Hang Lung Mathematics Awards 2010

Honorable Mention

The Erdős-Szekeres Conjecture ("Happy End Problem")

Team Members: Ho Ming Wong, Man Han Leung, Wing Yee Wong, Hon Ka Hui, Tin Chak Mak
Teacher: Mr. Chi Keung Lai
School: Shatin Pui Ying College

THE ERDŐS-SZEKERES CONJECTURE ("HAPPY END PROBLEM")

TEAM MEMBERS
Ho Ming Wong, Man Han Leung, Wing Yee Wong, Hon Ka Hui, Tin Chak Mak

TEACHER
Mr. Chi Keung Lai

SCHOOL
Shatin Pui Ying College

Abstract

The survey [1] conducted by W. Morris and V. Soltan mentioned that in 1935 Erdős-Szekeres proved that for any integer $n \geq 3$, there exists a smallest positive integer $g(n)$ points in general position in the plane containing n points that are the vertices of a convex n-gon. [See reviewer's comment (3)] They also conjectured that $g(n)=2^{n-2}+1$ for any integer $n \geq 3$. The conjecture is far from being solved for decades though many mathematicians had tried their very best on it. This paper is to investigate the Erdős-Szekeres conjecture by studying the greatest positive integer $f(n)$ points in general position in the plane which contains no convex n-gons. We successfully prove the cases when $n=4,5$ i.e. $f(4)=4$ and $f(5)=8$. For $n=6$, we arrive at the conclusion that $f(6) \geq 16$ by creating an example of 16 points containing no convex hexagons. Moreover, we excitedly find an elegant proof for this example that one more point added to it will certainly give birth to a convex hexagon.

1. Background

The Erdős-Szekeres conjecture also known as the "Happy End Problem", has been investigated by mathematicians for several decades. The conjecture is not yet been proved, but some progress is made.

Define $g(n)$ the minimal possible M for a set of M points in general position, where no three points are collinear, must contain a convex n-gon. The conjecture states that $g(n)=2^{n-2}+1$.

It has been proved that the equality holds for $n=3,4,5$ mathematically and $g(6)=17$ has been proved by a computer search [2] in 2006 .

Other researches [1] [See reviewer's commnet (7)] show that $g(n)$ is a finite number for all n, and $g(n)$ lies between a certain interval. The most recent interval of $g(n)$ obtained in [1] is

$$
2^{n-2}+1 \leq g(n) \leq\binom{ 2 n-5}{n-3}+2
$$

2. Introduction

Throughout this paper, all point set are assumed to be in general position, where no three points are collinear.

Through this investigation, we know that it is very hard to prove the conjecture by exhaustion since there are so many possibilities. Therefore, we try to find out some properties of the point sets forming no convex quadrilaterals, pentagons, hexagons and even heptagons. We carry out our investigation in three stages.

Definition 1. A polygon $P_{1} P_{2} \ldots P_{n}$ is convex iff it contains all line segments $P_{i} P_{j}$ connecting any two vertices i.e. for any distinct $i, j, P_{i} P_{j} \subset P_{1} P_{2} \ldots P_{n}$.

Definition 2. The Convex Boundary $\Gamma(X)$ of a point set X is the subset of X whose points are vertices of a convex polygon containing all the remaining points in X.

By this concept, we can give the Configuration of any point set X by taking the convex boundary $\Gamma(X)$ of $X, \Gamma(\Gamma(X)), \ldots, \Gamma(\Gamma(\Gamma(\ldots(X))))$ and their corresponding numbers of elements in order. [See reviewer's comment (4)]
For example, the configuration of the point set on the right is $(6,4)$. Also we can redefine the convex polygons in terms of convex boundary. Let $X=\left\{P_{1}, P_{2}, \ldots P_{n}\right\}$. A polygon $P_{1} P_{2} \ldots P_{n}$ is convex iff P_{i} lies outside the convex polygon formed by the points in $\Gamma\left(X \backslash P_{i}\right)$ for any $i=1,2, \ldots n$.
3. $g(4)=5$

In this stage, we investigate the point sets without convex quadrilaterals. By definition, $g(3)=3$ obviously. We are going to prove the Theorem 3 .

Theorem 3. Any five points must contain a convex quadrilateral, i.e. $g(4)=5$.

Proof. Since all the point sets of configuration $(3,1)$ form no convex quadrilateral, we consider point sets of configuration of $(3,2)$ i.e. with two points D, E inside a triangle $A B C$. $D E$ must cut two of the sides of $A B C$. WLOG, assume that $D E$ cuts $A B$ and $A C$ and then B, D, E and C forms a convex quadrilateral. Therefore $g(4)=5$.

4. $g(5)=9$

In this stage, we start with a quadrilateral and use a software called Geometer's Sketchpad to add points one by one. We then shade off those regions giving a convex pentagon and find that no point can be further added to any eight points in general position. Moreover, we find an example of eight points without convex pentagons in [1]. So we are curious whether the example is unique and try out our own proof to it. Now we need some definitions and lemmas.

Definition 4. The ray $[A, B)$ is defined as the set containing all points lying on the line segment $A B$ or $A B$ produced.

Definition 5. The line (A, B) is defined as the line joining the points A and B.
Definition 6. For any three points A, B, C, beam $A: B C$ denotes the set of all points in the interior of the region bounded by the segment $B C, A B$ produced and AC produced.

Definition 7. For a convex quadrilateral $A B C D$, beam $A B: C D$ denotes the set of all points in the interior of the region bounded by the segment $C D, A D$ produced and $B C$ produced.
[See reviewer's commnet (5)]
Lemma 8. Any eight points of $(3,3,2)$ must contain a convex pentagon.

Proof. [See reviewer's commnet (6)] Let $X=\left\{A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}, D, E\right\}$ be a set of any 8 points, where $A_{1}, A_{2}, A_{3} \in \Gamma(X), B_{1}, B_{2}, B_{3} \in \Gamma(\Gamma(X))$ and $D, E \in$ $\Gamma(\Gamma(\Gamma(X)))$. The relative positions of $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}$ can be divided in the 3 cases as shown below. We are now going to prove the lemma case by case.

Case 1 Since D and E are inside $\triangle B_{1} B_{2} B_{3}, D, E \notin A_{i} A_{j}: B_{j} B_{i}$ for any distinct i, j for otherwise D or E will form a convex pentagon with A_{i}, A_{j}, B_{j} and B_{i}. [See reviewer's comment (8)]
WLOG, let $D E$ cuts $B_{1} B_{3}$ and $B_{1} B_{2}$.
By the similar argument in Theorem $3, D, E, B_{2}$ and B_{3} form a convex quadrilateral. Moreover, $A_{2} \in D E: B_{2} B_{3}$ or $E D: B_{2} B_{3}$ and therefore D, E, B_{2}, A_{2} and B_{3} form a convex pentagon.
Case 2 [See reviewer's comment (9)] Since D and E are inside $\triangle B_{1} B_{2} B_{3}, D, E \notin$ $A_{i} A_{j}: B_{j} B_{i}$, where (i, j) is neither $(2,3)$ nor $(3,2)$ for otherwise D or E will

Case 1

Case 2

Case 3

form a convex pentagon with A_{i}, A_{j}, B_{j} and B_{i}.
Assume that $D E$ cuts $B_{1} B_{3}$ and $B_{1} B_{2}$.
By the argument in Theorem $3, D, E, B_{2}$ and B_{3} form a convex quadrilateral. Moreover, $A_{2} \in D E: B_{2} B_{3}$ or $E D: B_{2} B_{3}$ and therefore D, E, B_{2}, A_{2} and B_{3} form a convex pentagon. The other cases can be proved similarly.

Case 3 WLOG, let $D E$ cuts $B_{1} B_{3}$ and $B_{1} B_{2}$.
By the argument in Theorem $3, D, E, B_{2}$ and B_{3} form a convex quadrilateral. Moreover, $A_{1} \in D E: B_{2} B_{3}$ or $E D: B_{2} B_{3}$ and therefore D, E, B_{2}, A_{1} and B_{3} form a convex pentagon.

From the above deduction, we can conclude that the case $(3,3,2)$ must form at least one convex pentagon.

Lemma 9. Any eight points of $(4,3,1)$ must contain a convex pentagon.

Proof. [See reviewer's comment (10)] For those point set X of $(4,3,1)$, we can imagine that one of the point A_{4} are originally in $\Gamma(\Gamma(\Gamma(X)))$ and X becomes

$(3,3,2)$. Similar to the proof of Lemma 8 , let $X=\left\{A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}, D, E\right\}$ be a set of any 8 points, where $D, A_{1}, A_{2}, A_{3} \in H(X), B_{1}, B_{2}, B_{3} \in \Gamma(\Gamma(X))$ and $E \in \Gamma(\Gamma(\Gamma(X)))$. The relative positions of $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}$ can be divided in the 3 cases as shown below. We are now going to prove the lemma case by case.

Case 1

Case 2

Case 3

Case 1 [See reviewer's comment (11)] Since E is inside $\triangle B_{1} B_{2} B_{3}, E \notin A_{i} A_{j}: B_{j} B_{i}$ for any distinct i, j for otherwise E will form a convex pentagon with A_{i}, A_{j}, B_{j} and B_{i}.
WLOG, let segment $D E$ cuts segment $B_{2} B_{3}$. Thus, D, E, B_{2} and B_{3} form a convex quadrilateral. Moreover, $A_{2} \in E B_{3}: D B_{2}$ and therefore D, A_{2}, B_{2}, E and B_{3} form a convex pentagon.

Case 2 [See reviewer's comment (12)] Since E is inside $\triangle B_{1} B_{2} B_{3}, E \notin A_{i} A_{j}: B_{j} B_{i}$, where (i, j) is neither $(2,3)$ nor $(3,2)$ for otherwise E will form a convex pentagon with A_{i}, A_{j}, B_{j} and B_{i}.
Assume that segment $D E$ cuts segments $B_{2} B_{3}$ and $A_{2} B_{3}$. Thus, D, E, B_{2} and
B_{3} form a convex quadrilateral. Moreover, $A_{2} \in E B_{3}: D B_{2}$ and therefore D, A_{2}, B_{2}, E and B_{3} form a convex pentagon. The other cases can be proved similarly.

Case 3 WLOG, let segment $D E$ cuts segment $B_{2} B_{3}$.
Thus, D, E, B_{2} and B_{3} form a convex quadrilateral. Moreover, $A_{1} \in D B_{2}$: $E B_{3}$ and therefore D, B_{2}, E, A_{1} and B_{3} form a convex pentagon.

From the above deduction, we can conclude that the case $(4,3,1)$ must form at least one convex pentagon.

Now we shall apply these two lemmas to prove Theorem 10.
Theorem 10. Any nine points must contain convex pentagons, i.e. $g(5)=9$.

Proof. By the concept of convex boundary, the configuration of any 8 points containing no convex pentagons is either of $(3,3,2),(4,3,1),(3,4,1)$ or $(4,4)$. We now investigate them one by one. By Lemma 8 and 9 , all point sets of $(3,3,2)$ and $(4,3,1)$ have at least one convex pentagon. The remaining point sets are of $(3,4,1)$ and $(4,4)$. We have found two examples of $(3,4,1)$ and $(4,4)$ without convex pentagons. [See reviewer's comment (13)]

By the examples, we get $f(5) \geq 8$.
Now if one more point is added to the point set of $(3,4,1)$, it becomes a point set of either $(3,4,2),(3,5,1)$ or $(4,4,1)$ which contains convex pentagons by Lammas 8 and 9. Lastly, if one more point is added to $(4,4)$, it becomes either $(5,4),(4,5)$ or $(4,4,1)$ and hence contains convex pentagons. Conclusively, any nine points must contain convex pentagons, i.e. $f(5)=8$ and $g(5)=9$.

5. $f(6) \geq 16$

In this stage, we have study some papers in which we can't find any example of 16 points without convex hexagons in the literature, so we start to find one on our own by investigating the properties of convex polygon. We surprisingly find an example Y of configuration $(5,5,5,1)$ (Appendix 2). We then write a computer program (Appendix 1) for checking if there is any convex hexagon by exhaustion. Luckily, there is no convex hexagon in the point set. Finally, we give two mathematical proofs that Y contains no convex hexagon. That means we succeed to prove that $f(6) \geq 16$ and $g(6) \geq 17$ mathematically. For completeness, we further prove that if one point is added to the Y, at least one convex hexagon will be formed.

Algorithm of our computer program

[See reviewers' comment (14)] We are now going to explain the algorithm of our computer program which is inspired by the definition of caps and cups in [1]. For any point set $\left\{P_{i}\right\}_{i=1}^{n}$ in a rectangular plane, we, WLOG, may assume that there are one leftmost and one rightmost point L and R. The line segment $L R$ then may divides other P_{i} 's into two groups: one above $L R$ and one below $L R$. Rename those P_{i} 's above (respectively, below) $L R$ by $A_{1}, A_{2}, \ldots, A_{k}$ (respectively, $B_{1}, B_{2}, \ldots, B_{n-k-2}$) with their x-coordinates in ascending order for some k. Let $L=A_{0}$ and $R=A_{k+1}=B_{n-k-1}$. $\quad P_{i}$'s form a convex n-gon if and only if
$\left\{A_{0}, A_{1}, A_{2}, \ldots, A_{k}, A_{k+1}\right\}$ form a $(k+2)$-cap and $\left\{A_{0}, B_{1}, B_{2}, \ldots, B_{n-k-2}\right.$, $\left.B_{n-k-1}\right\}$ form a $(n-k)$-cup or $\left\{P_{i}\right\}_{i=1}^{n}$ form an n-cap or n-cup, i.e. there exists $k \in\{1,2,3, \ldots, n\}$ such that the slopes of $L A_{i}$'s are strictly decreasing and that of $L B_{i}$'s are strictly increasing. By the algorithm we can pick any 6 points out of 16 points in general position for checking. There are totally 8008 trials.

Construction of 16 points without convex hexagons

Now we try to construct an example Y of 16 points of $(5,5,5,1)$ containing no convex hexagon. The figure on the right consists of 3 concentric regular pentagons with different sizes and their centre O (Appendix 2). We first plot the origin O and A_{1}. Then we plot B_{1} and C_{1} which are slightly above $O A_{1}$ such that $A_{1} B_{1} C_{1}$ form a 3-cup, $A_{1} B_{1} O$ and $A_{1} C_{1} O$ form 3-caps. Finally we rotate $O C_{1} B_{1} A_{1}$ clockwise by 72° each time to obtain $O C_{i} B_{i} A_{i}$, where $i=2,3,4,5$. So we have 16 points on the plane. We use our computer program for preliminary check and are glad to know that there is no convex hexagon at all. We then start to prove that the figure contains no convex hexagons. We find two different proofs, one by configuration and the other by union of beams (Appendix 3).

Lemma 11. Let $Q_{1} Q_{2} \ldots Q_{m}$ be a convex m-gon and $P_{1}, P_{2} \in Q_{1} Q_{4}: Q_{3} Q_{2}$. If the line $\left(P_{1}, P_{2}\right)$ intersects the line segment $Q_{2} Q_{3}$, then $P_{1}, P_{2}, Q_{1}, Q_{2}, \ldots$ and Q_{m} can't form a convex $(m+2)$-gon.

Proof. Since $P_{1} P_{2}$ is not parallel to $Q_{2} Q_{3}$, then one of them say P_{2} is closer to $Q_{2} Q_{3}$, then P_{2} lies inside the polygon $Q_{1} Q_{2} P_{1} \ldots Q_{m}$ and hence $P_{1}, P_{2}, Q_{1}, Q_{2}$, \ldots and Q_{m} can't form a convex $(m+2)$-gon.

By Lemma 11, we easily get Theorem 12 and Lemma 13.
Theorem 12. Let $Q_{1} Q_{2} \ldots Q_{m}$ be a convex m-gon and $\left\{P_{1}, P_{2}, \ldots, P_{n}\right\} \subset Q_{1} Q_{4}$: $Q_{3} Q_{2}$. If all the lines $\left(P_{i}, P_{j}\right)$ intersect the line segment $Q_{2} Q_{3}$ for any distinct $i, j=1,2, \ldots n$, then $\left\{Q_{1}, Q_{2}, \ldots, Q_{m}\right\}$ form no convex $(m+2)$-gon with any two P_{i} 's.

Lemma 13. Any point set of $(5,2)$ containing a convex hexagon if and only if the line joining the points inside the pentagon intersect two adjacent sides of the pentagon.

Lemma 14. Let $X=\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, B_{1}, B_{2}, B_{3}\right\}$ be a point set of configuration $(5,3)$, where $\Gamma(X)=\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ and $\Gamma(\Gamma(X))=\left\{B_{1}, B_{2}, B_{3}\right\}$. If X contains a convex hexagon, then either at least one $B_{i} B_{j}$ cuts two adjacent sides of the pentagon $\Gamma(X)$ or all the three lines $\left(B_{1}, B_{2}\right),\left(B_{3}, B_{2}\right)$ and $\left(B_{1}, B_{3}\right)$ cut the same pair of opposite sides of the pentagon $\Gamma(X)$. (equivalently, if one of the lines joining the vertices of the inner triangle neither cuts the two adjacent sides of the outer pentagon nor all lines cut the same pair of opposite sides of the pentagon, then X contains no convex hexagon.) [See reviewer's comment (15)]

Proof. If X contains a convex hexagon, then its vertices of the hexagon are either from (i) $4 A_{i}$'s and $2 B_{i}$'s or (ii) $3 A_{i}$'s and $3 B_{i}$'s.
(i) $4 A_{i}$'s and $2 B_{i}$'s

It implies that B_{i} and B_{j} are contained in the beam $A_{1} A_{5}: A_{4} A_{2}$ and hence $B_{i} B_{j}$ cuts two adjacent sides $A_{2} A_{3}$ and $A_{4} A_{3}$.
(ii) $3 A_{i}$'s and $3 B_{i}$'s

WLOG., it implies that $\left(B_{1}, B_{2}\right),\left(B_{3}, B_{2}\right)$ and $\left(B_{1}, B_{3}\right)$ can't intersect $A_{5} A_{2}$ by Theorem 12 and hence can't intersect $A_{5} A_{1}$ and $A_{1} A_{2}$. So either all three lines $\left(B_{1}, B_{2}\right),\left(B_{3}, B_{2}\right)$ and $\left(B_{1}, B_{3}\right)$ intersect the opposite sides $A_{2} A_{3}$ and $A_{4} A_{5}$ or at least one of them intersect the adjacent sides $A_{2} A_{3}$ and $A_{4} A_{3}$ or $A_{4} A_{3}$ and $A_{4} A_{5}$.

Definition 15. Let $P_{1} P_{2} \ldots P_{n}$ be a convex n-gon.
Define the beam union $U\left(P_{1} P_{2} \ldots P_{n}\right)$ of the n-gon as below.
For $n \geq 4$,

$$
\begin{aligned}
U\left(P_{1} P_{2} \ldots P_{n}\right)= & \left(P_{n} P_{n-3}: P_{n-2} P_{n-1}\right) \cup\left(P_{n-1} P_{n-4}: P_{n-3} P_{n-2}\right) \cup \ldots \\
& \cup\left(P_{2} P_{n-1}: P_{n} P_{1}\right) \cup\left(P_{1} P_{n-2}: P_{n-1} P_{n}\right) .
\end{aligned}
$$

For $n=3, U\left(P_{1} P_{2} P_{3}\right)=\left(P_{3}: P_{2} P_{1}\right) \cup\left(P_{3} 2: P_{1} P_{3}\right) \cup\left(P_{1}: P_{3} P_{2}\right)$.

It can be easily seen that a point Q can join with a convex n-gon $P_{1} P_{2} \ldots P_{n}$ to form a convex $(n+1)$-gon iff $Q \in U\left(P_{1} P_{2} \ldots P_{n}\right)$.

Theorem 16. The lower bound of $f(6)$ is 16 i.e. $f(6) \geq 16$.

Proof. Let's define $G_{i}=\left\{A_{i}, B_{i}, C_{i}\right\}$, then Y is the union of G_{i} 's and $\{O\}$. We shall prove Theorem 16 by showing that the point set Y does not contains a convex hexagon.
We started to choose any six points in Y. Among these six points, there are three cases: (1) three points from the same group, i.e. G_{i} for some $i,(2)$ one point from each group or (3) two points from the same group.

Case 1: three from the same group
WLOG, we chose the point A_{5}, B_{5} and C_{5}, point C_{2} cannot be chosen as $U\left(A_{5} C_{5} C_{2} B_{5}\right)$ contains no point of Y, then A_{1}, B_{1} and C_{1} are the only candidates. However, $A_{5}, B_{5}, C_{5}, C_{1}, B_{1}$ and A_{1} can't form a convex hexagon since B_{1} is inside the polygon $A_{5} B_{5} C_{5} C_{1} A_{1}$. So we can't have point C_{5}. In other words, no convex hexagon will be formed by taking 3 points from the same group. [See reviewer's comment (16)]
Case 2: one from each group
In this case, O must be taken. However, point set of $(5,1)$ forms no convex hexagon.
Case 3: two from the same group
WLOG, two points are chosen from G_{5}. The 3 cases are considered below.
In these 3 cases, lines joining any two points from G_{5} divide the other points into two parts. Since the lines joining any two points from both upper and lower parts do not intersect the segment $A_{5} B_{5}$, we can consider either the upper or lower part in each case. [See reviewer's comment (17)]
(i) A_{5} and B_{5} are included

Let's now consider the upper part first. By the result of Case $1, C_{5}$ can't be chosen. Then the points in groups 1,2 and 5 without C_{5} form a point set of the configuration $(5,3)$. None of the three lines $\left(C_{1}, B_{1}\right),\left(B_{1}, B_{2}\right)$ and $\left(C_{1}, B_{2}\right)$ intersect the adjacent side of the pentagon ${ }_{5} B_{5} C_{2} A_{2} A_{1}$. On the other hand, $\left(C_{1}, B_{1}\right)$ cuts opposite sides $\left(B_{5}, C_{2}\right)$ and $\left(A_{5}, A_{1}\right)$ which are different from the other two $\left(B_{1}, B_{2}\right)$ and $\left(C_{1}, B_{2}\right)$. By Lemma 14, they form no convex hexagon.
Next we consider the lower part. By case 1, we can't take 3 points from the same group.
For the lower part, we only need to consider the following 7 sets:
$\left\{A_{5}, B_{5}, O, A_{3}, A_{4}, B_{3}, B_{4}, C_{4}\right\},\left\{A_{5}, B_{5}, O, A_{3}, A_{4}, B_{3}, B_{4}, C_{3}\right\}$,
$\left\{A_{5}, B_{5}, O, A_{3}, A_{4}, B_{3}, C_{4}, C_{3}\right\},\left\{A_{5}, B_{5}, O, A_{3}, A_{4}, B_{4}, C_{4}, C_{3}\right\}$,
$\left\{A_{5}, B_{5}, O, B_{3}, A_{4}, B_{4}, C_{4}, C_{3}\right\},\left\{A_{5}, B_{5}, O, A_{3}, B_{4}, B_{3}, C_{4}, C_{3}\right\}$
and $\left\{A_{5}, B_{5}, B_{3}, A_{3}, A_{4}, B_{4}, C_{4}, C_{3}\right\}$.
They are all of $(5,3)$. Obviously, none of the lines joining the possible interior points B_{3}, B_{4}, C_{3} and C_{4} intersect two adjacent sides or all intersect the same pair of opposite sides of its corresponding pentagon. By Lemma 13, no convex hexagon can be formed.

(ii) A_{5} and C_{5} are included

We first consider the points in the upper part with A_{5} and C_{5}. All these points form a point set of configuration $(5,2)$ and the line $\left(B_{1}, C_{1}\right)$ does not intersect any two adjacent sides of $A_{1} A_{2} B_{2} C_{5} A_{5}$. By Lemma 13, they cannot form any convex hexagon.
Next we consider the lower part. Since the sole difference of this case from the lower part in Case 1 is that C_{2} is added, it is sufficient to prove the situation when C_{2} is chosen. In this situation, points O cannot be chosen as $U\left(B_{5} C_{5} C_{2} O\right)$ contains no point of the lower part. Thus we pick A_{5}, C_{5}, C_{2} with two points from each group G_{3} and G_{4} to form a point set of $(5,2)$. Again, none of the lines joining the possible interior points B_{3}, B_{4}, C_{3} and C_{4} intersect two adjacent sides of its corresponding pentagon formed. By Lemma 13, no convex hexagon can be formed.

(iii) B_{5} and C_{5} are included

In this case, two more points A_{2} and B_{2} are further added to the (ii). By the results obtained in (i) and (ii), it is sufficient to prove the situation when both B_{2} and C_{2} are chosen.
As $U\left(B_{5} C_{5} B_{2} C_{2}\right)=\left\{O, C_{4}, A_{4}, B_{4}\right\}$ and the line joining any two points in the beam intersect $B_{5} C_{2}$, no convex hexagon can be formed by Theorem
12. Conclusively, there are no convex hexagons can be found in Y. Equivalently, we have proved that $f(6) \geq 16$ mathematically.

For completeness, we are going to prove Theorem 17.
Theorem 17. If one more point is added to Y, a convex hexagon is formed.

Proof. For any point X added, it must fall into one of these four zones.

1. Outside $A_{1} A_{2} A_{3} A_{4} A_{5}$
2. Inside $A_{1} A_{2} A_{3} A_{4} A_{5}$ but outside $B_{1} B_{2} B_{3} B_{4} B_{5}$
3. Inside $B_{1} B_{2} B_{3} B_{4} B_{5}$ but outside $C_{1} C_{2} C_{3} C_{4} C_{5}$
4. Inside $C_{1} C_{2} C_{3} C_{4} C_{5}$

Case 1: When X is in zone 1
WLOG, assume X lies in beam $B_{1} B_{5}: A_{5} A_{1}$. Then $X A_{1} B_{1} C_{5} B_{5} A_{5}$ is a convex hexagon.

Case 2: When X is in zone 2
WLOG, assume X lies in the quadrilateral $A_{1} B_{1} B_{5} A_{5}$. Let ray $\left[C_{1}, B_{1}\right.$) and ray $\left[C_{4}, B_{5}\right.$) intersect the segment $A_{1} A_{5}$ at Y_{1} and Y_{2} respectively. The quadrilateral $A_{1} B_{1} B_{5} A_{5}$ can be further divided into 3 three regions:
(1) $A_{1} B_{1} Y_{1}$, where $A_{1} X_{1} B_{1} C_{1} C_{2} B_{2}$ is a convex hexagon;
(2) $B_{1} B_{5} Y_{2} Y_{1}$, where $X_{2} B_{1} C_{1} O C_{4} B_{5}$ is convex hexagon;
(3) $A_{5} B_{5} Y_{2}$, where $X_{3} B_{5} C_{4} B_{4} A_{4} A_{5}$ is a convex hexagon.

Case 3: When X is in zone 3
WLOG, assume X lies in the quadrilateral $B_{1} C_{1} C_{5} B_{5}$. Let ray $\left[C_{4}, C_{5}\right.$) cuts segment $B_{1} B_{5}$ at Y_{1}, ray $\left[B_{2}, C_{1}\right)$ cuts ray $\left[A_{1}, B_{1}\right.$) at Y_{2}, and ray $\left[A_{1}, B_{1}\right.$) and segment $C_{1} C_{5}$ cut at $Y_{3} . B_{1} C_{1} C_{5} B_{5}$ can be divided into 5 regions:
(1) $B_{5} C_{5} Y_{1}$, where $X_{1} C_{5} C_{4} B_{4} A_{4} B_{5}$ is convex;
(2) $B_{1} Y_{1} C_{5}$, where $X_{2} B_{1} B_{2} C_{3} C_{4} C_{5}$ is convex;
(3) $B_{1} C_{5} Y_{3}$, where $A_{1} B_{1} X_{3} C_{5} B_{5} A_{5}$ is convex;
(4) $C_{1} Y_{2} Y_{3}$, where $X_{4} C_{1} B_{2} C_{3} C_{4} C_{5}$ is convex;
(5) $B_{1} C_{1} Y_{2}$, where $A_{1} B_{1} X_{5} C_{1} B_{2} A_{2}$ is convex.

Case 4: When X is in the zone 4
WLOG, assume X lies in the triangle $O C_{1} C_{5}$. Let segment $C_{1} C_{5}$ and ray $\left[B_{5}, C_{5}\right)$ intersect the ray $\left[C_{3}, O\right)$ at Y_{1} and Y_{2} respectively. The triangle is divided into 3 regions:
(1) $O Y_{1} C_{1}$, where $X_{1} C_{1} C_{2} B_{3} C_{3} O$ is a convex hexagon;
(2) $O Y_{2} C_{5}$, where $X_{2} O C_{3} C_{4} B_{5} C_{5}$ is a convex hexagon;
(3) $Y_{1} Y_{2} C_{5}$, where $A_{1} B_{1} X_{3} C_{5} B_{5} A_{5}$ is a convex hexagon

Conclusively, if one more point is added to this point set, a convex hexagon will be certainly formed. Hence the lower bound of $g(6)$ is 17 i.e. $g(6) \geq 17$.

6. Conclusion

We start our investigation on $g(5)$ by drawing diagrams using Geometer's Sketchpad, in the hope that we can figure out some patterns which may help our later investigation on $g(6)$. However we find that hundreds of diagrams are needed and decided to read the research papers written by pioneers. After reading Erdő's paper, we admire his beautiful and simple proof on $g(5)=9$ without diagram and want to try on our own. Moreover, we accidentally discover an example which show that $g(5)>8$ without words. It inspire us to construct a similar proof of $g(6)>16$. Finally, an example of 16 points without any convex hexagon is successfully created and confirmed by our computer program. As we think that such confirmation is neither perfect nor elegant, we then try to prove the non-existence of convex hexagons mathematically.

We are not satisfied with what we have done because the results and techniques are confined to some particular positive integers and can't be generalized. We then turn our focus on the conjecture $g(n)=2^{n-2}+1$. After defining the greatest positive integer $f(n)$ points in general position in the plane contains no convex n-gons, i.e. $f(n)=g(n)-1$, we can easily deduce that $f(n+1)=2 f(n)$ based on the conjecture. Then we try to construct a proof on $f(7) \geq 32$ by pasting two copies of our example demonstrating $f(6) \geq 16$. We start the experiment by placing two copies far away from each other with the slopes between any two points from two copies tend to infinity in order to avoid any formation of convex heptagons by
taking union of points in both copies. Unfortunately, we fail and then try to paste these two copies in other ways such as compressing one set of points horizontally while another vertically. We keep trying since we still believe that the conjecture can be proved by building example of $2 n$ points without convex $(n+2)$-gons by two blocks of 2^{n-1} points without convex $(n+1)$-gons.

This competition certainly broadens our horizon on Mathematics. Before the competition, none of us can imagine that geometrical problems can be solved in such way. By reading the articles written by Mathematicians, we experience the beauty and elegance of Mathematics. Also, the research challenges our patience. Unlike Mathematical problems we face in college, such open problem is so challenging that we do not have any confidence to solve the entire problem, so we have to learn how to do our best. We have to be patient even we may find nothing during the investigation. Though the paper is finished, we are not satisfied with our results and still want to tackle the conjecture. So we will continue with the hope that we may have some contributions one day.

REFERENCES

[1] W. Morris, and V. Soltan, The Erdos-Szekeres problem on points in convex position-a survey, Bull. Amer. Math. Soc. (N.S.) 37 (2000), no. 4, 437-458, DOI 10.1090/S0273-0979-00-00877-6. MR1779413
[2] G. Szekeres, and L. Peters, Computer solution to the 17-point Erdős-Szekeres problem, ANZIAM J. 48 (2006), no. 2, 151164, DOI 10.1017/S144618110000300X. MR2291511
[3] Wikipedia, Happy ending problem, http://en.wikipedia.org/wiki/Happy_end_problem
[See reviewer's comment (18)]

7. Appendix

1. Computer Program

http://dl.dropbox.com/u/9210037/CHECK\ g\(6\)-new\ version.c [See reviewer's comment (19)]

2 . Example of 16 points of configuration (5,5,5,1)

3. Alternative Proof of $g(6)>16$

Now, we are going to prove that there exists a point set of 16 points without convex hexagons i.e. $f(6)>16$.
Let group $G_{i}=\left\{A_{i}, B_{i}, C_{i}\right\}$, where $i=1,2,3,4,5$ and $Y=\bigcup_{i=1}^{5} G_{i} \cup\{0\}$.
We plan to prove that Y contains no convex hexagons by considering three cases:
Case 1: 3 points from the same group,
Case 2:2 points from the same group and
Case 3:1 point from each group.

Case 13 points from a group
WLOG, let's take Group 2 as an example. Then $U\left(A_{2} B_{2} C_{2}\right) \cap Y=$ $\left\{A_{3}, B_{3}, C_{3}, C_{4}\right\}$. So the only candidates are $A_{3}, B_{3} C_{3}$. However, B_{3} lies inside $A_{2} B_{2} C_{2} C_{3} A_{3}$, no convex hexagon can be formed.

Case 22 points from a group
Case 2.12 points from a group and 1 point from all other groups.
The point set form is of $(5,1)$ and hence contains no convex hexagon.
Case 2.22 points from each of two adjacent groups.
WLOG, let's take group 1 and group 5 as an example.

(i) $A_{1} A_{5} B_{5} B_{1}$,
$U\left(A_{1} A_{5} B_{5} B_{1}\right) \cap Y=\left\{C_{5}\right\}$

(iii) $B_{1} B_{5} C_{5} C_{1}$,
$U\left(B_{1} B_{5} C_{5} C_{1}\right) \cap Y=\left\{A_{5}\right\}$

(ii) $A_{1} A_{5} C_{5} C_{1}$,
$U\left(A_{1} A_{5} C_{5} C_{1}\right) \cap Y=\left\{B_{5}\right\}$

(iv) $A_{1} A_{5} B_{5} C_{1}$,
$U\left(A_{1} A_{5} B_{5} C_{1}\right) \cap Y=\left\{C_{5}\right\}$

(v) $A_{5} A_{1} B_{1} C_{5}$,
$U\left(A_{5} A_{1} B_{1} C_{5}\right) \cap Y=\left\{B_{5}\right\}$

(vi) $A_{5} B_{1} C_{1} C_{5}$, $U\left(A_{5} B_{1} C_{1} C_{5}\right) \cap Y=\left\{B_{5}\right\}$

(vii) $A_{1} B_{5} C_{5} C_{1}$,
$U\left(A_{1} B_{5} C_{5} C_{1}\right) \cap Y=\left\{A_{5}\right\}$

(viii) $A_{1} B_{1} C_{5} B_{5}$,
$U\left(A_{1} B_{1} C_{5} B_{5}\right) \cap Y=\left\{A_{5}\right\}$

$$
\begin{aligned}
& \text { (ix) } A_{5} B_{1} C_{1} B_{5}, \\
& U\left(A_{5} B_{1} C_{1} B_{5}\right) \cap Y=\left\{C_{5}\right\}
\end{aligned}
$$

Since the beam union of the quadrilaterals formed in (i)-(ix) by any two points from each of two adjacent groups G_{1} and G_{5} consists of only one element, therefore no convex hexagon can be formed.
Case 2.32 points from each of two opposite groups
WLOG, let's take group 2 and group 4 as example.

(i) $B_{2} C_{4} B_{4} C_{2}$.
$U\left(B_{2} C_{4} B_{4} C_{2}\right) \cap Y=\left\{A_{1}, B_{1}, C_{1}, O\right\}$.
By case 2.2, O must be taken. But O lies inside $B_{2} C_{2} B_{4} C_{4} A_{1}, B_{2} C_{2} B_{4} C_{4} B_{1}$ and $B_{2} C_{2} B_{4} C_{4} C_{1}$. Therefore no convex hexagon is formed.

(iii) $A_{2} A_{4} C_{4} B_{2}$.
$U\left(A_{2} A_{4} C_{4} B_{2}\right) \cap Y=\left\{A_{3}, B_{3}, C_{3}\right\}$ which is the same as (ii) and hence no convex hexagon is formed.

(v) $A_{2} B_{4} C_{2} C_{4}$.

As $A_{2} \notin U\left(B_{4} C_{2} C_{4}\right)$
therefore $\left\{A_{2}, B_{4}, C_{2}, C_{4}\right\}$ cannot form a convex quadrilateral. By case 2.2, O must be chosen. However point set of $(5,1)$ contains no convex hexagons.

(ii) $A_{2} A_{4} B_{4} C_{2}$.
$U\left(A_{2} A_{4} B_{4} C_{2}\right) \cap Y=\left\{A_{3}, B_{3}, C_{3}\right\}$.
By case 2.2 , only one of $\left\{A_{3}, B_{3}, C_{3}\right\}$ can be taken and hence no convex hexagon is formed.

(iv) $A_{4} C_{4} B_{2} C_{2}$.
$U\left(A_{4} C_{4} B_{2} C_{2}\right) \cap Y=\left\{C_{1}, O\right\}$. But $\left\{A_{4}, C_{4}, B_{2}, C_{2}, C_{1}, O\right\}$ is of (5,1). Hence no convex hexagon is formed.

(vi) $A_{2} B_{2} C_{4} B_{4}$,
$U\left(A_{2} B_{2} C_{4} B_{4}\right) \cap Y=\left\{A_{3}, B_{3}, C_{3}\right\}$ as same as (ii). Hence no convex hexagon is formed.

(vii) $A_{2} B_{2} C_{4} B_{4}$.

As $U\left(A_{2} B_{2} C_{4} B_{4}\right) \cap Y=O$ and there are only 5 points, no convex hexagon is formed.

(viii) $A_{2} B_{4} B_{2} C_{2}$.

As $U\left(A_{2} B_{4} B_{2} C_{2}\right) \cap Y=O$ and there are only 5 points, no convex hexagon is formed.

(ix) $A_{2} A_{4} C_{2} C_{4}$.

As $A_{2} \notin U\left(B_{4} C_{2} C_{4}\right)$, therefore points $\left\{A_{2}, A_{4}, C_{2}, C_{4}\right\}$ cannot form a convex quadrilateral. By case 2.2, O must be chosen. However point set of $(5,1)$ contains no convex hexagons.

Since the beam union of the quadrilaterals formed in (i)-(ix) by any two points from each of two opposite groups G_{2} and G_{4} consists of only one element, therefore no convex hexagon can be formed.
Case 2.42 points from a group with or without O.

By cases 2.2 and 2.3, the remaining 3 points come from 3 or 4 other groups. Obviously, the point sets are of $(5,1)$ and hence there is no convex hexagon can be formed.
Case 31 point from each group
In this case, O must be included and form a point set of $(5,1)$ which contains no convex hexagon. Conclusively, this point set of 16 points consists no convex hexagon and hence $f(6) \geq 16$ and $g(6) \geq 17$.

Reviewer's Comments

This paper investigates the Erdős-Szekeres'conjecture, which gives a relationship between the number of points in a general-position point set and its largest convex polygon. More precisely, the conjecture states that the smallest number $g(n)$ of points for which any general position arrangement contains a convex subset of n points is $2^{n-2}+1$. The general case remains unproven. The first non-trivial case starts from $n=4$, and it is now known that the conjecture is true up to $n=6$.

This paper gives the proof of the fact that $g(4)=5$ and $g(5)=9$, i.e. the fact that a set of 5 (respectively 9) points in general position guarantees the existence of a convex quadrilateral (respectively pentagon) whose vertices are from this set. They also showed that $g(6) \geq 17$ by giving a 16 -point configuration which does not contain any convex hexagon. Finally, they showed that in their example, a convex hexagon will be created by adding one more point (which is of course true because $g(6)=17)$.

They make extensive use of the (x, y, z) configuration to classify the distribution of points. E.g. a $(4,3,1)$ configuration consists of 8 points, in which 4 points form a convex quadratical, whose interior contains a triangle formed by 3 of the remaining points, and the remaining one point is contained in the interior of this triangle.

Here are my comments and suggestions about both the mathematics and the style of this paper.

1. The reviewer has comments on the wordings, which have been amended in this paper.
2. Overall, the reviewer feels that some of their arguments rely purely on geometric intuition or a particular way in which they draw a figure and may not be rigorous (or general) enough.

For example, in Case 1 of the proof of Lemma 9, they claimed that "Moreover, $A_{2} \in E B_{3}: D B_{2}$ " (without proof). Actually, renaming $B_{2} \leftrightarrow B_{3}$ and $A_{2} \leftrightarrow A_{3}$ will not affect their assumptions but now $A_{2} \notin E B_{3}: D B_{2}$ but $A_{3} \in E B_{3}: D B_{2}$. So at least their consideration seems to be incomplete at times. There are quite a number of such instances and it is not easy to know how many cases they have missed.
3. The description below is problematic:
"... for any integer $n \geq 3$, there exists a smallest positive integer $g(n)$ points in general position in the plane containing n points that are the vertices of a convex n-gon"
It can be changed to, for example:
"... for any integer $n \geq 3$, there exists a smallest number $g(n)$ such that for any $g(n)$ points in general position on the plane, there is a subset of n points that form the vertices of a convex polygon."
4. They first define $\Gamma(X)$ as the convex boundary of a set X of points in the plane. The definition is okay. However, they go on to talk about $\Gamma(X)$, $\Gamma(\Gamma(X))$ and so on, and then claim that the "configuration" of X is defined as the number of $\Gamma(X), \Gamma(\Gamma(X))$, and so on. This is not the correct way to define "configuration". In fact, it is obvious that $\Gamma(X)=\Gamma(\Gamma(X))=$ $\Gamma(\Gamma(\Gamma(X)))=\cdots$.

If they insist on using Γ to define configuration, then it can be defined like this:
Take $X_{1}=X$, and let $y_{1}=\left|\Gamma\left(X_{1}\right)\right|$ (the number of points in $\Gamma\left(X_{1}\right)$). Now inductively define $X_{i+1}=X_{i} \backslash \Gamma\left(X_{i}\right)$ and take $y_{i+1}=\left|\Gamma\left(X_{i+1}\right)\right|$. It is clear that y_{i} must terminate (i.e. become 0 eventually). We then say X is of $\left(y_{1}, y_{2}, \cdots\right)$-configuration.
5. It is suggested that they illustrate the concepts in Definition 4, 5, 6, 7 by some figures. E.g. Definition 7 can be illustrated as follows:

It is even better to mention that, for example, adding a point at any position inside $A B: C D$ will produce a convex pentagon whose vertices are A, B, C, D and the added point.
6. As mentioned before, their notions of $\Gamma(X), \Gamma(\Gamma(X))$ do not make sense. So their statement " $B_{1}, B_{2}, B_{2} \in \Gamma(\Gamma(X)), D, E \in \Gamma(\Gamma(\Gamma(X)))$ " is wrong. The first sentence should be deleted. They can say something like:
"Suppose D, E is enclosed in $\Delta B_{1} B_{2} B_{3}$ and $\Delta B_{1} B_{2} B_{3}$ is enclosed in $\Delta A_{1} A_{2} A_{3}$."
7. The reviewer would suggest citing the original paper:
"Erdős, P.; Szekeres, G. (1961), "On some extremum problems in elementary geometry", Ann. Univ. Sci. Budapest. Eőtvős Sect. Math., 34: 5362. Reprinted in: Erdős, P." rather than citing a survey paper for this result.
8. p. 275 , Case 1. The way they wrote the argument is confusing, especially the first paragraph (the sentence $D, E \notin A_{i} A_{j}: B_{j} B_{i}$ is very confusing, as it is not always true). This case should be rewritten, for example, as follows:
"If either D or E lies in $A_{i} A_{j}: B_{j} B_{i}$, for some distinct i, j then it's done as D or E will then form a convex pentagon with A_{i}, A_{j}, B_{j} and B_{i}.

So we assume otherwise. Then we can without loss of generality assume that $D E$ cuts $B_{1} B_{2}$ and $B_{1} B_{3}$. Then by the argument in Theorem 1, we can assume (by renaming $D \leftrightarrow E$ is necessary) $D E B_{2} B_{3}$ is a convex quadrilateral. Then we have either $A_{2} \in D E: B_{2} B_{3}$ of $A_{3} \in D E: B_{2} B_{3}$. i.e. either $D E B_{2} A_{2} B_{3}$ or $D E B_{2} A_{3} B_{3}$ is a convex pentagon."
9. The problem is the same as Case 1. At least the first two paragraphs should be completely rewritten, for example, as follows:
"We can assume $D, E \notin A_{i} A_{j}: B_{j} B_{i}$ for $(i, j)=(2,3)$ or $(i, j)=(3,2)$ for otherwise D or E will then form a convex pentagon with A_{i}, A_{j}, B_{j} and B_{i}.

So suppose otherwise. Assume first that $D E$ cuts $B_{1} B_{3}$ and $B_{1} B_{2}$."
10. Same problem as before. Their notions $\Gamma(\Gamma(X))$ and $\Gamma(\Gamma(\Gamma(X)))$ do not make sense. The first two sentence should be deleted (and the reviewer don't know what the first sentence means anyway).
11. The same problem as Case 1 and Case 2 of Lemma 8: $E \notin A_{i} A_{j}: B_{j} B_{i}$ is in general not true and so the first paragraph in these two cases should be rewritten (see (8), (9)).
12. They only proved the case where $D E$ cuts $B_{2} B_{3}$ and $A_{2} A_{3}$, and then claimed that the other cases can be proved similarly. The reviewer don't think the other cases are "similar". Take for example, in the following figure, $D E$ cuts $B_{1} B_{3}$ (and also $A_{3} B_{3}$ and $A_{1} B_{2}$), they did not indicate how to find the convex pentagon (although it can be done: $E B_{1} A_{3} D B_{3}$ is convex). The remaining cases are not entirely symmetric to the first case.

13. There is no proof that the given figures $((3,4,1)$ and $(4,4))$ contains no convex pentagon. It is very hard to verify their claim by inspection as there are 56 possible pentagons.
14. The algorithm as described in the later part cannot be used to detect a convex n-gon. In fact, the slope of $L A_{i}$ being strictly decreasing and the slope of $L B_{i}$ being strictly increasing is never sufficient to prove the n-gon is convex, as can be seen in the following figure:

The correct way is to verify that the slope $p_{i}=A_{i-1} A_{i}$ being decreasing and the slope $q_{i}=B_{i-1} B_{i}$ being increasing. As the reviewer does not have access to their computer program, the reviewer cannot determine whether their implementation is correct or not.
15. Again $\Gamma(\Gamma(X))=\left\{B_{1}, B_{2}, B_{3}\right\}$ does not make sense. Delete this sentence and replace it by: $A_{1} A_{2} A_{3} A_{4} A_{5}$ forms a convex pentagon which encloses the triangle $\Delta B_{1} B_{2} B_{3}$.

Also, the sentence inside the last bracket is not the contrapositive statement of Lemma 14. Replace it by:
"Equivalently, if none of the lines $B_{i} B_{j}$ cuts two adjacent sides of the outer pentagon and not all of the lines $B_{i} B_{j}$ cut the same pair of opposite sides of the outer pentagon, then X contains on convex hexagon."
16. The reviewer thinks C_{2} should actually be B_{2}. Since the reviewer could not download their program, the reviewer plotted it himself (using their description on p. 277 and 278) as shown (the coordinates on p. 287 are not exact anyway).

The quadrilateral $A_{5} C_{5} C_{2} B_{5}$ is not even convex.

However, the quadrilateral $A_{5} C_{5} B_{2} B_{5}$ is convex.

So any C_{2} here should be changed to B_{2}. They also did not explain why they only consider " C_{2} " (which should be B_{2}), A_{1}, B_{1} and C_{1}. In fact, the reviewer also found that $A_{2} \in U\left(A_{5} B_{5} C_{5}\right)$ but they seemed to have ignored this point.
17. The reviewer does not understand the following sentence:
"Since the lines joining any two points from both upper and lower parts do not intersect the segment $A_{5} B_{5}$, we can consider either the upper or lower part in each case."
In fact, it seems that in each of the subcases ((i), (ii) and (iii)), the "upper part" and the "lower part" are different. Perhaps what they mean is:
"In each of the following subcases, by Theorem 12 or Lemma 13, we only consider the possibility of forming a convex hexagon by adjoining either only points in the upper part or points in the lower part, and the upper and lower part depend on each subcase."
18. The reference [3], which is the Wikipedia article about the "Happy Ending problem", is not cited in the paper, although it can be relevant. The reviewer thinks it can be cited, for example, in the introduction.

Also, the reviewer think the References should be moved to the end of the paper, after the appendix.
19. The link of the computer program is dead.

Overall, the reviewer thinks their results are correct in general (after all, they want to find alternative proofs of some known results). However, some of their arguments seem to rely purely on geometric intuition or a particular way in which they draw a figure, and seem to be a bit ad hoc. The reviewer think some of their arguments are not very complete or rigorous. The reviewer also have doubts about how their
computer program is written (see (14)). Since the reviewer cannot download their program, the reviewer cannot verify the correctness.

