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Abstract. The Erdős-Szekeres conjecture, developed from the famous Happy-
Ending Problem, hypothesizes on the number of points in general position

needed on a plane to guarantee the existence of a convex n-gon. The research
conducted aims to examine geometric characteristics of different constructions

of points in general position, organized by number of points forming the convex

hull of the set. This paper has explored the case of pentagons, reestablishing
the previously proven result of the case using a geometrical approach in con-

trast to the combinatorial approaches generally adopted when exploring this

problem. This paper also proves that the lower bound to the conjecture is not
sharp under certain circumstances, an aspect never explored in the past. [See

reviewer’s comment (2)]

1. Introduction

1.1. Definition and Characteristics of Terms and Notations

This section will define terms and notations that are essential to the understanding
of the paper, and note important characteristics of certain geometric structures.

Convex hull, the intersection of all convex sets containing a defined set of points
on the Euclidean plane. In structures considered in this paper, it is a polygon with
vertices at selected points in the defined set of points.

x−y−z configuration, where x, y and z are integers, the convex hull organization of
a defined set of points. For example, a 4-4-0 configuration consists of eight points,
4 of which forming the convex hull of the set and the remaining 4 forming a convex
quadrilateral; a 4-3-1 configuration consists of 8 points, 4 of which forming the
convex hull of the set, 3 of the remaining forming a triangle and the last positioned
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within the triangle. In structures considered in this paper, all variables except for
the last have a value of at least 3.

f(n), the number of points in general position on a plane required to guarantee the
existence of a convex n-gon with vertices among the set of points.

1.2. Problem Background

The Erdős-Szekeres conjecture hypothesizes that f(n) = 2n−2 + 1. While the
proposers have proven that f(n) > 2n−2, the exact upper bound has not yet been
proven for the general case, therefore unable to confirm the conjecture. Throughout
the years, there have been efforts to establish an upper bound, which gradually

lowered from the proposer’s original proven bound of f(n) ≤
(

2n− 4
n = 2

)
+ 1 to

f(n) ≤ 2n+4n4/5

by Andrew Suk in April, 20161. [See reviewer’s comment (3)] In
addition to workings on the general case, there have also been efforts in proving
the conjecture for small cases. The case of existence of a triangle is trivially solved.
The cases of f(4) = 5, f(5) = 9 and f(6) = 17 are all mathematically proven2,3,
while the value of f(n) for all n ≥ 7 remains unknown.

1.3. Research aim and results

The majority of the above mentioned work is based on combinatorics and coordinate
geometry, utilizing calculations of combination and slopes, as well as structures such
as cups and caps. Yet, as this conjecture is categorized as a combinatorial geometry
problem, it is reasonable to speculate whether a geometric approach would bring
new insights to this problem. In particular, past approaches of more geometrically-
inclined methods have led to the discovery of stronger upper bounds4. This research
has therefore set to explore the second non-trivial cases with a geometric mindset,
as the first non-trivial case is very well understood.

In addition to proving f(5) = 9 using a geometric approach, this paper will look at
configurations with 8 points and check if they guarantee the existence of a convex
pentagon, thus investigating on the question of whether the lower bound of the
conjecture is always sharp. While the former presents a new approach to an estab-
lished result, the latter provides insight on a new area of investigation regarding this
conjecture - the configurations that lead to a sharp lower bound of the conjecture.
[See reviewer’s comment (2)]

1Suk, Andrew (2016),On the Erdős-Szekeres convex polygon problem, arXiv:1604.08657
2Kalbfleisch, J.D.; Kalbfleisch, J.G.; Stanton, R.G. (1970), “A combinatorial problem on con-

vex regions”, Proc. Louisiana Conf. Combinatorics, Graph Theory and Computing, Congressus

Numerantium, 1, Baton Rouge, La.: Louisiana State Univ., pp. 180-188.
3Szekeres, G.; Peters, L. (2006), “Computer solution to the 17-point Erdős-Szekeres problem”,

ANZIAM Journal, 48 (02): 151-164, doi: 10.1017/S144618110000300X
4Suk, Andrew (2016), On the Erdős-Szekeres convex polygon problem, arXiv:1604.08657



THE SECOND NON-TRIVIAL CASE OF THE ERDŐS-SZEKERES CONJECTURE 65

1.4. Paper overview

The paper will first recall or prove several results that is essential in reaching
conclusions in this paper. It will be followed by a purely geometric proof of the
established f(5) = 9 result, in contrast to combinatorial approaches in the past.
Lastly, there will be an analysis for configurations with 8 points to explore on the
issue of the lower bound of the conjecture. [See reviewer’s comment (2)]

2. Mathematical proofs and analysis

2.1. Useful theorems and lemmas

Theorem 1 (the Happy Ending Problem). Any set of five points in the plane
in general position has a subset of four points that form the vertices of a convex
quadrilateral. In other words, f(4) = 5.

Lemma 2. For every 4-1 configuration, the point in the inner layer will form
exactly 2 convex quadrilaterals with 3 of the 4 points forming the convex hull of the
set of points. The 2-convex quadrilaterals formed shares exactly 1 edge, and that
edge is one of the edges of the convex hull.

Proof. Suppose the 4-1 configuration consists of a quadrilateral ABCD surround-
ing a single point E. Point E either lies in ∆ABC or ∆ACD. If point E lies in
∆ABC, then as ∠EAD < ∠BAD < 180◦, ∠ECD < ∠BCD < 180◦, ∠ADC <
180◦ (by definition of convex hull) and ∠AEC < 180◦ (since point E lies within
∆ABC), AECD is a convex quadrilateral while AECB is not (reflex∠AEC >
180◦), as demonstrated in Diagram 1. A similar case occurs if point E lies in
∆ACD.

A similar case occurs when taking into consideration that point E either lies in
∆ABD or ∆CBD. The above has taken into consideration all the 4 point com-
binations possible and confirms that exactly 2 forms a convex quadrilateral. As
only one of the (A,B,C,E) or the (A,C,D,E) combination would form a convex
quadrilateral, as with the (A,B,D,E) and (B,C,D,E) combination, the formed
convex quadrilaterals must share an edge that forms the convex hull. This thereby
completes the proof for Lemma 2.
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Lemma 3. Among every 4-2 configuration in which a convex pentagon does not
exist, the four points forming the convex hull of the set of points can be divided
into two groups of two points in exactly one way, such that the two points in each
group do not form the diagonal of the convex hull and that they form a convex
quadrilateral with the remaining two points within the convex hull.

Proof. Suppose the 4-2 configuration consists of a quadrilateral ABCD surround-
ing two points E and F . Consider the position of point E within quadrilateral
ABCD. By Lemma 2, it forms exactly 2 convex quadrilaterals with 3 of the 4
points A,B,C or D. Without loss of generality, we may assume that the two
quadrilaterals are AECD and BCDE, as demonstrated in Diagram 2.

As the lemma only considers configurations where no convex pentagons exist, point
F cannot rest in regions R1, R2, R3 or R4 (resting in R1 or R3 would result in
A,C,D,E and F forming a convex polygon, and R2 or R4 would result in B,C,D,E
and F forming a convex polygon), and can only rest in regions S1, S2, S3 or S4.

If F rests in S1, the division of points would be (A,B) and (C,D). Suppose BE
meets AD at G. Since ∠DFE < 180◦ and ∠FEC < ∠AEC < 180◦, FECD is a
convex quadrilateral; since ∠AFE < 180◦ and ∠FEB < ∠BEG = 180◦, AFEB
is also a convex quadrilateral. But since reflex ∠AFE > 180◦ and reflex∠BEF >
180◦, neither AFED nor BEFC are convex quadrilaterals, making (A,B) and
(C,D) the only possible division. A similar situation occurs if F lies in S3. If
F lies in S2 or S4, the division of points would be (A,D) and (B,C), in which
the existence of the respective convex quadrilaterals can be proven with a method
similar to the above.

Although the above proof only covers one of the possible positions of point E, it is
done without loss of generality in accordance to lemma 2. Other possible positions
of E can be proved accordingly. This thereby completes the proof of Lemma 3.

Lemma 4. Among any set of 5 points in a 3-2 configuration, there exists exactly
1 convex quadrilateral formed by the inner 2 points and 2 of the outer 3 points.
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Proof. By Theorem 1, there exists at least one convex quadrilateral among the said
5 points. It remains to prove that there exists exactly one convex quadrilateral.
Suppose the said configuration is formed by a triangle ABC surrounding two points
D and E. Points A,B and C cannot all be vertices of a convex quadrilateral, else it
contradicts the assumption that the convex hull of the set is a triangle. Therefore,
the convex quadrilateral consists of points D,E and two of A,B and C. Without
loss of generality, we assume the convex quadrilateral is ABDE, as demonstrated
in Diagram 3.

Since ∠AED < 180◦, reflex∠AED > 180◦, so AEDC is not a convex quadrilateral.
Similarly, reflex∠BDC > 180◦, so BDEC is not a convex quadrilateral. Thus there
can only be 1 convex quadrilateral among the 5 points, which is AEDB. This
completes the proof of Lemma 4.

2.2. The Geometric Proof of f(5) = 9

In this part, the four possible configurations of 9 points (4-3-2, 4-4-1, 3-4-2, 3-3-3 )
will be considered.

Lemma 5. There must exist a convex pentagon whose vertices are among points
in a 3-4-2 configuration.

Proof. If a convex pentagon exists among the inward 4-2 configuration, the lemma
is trivially proven. Suppose that is not the case. According to Lemma 3, there
exists two different convex quadrilaterals within the inward 4-2 configuration, and
they share the edge between the two innermost points. Suppose the four points
in the second layer forms a quadrilateral ABCD, and the inner points are E and
F , as shown in Diagram 4. Without loss of generality, we may assume the convex
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quadrilaterals formed are ABFE and EFDC.

If any of the three points in the convex hull of the set lie in A1 or A2, a convex
pentagon would exist, proving the Lemma. Therefore, the only case left to consider
is when all three points lie in either A3 or A4. That will result in at exactly 2
points lying in either A3 or A4, while the one remaining point lies in the other
region, as three points lying in the same region would contradict the assumption
that they form the convex hull. Without loss of generality, assume that 2 points G
and H lie in A4, where G is nearer to A than H is, while a point I lies in A3. Since
∠GAE,∠HCE < 180◦, ∠HGA < ∠HGI < 180◦ and ∠GHC < ∠GHI < 180◦,
AGHCE forms a convex pentagon, completing the proof ot the said Lemma.

Although the case mentioned is only one of many possible cases, it is done without
loss of generality in accordance with previous results or geometric symmetries,
Therefore, the Lemma is true for all 3-4-2 configurations.

[See reviewer’s comment (4)]

Lemma 6. There must exist a convex pentagon whose vertices are among a set of
points in a 3-3-2 configuration.

Proof. Suppose the inner 3-2 configuration consists of a triangle ABC surround-
ing points D and E. By Lemma 4, there exists a unique convex quadrilateral
among these 5 points, and without loss of generality we assume it to be ABDE, as
demonstrated in Diagram 5.
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Note that the area defined by rays DC and DB is considered A1 while that by DC
and EA is area A3. Suppose the convex hull is a triangle FGH. If any of three
points lie in A2, then a convex pentagon is formed by that point and A,E,D,B,
proving the Lemma. The other case is when exactly 2 points lie in either A1 or
A3 and 1 lie in the other; if 3 points lie in the same region, it would contradict
the assumption that they form the convex hull of the set. If 2 points, say F and
G (where F is nearer to C than G), lie in A1, then since ∠GFC < ∠GFI < 180◦,
∠FGB < ∠FGI < 180◦, F,G,B,D and C form a convex pentagon. Similarly,
two points lie in A3, say F and G, then F,G,C,E and A would form a convex
pentagon. This thereby completes the proof of Lemma 6.

[See reviwer’s comment (5)]

Lemma 7. There must exist a convex pentagon whose vertices are among a set of
points in a 4-3-1 configuration.

Proof. Suppose that the inner 3-1 configuration consists of a triangle ABC sur-
rounding a point D, as demonstrated in Diagram 6.

Suppose the convex hull of the set is a quadrilateral EFGH, where each of these
points lie in either A1, A2 or A3. Without loss of generality, we may assume that
E lies in A1. If any of F,G or H lies in A1, say F , then since A and B are not
in the convex hull of the set of points, the angles formed between E,F and A and
E,F and B are smaller than 180 degrees, resulting in a convex pentagon formed
by points A,E, F,B and D. The other case is where none of F,G,H lies in A1, so
they either lie in A2 or A3.

Without loss of generality, suppose F lies in A2, so by similar reasoning as above
either a convex pentagon can be found in A2 among points A,C,D, F and one of G
or H, or G and H both lies in A3. The latter case would result in a convex pentagon
between D,B,C,G and H, thereby completing the proof of Lemma 7.

[See reviewer’s comment (6)]
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Theorem 8. Any set of nine points in the plane in general position has a subset of
five points that form the vertices of a convex pentagon. In other words, f(5) = 9.

Proof. As mentioned above, there are four possible configurations for the nine
points in general position. The 4-3-2 and 4-4-1 configurations consist of an extra
points on a 4-3-1 configuration, which is proven to contain a convex pentagon by
Lemma 7; thus, both the above configurations must consist of a convex pentagon.
The 3-4-2 configuration is proven by Lemma 5 to contain a convex pentagon. The
3-3-3 configuration consists of an extra point on a 3-3-2 configuration, which is
proven to contain a convex pentagon by Lemma 6; thus, the 3-3-3 configuration
must contain a convex pentagon. This exhausts all the cases for any set of nine
points in general position, thereby proving Theorem 8.

2.3. Analysis of 8-point configurations

In Section 2.2, we have proven that the 4-3-1 and 3-3-2 8-point configurations can
guarantee the existence of a convex pentagon. In this section, we will discuss the
remaining two possible configurations.

Case 9. The 3-4-1 configuration is not a sufficient condition for the existence of a
convex pentagon.

Proof. This is proven through an actual construction, as demonstrated in Diagram
7 and Table 1.
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Table 1. Coordinates of points in Diagram 7∗

Point X-coordinate Y-coordinate
A 7.5 4.7
B 1.34 -7.86
C 20.32 -7.46
D 6.8 -4.1
E 11.98 -2.96
F 8.44 0.2

P 6.44 -1.1
T 7.22 -1.79

A simple checking of all possible 5-point combinations yields the result that no
convex pentagon exists.

Case 10. The 4-4 configuration is not a sufficient condition for the existence of a
convex pentagon.

Proof. This is proven through an actual construction, as demonstrated in Diagram
8 and Table 2.

Table 2. Coordinates of points in Diagram 8∗

Point X-coordinate Y-coordinate
A 2.82 2.58
B 13.92 4.02
C 3.12 -7.88
D 17.44 -7.68
E 6.66 -0.8

F 10.22 0.76
G 6.7 -4.68
U 11.5 -2.36
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A simple checking of all possible 5-point combinations yields the result that no
convex pentagon exists.

[See reviewer’s comment (7)]

3. Conclusion

In this paper, a purely geometric approach was used to investigate the second non-
trival cases of the Erdős-Szekeres conjecture and reestablished the conclusion that
any set of nine points in general position is sufficient to guarantee the existence of a
convex pentagon with vertices among those points. The investigation also yielded
the result that eight points are sufficient to guarantee the existence of a pentagon in
two types of configurations, while it is not in two other types, which is surprising as
the original proof Erdős and Szekeres provided on the lower bound of the conjecture
only outlined one type of situation where the construction with one point fewer
than the bound would fail5. As a whole, this paper approached a combinatorial
geometry problem with a geometric method, in contrast to combinatorial means
generally adopted in the past, and succeeded in proving the same results, providing
insights to new possibilities in solving the conjecture or extensions of the conjecture.

Future directions of research include looking at the third and fourth non-trivial
cases (or ultimately, the general case) of this conjecture using a geometric method
(as the third non-trivial case is currently proven with the aid of computer and the
fourth remains unsolved), and looking into extensions of the conjecture, for example
the types of configurations for which the lower bound of the conjecture is sharp.
[See reviewer’s comment (2)]
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∗As the figures were constructed in Geogebra, the coordinates are given in accordance with
the values shown on Geogebra.

5Erdős, P.; Szekeres, G. (1961), “On some extremum problems in elementary geometry”,Ann.

Univ. Sci. Budapest. Eötvös Sect. Math., 3-4: 53-62. Reprinted in: Erdős, P.
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Reviewer’s Comments

This paper investigates the Erdős-Szekerer’s conjecture, which gives a relationship
between the number of points in a general-position point set and its largest convex
polygon. More precisely, the conjecture states that the smallest number f(n) of
points for which any general position arrangement contains a convex subset of n
points is 2n−2 + 1. The general case remains unproven. The first non-trivial case
starts from n = 4, and it is now known that the conjecture is true up to n = 6.

This paper gives a geometric proof of the fact that f(5) = 9, i.e. the fact that a set
of 9 points in general position guarantees the existence of a convex pentagon whose
vertices are from this set. They make extensive use of the x− y − z configuration
to classify the distribution of points. E.g. a 4 − 3 − 1 configuration consists of
8 points, in which 4 points form a convex quadratical, whose interior contains
a triangle formed by 3 of the remaining points, and the remaining one point is
contained in the interior of this triangle.

In the first two parts, they give the historical review and basic definitions. Part 2
is the main part of the paper. To study a 9-point-configuration, they first study
the possible sub configurations (4− 2, 4− 1 and 3− 2 configurations), they show in
Lemmas 2, 3 and 4 that certain convex quadrilateral exists in these configurations.
They then use these lemmas to prove the main result (f(5) = 9). The strategy
is as follows. First of all, there are only four cases which need to be discussed:
3− 4− 2, 3− 3− 3, 4− 3− 2 and 4− 4− 1. They then show that the result is true
in 3− 4− 2, 3− 3− 2 and 4− 3− 1. Note that we have the following implication:
3 − 3 − 2 ⇒ 3 − 3 − 3 and 4 − 3 − 1 ⇒ 4 − 3 − 2 and 4 − 4 − 1. So the proof is
complete.

Here are my comments concerning the style and the mathematics in this paper.

1. The reviewer has comments on the wordings, which have been amended in
this paper.

2. There are several occasions (p.63, p.64, p.72) where the author mentions
the “lower bound” to the Erdős-Szekeres conjecture and whether this “lower
bound” is “sharp” (p. 64, p. 72). I am a bit confused by these terms because
the conjecture is that f(n) = 2n−2 + 1, which is not an inequality. Of course
Erdős and Szekeres proved that f(n) > 2n−2, which means 2n−2 is a lower
bound for f(n). So does the “lower bound to the conjecture” mean 2n−2?

I am not exactly sure what she means by the “sharpness” either, perhaps
what she means is that there are configurations of 2n−2 points in which no
convex n-gon is formed (already proved by Erdős-Szekeres, though the author
seems to provide additional examples). Or does it just mean f(n) = 2n−2 +
1? And by “not sharp”, perhaps she means there are some (perhaps non-
trivial) configurations of 2n−2 or less points in which a convex n-gon is still
guaranteed to exist, which is trivially true. In any case, I think the author
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should elaborate more, as these two terms appear in the introduction, abstract
and conclusion (that sounds import) but never appear again in the main body.

3.
(
2n−4
n=2

)
should be

(
2n−4
n−2

)
.

4. Lemma 5.
This lemma shows the result for the 3− 4− 2 configuration. However, there
is a typo which unfortunately appears repeatedly. In the second paragraph of
the proof (below the diagram), all the “C” should be changed to “D” and so
it is AGHDE, not AGHCE that forms a convex pentagon. The proof seems
correct to me, but I think the sentence “G is nearer to A than H is” is of no
use here, and is possibly not true even if AGHDE forms a convex pentagon,
so this sentence should be deleted.

Moreover, I suggest they should add the points G, H, I on the figure for
easier understanding. For example, it may look something like this:

5. Lemma 6.
My suggestion is similar to the previous one. Again there is a typo in the
paragraph under the diagram: all the “I” should be changed to “H” (this
time they state correctly that F,G,B,D,C forms a convex pentagon). I also
don’t see why they put the sentence “F is nearer to C than G”, I think this
is not necessary and is not true even if FGBDC is a convex pentagon, so it
should be deleted.

Again I would suggest adding the points F,G,H in the diagram in this
subcase, which may look something like this:

6. Lemma 7. First we can simplify the proof slightly by observing that by
pigeonhole principle, two of the four points E,F,G,H must lie on the same
Ai. So we can without loss of generality assume E and F lie on A1, and
the result is almost immediate in this case. Therefore the last paragraph
“Without loss of generality, ...” can be deleted.
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Again I think it is much better to add (at least some of) the points
E,F,G,H in the diagram for better illustration. This may look something
like this:

7. For Case 9 and 10, they show by giving actual examples that a 3 − 4 − 1
configuration and a 4 − 4 configuration cannot guarantee the existence of a
convex pentagon. While their examples are quite plausible by mere inspection,
I don’t think it is really a “simple checking” as claimed. There are 56 such
pentagons and should perhaps better checked by computer than by hand (it’s
easy for a human being to miss some pentagons and it’s hard to keep track).
If possible, I would suggest the author to provide a computer program and
the output to show this claim.

8. I would suggest they put the cited references all in the last part and remove
the footnote (but that’s perhaps only a personal taste). Perhaps another way
is to keep both.

9. Overall, I do not find many mistakes or typos in the paper.




