fixed

n ∈ N. Then E−1 is bijective.
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Proof. We first need to prove that E−1 is well-defined. Take (α∗1, α∗2, ..., α∗l ) ∈

SolIl(m). The check is direct by setting xk =

l−2√√√√√ l∏
i=1

α∗i

nα∗j
l−2 , where j = l − k + 1.

(8)

l∑
k=1

1
xk

=
l−2
√√√√√nα∗l

l−2

l∏
i=1

α∗i

+
l−2
√√√√√nα∗l−1

l−2

l∏
i=1

α∗i

+ ...+
l−2
√√√√√nα∗1

l−2

l∏
i=1

α∗i

= α∗l

l−2
√√√√√ n

l∏
i=1

α∗i

+ α∗l−1

l−2
√√√√√ n

l∏
i=1

α∗i

+ ...+ α∗1

l−2
√√√√√ n

l∏
i=1

α∗i

=
l∑
i=1

α∗i

l−2
√√√√√ n

l∏
i=1

α∗i

= l−2√
n×

l∑
i=1

α∗i

l−2
√

l∏
i=1

α∗i

= l−2√
n×

l−2√
ml−2

nl−1 = m
l−2√

n

nl−1 = m
l−2√

nl−2
= m

n

by the definition of (α∗1, α∗2, ..., α∗l ) ∈ SolIl(m).

∴ (x1, x2, ..., xk) =


l−2√√√√√ l∏

i=1
α∗i

nα∗l
l−2 ,

l−2√√√√√ l∏
i=1

α∗i

nα∗l−1
l−2 , ...,

l−2√√√√√ l∏
i=1

α∗i

nα∗1
l−2

 ∈ SolEl(m)

(1) To prove the surjectivity of E, observe

E−1


√√√√√n

l∏
i=1

xi

x2
l

,

√√√√√n
l∏
i=1

xi

x2
l−1

, ...,

√√√√√n
l∏
i=1

xi

x2
1

 = (x1, x2, ..., xl) ∀ x1, x2, ..., xl ∈ R+l

Now we need to check that ∀ (x1, x2, ..., xl) ∈ SolEl(m),


√√√√√n

l∏
i=1

xi

x2
l

,

√√√√√n
l∏
i=1

xi

x2
l−1

, ...,

√√√√√n
l∏
i=1

xi

x2
1

 ∈ SolIl(m).
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The first condition of SolEl(m) requires a direct expansion on

ml−2
l∏
i=1

α∗i(
l∑
i=1

α∗i

)l−2 =
ml−2

l∏
j=1

√√√√n

l∏
i=1

xi

x2
j l∑

j=1

√√√√n

l∏
i=1

xi

x2
j

l−2 =

ml−2

√√√√√√√√
(
n

l∏
i=1

xi

)l
(

l∏
i=1

xi

)2

(√
n

l∏
i=1

xi

)l−2(
l∑
i=1

1
xi

)l−2

=
ml−2

√
nl
(

l∏
i=1

xi

)l−2

(√
n

l∏
i=1

xi

)l−2(
l∑
i=1

1
xi

)l−2

= ml−2
√
n2(

l∑
i=1

1
xi

)l−2 = ml−2n(
l∑
i=1

1
xi

)l−2 = nl−1 by using m

n
=

l∑
i=1

1
xi

The remaining conditions in SolEl(m) are valid by letting α∗l−j+1 =

√√√√n

l∏
i=1

xi

x2
j

,
for j = 1, 2, ..., l. Then,

l−2
√√√√√√

l∏
i=1

α∗i

nα∗l−j+1
l−2 =

l−2√√√√√√√√ l∏
j=1

√√√√√n
l∏
i=1

xi

x2
l−j+1

n(α∗l−j+1)l−2 =

l=2
√√√√√√√√√√√√√√

l∏
j=1

√√√√√n
l∏
i=1

xi

x2
l−j+1

n

√√√√√√
n l∏

i=1
xi

x2
j


l−2

=

l−2

√√√√√√√√√√√√√√√√√√

√√√√√√√√√
nl
(

l∏
i=1

xi

)l
(

l∏
j=1

xj

)2

√√√√√√n2 · nl−2
(

l∏
i=1

xi

)l−2

(x2
j )l−2

=

l−2

√√√√√√√√√√√

√√√√√√√√√√
nl
(

l∏
i=1

xi

)l−2

nl

(
l∏
i=1

xi

)l−2

(x2
j
)l−2

= xj
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for =x1, x2, ..., xl ∈ R+l

Therefore, for all (x1, x2, ..., xl) ∈ SolEl(m). By substitution, there exists
α∗1, α

∗
2, ..., α

∗
l such that

(E−1)

E−1(α∗1, α∗2, ..., α∗l ) =


l−2√√√√√ l∏

i=1
α∗i

nα∗l
l−2 ,

l−2√√√√√ l∏
i=1

α∗i

nα∗l−1
l−2 , ...,

l−2√√√√√ l∏
i=1

α∗i

nα∗1
l−2

 = (x1, x2, ..., xl)

Hence, E−1 is surjective.
(2) To prove injectivity of E−1, suppose

l−2√√√√√ l∏
i=1

α∗i

nα∗l
l−2 =

l−2√√√√√ l∏
i=1

α∗i
′

nα∗′l
l−2 · · · · · · (I1)

l−2√√√√√ l∏
i=1

α∗i

nα∗l−1
l−2 =

l−2√√√√√ l∏
i=1

α∗i
′

nα∗′l−1
l−2 · · · · · · (I2)

...
...

l−2√√√√√ l∏
i=1

α∗i

nα∗1
l−2 =

l−2√√√√√ l∏
i=1

α∗i
′

nα∗′1
l−2 · · · · · · (Il)

for some (α∗1, α∗2, ..., α∗l ), (α∗1′, α∗2′, ..., α∗l ′) ∈ SolIl(m). By multiplying (I1), (I2), ...,
and (Il) that the denominators in every equation are the same, we have

l∏
i=1

α∗i

nα∗l
l−2 ·

l∏
i=1

α∗i

nα∗l−1
l−2 · · ·

l∏
i=1

α∗i

nα∗1
l−2 =

l∏
i=1

α∗i
′

nα∗′l
l−2 ·

l∏
i=1

α∗i
′

nα∗′l−1
l−2 · · ·

l∏
i=1

α∗i
′

nα∗′1
l−2(

l∏
i=1

α∗i

)l
(

l∏
i=1

α∗i

)l−2 =

(
l∏
i=1

α∗i
′
)l

(
l∏
i=1

α∗i
′
)l−2

l∏
i=1

α∗i =
l∏
i=1

α∗i
′

Substitute the above product in (I1) and further simplifying, we have α∗l = α∗l
′

by α∗l , α
∗
l
′ ∈ R+. Iterate from (I1),(I2), ..., to (Il), obviously α∗i = α∗i

′ where
i = 1, 2, 3, ..., l. Hence E−1 is injective.
(1) and (2) implies E−1 is bijective. �
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Remark 3. Hence E : SolEl(m) −→ SolIl(m) is also bijective and

(E) E(x1, x2, ..., xl) =


√√√√√n

l∏
i=1

xi

x2
l

,

√√√√√n
l∏
i=1

xi

x2
l−1

, ...,

√√√√√n
l∏
i=1

xi

x2
1



Lemma 2.2. If m
n

=
l∑
i=1

1
xi

for some xi ∈ N, then
n

l∏
i=1

xi

x2
j

∈ N, for some

j = 1, 2, ..., l.

Proof. Consider m
l∏
i=1

xi = n
l∑

j=1

l∏
i=1

xi

xj
, by rearrange the terms, we have

n
l∏
i=1

xi

xj
= m

l∏
i=1

xi − n
l∑

k=1
k 6=j

l∏
i=1

xi

xk

Dividing both side by xj ,
n

l∏
i=1

xi

x2
j

= m

l∏
i=1
i 6=j

xi − n
l∑

k=1
k 6=j

l∏
i=1
i6=j

xi

xk
∈ N

�

Proposition 2.9. It is given that (α∗1, α∗2, ..., α∗l ) = E(x1, x2, ..., xl) for some

(x1, x2, ..., xl) ∈ Nl and m

n
=

l∑
i=1

1
xi
. Then, α∗i = αi

√
σ for some αi, i ∈ N and σ is

square-free.

Proof. After mapping (E) on (x1, x2, ..., xl), α∗i =

√√√√√n
l∏
i=1

xi

x2
j

, for j = 1, 2, ..., l. By

Lemma 2.2,
n

l∏
i=1

xi

x2
j

∈ N and let

√√√√√n
l∏
i=1

xi

x2
j

= αj
√
σj such that σj are square-free
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for j = 1, 2, ..., l. We want to show σi = σj . Consider√√√√√n
l∏
i=1

xi

x2
l√√√√√n
l∏
i=1

xi

x2
l−1

=
α1
√
σ1

α2
√
σ2

∴
√
σ1√
σ2

= α2xl−1

α1xl

Since α1, α2, xl−1, xl ∈ N, σ1, σ2 are square-free
√
σ1√
σ2

= α2xl−1

α1xl
∈ Q iff

√
σ1√
σ2

= 1 iff σ1 = σ2

∴ σ1 = σ2

Similarly, we have σi = σj . �

Theorem 2.2 (General-term Egyptian parametrization formula). Fixed n ∈ N.
Denote√√√√√n

l∏
i=1

xi

x2
j

= αl−j+1
√
σ where αi, σ ∈ N, σ is square-free, j = 1, 2, ..., l.

Define another bijective mapping T : SolIlm→ SolPl(m) such that

T (α1
√
σ, α2

√
σ, ..., αl

√
σ) = (α1, α2, ..., αl).

Then T ◦ E : SolEl(m)→ SolPl(m) is also bijective and is given by
(EGY +

l )

T ◦ E(x1, x2, ..., xl) =


√√√√√n

l∏
i=1

xi

σx2
l

,

√√√√√n
l∏
i=1

xi

σx2
l−1

, ...,

√√√√√n
l∏
i=1

xi

σx2
1

 = (α1, α2, ..., αl)

The inverse of bijective mapping E−1 ◦ T−1 : SolPl(m)→ SolIl(m) is given by

E−1 ◦ T−1(α1, α2, ..., αl)(EGY −l )

=


l−2√√√√√σ

l∏
i=1

αi

nαl−2
l

,

l−2√√√√√σ
l∏
i=1

αi

nαl−2
l−1

, ...,

l−2√√√√√σ
l∏
i=1

αi

nαl−2
1

 = (x1, x2, ..., xl)

Proof. The map T is well-defined because αi ∈ N are well-defined by Proposition
2.9 and injective by that σ is square-free. T is also bijective by observing
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nl−1 =
ml−2

l∏
i=1

αi
√
σ(

l∑
i=1

αi
√
σ

)l−2 =
ml−2σ

l∏
i=1

αi(
l∑
i=1

αi

)l−2

αi
√
σ and αi where i = 1, 2, 3, ..., l satisfy divisibility conditions of SolIl(m) and

SolPl(m) respectively. Given that (α1
√
σ, α2

√
σ, ..., αl

√
σ) ∈ SolIl(m). Hence, T

is bijective.
Also, E is bijective by Proposition 2.8.
Combining the above, T ◦ E is bijective, and hence the inverse mapping E−1 ◦
T−1. �

We finally verify the formula discovered at the beginning of this subsection is
correct. Applying l = 4 on Theorem 2.2,

(9)


n3 = m2σabcd

(a+ b+ c+ d)2

x =
√
σabc

nd
, y =

√
σabd

nc
, z =

√
σacd

nb
, w =

√
σbcd

na

for some σ ∈ N while variables α1, α2, α3, α4 are replaced by a, b, c, d. When
a, b, c, d become subjects,

(10) a =
√
nxyz

σw
, b =

√
nxyw

σz
, c =

√
nxzw

σy
, d =

√
nyzw

σx

3. Egyptian parametrization and the shortest length of Egyptian
expansion

This section unveils new findings concerning the shortest length of Egyptian
fraction expansions. To elucidate the intricacies involved in identifying and validating
the shortest expansion lengths for specific fractions, we underscore two pivotal points:

(1) The restriction against repeated denominator selections in the expansion
m

n
= 1
x1

+ 1
x2

+ ... + 1
xl
, as stated in [5] P.154, increases complexity to

the task of pinpointing fractions with the minimal l length of Egyptian
expansion. If denominators are allowed to repeat, fractions with arbitrary l

as its shortest length of Egyptian expansion can be answered by l =
l∑
i=1

1.

(2) While the upper bound for the shortest expansion length can be easily
determined, say, using a greedy algorithm, the lower bound presents
a challenge as it necessitates proving the absence of Egyptian equation
solutions shorter than this lower bound.

In recent years, no substantial results have been uncovered that allow manip-
ulation of the shortest expansion length for a particular category of fractions ([5]
P.155).

However, we have discerned specific fraction classes with verifiable shortest
Egyptian expansion lengths of 3, 4, and 5, employing Egyptian parametrization
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methodologies. Parametrization is crucial as it facilitates exhaustion and proofs
of nonexistence for solutions to the Egyptian equation m

n
= 1
x1

+ 1
x2

+ ... + 1
xl

under certain conditions.
The proofs presented in this section are primarily constructive. The forthcom-

ing theorem, though predicated on a straightforward trick, is pivotal for ensuing
arguments. The definition of SolEl(m) is provided in Definition 2.2.

Theorem 3.1. Given n ∈ N and gcd(n,m) = 1. If
(i) SolEl(m) 6= ∅ on n and
(ii) SolEl(m+ 1) = ∅ on n for some l ≥ 2,

then the shortest length of Egyptian expansion of m+ 1
n

is l + 1.

Proof. From (i), There exist x1, x2, ..., xl ∈ N such that m
n

= 1
x1

+ 1
x2

+ ...+ 1
xl

⇐⇒ m+ 1
n

= 1
x1

+ 1
x2

+ ...+ 1
xl

+ 1
n

implying that SolEl+1(m+ 1) 6= ∅.

Therefore, the shortest length of Egyptian expansion of m+ 1
n
≤ l + 1.

From (ii), as m+ 1
n

can’t be expressed in 1
x1

+ 1
x2

+...+ 1
xl

for all x1, x2, ..., xl ∈ N.

Hence, the shortest length of expansion for m+ 1
n

> l.

Therefore, the shortest length of expansion for m+ 1
n

is l + 1. �

In general, the size of SolEl(m) on prime n is usually smaller and easier to
exhaust compared to composite n. Therefore, in the following arguments, readers
can expect that the special set of fractions has have prime as their denominator.

We will give the special set of fractions achieving 3, 4, and 5 as their shortest
lengths of Egyptian expansion respectively in the following theorems.

Theorem 3.2. For odd prime n ≥ 5, F + 1
n

has a shortest Egyptian Expansion
length 3 if F |n+ 1.

Proof. Let n+ 1 = FT , F , T ∈ N. From Proposition 2.2, by setting n = ab, a ≤ b
where a2, b2 ∈ N. All solutions to the two-term Egyptian equation 1

n
= 1
x

+ 1
y
are

generated from
{
a = 1,

√
n

b = n,
√
n

which solves the equation in the form of

1
n

= 1
n+ 1 + 1

n(n+ 1) and 1
n

= 1
2n + 1

2n
Notice

1
n

= 1
n+ 1 + 1

n(n+ 1) ⇐⇒
F

n
= 1
T

+ 1
nT

Hence, SolE2(F ) 6= ∅ on n.
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On the other hand, by gcd(F , F + 1) = 1, we have F + 1 - n+ 1 or F + 1 - 2n.
Therefore, F + 1

n
can’t be expressed in the sum of 2 unit fractions 1

x
+ 1
y
for all

x, y ∈ N. Hence, SolE2(F + 1) = ∅ on n.
By Theorem 3.1, F + 1

n
has 3 as the shortest length of Egyptian expansion. �

Corollary 3.1. There are infinitely many fractions having 3 as the shortest
length of Egyptian expansion.
Proof. There are infinitely many primes n, and hence infinitely many F satisfying
Theorem 3.2. �

For the case of having 4 as the shortest length of Egyptian expansion, we need
preparations such that a very narrow choice of the smallest denominator of the
Egyptian expansion at the price of restricting the values of m.

Lemma 3.1. Fixed a prime n ≥ 5. It is given that 5n
6 < m < n and SolE3(m) 6= ∅

on n. Then for any (x, y, z) ∈ SolE3(m) on n, x = 2.

Proof. Notice that m
n
>

5n
6
n

= 5
6 >

1
4 + 1

4 + 1
4 = 3

4 >
1
4 + 1

y
+ 1
z
∀ z ≥ y ≥ 4

Therefore x ≤ 3.
When x = 3, m

n
>

5
6 = 1

3 + 1
4 + 1

4 >
1
3 + 1

y
+ 1
z
∀ y, z ∈ N where z ≥ y ≥ 4,

implying the only possible choice of y is 3.
If y = 3, then m

n
= 2

3 + 1
z

= 2z + 3
3z , where z|3.

When z = 1, m
n

= 5
3 where m = 5n

3 > n. When z = 3, m
n

= 1 where m = n.

The above two cases are contradicting to the bound 5n
6 < m < n. Therefore,

x = 2. �

Now we are ready to reveal such a special of fraction having 4 as the shortest
length of Egyptian expansion.
Theorem 3.3. Given n = 6t+ 1 is a prime where t 6= 1. Then the shortest length
of Egyptian expansion for

5t+ 2
6t+ 1 is 4.

Proof. Let m = 5t+ 1, where m ∈ N. Notice that

1 > m

n
= 5t+ 1

6t+ 1 >
5t
6t = 5

6
By Lemma 3.1, for any (x, y, z) ∈ SolE3(m) with x ≤ y ≤ z, x = 2. Similarly,
(x, y, z) ∈ SolE3(m+ 1) with x ≤ y ≤ z also implies x = 2.

Applying Theorem 2.1, (x, y, z) ∈ SolE3(m) ⇐⇒ ∃ (a, b, c) ∈ N3 such that

(11)


n2 = mσabc

a+ b+ c

x = σab

n
, y = σac

n
z = σbc

n
, for some σ ∈ N
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If x ≤ y ≤ z, then a ≤ b ≤ c in which x = 2 ⇐⇒ abσ = 2n.
From (11), we have n2 = 2nmc

a+ b+ c
and n = 2mc

a+ b+ c
. As gcd(m,n) = 1, then

n|2c, n|c. Denote c′ = c

n
.

Notice that n|σab, σac, σbc regardless of the combinations of a, b, σ. Therefore,
the necessary and sufficient conditions for (11) to be solvable is

n = 2mnc′

a+ b+ nc′
⇐⇒ c′ = a+ b

2m− n = a+ b

2(5t+ 1)− (6t+ 1) = a+ b

4t+ 1
The only possible choices of b are n and 2n respectively. When b = 2n = 12t+ 2,
c′ = 3, implying SolE3(m) 6= ∅.

When m is replaced by m+ 1, the deduction procedure above is the same and
c′ = a+ b

2(m+ 1)− n = a+ b

4t+ 3. When b = n, 1 <
a+ b

4t+ 3 < 2. When b = 2n,

2 < a+ b

4t+ 3 < 3.
Hence c′ /∈ N, contracting to the existence of (x, y, z).
Therefore, SolE3(m+ 1) = ∅ on n.
By Theorem 3.1, m+ 1

n
= 5t+ 2

6t+ 1 has 4 as the shortest length of Egyptian
expansion. �

Readers can write down the explicit form of such expansion as an exercise.

Corollary 3.2. There are infinitely many fractions having 4 as the shortest
length of Egyptian expansion.

Proof. By Dirichlet’s Theorem of primes in arithmetic progression, there are in-
finitely many primes in the form of 6t+ 1, and therefore there are infinitely such
n. �

Readers may be curious about did Egyptian parametrization suggests the nu-
merator of the fraction in Theorem 3.3 to be 5t+ 2. Unfortunately, we chose 5t+ 2
mainly based on the experiment data and the restriction range of m.

The last progress on the shortest length of Egyptian expansion is 5 as the shortest
length. Below is a quick preparation for the values of a part of denominators.

Lemma 3.2. Fix a prime n ≥ 7. It is given that M >
4n
3 and SolE4(M) 6= ∅.

Then for any (x, y, z, w) ∈ SolE4(m) on n with x ≤ y ≤ z ≤ w, x ≤ 2 .

Proof. Notice that M
n
>

4
3 = 1

3 + 1
3 + 1

3 + 1
3 >

1
3 + 1

y
+ 1
z

+ 1
w
∀ w ≥ z ≥ y ≥ 4.

Therefore, x ≤ 2. �

Now we are ready for the last result of this section.

Theorem 3.4. Given n = 6t+1 where t > 1. Then, the shortest length of Egyptian
expansion for

11t+ 3
6t+ 1 is 5.
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Proof. Let m = 5t+1,M = 11t+2, where m, M ∈ N. Notice that M
n

= 11t+ 2
6t+ 1 >

8t
6t = 4

3.
By Lemma 3.2, for any (x, y, z, w) ∈ SolE4(M) with x ≤ y ≤ z ≤ w, x ≤ 2.

Similarly, (x, y, z, w) ∈ SolE4(M + 1) with x ≤ y ≤ z ≤ w also implies x ≤ 2.
Below we will prove the shortest length of Egptyian expansion of M + 1

n
and

tackle M
n

in the last paragraph. Suppose SolE4(M + 1) 6= ∅ on n.

When x = 1, M + 1
n

= 11t+ 3
6t+ 1 = 1 + 5t+ 2

6t+ 1 = 1 + 1
y

+ 1
z

+ 1
w
∀ w ≥ z ≥ y ≥ 2.

As proved in Theorem 3.3, the shortest length of Egyptian expansion for 5t+ 2
6t+ 1

is 4, which contradicts to 5t+ 2
6t+ 1 = 1

y
+ 1
z

+ 1
w

for some y, z, w. Therefore, x = 2.
Now suppose x = 2. On the other hand, observe

M

n
>

4
3 >

1
2 + 1

4 + 1
4 + 1

4 ≥
1
2 + 1

y
+ 1
z

+ 1
w
∀ w ≥ z ≥ y ≥ 4

Therefore, y ≤ 3.
When x = y = 2, M + 1

n
= 1 + 5t+ 2

6t+ 1 = 1
2 + 1

2 + 1
z

+ 1
w

= 1 + 1
z

+ 1
w
. Same

as above, 5t+ 2
6t+ 1 = 1

z
+ 1
w

contradicts to the shortest length of 5t+ 2
6t+ 1 being 4.

Therefore, y 6= 2. As y ≤ 3 and 2 = x ≤ y, y = 3.
By applying Theorem 2.2, (x, y, z, w) ∈ SolE4(M + 1) ⇐⇒ ∃(a, b, c, d) ∈ N4

such that
(12)

n3 = (M + 1)2σabcd

(a+ b+ c+ d)2

x =
√
σabc

nd
, y =

√
σabd

nc
z =

√
σacd

nb
, w =

√
σbcd

na
for some σ ∈ N

If x ≤ y ≤ z ≤ w, then a ≤ b ≤ c ≤ d, and hence x = 2, y = 3 from the above
argument. Multiplying x and y gives abσ = 6n. By substituting abσ

n
= 6 into x,

we have c
d

= 2
3. Let c = 2k, d = 3k. From (12), we have n3 = (M + 1)2σabcd

(a+ b+ c+ d)2 . By

substituting a, b, c, d, σ,
(M + 1)2 · 6n · 6k2 = n3(a+ b+ 5k)2

⇐⇒ 6(M + 1)k = 5kn+ (a+ b)n

⇐⇒ k = (a+ b)n
6(M + 1)− 5n

⇐⇒ k = (a+ b)(6t+ 1)
6(11t+ 3)− 5(6t+ 1)

⇐⇒ k = (a+ b)(6t+ 1)
36t+ 13
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Notice gcd(36t+ 13, 6t+ 1) = gcd(7, 6t+ 1) = 1 by t > 1. Therefore, k ∈ N if and
only if 36t+ 13 divides a+ b. The maximum value of a+ b attains at a = 1, b = 6n.
Implying 1 + 6(6t+ 1) < 36t+ 13. Hence k /∈ N and c, d /∈ N.
∴ SolE4(M + 1) = ∅
Now consider M

n
. Observe that

M

n
= n+m

n
= 1 + 5t+ 1

6t+ 1
By the construction process in Theorem 3.3, we have 6t + 1 ∈ SolE3(5t + 1).
Therefore, M

n
= 1 + 1

y
+ 1
z

+ 1
w

for some y, z, w ∈ n and SolE4(M) 6= ∅ on n.

By Theorem 3.1, M + 1
n

= 11t+ 3
6t+ 1 has 5 as its shortest length of Egyptian

expansion. �

Corollary 3.3. There are infinitely many fractions having 5 as the shortest
length of Egyptian expansion.

Proof. Exactly the same proof as Corollary 3.2. �

Readers may observe that the fractions proposed in Theorem 3.4 differ from
those in Theorem 3.3 by only 1. We cannot indefinitely increase the fraction by
adding 1 and propose fractions with increasingly longer shortest lengths of Egyptian
expansion due to historical constraints. Moreover, a meaningful expansion typically
showcases diverse denominators. While incrementing an existing fraction by 1 may
seem straightforward, the process of exhausting and subsequently eliminating
the potential existence of other solutions to Egyptian fraction equations of a certain
length is not as self-evident as one might initially presume.

We conclude this section by highlighting that Egyptian parametrization serves
as an instrument to verify whether the set of fractions proposed possesses a
consistent shortest length of Egyptian expansion. Readers are urged to investigate
and formulate theories to estimate, with relative accuracy, the shortest length of
Egyptian expansion. In this regard, Egyptian parametrization proves formidable in
providing verifications.

4. Egyptian Parametrization and the Generalized Erdös-Straus
Conjecture

This section is dedicated to harnessing the power of Egyptian parametrization
as delineated in Theorem 2.1, to shed new light on the Generalized Erdös-Straus
Conjecture. This conjecture, notable for its association with Egyptian fractions,
remains one of the most captivating puzzles in the field.

4.1. Terminologies and Foundational Results for Parameterized k-E3 Triple.
In an effort to simplify the study target and given the conjecture’s requirement
to hold universally for all natural numbers n, we will confine our examination to
prime numbers n. It is a logical deduction that if the conjecture associated with
Erdös-Straus holds for all prime numbers n, it would consequently hold for all
natural numbers.
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To ensure swift retrieval and application of equations in our ongoing analysis,
we will reiterate the definitions provided in Section 2.2, which will persistently be
in use throughout the rest of the paper.

Definition 4.1. Given that n ∈ N.
(i) m-Elequation on n refers to the Diophantine equation

m

n
= 1
x1

+ 1
x2

+ ...+ 1
xl
,

where l ≥ 3, gcd(n, x1, x2, ..., xl) = 1 and gcd(m,n) = 1. m refers to the
numerator and l refers to the length of Egyptian expansion. Without loss
of generality, x1 ≤ x2 ≤ ... ≤ xl. m-E3equation on n is studied in this
section.

(ii) Let k = mσ, (a, b, c) ∈ N3 is called an k-parametrized triple on n if a, b, c
satisfies the system of the Diophantine equations and divisibilitiesn2 = kabc

a+ b+ c
n|abk, n|ack , n|bck

If a < b < c, we further call (a, b, c) an ascending parametrized triple
on n.

Depending on whether n divides k, there are two variations of the system.
The standard type of triple refers to the case when gcd(n, k) = 1, and the

system remains unchanged.
The degenerated type of triple refers to the case when gcd(k, n) > 1. Because

n is a prime, n divides k. That means the divisibility conditions automatically hold,

and the system is reduced to the Diophantine equation n = k′abc

a+ b+ c
only with

k′ = k

n
.

We will see in Theorem 4.1 that these two systems indeed possibly produce
different modular identities.

Besides, the identities
1
n

= 1
3n + 1

3n + 1
3n,

2
n

= 1
n

+ 1
2n + 1

2n,
3
n

= 1
n

+ 1
n

+ 1
n

are true for every natural number n and hence we are only interested in the case
when k ≥ 4. Differing from Section 3, in the consideration of Diophantine equations
only, denominators of m-E3 equations can be equal. The first proposition verifies
on when the ascending triple is well-defined using strict inequalities.

Proposition 4.1. Given a prime n and an integer k ≥ 4 where gcd(k, n) = 1.
Then the system

(13)

n2 = kabc

a+ b+ c
n|abk, n|ack , n|bck

(i) does not have solutions when a = b = c or a = b < c.
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(ii) has solution when a < b = c if and only if 2n+ 1 = kb
′2 or n+ 1 = kb

′2for
some b′ ∈ N.

Proof. (i) If a = b = c, then

k = 3
(n
a

)2
⇐⇒ a = 1 or n

gcd(n, k) = 1⇐⇒ a = n⇒ k = 3 < 4, contradicting to k ≥ 4.

If a = b < c, then n2 = ka2c

2a+ c
. From the divisibility condition of the

system,
n|a2k and gcd(k, n) = 1⇒ n|a

Let a = a′n, a′ ∈ N. Then

n2 = ka2c

2a+ c
⇐⇒ 2a′n = c(ka′2 − 1) > a′n(ka′2 − 1)⇒ ka′2 < 3⇒ k < 3 < 4

Therefore, when a = b = c or a = b < c or a < b = c, the necessary condition
system have solutions is k < 4, and hence no solutions when k ≥ 4.

(ii) If a < b = c, then n | bck, gcd(k, n) = 1 imply n | b. Denote b′ = b

n
. Then

(13) becomes

n2 = kab2

a+ 2b ⇐⇒ a+ 2b
′
n = kab

′2 implies a | 2b
′
n⇒ a | 2b

′

⇐⇒ kb
′2 −

(
2b′

a

)
n = 1

=⇒ gcd(b
′
,

2b′

a
) = 1

=⇒ a = b
′
or a = 2b

′

Then 2n + 1 = kb
′2 or n + 1 = kb

′2. In the reverse direction, a direct
checking on setting

b = c = n

√
2n+ 1
k

, a = b

n
and b = c = n

√
n+ 1
k

, a = b

n

satisfy (13).
�

A proposition is essential to reveal the relationship between the m-E3 equation
and ascending parametrized triples.

Proposition 4.2. m-E3 equation on n has a solution if and only if (i) there exists
a pair of ascending parametrized mσ-E3 triple on n for some σ ≥ 1, or (ii) m | n+1
or m | 2n+ 1.
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Proof. By Theorem 2.1, there exists a bijection between SolE3(m) and SolP3(m)
(readers can trace back to Definition 2.1) which solves the system

n2 = mσabc

a+ b+ c

x = mσab

n
, y = mσac

n
, z = mσbc

n

for some square-free σ ∈ N. Also, x ≤ y ≤ z if and only if a ≤ b ≤ c. Therefore,
(a, b, c) is parametrized mσ-E3 triple on n. From Proposition 4.1, (a, b, c) can be
an ascending parametrized mσ-E3 triple on n which is the case(i), or case (ii) where
a < b = c.

In case (ii), Proposition 4.1 tells us that

(14) 2n+ 1 = mσb
′2 or n+ 1 = mσb

′2

Notice that σ, b′2 are arbitrary except that σ is square-free and b′2 is a square. Then
σb
′2 is an arbitrary integer and (14) holds if and only if m | n + 1 or m | 2n + 1.

The reverse direction holds by applying reverse mapping in Theorem 2.1. �

From now on, we can shift our focus to solving m-E3 equation to find valid
ascending parametrized mσ-E3 triples on n by introducing a new free variable σ.
Proposition 4.3, 4.4 build foundations towards our major results in Section 4.2.

Proposition 4.3. It is given that (a, b, c) is an ascending parametrized triple on a
prime n of standard type, i.e. gcd(n, k) = 1 and k ≥ 4. Then the following holds.

(i) ab < 3n2

k
(ii) Exactly two of the variables from (a, b, c) is a multiple of n, and n2 divides

none of a, b, c.
(iii) gcd(a, n) = 1.
(iv) b = b′n, c = c′n for some b′, c′∈ N with gcd(n, b′) = 1 and gcd(n, c′) = 1.

Proof. (i) By definition 4.1, we have
1
n

= 1
abk

n

+ 1
ack

n

+ 1
bck

n

<
3
abk

n

where a < b < c implies ab < 3n2

k
.

(ii) Again from definition 4.1, gcd(k, n) = 1 and the following holds.n2 = kabc

a+ b+ c
n|abk, n|ack , n|bck

By applying Euclid’s Lemma on prime n, n divides at least two variables
from a, b, c.

Suppose n divides both a, b, and c. Then
1
n

= 1
abk

n

+ 1
ack

n

+ 1
bck

n

⇐⇒ k = 1
ab

n2

+ 1
ac

n2

+ 1
bc

n2

≤ 3 < 4
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contradicting to k ≥ 4.
∴ Exactly two of the variables from (a, b, c) are multiples of n, and the

immediate consequence is that gcd(n, a, b, c) = 1.
Also, notice that

n2 = kabc

a+ b+ c
⇐⇒ n2(a+ b+ c) = kabc

implying the maximum powers of n dividing kabc is 2.
Combining with the proved result that exactly two of the variables from

(a, b, c) is a multiple of n, then none of(a, b, c) is a multiple of n2.
(iii) Assume on the contrary that gcd(a, n) > 1.

By that n is a prime, denote a = na
′ for some a′∈ N.

By proposition 4.3 (i), ab < 3n2

k
. Combine with b > a = a′n,

n2a′
2 = a2 < ab <

3n2

k
⇒ a′2 <

3
k
≤ 3

4 < 1

∴ a′ /∈ N and contradiction occurs. Therefore, gcd(a, n) = 1.
(iv) An exact consequence from Proposition 4.3(ii) and 4.3(iii).

�

Proposition 4.4. Given that n is a prime and a positive integer m < n. Denote
b = b′n, c = c′n. Then (a, b, c) is an ascending parametrized triple on a prime n of
standard type if and only if b′, c′∈ N , b′ < c′ and kab′ − n|a+ nb′, or equivalently,
kab′ − n|kb′2 + 1.
Proof. (⇐=) : Suppose kab′ − n|a+ nb′ for some b′∈ N.

Denote nc′ = (a+ nb′)n
kab′ − n

where c′∈ N. Equivalently,

n2 = ka(b′n)(c′n)
a+ nb′ + nc′

Obviously, n|ab′n, n|ac′n, n|(b′n)(c′n).
By definition (a, nb′, nc′) = (a, b, c) is an ascending parametrized triple on n.
(=⇒) : Suppose (a, b, c) is an ascending parametrized triple on a prime n.
By Proposition 4.3(iv), b′, c′∈ N.

Consider n2 = kabc

a+ b+ c
= kn2a′b′c′

a+ b′n+ c′n
. By making the subject of c’,

c′ = (a+ nb′)n
kab′ − n

gcd(kab′ − n, n) = gcd(kab′, n) = 1 because n divides none of a, b′,k.
Again by Euclid’s Lemma, kab′ − n|a+ nb′.
The equivalence is established by considering

a+ nb′ ≡ 0 (mod kab′ − n)
⇐⇒ a+ (kab′)b′ ≡ 0 (mod kab′ − n)
⇐⇒ a(kb′2 + 1) ≡ 0 (mod kab′ − n)

∴ kab′ − n|a+ nb′ ⇐⇒ kab′ − n|kb′2 + 1 . �
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4.2. Congruence generation theorem. We are now prepared to delineate the
precise range of modular identities such that n has a solution to the m-E3 equation,
provided n satisfies one of these modular identities.

Theorem 4.1. (Congruence generation theorem)
m-E3 equation, where m ≥ 4, on a prime n has at least one solution if and only

if n satisfies one of the following:
(i) ∃F, b′, σ ∈ N such that

(15)
{
σmb′| Fn+ 1
F | σmb′2 + 1

if the corresponding mσ-E3triple is of ascending and of standard type.
(ii)

(16) n ≡ −ab′−1 (mod mσab′ − 1)
for some a, σ′, b′ ∈ N if the corresponding mσ-E3 triple is of degenerated
type.

(iii) m | n+ 1 or m | 2n+ 1 (mσ-E3 triple is not ascending).

Proof. By Proposition 4.2, m-E3 equation on n has at least one solution if and only
if there exists at least one pair of ascending parametrized mσ-E3 triple (a, b, c) on
n for some σ ≥ 1. Then we split σ into two cases:

(i) gcd(n,mσ) = 1, i.e. mσ-E3 triple is ascending and of standard type
m-E3 equation on n has at least one solution
⇐⇒ there exists at least one pair of ascending parametrized mσ-E3 triple

(a, b, c) with gcd(n,mσ) = 1
⇐⇒ mσab′ − n|mσb′2 + 1 where b′ = b

n
∈ N by Proposition 4.4

⇐⇒ mσb′2 + 1
mσab′ − n

is a positive integer for some m,σ, a, b′ ∈ N.

(⇐=): Suppose mσb′2 + 1
mσab′ − n

= F ∈ N.
By rearranging terms, Fn+ 1 = σFmab′ − σmb′2.
⇐⇒ σmb′(Fa− b′) = Fn+ 1
=⇒ σmb′|Fn+ 1
A second rearrangement on F gives F (σmab′ − n) = σmb′2 + 1.
=⇒ F |σmb′2 + 1.
Combine two conditions,{

σmb′| Fn+ 1
F | σmb′2 + 1

(=⇒) : Suppose (15) holds for some F, σ,b′∈ N
Let σmb′2 + 1 = dF for some d ∈ N.
In terms of congruence, d ≡ F−1(mod σmb′). (Well-defined for F−1 by

gcd(d, σmb′) = 1)
Consider the first divisibility. σmb′|Fn + 1 ⇐⇒ n ≡ −F−1 ≡ −d

(mod σmb′).
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Therefore, we can let d = aσmb′ − n for some a ∈ N.
⇐⇒ σmb′2 + 1 = dF = F (aσmb′ − n)

⇐⇒ F = mσb′2 + 1
mσab′ − n

and m,σ, a, b′ ∈ N.

Therefore, mσb
′2 + 1

mσab′ − n
is a positive integer for some m,σ, a, b′∈ N if and

only (15) holds for some F, b′, σ ∈ N.
(ii) n|mσ , i.e. mσ-E3 triple is of degenerated type

Then m-E3 equation on n has at least one solution if and only if n =
mσ′abc

a+ b+ c
for some (a, b, c)∈ N3, equivalently,

(17) a+ b+ c = mσ′abc

n

Notice gcd(mσ′, n) = 1 and without loss of generality, assume n|b.
Let b = nb′ , b′ ∈ N. (17)holds

⇐⇒ a+ b′n+ c = mσ′ab′c

⇐⇒ c = a+ nb′

mσ′ab′ − 1
⇐⇒ a+ nb′ ≡ 0 (mod mσ′ab′ − 1)

By gcd(b′,mσ′ab′ − 1) = gcd(b′,−1) = 1 and hence b′−1 (mod mσ′ab′ − 1)
is well-defined. ∴ n ≡ −ab′−1 (mod mσ′ab′ − 1)

(iii) mσ-E3 triple is not ascending
From Proposition 4.2(ii), m | n+ 1 or m | 2n+ 1.

Combining cases (i), (ii), and (iii), the theorem follows. �

Remark 4. (i) For composite n, Theorem 4.1 becomes sufficient conditions
for n to satisfy m-E3 equation. Reversely, if any natural number n > 2
does not have solutions on m-E3 equation, then it is necessary for n to
escape all congruences produced by Theorem 4.1.

(ii) case (iii) is two special cases of (i) by setting b′ = σ = 1, F = 1 and
b
′ = σ = 1, F = 2 respectively. These choices easily satisfy (15). Therefore,
case(iii) will be absorbed in case(i) in later discussions.

Readers now can understand the meaning of congruence generation in the
following example.

Example 4.1. (i) Regarding to standard type triples, pick σ = 2,m = 4, b′ =
1, F = 3. Then {

8|3n+ 1
3|8 + 1

is true if and only if 3n + 1 ≡ 0 (mod 8). In other words, whenever
n ≡ 5(mod 8), n has a solution on 4-E3 equation, and equivalently satisfies
Erdös-Straus Conjecture.
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(ii) Regarding to dengenerated type of triples, pick a = 1, b′ = 2, σ = 1,m = 4.
Then n ≡ −1× 2−1 ≡ 3 (mod 7) is another congruence condition for n to
satisfies Erdös-Straus Conjecture.

To compile a comprehensive list of congruence conditions, it is essential to include
both standard and degenerate types of parametrized triples. A complete cataloging
was previously accomplished in [8], albeit, it necessitated the employment of seven
conditions. Remarkably, our parametrization methodology led us to discern that
merely two conditions are required.

At the present juncture, we can only pinpoint F, b′, σ under limited conditions,
such as when constraining the value of σmb′. Nonetheless, the interplay between
F, b′, σ, as well as the method to assure all potential combinations that comply with
Theorem 4.1 (i), remains an open question. A comprehensive list of congruencies,
arranged in ascending order up to mod 20, is provided in Figure 4.2 (the basic
assumption being that n is odd, i.e., n ≡ 0 (mod 2)). The values of F, b′, σ exhibit
an as yet unidentified pattern.

Figure 7. a complete list of congruencies in ascending order up
to mod 20

An immediate consequence of Theorem 4.1 is that we can easily tell that some
of the residue classes of n (mod m) are the easiest to guarantee the existence of
m-E3 equation on n.

Corollary 4.1. If n ≡ −F−1 (mod m) for some F which is a factor of m+ 1, then
m-E3 equation has a solution on n.

Proof. Pick b′ = σ = 1. F−1 (mod m) is well-defined because gcd(F,m) ≤ gcd(m+
1,m) = 1 where F is a factor of m + 1.

By theorem 4.1, we just need to check
{
m|Fn+ 1
F |m + 1

.

n ≡ −F−1 (mod m) is the condition of the first divisibility and F is a factor of
m + 1 is the condition of the second divisibility. �

For the case of the original Erdös-Straus Conjecture, m = 4 and therefore primes
n where
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n ≡ −5−1 ≡ −1−1 ≡ 3 (mod 4) always are the easiest elimination target when
we are looking for counterexamples of n. Hence usually, we would assume that
n ≡ 1 (mod 4).

A fundamental inquiry relating to these congruence conditions is whether the
modulus of these congruences will extend to infinity and whether each new congru-
ence will encompass some unique n. For degenerated types of parametrized triples
(case (ii) in Theorem 4.1), we don’t require a specific theorem to prove the existence
of infinite congruence conditions. This is because the variables σ′ and c′ are free,
and it’s evident that there are infinitely many distinct congruence conditions by
iterating σ′ and c′. For standard type triples, it’s not immediately clear that there
are infinite valid combinations stemming from σ′ and F . Therefore, we require the
following construction. In the sections that follow, we represent the concept of a
residue class as [r]m = {a ∈ N | a ≡ r (mod m)}.

Proposition 4.5 (Infinity of meaningful congruence conditions on the standard
type triples). Given a fixed m ≥ 4 and prime n ∈ [r]m such that n 6≡ −f−1

(mod m) for any f which is a factor of m + 1. Then there exists infinite subsets
{σ0, σ1, σ2, . . .} and {r0, r1, r2, . . .} of N such that

(i) whenever n ∈ [ri]mσi for some i ≥ 0, m-E3 equation has at least one
solution on n,

(ii) [rx]mσx * [ry]mσy for any distinct x, y ≥ 0.

In other words, there exist infinitely many congruence conditions for n to have
a solution on m-E3 equation and every congruence condition covers some unique
prime n.

Proof. The proof is based on construction using Theorem 4.1(i) only. The key is to
strategically choose σi and F to fulfill the necessary and sufficient condition (15).

Notice that if [−f−1]m, where f which is a factor of m + 1, forms a reduced
residue class mod m, then from Corollary 4.1 m-E3 equation has a solution on every
prime n. Therefore, we assume [r]m such that r 6≡ −f−1 (mod m) exists.

From Dirichlet’s theorem of arithmetic progression, there exist infinitely many
prime F such that −F−1 6≡ −f−1 (mod m) for any f which is a factor of m+ 1.

Consider the linear Diophantine equation mσ − Fk = 1. gcd(m,F ) = 1 implies
that the equation has infinitely many pairs of solutions (σ, k). Among all possible
σ, there are infinitely many of them being primes by using Dirichlet’s theorem on
arithmetic progression again on σ. Now we are ready for the construction.

Construction procedure of {σ0, σ1, σ2, . . .} and {r0, r1, r2, . . .}
(1) Take b′ = 1.
(2) Pick prime σ0 such that F |mσ0 + 1 where F is a prime and −F−1 6≡
−f−1 (mod m). (For existence, please see the argument above)

(3) Define σi to be the ith prime after σ0 in the arithmetic progression σ0, σ0 +
F, σ0 + 2F, . . . .

(4) ri is the residue where ri ≡ −F−1 (mod σim) , i ≥ 0.
In short, b′, F are fixed, but σ varies to form different congruence conditions.

Verification
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(i) From step 2, F |mσ0 + 1 implies F |mσi + 1 ∀i ≥ 1 because F |m(σi − σ0).
Also, ∀i ≥ 1, gcd(mσi,mσi + 1) = 1.
⇒ ∀i ≥ 1, gcd (mσi, F ) = 1
⇒ −F−1(mod σim) is well-defined and [ri]σim = [−F−1]σim forms a

residue class.
Whenever n ∈ [rj ]mσj for some j ≥ 0, n ≡ rj ≡ −F−1 (mod σjm)⇐⇒

Fn+ 1 ≡ 0 (mod σjm).
F |mσj + 1 by construction.
By Theorem 4.1, m-E3 equation has at least one solution on n.

(ii) Notice n ∈ [r]m by definition.
Suppose [rx]mσx, [ry]mσyare distinct residue classes satisfying the con-

struction in (i).
σx, σy are distinct primes. By Chinese remainder theorem, [rx]mσx ∩

[ry]mσy is a unique residue class modmσxσy and [rx]mσx∩[ry]mσy ( [rx]mσx
and [ry]mσy .

Therefore, [rx]mσx * [ry]mσy .
�

Example 4.2. Consider m = 4 and n ≡ 1 (mod 4). Pick b′ = 1 and σ0 = 2, F = 3.
Such a choice is valid because 3 | 4× 2 + 1 . Below are the first 4 congruences from
the infinite sequence generated by such selection:
n ≡ −3−1 ≡ 5 (mod 8), n ≡ −3−1 ≡ 13 (mod 20),

n ≡ −3−1 ≡ 29 (mod 44), n ≡ −3−1 ≡ 45 (mod 68), . . .

If n satisfies any of these congruences, then n has a solution on the 4-E3 equation.
The modulus is found by picking primes along the arithmetic progression 4×

2, 4(2 + 3), 4(2 + 2× 3), . . .
However, readers can see that many congruencies are missing by referring to

Figure 4.2 if we follow the path of congruence generation using such narrow choice
of b′, σ0 and F .

On the other hand, one may be interested in common features of all congruencies.
Surprisingly, Mordell has proved that for m = 4, all the modular identities generated
do not contain any square. Here we show a second version of such proof using 4.1
and quadratic reciprocity to show an alignment with existing results in the field of
Egyptian fractions.

Proposition 4.6 (properties of congruence conditions). Consider two types of
congruence conditions generated by Theorem 4.1.

(1) −F−1 (mod 4σb′) is a quadratic nonresidue for any σ, F , b
′
which satisfies

Theorem 4.1(i).
(2) −ab′−1 (mod 4σab′− 1) is a quadratic nonresidue for any σ, a, b

′
∈ N which

satisfies Theorem 4.1(ii).

Simple consequences from the above are square numbers do not satisfy any
congruence conditions generated by Theorem 4.1 when m = 4.

Proof. Consider [−F−1]4σb′ satisfying Theorem 4.1(i).
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Recall that σ, b′, F∈ N satisfy
{

4σb′|Fn+ 1
F |4σb′2 + 1

.

If n ≡ −F−1 ≡ 3(mod 4) for some F , then n is a nonresidue mod 4 and therefore
nonresidue mod 4σb′. Hence we proceed by assuming n ≡ −F−1 ≡ 1 (mod 4) and
F ≡ 3 (mod 4).

Let b′ = 2αb∗ and σ = 2βσ∗ such that b∗and σ∗ are odd numbers, where α, β ≥ 0.
Suppose [−F−1]4σb′ is a quadratic nonresidue mod 4σb′.
Then Fn+ 1 ≡ 0 (mod 2α+β+2) and [−F−1]4σb′ is also a quadratic nonresidue

mod σ∗.
=⇒

(
−F−1

σ∗

)
=
(
−F
σ∗

)
= −1 in Jacobi Symbol.

We want to show contradiction occurs on
(
−F
σ∗

)
= 1.

In the second division, σ(2b′)2 + 1 ≡ 0 (mod F )⇐⇒ (2b′)2 ≡ −σ−1 (mod F )

=⇒
(
−σ−1

F

)
=
(
−σ
F

)
=
(
−2βσ∗

F

)
= 1 =⇒

(
σ∗

F

)
=
(
−2β

F

)
= (−1)F−1

2

(
2β

F

)
By quadratic reciprocity,(

σ∗

F

)(
F

σ∗

)
= (−1)

(F−1)
2

(σ∗−1)
2 ⇐⇒

(
F

σ∗

)
=
(
σ∗

F

)
(−1)

(F−1)
2

(σ∗−1)
2

Then (
−F
σ∗

)
= (−1)

σ∗−1
2

(
F

σ∗

)
= (σ

∗

F
)(−1)

σ∗−1
2 (−1)

(F−1)
2

(σ∗−1)
2

= (−1)
σ∗−1

2 (−1)
(F−1)

2
(σ∗−1)

2 (−1)
F−1

2

(
2β

F

)
= (−1)

(F+1)
2

(σ∗+1)
2 −1

(
2β

F

)
=
{

(−1) if β ≡ 0 (mod 2)
(−1)(−1)F

2−1
8 if β ≡ 1 (mod 2)

by that F ≡ 3 (mod 4)

Consider Fn+ 1 ≡ 0(mod 2α+β+2). When β ≡ 1 (mod 2), 2α+β+2 ≥ 8.
When F ≡ 7 (mod 8), (−1)(−1)F

2−1
8 = −1.

When F ≡ 3 (mod 8), Fn+ 1 ≡ 0 (mod 8) gives n ≡ −F−1 ≡ 5 (mod 8) , and
5 is a nonresidue mod 8. Hence −F−1 is a nonresidue mod 4σb′. Combining above,(

−F
σ∗

)
= −1 which contradicts to

(
−F
σ∗

)
= 1.

[−F−1]4σb′ is quadratic nonresidue mod 4σb′ for any σ, b′, F∈ N.
Consider [−ab′−1]4′−1 which satisfies Theorem 4.1(ii).
Let ab′ = 2qa0b0 such that a0, b0 are odd.
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Then
(
−ab′−1

4σab′ − 1

)
=
(
−ab′

4σab′ − 1

)
=
(

2q

2q+2σa0b0 − 1

)(
a0b0

2q+2σ0b0 − 1

)(
−1

2q+2σ0b0 − 1

)
in Jacobi symbol.(

−1
2q+2σ′a0b0 − 1

)
= −1 because 2q+2σ′a0b0 − 1 ≡ 3 (mod 4)

By quadratic reciprocity,(
a0b0

2q+2σa0b0 − 1

)(
2q+2σa0b0 − 1

a0b0

)
= (−1)

a0b0−1
2

˙2q+2σa0b0−2
2 = (−1)

a0b0−1
2

⇐⇒
(

a0b0

2q+2σ′a0b0 − 1

)(
−1
a0b0

)
=
(
−1
a0b0

)
⇐⇒

(
a0b0

2q+2σ′a0b0 − 1

)
= 1

(
2q

2q+2σ′a0b0 − 1

)
=

1 when q ≡ 0 (mod 2)(
2

2q+2σ′a0b0 − 1

)
when q ≡ 1 (mod 2)

Notice 2q+2σ′a0b0 − 1 ≡ 7 (mod 8) when q ≥ 1 =⇒
(

2
2q+2σ′a0b0 − 1

)
= 1.

Combine the above results, we have
(
−ab′−1

4σ′ab′−1

)
= (1)(1)(−1) = −1.

∴ [−ab′−1]4σab′−1 is a quadratic nonresidue mod 4σ′ab′−1 for any σ, a, b′∈ N. �

Notice that all escaping numbers are suspected to be composite numbers, and
hence these numbers are not counted as counterexamples to Erdös-Straus Conjecture
. For computational approaches and the searching algorithm for solutions, please
see Appendix.

4.3. Natural density and Prime density of potential counterexamples to
generalized Erdös-Straus Conjecture. In this subsection, our objective is to
derive results concerning the density of potential counterexamples to the generalized
Erdös-Straus Conjecture. It’s noteworthy that our examination is centered on prime
n, which makes the use of natural density unsuitable for gauging the frequency
of potential counterexamples. Instead of this, our evaluation of potential coun-
terexamples of prime numbers must be about the overall count of prime numbers
within specified limits. Employing advanced results from analytic number theory,
we introduce Theorem 4.6 as a conclusive finding, asserting that regardless of the m
value, the prime density of potential counterexamples to the m-E3 equation is zero.

Below are commonly used density-related notations in Number theory.

Definition 4.2. Given a subset a of natural numbers. |S| refers to the cardinality
of a finite set S.

(i) The Natural density DN(A) is defined as

lim
n→∞

|A ∩ {1, 2, ..., n}|
n
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(ii) The upper density UN(A) is defined as

lim
n→∞

sup |A ∩ {1, 2, ..., n}|
n

(iii) The prime density DP(A) is defined as

lim
n→∞

|A ∩ {1, 2, ..., n}|
π(n) = lim

n→∞

(lnn)|A ∩ {1, 2, ..., n}|
n

where π(n) stands for the number of prime numbers less than or equal to n.
The equality comes from the famous Prime number theorem.

Obviously, DN(A) ≤ UN(A) and 0 ≤ DN(A), UN(A), DP(B) ≤ 1 for all A ⊆ N
and subset B of prime numbers. Besides, Dirichlet density is considered a better
replacement for Prime density. However, our referenced theorems did not use
Dirichlet density explicitly. Therefore, to complete Theorem 4.6, we finish the proof
using prime density.

Below are theorems referenced from an additive and analytical number theory.

Theorem 4.2 (Szemerédi’s theorem). Let a be a subset of N where UN(A) > 0.
Then for every integer k ≥ 1, ∃a, r∈ N such that a, a+ r, a+ 2r, . . . , a+ (k− 1)r
forms a arithmetic progression of length k.

Proof. See [1]. �

Theorem 4.3 (Prime number theorem for arithmetic progression). Let π(x, q)
denote the number of all primes p no greater than x, congruent to a mod q, for
a, q ∈ N such that gcd(a, q) = 1. Then π(x, q) ∼ 1

φ(q)
x

lnx
where φ(q) is the Euler

totient function.

Proof. See [9]. �

The following Corollary secures the density behavior of primes in multiple residue
classes.

Corollary 4.2. Denote π(x, q, {a1, a2, . . . , ak}) to be the number of all primes
no greater than x and congruent to ai (mod q) for some i ∈ {1, 2, . . . , k}, where
{a1, a2, . . . , ak} is a subset of the reduced residue system mod q.
Then π(x, q, {a1, a2, . . . , ak}) ∼

k

φ(q)
x

lnx
.

Theorem 4.4 (Merten’s formula for arithmetic progression). Define

P (x; q, a) =
∏

p≤x,p≡a modq

(
1− 1

p

)
Then

(18) P (x; q, a) = C(q, a)
(ln x)

1
φ(q)

+O
(

1
(ln x)

1
φ(q) +1

)
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where C(q, a) is a constant such that C(q, a)φ(q) = e−γ
∏
p

(
1− 1

p

)α(p;q,a)
where

α(p; q, a) = φ(q)− 1 if p ≡ a (mod q) and α(p; q, a) = −1 otherwise.

Proof. See [6]. �

Because of having ln x in the denominator of the asymptotic formula of P (x; q, a),
we can conclude the following.

Corollary 4.3.
lim
x→∞

P (x; q, a) = 0.

Now we are ready to prove results regarding natural density and prime density
respectively. To keep the expression short, we use the following notation.

Denote the set of counterexamples of m-E3 equation as follows (Eventually
escaping set can be empty).

Definition 4.3. Denote the following sets:

(i) DE3(m)c = {n ∈ N | m
n
6= 1
x

+ 1
y

+ 1
z
∀x, y, z ∈ N }

(ii) DP3(m)c =
{
prime p|m

p
6= 1
x

+ 1
y

+ 1
z
∀x, y, z ∈ N

}
The letter "D" stands for the consideration of the denominator n. Clearly,

DP3(m)c ⊂ DE3(m)c ∀m ∈ N and DE3(1)c = DE3(2)c = DE3(3)c = φ.
In the following theorems 4.5 and 4.6, for the sake of simplicity, we only use

congruence conditions generated by Theorem 4.1(ii), i.e. those generated by the
standard type triples.

Theorem 4.5. DN(DE3(m)c) = 0 for all integers m ≥ 4.

Proof. Let Cm be the collection of all congruences generated by
{
σmb′|Fn+ 1
F |σmb′ + 1

.

From Remark 4, no matter n is prime or composite, a necessary condition for
n ∈ DE3(m)c is that n does not satisfy any congruence in Cm.

Suppose for an arbitrary large k, there exists {a, a+ r, a+ 2r, .., a+ (k − 1)r} ⊂
DE3(m)c.

From Proposition 4.5, by the infinite possible choices of σ, we can always pick
[−F−1]mσ ∈ Cm such that mσ < k and gcd(a,mσ) = 1. Then

a, a+ r, a+ 2r, .., a+ (k − 1)r
forms a reduced residue system mod mσ and ∃ i ∈ {0, 1, 2, . . . , k − 1} such that
a+ ir ≡ −F−1(mod mσ), contradicting to a+ ir does not satisfy any congruence
in Cm.
∴ DE3(m)c does not contain arithmetic progressions of length k.
From Szemerédi’s Theorem and its double negation,
DN(DE3(m)c) ≤ UN(DE3(m)c) = 0 =⇒ DN(DE3(m)c) = 0. �

The proof of Theorem 4.5 is rather short because natural density is easier to
handle than prime density.
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The next Lemma and theorem deals with our concerned prime density behaviors
of potential counterexamples of primes n on m-E3 equation.

Lemma 4.1. Let S1, S2, . . . , Sk be a finite number of disjoint subsets of prime
numbers such that DP(Si) = 0 for i = 1, 2, . . . , k. Then DP(S1 ∪ S2 ∪ . . . Sk) = 0.

Proof. By definition of prime density,
DP(S1 ∪ S2 ∪ . . . Sk)

= lim
n→∞

|S1 ∪ S2 ∪ . . . Sk ∩ {1, 2, . . . , n}|
π(n)

= lim
n→∞

|S1 ∩ {1, 2, . . . , n}|
π(n) + |S2 ∩ {1, 2, . . . , n}|

π(n) + . . .
|Sk ∩ {1, 2, . . . , n}|

π(n)
Notice that k is finite and

DP(Si) = lim
n→∞

|Si ∩ {1, 2, . . . , n}|
π(n) = 0

for i = 1, 2, . . . , k.
∴ DP(S1 ∪ S2 ∪ . . . Sk) = 0 + 0 + . . .+ 0 = 0. �

Theorem 4.6. DP(DP3(m)c) = 0 ∀m ∈ N.

Proof. The density argument comes from an explicit construction using proposition
4.5 and split prime n according to residue classes mod m. Notice we only pick
congruencies from standard-type parametrized triple. Readers may reconstruct the
proof and improve the asymptotic density by using congruencies generated from
both standard-type and degenerated-type parametrized triple.

From Corollary 4.1, if If n ≡ −F−1 (mod m) for some F which is a factor of
m+ 1, then m-E3 equation has a solution on n.

Hence DP3(m)c = φ for n ≡ −F−1 (mod m), F | m+ 1 .
We then consider the remaining classes, namely [r1]m, [r2]m, . . . , [rt]m, where

t < m.
Using Proposition 4.5, construct t separate infinite sequences of congruences on

separate cases of n belonging to t different residue classes. For a clear visualization,
please see below:

(CS1)

n ≡ r1 (mod m) and


n ≡ −F−1

1 (mod b1,1) or
n ≡ −F−1

1 (mod b1,2) or
...



(CS2)

n ≡ r2 (mod m) and


n ≡ −F−1

2 (mod b2,1) or
n ≡ −F−1

2 (mod b2,2) or
...


...
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(CSt)

n ≡ rt (mod m) and


n ≡ −F−1

t (mod bt,1) or
n ≡ −F−1

t (mod bt,2) or
...


where bi,j , Fi are primes andbi,j ≡ bi,1(mod Fi) ∀i = 1, 2 . . . , t and j ≥ 1.
If n satisfies any one of the compound conditions of congruencies above, for

example,

n ≡ r1 (mod m) and n ≡ −F−1
1 (mod b1,2)

then from Theorem 4.1(i), m-E3 equation has a solution on n. Now we define the
complement of (CS) and difine each sequence:

(ES1)

n ≡ r1 (mod m) and


n 6≡ 0,−F−1

t (mod bt,1) and
n 6≡ 0,−F−1

t (mod bt,2) and
...



(ES2)

n ≡ r2 (mod m) and


n 6≡ 0,−F−1

2 (mod b2,1) and
n 6≡ 0,−F−1

2 (mod b2,2) and
...



...

(ESt)

n ≡ rt (mod m) and


n 6≡ 0,−F−1

t (mod bt,1) and
n 6≡ 0,−F−1

t (mod bt,2) and
...


Notice that 0 is added in all (ES) because n is a prime. For any n, n satisfies

either (CSq) or (ESq) for some q ≥ 0.
If n satisfies (ESi) for some i ∈ {1, 2, . . . , t}, as (ES) are the complement of

(CS), n is a potential prime counter-example to m-E3 equation.
Let Si = {prime n | n ≡ ri(mod m) and n satisfies (ESi)} .
We now verify that DP(Si) = 0 for i = 1, 2 , . . . , t.
Consider the first k congruences in (ESi). Because bi,1, bi,2, . . . , bi,k are primes

and by Chinese remainder theorem, n can congruent to (bi,1−2)(bi,2−2) . . . (bi,k−2)
residue classes mod mbi,1bi,2, . . . bi,k.

The number of primes less than or equal to x that are not congruent to 0,−F−1
i

(mod bi,1, bi,2, . . . , bi,k)
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= π(x,mbi,1bi,2 . . . bi,k, {r | r 6≡ 0,−F−1
i (mod bi,j) ∀j ∈ {1, 2, . . . , k}})

∼
(bi,1 − 2)(bi,2 − 2) . . . (bi,k − 2)

φ(mbi,1bi,2 . . . bi,k)
x

lnx
by Corollary 4.2

= 1
m

(bi,1 − 2)(bi,2 − 2) . . . (bi,k − 2)
(bi,1 − 1)(bi,2 − 1) . . . (bi,k − 1)

x

lnx
by bi,1, bi,2, . . . , bi,k are primes

= 1
m

(
1− 1

bi,1 − 1

)(
1− 1

bi,2 − 1

)
. . .

(
1− 1

bi,k − 1

)
x

lnx

≤ 1
m

(
1− 1

bi,1

)(
1− 1

bi,2

)
. . .

(
1− 1

bi,k

)
x

lnx

DP(Si)

= lim
x→∞

lim
k→∞

π(x,mbi,1bi,2 . . . bi,k, {r|r 6≡ 0,−F−1
t (mod bi,j) ∀j ∈ {1, 2, . . . , k}})
π(x)

≤ lim
x→∞

lim
k→∞

1
m

(
1− 1

bi,1

)(
1− 1

bi,2

)
. . .

(
1− 1

bi,k

)
x

lnx
x

lnx

= 1
m

lim
x→∞

lim
k→∞

(
1− 1

bi,1

)(
1− 1

bi,2

)
. . .

(
1− 1

bi,k

)
= 1
m

lim
x→∞

∏(
1− 1

p

)
where p ≤ x are primes and bi,j ≡ bi,1 (mod F ) ∀j ≥ 1

= 1
m

lim
x→∞

P (x, F, bi,1)

= 0 by Corollary 4.3
Notice that

DP(DP3(m)c) ≤ DP(S1 ∪ S2 ∪ . . . St)
because counterexamples m-E3 equation must satisfy one of the (ES).

Also, t is finite for a given m. By Lemma 4.1, DP(S1 ∪ S2 ∪ . . . St) = 0.
∴ DP(DP3(m)c) = 0 ∀m ≥ 4 �

Readers with Analysis background should know that density-based (18) provides
poor estimation because many congruencies other than the selected ones are missing.
The progress for prime density approaching 0 is reflected by the slow growth of ln x.

5. Egyptian parametrization and Semiperfect numbers

In this section, a technique aimed to narrow the choices and number of prime
factors of a coprime semi-perfect number, which is a broader version of a primitive
semiperfect number, is introduced using the parametrization of Egptyain fractions.
It is very well known that perfect numbers and semi-perfect numbers have associated
representations in Egyptian fractions.

Below are the terminologies to be used in this section.
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Definition 5.1. Given S ∈ N.
(i) S is semiperfect if it is equal to the sum of some of its distinct proper

factors.
(ii) S is primitive semiperfect if it is not a multiple of a semiperfect number

other than itself.
(iii) S is coprime semiperfect in n factors if it can be expressed as a sum

of distinct proper factors α1, α2, ..., αn of S with gcd(α1, ..., αn) = 1.

For example, 1, 2, 3, 4, 6, and 12 are factors of 12. We see that 1 + 2 + 3 + 6 = 12.
Therefore, 12 is a coprime semi-perfect number.

Remark 5. Given that S is semiperfect, primitive semiperfect implies coprime
semiperfect because of the double negation of the definition of coprime semiperfect
numbers. If S is semiperfect but not coprime semiperfect in n factors for any n ∈ N,
then whenever

S = α1 + α2 + ...+ αn, gcd(α1, α2, ..., αn) = g > 1⇐⇒ S

g
= α1

g
+ α2

g
+ ...+ αn

g

Then S is the multiple of S
g
, which is also a semiperfect number. Therefore, S is

not primitive semiperfect.

However, another direction may not be true. Observe 24 = 1 + 3 + 8 + 12 which
is a coprime semiperfect number in 4 factors. But 24 is a multiple of 12, where
12 is a semiperfect number as shown. That means 24 is not primitive semiperfect.
Hence our studying target, coprime semiperfect, has a slightly bigger size compared
to primitive semiperfect numbers.

The classical relationship between Egyptian fraction expansion and semi-perfect
numbers can be seen in the following.

Proposition 5.1. S is semiperfect if and only if there exists factors x1, x2, ..., xn
of S such that

n∑
i=1

1
xi

= 1.

Proof. Let S =
n∑
i=1

αi where αi ∈ N and αi|S. Dividing both sides by S, we have

n∑
i=1

αi

S
=

n∑
i=1

1
S
αi

= 1 where S

α1
,
S

α2
, ...,

S

αn
are also factors of S

For the reverse direction, just let x1 = S

α1
, x2 = S

α2
, ..., xn = S

αn
. Then α1 + α2 +

...+ αn = S. �

Now we are ready to introduce the Egyptian parametrization technique. As
this topic is an application of the parametrization and the formula of Egyptian
parametrization requires much deeper research when the length of the expansion
increases, we only use the technique in an Egyptian expansion of 4 unit fractions.
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Theorem 5.1. It is given that S is a coprime semiperfect number in 4 factors and
it can be expressed in a sum of four distinct proper factors α1 + α2 + α3 + α4 with
gcd(α1, α2, α3, α4) = 1. Then S = k

√
α1α2α3α4σ for some σ ∈ N and k ∈ N.

Proof. Without loss of generality, assume α1 < α2 < α3 < α4.
We first transform the sum of factors into an Egyptian expansion problem

(19) 1
x1

+ 1
x2

+ 1
x3

+ 1
x4

= 1 with xi = S

α5−i
, i = 1, 2, 3, 4

From α1 < α2 < α3 < α4, x1 < x2 < x3 < x4.
Then by Theorem 2.2, for (x1, x2, x3, x4) there exists a corresponding ascending

1σ-E4 triple (a, b, c, d) ∈ N4, i.e. a < b < c < d, such that

(20)


13 = 12σabcd

(a+ b+ c+ d)2 ⇐⇒ a+ b+ c+ d =
√
σabcd

x1 =
√
σabc

d
, x2 =

√
σacd

b
, x3 =

√
σabd

c
, x4 =

√
σbcd

a

for some square-free σ ∈ N. As demonstrated in Theorem 2.2, a, b, c, d can also
be expressed in terms of x1, x2, x3, x4 by

(21) a =
√
x1x2x3

x4σ
, b =

√
x1x2x4

x3σ
, c =

√
x1x2x4

x2σ
, d =

√
x2x3x4

x1σ

Then

a : b : c : d =
√
x1x2x3

x4σ
:
√
x1x2x4

x3σ
:
√
x1x2x4

x3σ
:
√
x2x3x4

x1σ

=
√
x1x2x3x4

x2
4σ

:
√
x1x2x3x4

x2
3σ

:
√
x1x2x3x4

x2
2σ

:
√
x1x2x3x4

x2
1σ

= 1
x4

: 1
x3

: 1
x2

: 1
x1

= α1 : α2 : α3 : α4

By the assumption of coprime semiperfect number, gcd(α1, α2, α3, α4) = 1 and
therefore α1 : α2 : α3 : α4 is a simplified ratio. Let a = kα1, b = kα2, c = kα3, d =
kα4. Combining with the first equation from (20) and definition of S,

kS = kα1 + kα2 + kα3 + kα4 = k2√α1α2α3α4σ

⇐⇒ S = k
√
α1α2α3α4σ

for some σ ∈ N and k ∈ N. �

A superior advantage of the argument of Theorem 5.1 using Egptyian parametriza-
tion is that we do not rely on any information from S itself and factors of S except
that the factor combinations have to be coprime only. Besides, we can limit S
further by a necessary condition k√α1α2α3α4σ which can be a very strong restric-
tion as readers can see in the following argument. Hence, this argument has big
generalization potential.
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Now we proceed to reveal the limited choices of factors and hence list all coprime
semiperfect numbers in 4 factors. Theorem 5.1 established a necessary condition

(22) S = α1 + α2 + α3 + α4 = k
√
σα1α2α3α4

for choosing factors α1, α2, α3, α4 from a potentially coprime perfect number S.
Suppose

(23)
√
σα1α2α3α4 = p1p2...pn ⇐⇒ σα1α2α3α4 = p2

1p
2
2...p

2
n

where p1, p2, ..., pn are primes (not necessarily distinct) and essentially prime factors
of S. The following proposition showcases the power of (23).

Proposition 5.2. In (23), if gcd(pi, k) = 1, then pi divides two variables from
σ, α1, α2, α3, α4, where i = 1, 2, ..., n.

Proof. Recall and observe the prime powers in the later 4 equations in (20).
If pi | σ, by that σ is square-free, pi must divide one more variable from

α1, α2, α3, α4.
If p2

i | αj and does not divide other variables for some j ∈ {1, 2, 3, 4}, by
a = kα1, b = kα2, c = kα3, d = kα4 and (20),

x5−j =
k

√√√√√σ
∏
t 6=j

αt

αj

pi
=⇒ pi | k

contradicting to gcd(pi, k) = 1. Therefore, the Proposition holds. �

Proposition 5.2 tells us that pi has to be separately divided σ or different α. For
intuitive imagination, we suggest solving the restriction √σα1α2α3α4 as playing an
interesting math game of inputting primes into the following arithmetic structure

(box game) S = k
√
σα1α2α3α4 = kp1p2...pn =

(α1)

� +
(α2)

� +
(α3)

� +
(α4)

�
Be noted that the values of the boxes at the final stage of the game are potential
choices of α.

Procedure for Box game(S, k, σ)
(1) Pick factors k, σ ∈ N from S. We suggest starting from k, σ = 1 and

iterating k, σ in ascending order.
(2) From (23), σα1α2α3α4 = p2

1p
2
2...p

2
n. As the 4 boxes represent the "storage"

of the prime factors of 4 αs, then we start to distribute factors p2
1, p

2
2, ..., p

2
n

into the boxes one by one according to the rules set up by Proposition 5.2.
(3) After all prime factors are input in the boxes, notice that these factors are

"excess" because σ (if σ > 1) exists on the left-hand side of (23). Now take
out the factors where their product is equal to σ.

(4) Check the final sum of the boxes, i.e. α1+α2+α3+α4. If gcd(α1, α2, α3, α4) =
1 and equality in (box game) still holds, then we can say that a coprime



144 TAM HEI TUNG

semiperfect number S is discovered. If not, repeat the process with alterna-
tive σ or k.

p2
i already filled in, σ factors deleted→

(
�+�+�+�

)
= S

To pass through (box game), a major concern is that if S is arbitrarily chosen,
there are possibly unlimited and unbounded choices for p1, p2, ..., pm. Meanwhile,
the following lemma posted a strong boundary on the largest possible prime dividing
a coprime semiperfect number S into 4 factors.

Firstly, observe that S must be an even number by the sum of 4 factors must be
even.

For convenient discussion of the set of factor sum of numbers, denote

F4(S) = {α1+α2+α3+α4 | distinct factors α1, α2, α3, α4 of S, gcd(α1, α2, α3, α4) = 1}

Lemma 5.1. Given S is a coprime semiperfect number in 4 factors.
(i) S contains some odd factors.
(ii) Let p be a prime factor of S and ps | S. Then ps ≤ 9.

Proof. (i) Assume S = 2n for some n ≥ 4. If n ≤ 3, then S contains less than
4 factors.

max{F4(2n)} =
n−1∑
j=n−4

2j

= 2n−2
(

2 + 1 + 1
2 + 1

4

)
= 3.75× 2n−2

< 4× 2n−2 = 2n

Therefore 2n cannot be a semi-perfect number in a sum of 4 proper factors.
(ii) By (i), S must contain some odd factors, and therefore the statement is

well-defined.
We now play (box game) on S for arbitrary k | S. Observe that if we

set σ > 1, eventually fewer prime factors are being distributed to boxes,
which leads to a smaller sum of α1 +α2 +α3 +α4 at the final stage. Hence,
from the perspective of maximizing F4(S), we should set σ = 1 to play (box
game).

Without loss of generality, assume α1 < α2 < α3 < α4 at the last stage
of the box placement. Then the optimal strategy to maximize F4(S) is
to naturally insert the maximum number of prime factors such that the
value of the fourth box = S

smallest prime factor of S = S

2 . For the third
box, since every prime factor of S has one more chance to be inserted in
one more box other than the fourth box, the maximum value of the third
box can be as closed as the fourth box but not exceeding it, i.e. S3 , if 3 is
a factor of S. With this setup, the following inequality is established for
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p ≥ 5.

(24) max{F4(S)} ≤ S

2ps + S

ps
+ S

3 + S

2
The maximum value of the first and second boxes have ps in the denominator
because we insert every p into the third and fourth boxes to maximize F4(S).
If not, the maximum power of p dividing S is less than S, implying

S

p
+ S

p
+ S

p
+ S

p
<

4S
p
<

5S
6 <

S

2ps + S

ps
+ S

3 + S

2
The above tells us that not inserting all the factor ps into the 4th box leads
to a smaller value of F4(S) when p ≥ 5. With further simplification,

max{F4(S)} ≤ S

2ps + S

ps
+ S

3 + S

2 < S

⇐⇒ 1
2ps + 1

ps
+ 1

3 + 1
2 < 1

⇐⇒ 3
2ps + 1

3 + 1
2 < 1

⇐⇒ 1
ps

<
1
9

⇐⇒ ps > 9

When ps > 9, max{F4(S)} < S. Therefore, for max{F4(S)} ≥ S, ps ≤ 9.
When p = 2 or 3, if s ≤ 2, then the Proposition holds. Suppose s ≥ 3.

Notice that the inequality

(25) pa+ b

p
< a+ b⇐⇒ a <

b

p

holds for all p, a, b ∈ R+. If p is taken out from the third or fourth box of
the placement

S

2ps + S

ps
+ S

3 + S

2

and being inserted in the first or second box, let a = S

ps
and b = S

3 in (25).
By s > 2,

S

ps
<

S

3p
Applying (25), it is directly to see the sum of two changed boxes decreases,
and hence the final sum of all boxes of the exchanged placement decreases.
Thus (24) is still the maximum possible sum of 4 coprime factors of S and
ps ≤ 9.

�

Once the bound using Lemma 5.1(ii), the possible choices of S are then finite
and all coprime semiperfect numbers with 4 factors can be found using brute force
checking by computer programs.
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Theorem 5.2. If S is a coprime semiperfect number in 4 factors, then
S = 2q13q25q37q4

for some 0 ≤ q1 ≤ 3, 0 ≤ q2 ≤ 2, 0 ≤ q3, q4 ≤ 1.

Proof. A direct consequence from Lemma 5.1 (ii). �

However, it is still necessary for us to demonstrate once how (box game) suggests
the correct placement of factors such that S is a coprime semiperfect number.

Proposition 5.3. 30 = 2× 5× 7 is a coprime semiperfect number with 4 factors.

Proof. The statement is easy to verify by directly checking on factor combinations
of 30 and 12. The purpose of the statement is to show (box game) procedure on a
numerical example. Again we following the arrangement of the placement� <
� <� <�.

We start with the number 30 and pick σ = k = 1. We claim that the following is
the only possible initial placement of some prime factors of 30.

(4)

2 +
(3)

3 +
(2)

2× 5 +
(1)

3× 5
Reason for (1): If (1) doesn’t contain the factor 5, (1) ≤ 2 × 3 = 6. By the

ascending arrangement of boxes, the maximum approximation of S is 4× 6 = 24 <
2 × 3 × 5. If (1) = 2 × 5, maximum value of (2) = 2 × 3. Then the maximum
approximation of the sum of the first 3 boxes = 3× (2) = 18. Then S ≤ 28 < 30.
Therefore (1) = 3× 5.

Reason for (2): As (2) 6= (1) 6= 3 × 5, if (2) doesn’t contain the factor 5,
(2) ≤ 2× 3 = 6. As we used factor 3 twice in (1) and (2), and 2 once in (2). Either
2× 5 = 10 in (3), which contradicts the ascending arrangement of boxes, or factor 2
is in (4), and 5 is in (3). Then 2 + 5 + 2× 3 + 3× 5 = 28 < 30. If (2) = 5, the sum
of all boxes < 5× 3 + 15 = 30. Therefore (2) = 2× 5.

Reason for (3) and (4): As the remaining factors are 2 and 3 to be insert one
more time into the boxes. Either (3) = 2× 3, which contradicts to the ascending
arrangement of boxes, or (3) = 3 and (4) = 2.

Clearly, from the observation that when (4) = 2, (3) = 3, (2) = 10, (1) =
15, (4) + (3) + (2) + (1) = 30. Therefore 30 is a coprime semiperfect number. �

Lastly, with trials on the (box game) argument with all potential S, we have the
ending result of this section. After checking either by using a computer program or
procedure following Proposition 5.3, there exist only 6 coprime semiperfect numbers
with 4 factors as follows.

2× 32 = 18 = 1 + 2 + 2× 3 + 3× 3
2× 3× 5 = 30 = 2 + 3 + 2× 5 + 3× 5
2× 3× 7 = 42 = 1 + 2× 3 + 2× 7 + 3× 7

22 × 3 = 12 = 1 + 2 + 3 + 2× 3
22 × 5 = 20 = 1 + 2× 2 + 5 + 2× 5
23 × 3 = 24 = 1 + 3 + 2× 2× 2 + 2× 2× 3
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Only 20 is primitive among 6 possible values of S. The above Egyptian parametriza-
tion approach has further investigation potential in longer expansion length, i.e.
finding coprime semiperfect numbers in factors more than 4. In particular, when
the expansion length is odd, we can search for odd coprime semiperfect numbers
and possibly provide insights into the odd perfect number conjecture.

6. Conclusion

In short, this paper aims to reinvigorate the study of Egyptian fractions by
transitioning from traditional methods to a novel system. We introduce a symmetric
parametrization for Egyptian fraction equations, designed to streamline the solution
process and ensure symmetry among the solutions. Our approach addresses the
conjecture of the shortest length of the Egyptian expansion up to length 5, and we
propose the potential to expand this parametrization to arbitrary cases. Furthermore,
our parametrization offers fresh perspectives on the Generalized Erdös-Straus
Conjecture. We are confident that our methodology presents promising opportunities
for tackling the formidable Odd Perfect Number Conjecture.
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Appendix

The code is stored in this link:
https://drive.google.com/file/d/1PP1LGYgUaH81pZavkig0j-ohfl9lYqh_/view?usp=sharing

For additional information on the checking algorithm, please see:
https://drive.google.com/file/d/1OgbnQa6AHhzLKJEbSFHT--xBK7f8rrxa/view?usp=sharing

Below is the explanation of different parameters.

Figure 8. Functions 1, 2, and 3

Readers are welcome to obtain experimental data using our program and make
further progress on the Generalized Erdös-Straus Conjecture.



REVIEWERS’ COMMENTS

The author considered the generalized Erdös-Straus Conjecture, which asks whether
for any a ∈ Z≥1, there is a solution to the Diophantine equation

a

n
=

1

x
+

1

y
+

1

z

for n > n0 where n0 is an integer depending on a.

The conjecture is proved to be true for n ≤ 1014 using scientific computations,
but is still open in general.

The main results of the article are:

• Section 2: a symmetric solution to Egyptian expansion, and the proof of
equivalence to asymmetric solutions. Geometric interpretation for three-
term and form-term expansions.

• Section 3: some results on the shortest length expansion, focused some cases
with length 3 ,4, 5.

• Section 4: discussion on the generalization of Erdos-Straus conjecture, and
using prime density to produce some possibly counter-examples.

• Section 5: application of Egyptian parametrization to semi perfect numbers.

Overall, the author chose an interested topic in number theory, which has a
long history. He/she addressed several questions on this topic and made progress.
Although the main statements are in number theory, the approaches also include
various techniques, such as geometry and computer programming. The report is
nicely written with both details and sketch of ideas.
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