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THE ERDŐS-SZEKERES CONJECTURE

(“HAPPY END PROBLEM”)

TEAM MEMBERS

Ho Ming Wong, Man Han Leung, Wing Yee Wong,
Hon Ka Hui, Tin Chak Mak

TEACHER

Mr. Chi Keung Lai

SCHOOL

Shatin Pui Ying College

Abstract. The survey [1] conducted by W. Morris and V. Soltan mentioned

that in 1935 Erdős-Szekeres proved that for any integer n ≥ 3, there exists a
smallest positive integer g(n) points in general position in the plane containing

n points that are the vertices of a convex n-gon. [See reviewer’s comment (3)]

They also conjectured that g(n) = 2n−2 + 1 for any integer n ≥ 3. The
conjecture is far from being solved for decades though many mathematicians

had tried their very best on it. This paper is to investigate the Erdős-Szekeres

conjecture by studying the greatest positive integer f(n) points in general
position in the plane which contains no convex n-gons. We successfully prove

the cases when n = 4, 5 i.e. f(4) = 4 and f(5) = 8. For n = 6, we arrive at
the conclusion that f(6) ≥ 16 by creating an example of 16 points containing
no convex hexagons. Moreover, we excitedly find an elegant proof for this

example that one more point added to it will certainly give birth to a convex
hexagon.

1. Background

The Erdős-Szekeres conjecture also known as the “Happy End Problem”, has been
investigated by mathematicians for several decades. The conjecture is not yet been
proved, but some progress is made.

Define g(n) the minimal possible M for a set of M points in general position, where
no three points are collinear, must contain a convex n-gon. The conjecture states
that g(n) = 2n−2 + 1.

It has been proved that the equality holds for n = 3, 4, 5 mathematically and
g(6) = 17 has been proved by a computer search [2] in 2006.
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Other researches [1] [See reviewer’s commnet (7)] show that g(n) is a finite number
for all n, and g(n) lies between a certain interval. The most recent interval of g(n)
obtained in [1] is

2n−2 + 1 ≤ g(n) ≤
(

2n− 5

n− 3

)
+ 2.

2. Introduction

Throughout this paper, all point set are assumed to be in general position, where
no three points are collinear.

Through this investigation, we know that it is very hard to prove the conjecture by
exhaustion since there are so many possibilities. Therefore, we try to find out some
properties of the point sets forming no convex quadrilaterals, pentagons, hexagons
and even heptagons. We carry out our investigation in three stages.

Definition 1. A polygon P1P2 . . . Pn is convex iff it contains all line segments PiPj

connecting any two vertices i.e. for any distinct i, j, PiPj ⊂ P1P2 . . . Pn.

Definition 2. The Convex Boundary Γ(X) of a point set X is the subset of X
whose points are vertices of a convex polygon containing all the remaining points
in X.

By this concept, we can give the Configuration of any point set X by taking the
convex boundary Γ(X) of X, Γ(Γ(X)), . . . ,Γ(Γ(Γ(. . . (X)))) and their correspond-
ing numbers of elements in order. [See reviewer’s comment (4)]
For example, the configuration of the point set on the right is (6, 4). Also we can re-
define the convex polygons in terms of convex boundary. Let X = {P1, P2, . . . Pn}.
A polygon P1P2 . . . Pn is convex iff Pi lies outside the convex polygon formed by
the points in Γ(X \ Pi) for any i = 1, 2, . . . n.

3. g(4) = 5

In this stage, we investigate the point sets without convex quadrilaterals. By defi-
nition, g(3) = 3 obviously. We are going to prove the Theorem 3.

Theorem 3. Any five points must contain a convex quadrilateral, i.e. g(4) = 5.
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Proof. Since all the point sets of configuration (3, 1) form no convex quadrilateral,
we consider point sets of configuration of (3, 2) i.e. with two points D, E inside a
triangle ABC. DE must cut two of the sides of ABC. WLOG, assume that DE
cuts AB and AC and then B,D,E and C forms a convex quadrilateral. Therefore
g(4) = 5.

4. g(5) = 9

In this stage, we start with a quadrilateral and use a software called Geometer’s
Sketchpad to add points one by one. We then shade off those regions giving a
convex pentagon and find that no point can be further added to any eight points
in general position. Moreover, we find an example of eight points without convex
pentagons in [1]. So we are curious whether the example is unique and try out our
own proof to it. Now we need some definitions and lemmas.

Definition 4. The ray [A,B) is defined as the set containing all points lying on
the line segment AB or AB produced.

Definition 5. The line (A,B) is defined as the line joining the points A and B.

Definition 6. For any three points A, B, C, beam A : BC denotes the set of all
points in the interior of the region bounded by the segment BC, AB produced and
AC produced.

Definition 7. For a convex quadrilateral ABCD, beam AB : CD denotes the set
of all points in the interior of the region bounded by the segment CD, AD produced
and BC produced.

[See reviewer’s commnet (5)]

Lemma 8. Any eight points of (3, 3, 2) must contain a convex pentagon.

Proof. [See reviewer’s commnet (6)] Let X = {A1, A2, A3, B1, B2, B3, D,E} be a
set of any 8 points, where A1, A2, A3 ∈ Γ(X), B1, B2, B3 ∈ Γ(Γ(X)) and D,E ∈
Γ(Γ(Γ(X))). The relative positions of A1, A2, A3, B1, B2, B3 can be divided in
the 3 cases as shown below. We are now going to prove the lemma case by case.

Case 1 Since D and E are inside 4B1B2B3, D, E /∈ AiAj : BjBi for any distinct i, j
for otherwise D or E will form a convex pentagon with Ai, Aj , Bj and Bi.
[See reviewer’s comment (8)]
WLOG, let DE cuts B1B3 and B1B2.
By the similar argument in Theorem 3, D, E, B2 and B3 form a convex
quadrilateral. Moreover, A2 ∈ DE : B2B3 or ED : B2B3 and therefore D, E,
B2, A2 and B3 form a convex pentagon.

Case 2 [See reviewer’s comment (9)] Since D and E are inside 4B1B2B3, D, E /∈
AiAj : BjBi, where (i, j) is neither (2, 3) nor (3, 2) for otherwise D or E will
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Case 1 Case 2 Case 3

form a convex pentagon with Ai, Aj , Bj and Bi.
Assume that DE cuts B1B3 and B1B2.
By the argument in Theorem 3, D, E, B2 and B3 form a convex quadrilateral.
Moreover, A2 ∈ DE : B2B3 or ED : B2B3 and therefore D, E, B2, A2 and
B3 form a convex pentagon. The other cases can be proved similarly.

Case 3 WLOG, let DE cuts B1B3 and B1B2.
By the argument in Theorem 3, D, E, B2 and B3 form a convex quadrilateral.
Moreover, A1 ∈ DE : B2B3 or ED : B2B3 and therefore D, E, B2, A1 and
B3 form a convex pentagon.

From the above deduction, we can conclude that the case (3, 3, 2) must form at
least one convex pentagon.

Lemma 9. Any eight points of (4, 3, 1) must contain a convex pentagon.

Proof. [See reviewer’s comment (10)] For those point set X of (4, 3, 1), we can
imagine that one of the point A4 are originally in Γ(Γ(Γ(X))) and X becomes
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(3, 3, 2). Similar to the proof of Lemma 8, let X = {A1, A2, A3, B1, B2, B3, D,E}
be a set of any 8 points, where D, A1, A2, A3 ∈ H(X) , B1, B2, B3 ∈ Γ(Γ(X)) and
E ∈ Γ(Γ(Γ(X))). The relative positions of A1, A2, A3, B1, B2, B3 can be divided
in the 3 cases as shown below. We are now going to prove the lemma case by case.

Case 1 Case 2 Case 3

Case 1 [See reviewer’s comment (11)] Since E is inside 4B1B2B3, E /∈ AiAj : BjBi

for any distinct i, j for otherwise E will form a convex pentagon with Ai, Aj ,
Bj and Bi.
WLOG, let segment DE cuts segment B2B3. Thus, D, E, B2 and B3 form
a convex quadrilateral. Moreover, A2 ∈ EB3 : DB2 and therefore D, A2, B2,
E and B3 form a convex pentagon.

Case 2 [See reviewer’s comment (12)] Since E is inside 4B1B2B3, E /∈ AiAj : BjBi,
where (i, j) is neither (2, 3) nor (3, 2) for otherwise E will form a convex
pentagon with Ai, Aj , Bj and Bi.
Assume that segment DE cuts segments B2B3 and A2B3. Thus, D, E, B2 and
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B3 form a convex quadrilateral. Moreover, A2 ∈ EB3 : DB2 and therefore D,
A2, B2, E and B3 form a convex pentagon. The other cases can be proved
similarly.

Case 3 WLOG, let segment DE cuts segment B2B3.
Thus, D, E, B2 and B3 form a convex quadrilateral. Moreover, A1 ∈ DB2 :
EB3 and therefore D, B2, E, A1 and B3 form a convex pentagon.

From the above deduction, we can conclude that the case (4, 3, 1) must form at
least one convex pentagon.

Now we shall apply these two lemmas to prove Theorem 10.

Theorem 10. Any nine points must contain convex pentagons, i.e. g(5) = 9.

Proof. By the concept of convex boundary, the configuration of any 8 points con-
taining no convex pentagons is either of (3, 3, 2), (4, 3, 1), (3, 4, 1) or (4, 4). We
now investigate them one by one. By Lemma 8 and 9, all point sets of (3, 3, 2)
and (4, 3, 1) have at least one convex pentagon. The remaining point sets are of
(3, 4, 1) and (4, 4). We have found two examples of (3, 4, 1) and (4, 4) without
convex pentagons. [See reviewer’s comment (13)]
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(3, 4, 1) (4, 4)

By the examples, we get f(5) ≥ 8.
Now if one more point is added to the point set of (3, 4, 1), it becomes a point set of
either (3, 4, 2), (3, 5, 1) or (4, 4, 1) which contains convex pentagons by Lammas 8
and 9. Lastly, if one more point is added to (4, 4), it becomes either (5, 4), (4, 5) or
(4, 4, 1) and hence contains convex pentagons. Conclusively, any nine points must
contain convex pentagons, i.e. f(5) = 8 and g(5) = 9.

5. f(6) ≥ 16

In this stage, we have study some papers in which we can’t find any example of 16
points without convex hexagons in the literature, so we start to find one on our own
by investigating the properties of convex polygon. We surprisingly find an example
Y of configuration (5, 5, 5, 1) (Appendix 2). We then write a computer program
(Appendix 1) for checking if there is any convex hexagon by exhaustion. Luckily,
there is no convex hexagon in the point set. Finally, we give two mathematical
proofs that Y contains no convex hexagon. That means we succeed to prove that
f(6) ≥ 16 and g(6) ≥ 17 mathematically. For completeness, we further prove that
if one point is added to the Y , at least one convex hexagon will be formed.

Algorithm of our computer program

[See reviewers’ comment (14)] We are now going to explain the algorithm of our
computer program which is inspired by the definition of caps and cups in [1]. For
any point set {Pi}ni=1 in a rectangular plane, we, WLOG, may assume that there
are one leftmost and one rightmost point L and R. The line segment LR then
may divides other Pi’s into two groups: one above LR and one below LR. Re-
name those Pi’s above (respectively, below) LR by A1, A2, . . . , Ak (respectively,
B1, B2, . . . , Bn−k−2) with their x-coordinates in ascending order for some k. Let
L = A0 and R = Ak+1 = Bn−k−1. Pi’s form a convex n-gon if and only if
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{A0, A1, A2, . . . , Ak, Ak+1} form a (k + 2)-cap and {A0, B1, B2, . . . , Bn−k−2,
Bn−k−1} form a (n − k)-cup or {Pi}ni=1 form an n-cap or n-cup, i.e. there exists
k ∈ {1, 2, 3, ..., n} such that the slopes of LAi’s are strictly decreasing and that of
LBi’s are strictly increasing. By the algorithm we can pick any 6 points out of 16
points in general position for checking. There are totally 8008 trials.

Construction of 16 points without convex hexagons

Now we try to construct an example Y of 16 points of (5, 5, 5, 1) containing no
convex hexagon. The figure on the right consists of 3 concentric regular pentagons
with different sizes and their centre O(Appendix 2). We first plot the origin O and
A1. Then we plot B1 and C1 which are slightly above OA1 such that A1B1C1 form
a 3-cup, A1B1O and A1C1O form 3-caps. Finally we rotate OC1B1A1 clockwise
by 72◦ each time to obtain OCiBiAi, where i = 2, 3, 4, 5. So we have 16 points
on the plane. We use our computer program for preliminary check and are glad to
know that there is no convex hexagon at all. We then start to prove that the figure
contains no convex hexagons. We find two different proofs, one by configuration
and the other by union of beams (Appendix 3).

Lemma 11. Let Q1Q2 . . . Qm be a convex m-gon and P1, P2 ∈ Q1Q4 : Q3Q2. If
the line (P1, P2) intersects the line segment Q2Q3, then P1, P2, Q1, Q2, . . . and Qm

can’t form a convex (m + 2)-gon.

Proof. Since P1P2 is not parallel to Q2Q3, then one of them say P2 is closer to
Q2Q3, then P2 lies inside the polygon Q1Q2P1 . . . Qm and hence P1, P2, Q1, Q2,
. . . and Qm can’t form a convex (m + 2)-gon.
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By Lemma 11, we easily get Theorem 12 and Lemma 13.

Theorem 12. Let Q1Q2 . . . Qm be a convex m-gon and {P1, P2, . . . , Pn} ⊂ Q1Q4 :
Q3Q2. If all the lines (Pi, Pj) intersect the line segment Q2Q3 for any distinct
i, j = 1, 2, ...n, then {Q1, Q2, . . . , Qm} form no convex (m + 2)-gon with any two
Pi’s.

Lemma 13. Any point set of (5, 2) containing a convex hexagon if and only if
the line joining the points inside the pentagon intersect two adjacent sides of the
pentagon.

Lemma 14. Let X = {A1, A2, A3, A4, A5, B1, B2, B3} be a point set of configura-
tion (5, 3), where Γ(X) = {A1, A2, A3, A4, A5} and Γ(Γ(X)) = {B1, B2, B3}. If X
contains a convex hexagon, then either at least one BiBj cuts two adjacent sides
of the pentagon Γ(X) or all the three lines (B1, B2), (B3, B2) and (B1, B3) cut the
same pair of opposite sides of the pentagon Γ(X). (equivalently, if one of the lines
joining the vertices of the inner triangle neither cuts the two adjacent sides of the
outer pentagon nor all lines cut the same pair of opposite sides of the pentagon,
then X contains no convex hexagon.)[See reviewer’s comment (15)]

Proof. If X contains a convex hexagon, then its vertices of the hexagon are either
from (i) 4Ai’s and 2Bi’s or (ii) 3Ai’s and 3Bi’s.

(i) 4Ai’s and 2Bi’s
It implies that Bi and Bj are contained in the beam A1A5 : A4A2 and hence
BiBj cuts two adjacent sides A2A3 and A4A3.

(ii) 3Ai’s and 3Bi’s
WLOG., it implies that (B1, B2), (B3, B2) and (B1, B3) can’t intersect A5A2

by Theorem 12 and hence can’t intersect A5A1 and A1A2. So either all three
lines (B1, B2), (B3, B2) and (B1, B3) intersect the opposite sides A2A3 and
A4A5 or at least one of them intersect the adjacent sides A2A3 and A4A3 or
A4A3 and A4A5.
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Definition 15. Let P1P2 . . . Pn be a convex n-gon.
Define the beam union U(P1P2 . . . Pn) of the n-gon as below.
For n ≥ 4,

U(P1P2 . . . Pn) =(PnPn−3 : Pn−2Pn−1) ∪ (Pn−1Pn−4 : Pn−3Pn−2) ∪ . . .

∪ (P2Pn−1 : PnP1) ∪ (P1Pn−2 : Pn−1Pn).

For n = 3, U(P1P2P3) = (P3 : P2P1) ∪ (P32 : P1P3) ∪ (P1 : P3P2).

It can be easily seen that a point Q can join with a convex n-gon P1P2 . . . Pn to
form a convex (n + 1)-gon iff Q ∈ U(P1P2 . . . Pn).

Theorem 16. The lower bound of f(6) is 16 i.e. f(6) ≥ 16.

Proof. Let’s define Gi = {Ai, Bi, Ci}, then Y is the union of Gi’s and {O}. We
shall prove Theorem 16 by showing that the point set Y does not contains a convex
hexagon.
We started to choose any six points in Y . Among these six points, there are three
cases: (1) three points from the same group, i.e. Gi for some i, (2) one point from
each group or (3) two points from the same group.



THE ERDŐS-SZEKERES CONJECTURE 281

Case 1: three from the same group
WLOG, we chose the point A5, B5 and C5, point C2 cannot be chosen as
U(A5C5C2B5) contains no point of Y , then A1, B1 and C1 are the only
candidates. However, A5, B5, C5, C1, B1 and A1 can’t form a convex hexagon
since B1 is inside the polygon A5B5C5C1A1. So we can’t have point C5. In
other words, no convex hexagon will be formed by taking 3 points from the
same group. [See reviewer’s comment (16)]

Case 2: one from each group
In this case, O must be taken. However, point set of (5, 1) forms no convex
hexagon.

Case 3: two from the same group
WLOG, two points are chosen from G5. The 3 cases are considered below.
In these 3 cases, lines joining any two points from G5 divide the other points
into two parts. Since the lines joining any two points from both upper and
lower parts do not intersect the segment A5B5, we can consider either the
upper or lower part in each case. [See reviewer’s comment (17)]
(i) A5 and B5 are included

Let’s now consider the upper part first. By the result of Case 1, C5 can’t
be chosen. Then the points in groups 1, 2 and 5 without C5 form a point
set of the configuration (5, 3). None of the three lines (C1, B1), (B1, B2)
and (C1, B2) intersect the adjacent side of the pentagon 5B5C2A2A1. On
the other hand, (C1, B1) cuts opposite sides (B5, C2) and (A5, A1) which
are different from the other two (B1, B2) and (C1, B2). By Lemma 14,
they form no convex hexagon.
Next we consider the lower part. By case 1, we can’t take 3 points from
the same group.
For the lower part, we only need to consider the following 7 sets:
{A5, B5, O,A3, A4, B3, B4, C4}, {A5, B5, O,A3, A4, B3, B4, C3},
{A5, B5, O,A3, A4, B3, C4, C3}, {A5, B5, O,A3, A4, B4, C4, C3},
{A5, B5, O,B3, A4, B4, C4, C3}, {A5, B5, O,A3, B4, B3, C4, C3}
and {A5, B5, B3, A3, A4, B4, C4, C3}.
They are all of (5, 3). Obviously, none of the lines joining the possible
interior points B3, B4, C3 and C4 intersect two adjacent sides or all
intersect the same pair of opposite sides of its corresponding pentagon.
By Lemma 13, no convex hexagon can be formed.
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(ii) A5 and C5 are included
We first consider the points in the upper part with A5 and C5. All these
points form a point set of configuration (5, 2) and the line (B1, C1) does
not intersect any two adjacent sides of A1A2B2C5A5. By Lemma 13,
they cannot form any convex hexagon.
Next we consider the lower part. Since the sole difference of this case from
the lower part in Case 1 is that C2 is added, it is sufficient to prove the
situation when C2 is chosen. In this situation, points O cannot be chosen
as U(B5C5C2O) contains no point of the lower part. Thus we pick A5,
C5, C2 with two points from each group G3 and G4 to form a point set
of (5, 2). Again, none of the lines joining the possible interior points B3,
B4, C3 and C4 intersect two adjacent sides of its corresponding pentagon
formed. By Lemma 13, no convex hexagon can be formed.

(iii) B5 and C5 are included
In this case, two more points A2 and B2 are further added to the (ii). By
the results obtained in (i) and (ii), it is sufficient to prove the situation
when both B2 and C2 are chosen.
As U(B5C5B2C2) = {O,C4, A4, B4} and the line joining any two points in
the beam intersect B5C2, no convex hexagon can be formed by Theorem
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12. Conclusively, there are no convex hexagons can be found in Y .
Equivalently, we have proved that f(6) ≥ 16 mathematically.

For completeness, we are going to prove Theorem 17.

Theorem 17. If one more point is added to Y , a convex hexagon is formed.

Proof. For any point X added, it must fall into one of these four zones.

1. Outside A1A2A3A4A5

2. Inside A1A2A3A4A5 but outside B1B2B3B4B5

3. Inside B1B2B3B4B5 but outside C1C2C3C4C5

4. Inside C1C2C3C4C5

Case 1: When X is in zone 1
WLOG, assume X lies in beam B1B5 : A5A1. Then XA1B1C5B5A5 is a
convex hexagon.
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Case 2: When X is in zone 2
WLOG, assume X lies in the quadrilateral A1B1B5A5. Let ray [C1, B1)
and ray [C4, B5) intersect the segment A1A5 at Y1 and Y2 respectively. The
quadrilateral A1B1B5A5 can be further divided into 3 three regions:
(1) A1B1Y1, where A1X1B1C1C2B2 is a convex hexagon;
(2) B1B5Y2Y1, where X2B1C1OC4B5 is convex hexagon;
(3) A5B5Y2, where X3B5C4B4A4A5 is a convex hexagon.

Case 3: When X is in zone 3
WLOG, assume X lies in the quadrilateral B1C1C5B5. Let ray [C4, C5) cuts
segment B1B5 at Y1, ray [B2, C1) cuts ray [A1, B1) at Y2, and ray [A1, B1)
and segment C1C5 cut at Y3. B1C1 C5B5 can be divided into 5 regions:
(1) B5C5Y1, where X1C5C4B4A4B5 is convex;
(2) B1Y1C5, where X2B1B2C3C4C5 is convex;
(3) B1C5Y3, where A1B1X3C5B5A5 is convex;
(4) C1Y2Y3, where X4C1B2C3C4C5 is convex;
(5) B1C1Y2, where A1B1X5C1B2A2 is convex.

Case 4: When X is in the zone 4
WLOG, assume X lies in the triangle OC1C5. Let segment C1C5 and ray
[B5, C5) intersect the ray [C3, O) at Y1 and Y2 respectively. The triangle is
divided into 3 regions:
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(1) OY1C1, where X1C1C2B3C3O is a convex hexagon;
(2) OY2C5, where X2OC3C4B5C5 is a convex hexagon;
(3) Y1Y2C5, where A1B1X3C5B5A5 is a convex hexagon

Conclusively, if one more point is added to this point set, a convex hexagon will be
certainly formed. Hence the lower bound of g(6) is 17 i.e. g(6) ≥ 17.

6. Conclusion

We start our investigation on g(5) by drawing diagrams using Geometer’s Sketch-
pad, in the hope that we can figure out some patterns which may help our later
investigation on g(6). However we find that hundreds of diagrams are needed and
decided to read the research papers written by pioneers. After reading Erdő’s pa-
per, we admire his beautiful and simple proof on g(5) = 9 without diagram and
want to try on our own. Moreover, we accidentally discover an example which show
that g(5) > 8 without words. It inspire us to construct a similar proof of g(6) > 16.
Finally, an example of 16 points without any convex hexagon is successfully cre-
ated and confirmed by our computer program. As we think that such confirmation
is neither perfect nor elegant, we then try to prove the non-existence of convex
hexagons mathematically.

We are not satisfied with what we have done because the results and techniques
are confined to some particular positive integers and can’t be generalized. We then
turn our focus on the conjecture g(n) = 2n−2 + 1. After defining the greatest
positive integer f(n) points in general position in the plane contains no convex
n-gons, i.e. f(n) = g(n) − 1, we can easily deduce that f(n + 1) = 2f(n) based
on the conjecture. Then we try to construct a proof on f(7) ≥ 32 by pasting two
copies of our example demonstrating f(6) ≥ 16. We start the experiment by placing
two copies far away from each other with the slopes between any two points from
two copies tend to infinity in order to avoid any formation of convex heptagons by
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taking union of points in both copies. Unfortunately, we fail and then try to paste
these two copies in other ways such as compressing one set of points horizontally
while another vertically. We keep trying since we still believe that the conjecture
can be proved by building example of 2n points without convex (n + 2)-gons by
two blocks of 2n−1 points without convex (n + 1)-gons.

This competition certainly broadens our horizon on Mathematics. Before the com-
petition, none of us can imagine that geometrical problems can be solved in such
way. By reading the articles written by Mathematicians, we experience the beauty
and elegance of Mathematics. Also, the research challenges our patience. Unlike
Mathematical problems we face in college, such open problem is so challenging that
we do not have any confidence to solve the entire problem, so we have to learn
how to do our best. We have to be patient even we may find nothing during the
investigation. Though the paper is finished, we are not satisfied with our results
and still want to tackle the conjecture. So we will continue with the hope that we
may have some contributions one day.
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7. Appendix

1 . Computer Program
http://dl.dropbox.com/u/9210037/CHECK%20g%286%29-new%20version.c
[See reviewer’s comment (19)]

2 . Example of 16 points of configuration (5, 5, 5, 1)

3 . Alternative Proof of g(6) > 16
Now, we are going to prove that there exists a point set of 16 points without
convex hexagons i.e. f(6) > 16.

Let group Gi = {Ai, Bi, Ci}, where i = 1, 2, 3, 4, 5 and Y =
5⋃

i=1

Gi ∪ {0}.
We plan to prove that Y contains no convex hexagons by considering three
cases:
Case 1: 3 points from the same group,
Case 2 : 2 points from the same group and
Case 3 : 1 point from each group.

Case 1 3 points from a group
WLOG, let’s take Group 2 as an example. Then U(A2B2C2) ∩ Y =
{A3, B3, C3, C4}. So the only candidates are A3, B3C3. However, B3 lies
inside A2B2C2C3A3, no convex hexagon can be formed.
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Case 2 2 points from a group
Case 2.1 2 points from a group and 1 point from all other groups.

The point set form is of (5, 1) and hence contains no convex hexagon.
Case 2.2 2 points from each of two adjacent groups.

WLOG, let’s take group 1 and group 5 as an example.

(i) A1A5B5B1,
U(A1A5B5B1) ∩ Y = {C5}

(ii) A1A5C5C1,
U(A1A5C5C1) ∩ Y = {B5}

(iii) B1B5C5C1,
U(B1B5C5C1) ∩ Y = {A5}

(iv) A1A5B5C1,
U(A1A5B5C1) ∩ Y = {C5}
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(v) A5A1B1C5,
U(A5A1B1C5) ∩ Y = {B5}

(vi) A5B1C1C5,
U(A5B1C1C5) ∩ Y = {B5}

(vii) A1B5C5C1,
U(A1B5C5C1) ∩ Y = {A5}

(viii) A1B1C5B5,
U(A1B1C5B5) ∩ Y = {A5}

(ix) A5B1C1B5,
U(A5B1C1B5) ∩ Y = {C5}

Since the beam union of the quadrilaterals formed in (i)-(ix) by any
two points from each of two adjacent groups G1 and G5 consists of
only one element, therefore no convex hexagon can be formed.

Case 2.3 2 points from each of two opposite groups
WLOG, let’s take group 2 and group 4 as example.
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(i) B2C4B4C2.
U(B2C4B4C2) ∩ Y = {A1, B1, C1, O}.
By case 2.2, O must be taken. But O
lies inside B2C2B4C4A1, B2C2B4C4B1

and B2C2B4C4C1. Therefore no convex
hexagon is formed.

(ii) A2A4B4C2.
U(A2A4B4C2) ∩ Y = {A3, B3, C3}.
By case 2.2, only one of {A3, B3, C3} can
be taken and hence no convex hexagon
is formed.

(iii) A2A4C4B2.
U(A2A4C4B2)∩Y = {A3, B3, C3} which
is the same as (ii) and hence no convex
hexagon is formed.

(iv) A4C4B2C2.
U(A4C4B2C2) ∩ Y = {C1, O}. But
{A4, C4, B2, C2, C1, O} is of (5,1). Hence
no convex hexagon is formed.

(v) A2B4C2C4.
As A2 /∈ U(B4C2C4)
therefore {A2, B4, C2, C4} cannot form
a convex quadrilateral. By case 2.2, O
must be chosen. However point set of
(5,1) contains no convex hexagons.

(vi) A2B2C4B4,
U(A2B2C4B4) ∩ Y = {A3, B3, C3} as
same as (ii). Hence no convex hexagon
is formed.
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(vii) A2B2C4B4.
As U(A2B2C4B4) ∩ Y = O and there
are only 5 points, no convex hexagon is
formed.

(viii) A2B4B2C2.
As U(A2B4B2C2) ∩ Y = O and there
are only 5 points, no convex hexagon is
formed.

(ix) A2A4C2C4.
As A2 /∈ U(B4C2C4), therefore points
{A2, A4, C2, C4} cannot form a convex
quadrilateral. By case 2.2, O must be
chosen. However point set of (5,1) con-
tains no convex hexagons.

Since the beam union of the quadrilaterals formed in (i)-(ix) by any
two points from each of two opposite groups G2 and G4 consists of
only one element, therefore no convex hexagon can be formed.

Case 2.4 2 points from a group with or without O.



292 H.M. WONG, M.H. LEUNG, W.Y. WONG, H.K. HUI, T.C. MAK

By cases 2.2 and 2.3, the remaining 3 points come from 3 or 4 other
groups. Obviously, the point sets are of (5,1) and hence there is no
convex hexagon can be formed.

Case 3 1 point from each group
In this case, O must be included and form a point set of (5,1) which
contains no convex hexagon. Conclusively, this point set of 16 points
consists no convex hexagon and hence f(6) ≥ 16 and g(6) ≥ 17.
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Reviewer’s Comments

This paper investigates the Erdős-Szekeres’conjecture, which gives a relationship
between the number of points in a general-position point set and its largest convex
polygon. More precisely, the conjecture states that the smallest number g(n) of
points for which any general position arrangement contains a convex subset of n
points is 2n−2 + 1. The general case remains unproven. The first non-trivial case
starts from n = 4, and it is now known that the conjecture is true up to n = 6.

This paper gives the proof of the fact that g(4) = 5 and g(5) = 9, i.e. the fact
that a set of 5 (respectively 9) points in general position guarantees the existence
of a convex quadrilateral (respectively pentagon) whose vertices are from this set.
They also showed that g(6) ≥ 17 by giving a 16-point configuration which does not
contain any convex hexagon. Finally, they showed that in their example, a convex
hexagon will be created by adding one more point (which is of course true because
g(6) = 17).

They make extensive use of the (x, y, z) configuration to classify the distribution of
points. E.g. a (4, 3, 1) configuration consists of 8 points, in which 4 points form a
convex quadratical, whose interior contains a triangle formed by 3 of the remaining
points, and the remaining one point is contained in the interior of this triangle.

Here are my comments and suggestions about both the mathematics and the style
of this paper.

1. The reviewer has comments on the wordings, which have been amended in
this paper.

2. Overall, the reviewer feels that some of their arguments rely purely on geo-
metric intuition or a particular way in which they draw a figure and may not
be rigorous (or general) enough.

For example, in Case 1 of the proof of Lemma 9, they claimed that “More-
over, A2 ∈ EB3 : DB2” (without proof). Actually, renaming B2 ↔ B3 and
A2 ↔ A3 will not affect their assumptions but now A2 6∈ EB3 : DB2 but
A3 ∈ EB3 : DB2. So at least their consideration seems to be incomplete at
times. There are quite a number of such instances and it is not easy to know
how many cases they have missed.

3. The description below is problematic:
”... for any integer n ≥ 3 , there exists a smallest positive integer g(n) points
in general position in the plane containing n points that are the vertices of a
convex n-gon”
It can be changed to, for example:
“... for any integer n ≥ 3, there exists a smallest number g(n) such that for
any g(n) points in general position on the plane, there is a subset of n points
that form the vertices of a convex polygon.”
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4. They first define Γ(X) as the convex boundary of a set X of points in the
plane. The definition is okay. However, they go on to talk about Γ(X),
Γ(Γ(X)) and so on, and then claim that the “configuration” of X is defined
as the number of Γ(X), Γ(Γ(X)), and so on. This is not the correct way
to define “configuration”. In fact, it is obvious that Γ(X) = Γ(Γ(X)) =
Γ(Γ(Γ(X))) = · · · .

If they insist on using Γ to define configuration, then it can be defined like
this:
Take X1 = X, and let y1 = |Γ(X1)| (the number of points in Γ(X1)). Now
inductively define Xi+1 = Xi \ Γ(Xi) and take yi+1 = |Γ(Xi+1)|. It is clear
that yi must terminate (i.e. become 0 eventually). We then say X is of
(y1, y2, · · · )-configuration.

5. It is suggested that they illustrate the concepts in Definition 4, 5, 6, 7 by
some figures. E.g. Definition 7 can be illustrated as follows:

It is even better to mention that, for example, adding a point at any
position inside AB : CD will produce a convex pentagon whose vertices are
A, B, C, D and the added point.

6. As mentioned before, their notions of Γ(X), Γ(Γ(X)) do not make sense. So
their statement “B1, B2, B2 ∈ Γ(Γ(X)), D,E ∈ Γ(Γ(Γ(X))) ” is wrong. The
first sentence should be deleted. They can say something like:
“Suppose D,E is enclosed in ∆B1B2B3 and ∆B1B2B3 is enclosed in
∆A1A2A3.”

7. The reviewer would suggest citing the original paper:
“Erdős, P.; Szekeres, G. (1961), ”On some extremum problems in elementary
geometry”, Ann. Univ. Sci. Budapest. Eőtvős Sect. Math., 34: 5362.
Reprinted in: Erdős, P.”
rather than citing a survey paper for this result.

8. p. 275, Case 1. The way they wrote the argument is confusing, especially the
first paragraph (the sentence D,E 6∈ AiAj : BjBi is very confusing, as it is
not always true). This case should be rewritten, for example, as follows:

“If either D or E lies in AiAj : BjBi, for some distinct i, j then it’s done
as D or E will then form a convex pentagon with Ai, Aj , Bj and Bi.
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So we assume otherwise. Then we can without loss of generality assume
that DE cuts B1B2 and B1B3. Then by the argument in Theorem 1, we can
assume (by renaming D ↔ E is necessary) DEB2B3 is a convex quadrilateral.
Then we have either A2 ∈ DE : B2B3 of A3 ∈ DE : B2B3. i.e. either
DEB2A2B3 or DEB2A3B3 is a convex pentagon.”

9. The problem is the same as Case 1. At least the first two paragraphs should
be completely rewritten, for example, as follows:

“We can assume D,E 6∈ AiAj : BjBi for (i, j) = (2, 3) or (i, j) = (3, 2) for
otherwise D or E will then form a convex pentagon with Ai, Aj , Bj and Bi.

So suppose otherwise. Assume first that DE cuts B1B3 and B1B2.”
10. Same problem as before. Their notions Γ(Γ(X)) and Γ(Γ(Γ(X))) do not make

sense. The first two sentence should be deleted (and the reviewer don’t know
what the first sentence means anyway).

11. The same problem as Case 1 and Case 2 of Lemma 8: E 6∈ AiAj : BjBi is
in general not true and so the first paragraph in these two cases should be
rewritten (see (8), (9)).

12. They only proved the case where DE cuts B2B3 and A2A3, and then claimed
that the other cases can be proved similarly. The reviewer don’t think the
other cases are “similar”. Take for example, in the following figure, DE cuts
B1B3 (and also A3B3 and A1B2), they did not indicate how to find the convex
pentagon (although it can be done: EB1A3DB3 is convex). The remaining
cases are not entirely symmetric to the first case.

13. There is no proof that the given figures ((3, 4, 1) and (4, 4)) contains no convex
pentagon. It is very hard to verify their claim by inspection as there are 56
possible pentagons.

14. The algorithm as described in the later part cannot be used to detect a convex
n-gon. In fact, the slope of LAi being strictly decreasing and the slope of LBi

being strictly increasing is never sufficient to prove the n-gon is convex, as
can be seen in the following figure:



296 H.M. WONG, M.H. LEUNG, W.Y. WONG, H.K. HUI, T.C. MAK

The correct way is to verify that the slope pi = Ai−1Ai being decreasing
and the slope qi = Bi−1Bi being increasing. As the reviewer does not have
access to their computer program, the reviewer cannot determine whether
their implementation is correct or not.

15. Again Γ(Γ(X)) = {B1, B2, B3} does not make sense. Delete this sentence
and replace it by: A1A2A3A4A5 forms a convex pentagon which encloses the
triangle ∆B1B2B3.

Also, the sentence inside the last bracket is not the contrapositive statement
of Lemma 14. Replace it by:
“Equivalently, if none of the lines BiBj cuts two adjacent sides of the outer
pentagon and not all of the lines BiBj cut the same pair of opposite sides of
the outer pentagon, then X contains on convex hexagon.”

16. The reviewer thinks C2 should actually be B2. Since the reviewer could not
download their program, the reviewer plotted it himself (using their descrip-
tion on p. 277 and 278) as shown (the coordinates on p. 287 are not exact
anyway).

The quadrilateral A5C5C2B5 is not even convex.

However, the quadrilateral A5C5B2B5 is convex.
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So any C2 here should be changed to B2. They also did not explain why
they only consider “C2” (which should be B2), A1, B1 and C1. In fact, the
reviewer also found that A2 ∈ U(A5B5C5) but they seemed to have ignored
this point.

17. The reviewer does not understand the following sentence:
“Since the lines joining any two points from both upper and lower parts do
not intersect the segment A5B5, we can consider either the upper or lower
part in each case.”
In fact, it seems that in each of the subcases ((i), (ii) and (iii)), the “upper
part” and the “lower part” are different. Perhaps what they mean is:
“In each of the following subcases, by Theorem 12 or Lemma 13, we only
consider the possibility of forming a convex hexagon by adjoining either only
points in the upper part or points in the lower part, and the upper and lower
part depend on each subcase.”

18. The reference [3], which is the Wikipedia article about the “Happy Ending
problem”, is not cited in the paper, although it can be relevant. The reviewer
thinks it can be cited, for example, in the introduction.

Also, the reviewer think the References should be moved to the end of the
paper, after the appendix.

19. The link of the computer program is dead.

Overall, the reviewer thinks their results are correct in general (after all, they want
to find alternative proofs of some known results). However, some of their arguments
seem to rely purely on geometric intuition or a particular way in which they draw
a figure, and seem to be a bit ad hoc. The reviewer think some of their arguments
are not very complete or rigorous. The reviewer also have doubts about how their
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computer program is written (see (14)). Since the reviewer cannot download their
program, the reviewer cannot verify the correctness.


