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Abstract. This paper rigorously explores the expansion of fractions in the
unorthodox number system with a rational negative base −Nb

Db
, building on the

work of Lucia Rossi and Jörg M. Thuswaldner on multiple number representa-
tions in such a base. Our objective is to establish a finite number of recurring
expansions, using our novel theories and algorithms. We introduce definitions
and conditions for four types of expansions, and present two distinct proofs for
the Complete Residue System Theorem, our first main theorem. Our Second
Main Theorem outlines the bounds of terminating and recurring expansions
in any number system, providing a method to compute all expansions for any
fraction m

n
. These findings provide a thorough examination of fraction repre-

sentations in the negative rational base system, enhancing understanding of
its intricate characteristics.
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1. Introduction

1.1. Motivation. Lucia Rossi and Jörg M. Thuswaldner’s A Number System with
Base -3/2 [3] is the main inspiration for this work. The paper has introduced an
algorithm for generating expansions in the system, and has shown several char-
acteristics of it, such as D[− 3

2 ] = Z[ 12 ], the non-unique expansions of m
n in base

− 3
2 . To address the issue of overlapping expansions, the paper introduced a 2-adic

extension for the production of nice tiling.
We illustrate the system’s aforementioned overlapping using a typical example.
The fraction −2

5 has distinct representations (21.02), (2.20) and (0.1) in base − 3
2 .

We are intrigued by the the multiple expansions, in the form of (dk . . . d0.d−1d−2 . . . ),
as before the introduction of a 2-adic expansion. Thus, we would like to fix a value
for the number of representations, which we deduce to be finite. Our group be-
lieves that the preservation of unique expansions is not a necessity when we are
not considering tiling. Our main goal in this paper is to produce a finite number
of representations under certain circumstances.

1.2. Literature Review. The number system with a non-integer negative base
takes references from previous works considering systems with negative bases and
rational bases only.
William J. Gilbert and R. James Green’s Negative Based Number Systems [2] The
paper listed a few properties, of the representation of m

n , including the possibility
of its having non-unique representations, and its absolute yielding of recurring or
terminating expansions in any negative base. The paper has also presented an
algorithm in which a rational number p q can be expanded into number systems
with integer negative bases. We have also drawn and utilised the aforementioned
algorithm from this paper, and apply it to a non-integer negative base, − 3

2 , which
has not been explicitly explored in the cited work.
The paper did not explore the representation of m

n in negative bases further, and
we aim to discover more properties, in base −Nb

Db
, via considering the remainders

generated, which m to n can yield recurring expansions and their properties, et
cetera.
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Shigeki Akiyama, Christiane Frougny, and Jacques Sakarovitch’s On the Repre-
sentation of Numbers in a Rational Base [1] uses the same method shown in [3]
to represent positive integers and real numbers in a rational base. It considers
arbitrary base Nb

Db
and produces a tree containing the mappings for each a in

D = {0, . . . , Nb − 1} from N into itself. The paper takes a different direction to
our work, and concerns itself with the Josephus problem and Mahler’s 3

2 -problem.
Also, we are concerned with negative rational base −Nb

Db
, and map elements as

produced by our Reverse Algorithm.

2. −Nb

Db
Number Base System

A number system is a structured approach to represent and manipulate numbers,
utilizing symbols and rules to express quantities and perform mathematical oper-
ations. We acknowledge that different number systems exist due to their distinct
purposes and properties.
Motivated by papers mentioned in Section 1, our curiosity is piqued by the explo-
ration of number systems with different bases. Specifically, we aim to investigate
the properties of these ”unconventional bases.” Upon conducting research, we dis-
covered a lack of elementary treatment on the ”basic properties” of such bases.
Existing literature primarily focuses on advanced properties like ”Tiling Theory”
and ”Cantor Set”. This section aims to provide an elementary treatment of the
”basic properties” of numbers in the −Nb

Db
number system. By ”basic properties”,

we refer to the analogous properties mentioned in Section 1 within the context of
the base-10 system.
In Section 2.1, we will first define the number system (−Nb

Db
,D) and define these four

expansions of a fraction: integer expansion, terminating expansion, primary
recurring expansion and recurring expansion.
In Section 2.2, we provide the necessary and sufficient conditions for a fraction to
have an integer expansion and terminating expansion respectively.
In Sections 2.3 and 2.4, we will provide two proofs of the Complete Residue
System Theorem, which is closely related to the analysis of fractions having
primary recurring expansions; for instance, there is a technique that helps us find
all fractions with primary recurring expansion for a fixed q.
In Section 2.3, we will establish the some necessary condition for fraction having
primary recurring expansion. Then, we will state the Complete Residue System
Theorem. In order to give a first proof of this theorem, we will establish the defini-
tion of β-expansion and present its relation with numerators of primary recurring
expansion. Then, following some lemmas and the important Theorem 2.17, we will
combine to show the First Proof of the Complete Residue System Theorem.
In Section 2.4, we will define the Forward Algorithm and Reverse algorithm,
which is conducive for understanding fraction having primary recurring expansion.
Then, we will explore the properties of the Reverse Algorithm, in particular, its
naturally way of deciding whether a fraction have primary recurring expansion or
not. After that, following some properties of residues while applying the Reverse
Algorithm, we will following provide the Second Proof of the Complete Residue
System Theorem.
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A graphical representation of the Reverse Algorithm will be provided. This
gives a natural and meaningful way of visualizing the ”cycle” of primary recurring
expansion.
Also, the Reverse Algorithm naturally provides a way to distinguish all primary
recurring expansion for a fixed denominator q.
Section 2.5 will cover the second key of this paper – the number of representations.
We will deduce the minimum and maximum numbers of representations a certain
fraction m

n has in an arbitrary −Nb

Db
number system. Furthermore, we will provide a

procedure for finding all terminating or recurring expansions of a particular fraction
m
n .

2.1. Number System and Expansion Definitions. In this subsection, we aim
to introduce the terminologies and definitions that we will be using while analyzing
the base −Nb

Db
number system. (The subscript b means base)

We are interested in understanding the ”basic properties” and we aim to delve into
the fundamental properties of number systems, encompassing necessary and suffi-
cient conditions for various expansions. Specifically, we seek to explore conditions
regarding the expansion of numbers with only an integer part, the expansion of
numbers with a finite decimal part after the decimal point, the expansion of num-
bers with a recurring part after the decimal point, and other related properties.
Upon doing so, we also found out that the literature lacks formal terms describing
those expansions aforementioned. This leads us to the following definitions.
In the number systems with base −Nb

Db
, we will first define such a number system,

then define the expansions that this paper prominently focuses on.
In Definition 2.1, we will first define the number system and the notation that we
will be using when referring to the number system. Then, in Definition 2.2, we
will define the four types of expansions that we will be analyzing throughout the
paper.

Definition 2.1. Consider Nb, Db ∈ N such that Nb > Db ≥ 1 and gcd(Nb, Db) = 1.
Denote:

(dk . . . d0.a1a2 . . . )−Nb
Db

=

∞∑
i=1

ai

(
−Nb

Db

)−i

+

k∑
i=0

di

(
−Nb

Db

)i

(i) Define the number system (−Nb

Db
,D) with digits di ∈ D = {0, 1, . . . , Nb−1}

(i.e. Nb digits), where

(
−Nb

Db
,D) :=

{
d ∈ Q | d = (dk . . . d0.a1a2 . . . )−Nb

Db

(k ∈ N≥0, di, ai ∈ D)

}
(ii) Define the set D

[
−Nb

Db

]
within the number system (−Nb

Db
,D) as:

D
[
−Nb

Db

]
:=

{
d ∈ Q | d = (dk . . . d0)−Nb

Db

(k ∈ N≥0, di, ai ∈ D)

}
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In this paper, we focus on exploring the number system (−Nb

Db
,D) defined

in Definition 2.1(i). The set D
[
−Nb

Db

]
defined in Definition 2.1(ii) is used

for convenience in later Theorems.

Definition 2.2. (i) A non-zero d ∈ Q has an integer expansion if:

d := (dtdt−1 . . . d0)−Nb
Db

=

t∑
i=0

di

(
−Nb

Db

)i

for some t ∈ Z≥0, di ∈ D for all 0 ≤ i ≤ t and dt > 0.
Note that the set D

[
−Nb

Db

]
contains all integer expansions in the number

system (−Nb

Db
,D).

(ii) A non-zero d ∈ Q has a terminating expansion if there exists y ∈ Z≥0

such that (−Nb

Db
)yd has an integer expansion.

(iii) A non-zero d ∈ Q has a primary recurring expansion if there exists
n ≥ 1 such that

d := (0.s1 . . . sn)−Nb
Db

=

∞∑
i=1

[
(
−Db

Nb
)n
]i n∑

j=1

sj(
−Nb

Db
)j

=

n∑
i=1

si(−Db)
i(Nb)

n−i

(Nb)n − (−Db)n

The period of d is defined to be the minimum possible length of the
repetend (s1 . . . sn). The definition is useful for our analysis in Section 2.2
and our proof in Sections 2.3 and 2.4.

Note that for the special case that d = 0, we will regard that 0 has
both terminating expansion 0 = (0)−Nb

Db

and primary recurring expansion
0 = (0.0)−Nb

Db

(iv) A non-zero d ∈ Q has a recurring expansion if there exists y ∈ Z≥0, n ∈
N such that

d : = (dt . . . d0.a1 . . . ays1 . . . sn)−Nb
Db

=

t∑
i=0

di

(
−Nb

Db

)i

+

y∑
i=1

ai

(
−Db

Nb

)i

+

(
−Db

Nb

)y ∞∑
i=1

[
(−Db

Nb
)n
]i n∑

j=1

sj(−
Nb

Db
)j

=

t∑
i=0

di

(
−Nb

Db

)i

+

y∑
i=1

ai

(
−Db

Nb

)i

+

(
−Db

Nb

)y


n∑

i=1

si(−Db)
i(Nb)

n−i

(Nb)n − (−Db)n


Note that if y = 0, the term

y∑
i=1

(
−Db

Nb

)i

does not exists.



196 R. LO, J. NG, LAU H.L., WONG K.L.

2.2. Integer and Terminating expansion. In this subsection, we aim to find
the necessary and sufficient conditions for a rational number d to have an integer
or terminating expansion.

With this goal in mind, we will first define a recurrence relation in Definition 2.3.
This recurrence relation provides a method that allows us to find the digits di ∈ D
of a fraction N0, provided that it has an integer expansion.
Having a way to find the digits of a fraction N0, the question of whether N0 can
be represented through our recurrence relation naturally arises, thus motivating us
to find all possible values of N0 where N0 has integer expansion.
The answer to the question lies in Theorem 2.6. The following set equality,
D
[
−Nb

Db

]
= Z

[
1
Db

]
, which we are going to prove in Theorem 2.6, gives a close-

formed expression on the forms of fractions having integer expansion. That is, we
have found out that the set of fractions having integer expansion is equal to the
set of fractions containing only powers of Db in the denominator.
Note that a large portion of the proof for Theorem 2.6 lies on proving the existence
of an expansion for d ∈ Z[ 1

Db
].

Doing so, we have found out that the most difficult part of the proof lies in the
existence of integer expansion for d ∈ Z.
Therefore, we introduce Lemma 2.4 and Lemma 2.5, which specifically deal with
such scenarios.
After proving the set equality, we would like to investigate whether the expansion
for d ∈ D[−Nb

Db
] is unique or not.

This motivates us to have Theorem 2.7, which proves every expansion

d = (dt . . . d0)−Nb
Db

∈ D[
−Nb

Db
]

is unique.

After that, an example is provided to exemplify our theory and showcase how the
Theorem 2.6 can be used to find an integer expansion of a number N0 ∈ Z[ 1

Db
].

Finally, Corollary 2.9 provides a necessary and sufficient condition for an integer
expansion.

Having completed our analysis on fractions with integer expansion, we would shift
our focus to fractions with terminating expansions.

With some similar manipulation, Corollary 2.9 asserts the uniqueness of terminat-
ing expansion and provides a necessary and sufficient condition for a terminating
expansion.

Definition 2.3. Denote Z[ 1
Db

] :=
{

a
(Db)l

| a ∈ Z, l ∈ Z≥0

}
. This notation is

already well-established and frequently employed in mathematical literature.
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Consider N0 = a
(Db)l

∈ Z[ 1
Db

], we can find representation in D
[
−Nb

Db

]
through the

following recurrence relation which uses two equation.

N0 = −NbN1 + d0(GE1)
DbNi = −NbNi+1 + di for all i ≥ 1(GE2)

The idea of this recurrence relation is that we want to keep Ni ∈ Z[ 1
Db

] for all
i ≥ 0. The recurrence relation starts by inputting N0 in (GE1).
The choice of d0 ∈ D is chosen such that a − (Db)

ld0 ≡ 0 (mod Nb). Since
gcd

(
(Db)

l, Nb

)
= 1, we know that such d0 ∈ D exist uniquely such that the

congruence above is well-defined.
The reason that we define d0 ∈ D satisfying a− (Db)

ld0 ≡ 0 (mod Nb) is because
we want N1 ∈ Z[ 1

Db
]. Notice that N1 =

(
−1
Nb

)(
a

(Db)l
− d0

)
= −a+(Db)

ld0

Nb(Db)l
. The

only way we can make N1 ∈ Z[ 1
Db

] is for d0 to satisfy the congruence equation
above.
Afterwards, Ni will be inputted in (GE2) for all i ≥ 1. Naturally we obtain
Ni =

c
(Db)l−k ∈ Z[ 1

Db
] where 0 ≤ k ≤ l and c ∈ Z. The choice of di ∈ D is chosen

such that −c + (Db)
l−k−1di ≡ 0 (mod Nb). Again, since gcd

(
(Db)

l, Nb

)
= 1, we

know that such di ∈ D exist uniquely such that the congruence above is well-
defined.
Similarly, the reason that we define di ∈ D satisfying −c + (Db)

l−k−1di ≡ 0
(mod Nb) is because we want Ni+1 ∈ Z[ 1

Db
]. Notice that

Ni+1 =

(
−1

Nb

)(
(Db)

c

(Db)l−k
− di

)
=

−c+ (Db)
l−k−1di

Nb(Db)l−k−1
.

The only way we can make Ni+1 ∈ Z[ 1
Db

] is for di to satisfy the congruence equation
above.
We call such recurrence relation as Integer Expansion Recurrence Relation.

Now, we want to show that if Ni ∈ Z, after applying Integer Expansion Recur-
rence Relation on Ni, then the expansion itself will terminate. With doing so,
we observed that following interesting pattern when apply Ni ∈ Z.

Lemma 2.4. Given that Ni ∈ Z for some i ≥ 1. After applying the Integer
Expansion Recurrence Relation on Ni:

(i) If |Ni| > Nb−1
Nb−Db

, then |Ni+1| < |Ni|
(ii) If 0 < Ni ≤ Nb−1

Nb−Db
, then Ni+1 = −Ni + 1

(iii) If − Nb−1
Nb−Db

≤ Ni < 0, then Ni+1 = −Ni

Proof. Proof of Lemma 2.4(i)

We consider (GE2) as i ≥ 1.
By assumption, |Ni| > Nb−1

Nb−Db
.
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By taking the same considerations as above, we have,

|Ni+1| ≤ |−Db

Nb
Ni|+ | di

Nb
|

≤ |Ni|
(
Db

Nb
+

Nb − 1

|Ni|Nb

)
(di ≤ Nb − 1)

< |Ni|
(
Db

Nb
+

Nb − 1

Nb

Nb −Db

Nb − 1

)
(

1

|Ni|
<

Nb −Db

Nb − 1
)

= |Ni|

We conclude that if |Ni| > Nb−1
Nb−Db

then |Ni+1| < |Ni| for all i ≥ 1

Proof of Lemma 2.4(ii)

By definition of picking di in Definition 2.3, we know we must have di ∈ D satis-
fying −Ni + (Db)

−1di ≡ 0 (mod Nb), we know di = (Db −Nb)Ni +Nb is the only
solution satisfying that.

By assumption, 0 < Ni ≤ Nb−1
Nb−Db

. We know that such choice di is well-defined
because

Nb = (Db −Nb)(0) +Nb > (Db −Nb)Ni +Nb ≥ (Db −Nb)
Nb − 1

Nb −Db
+Nb

Nb > (Db −Nb)Ni +Nb = di ≥ 1

which shows that di ∈ D
By direct substitution to (GE2),

Ni+1 = − 1

Nb
(DbNi − ((Db −Nb)Ni +Nb))

= − 1

Nb
(DbNi − (Db −Nb)Ni −Nb)

= − 1

Nb
(NbNi −Nb)

= −Ni + 1 ∈ Z

Notice that di ∈ D is unique. And this concludes Lemma 2.4(ii).

Proof of Lemma 2.4(iii)
By definition of picking di in Definition 2.3, we know we must have di ∈ D satisfy-
ing −Ni+(Db)

−1di ≡ 0 (mod Nb), we know di = (Db−Nb)Ni is the only solution
satisfying that.
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We know that such choice di is well-defined because

− Nb − 1

Nb −Db
≤ Ni < 0

Nb − 1 ≥ (Db −Nb)Ni = di > 0

which shows that di ∈ D
By direct substitution to (GE2),

Ni+1 = − 1

Nb
(DbNi − ((Db −Nb)Ni))

= − 1

Nb
(DbNi − (Db −Nb)Ni)

= − 1

Nb
(NbNi)

= −Ni

Notice the choice for di is unique. And this concludes Lemma 2.4(iii). □

Lemma 2.5. It is given that N0 ∈ Z \ {0}. After applying Integer Expansion
Recurrence Relation on N0, there exist j ∈ N such that Nj = 0.

Proof. Suppose N0 ∈ Z \ {0}. Apply N0 ∈ Z \ {0} to Equation (GE1). By the
choice of d0 picked in Definition 2.3, we know that N1 ∈ Z.
Applying Lemma 2.4(i) if needed, we know that there exist m ∈ N such that
|Nm| ≤ Nb−1

Nb−Db
.

Without loss of generality, we can assume Nm > 0.
(If Nm > 0, then apply Lemma 2.4(iii) so that Nm+1 > 0).

Applying Lemma 2.4(ii) and (iii) respectively,

Nm+1 = −Nm + 1

Nm+2 = −(−Nm + 1) = Nm − 1

Hence, Nm+2 = Nm − 1 < Nm.
This gives Nm > Nm+2 = Nm − 1 > Nm+4 = Nm − 2 > . . .

Now, apply the step of Integer Expansion Recurrence Relation 2Nm−2 more
times, we obtain Nm+(2Nm−2) = 1
Now we simply apply Lemma 2.4(ii) once which gives Nm+(2Nm−1) = 0
We have shown that the recurrence relation will ”terminate” at some point. □

Theorem 2.6. The set D
[
−Nb

Db

]
in the number system (−Nb

Db
,D) have the following

equality:

D
[
−Nb

Db

]
= Z

[
1

Db

]
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Proof.
The inclusion D

[
−Nb

Db

]
⊆ Z[ 1

Db
] can be observed by taking common denominator

on d = (dt . . . d0)−Nb
Db

=

k∑
i=0

di

(
−Nb

Db

)i

for some t ∈ Z≥0, and thus is trivial.

Now, considering the reverse inclusion, we first consider the case N0 ∈ Z For
N0 ∈ Z, by Lemma 2.4 and Lemma 2.5 to find a well-defined integer expansion
of N0 = (dj−1 . . . d0)−Nb

Db

which is in the set D[−Nb

Db
] and that the digits di ∈ D is

uniquely decided.

Then, consider the case N0 ∈ Z[ 1
Db

] \ Z. Consider N0 ∈ Z[ 1
Db

] \ Z, which we write
as a

(Db)l
where l > 0. We want to show that by applying integer expansion

recurrence relation on N0, N1, . . . , we can have Ni ∈ Z[ 1
Db

] for all i, and there
exists j such that Nj = 0.
Consider Equations (GE1) and (GE2)
Substituting N0 into Equation (GE1), we have

N0 = −NbN1 + d0(GE1)

N1 = − 1

Nb
(N0 − d0)

= − 1

Nb
N0 +

d0
Nb

=
−a+ (Db)

ld0
Nb(Db)l

By Definition 2.3, there exists a unique solution d0 ∈ D such that −a+(Db)
ld0 ≡ 0

(mod Nb).

We now let c1 = −a+(Db)
ld0

Nb
∈ Z. Substituting N1 in Equation (GE2), we have

N2 = −Db

Nb
N1 +

d1
Nb

=
−Dbc1
Nb(Db)l

+
d1
Nb

=
−c1 + (Db)

l−1d1
Nb(Db)l−1

Again, by Definition 2.3, there exists a unique solution d0 ∈ D such that −c1 +
(Db)

l−1d1 ≡ 0 (mod Nb). Note that the power of (Db) is reduced by one every
time we conduct (GE2).

We now let c2 = −c1+(Db)
l−1d1

Nb
∈ Z and we substitute N2 in Equation (GE2).
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Iterating the above argument l times, through the process of finite descent, we find
that Nl+1 ∈ Z and find unique values di ∈ D for all 0 ≤ i ≤ l.
Now, we have found that, by finite descent, N0, . . . , Nl ∈ Z[−Nb

Db
]\Z gives a unique

choice of di ∈ D.
Also, now that we have proven that once Nl+1 has become an integer,
by Lemma 2.5, after applying Nl+1 Integer Expansion Recurrence Relation,
we also know there exists j > l such that Nj = 0.
Now, by backwards substitution,

N0 = d0 +
−Nb

Db
[−NbN2 + d1]

= d0 +
−Nb

Db
d1 +

(
−Nb

Db

)2

[−NbN3 + d2]

. . .

= d0 +
−Nb

Db
d1 +

(
−Nb

Db

)2

d2 + · · ·+
(
−Nb

Db

)j−1

dj−1

which shows that N0 = (dj−1 . . . d0)−Nb
Db

has an well-defined expansion in D[−Nb

Db
].

Notice that the choice of digit di ∈ D is chosen uniquely throughout N0 to Nj−1.

Hence, we prove the inclusion D
[
−Nb

Db

]
⊇ Z[ 1

Db
] and equivalently, every number

N0 ∈ Z
[

1
Db

]
has an integer expansion representation in the number system

(−Nb

Db
,D).

□

Theorem 2.7. Every number N0 ∈ Z
[

1
Db

]
has a unique integer expansion in

the number system (−Nb

Db
,D).

Theorem 2.6 guarantees the existence of integer expansion for N0 ∈ Z
[

1
Db

]
.

The following concerns the uniqueness part.

Let d ∈ Q.
Suppose that d = (ak . . . a0)−Nb

Db

= (bm . . . b0)−Nb
Db

for some a0, . . . , ak, b0, . . . , bm ∈
D
That is,

k∑
i=0

ai

(
−Nb

Db

)i

=

m∑
i=0

bi

(
−Nb

DB

)i

(1)
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Without loss of generality, we assume k ≤ m
Then,

m∑
i=0

(bi − ai)(
−Nb

Db
)i = 0

where ak+1, . . . , am = 0.

By taking ci = ai − bi ∈ {−(Nb − 1),−(Nb − 2), . . . , 0, . . . , Nb − 2, Nb − 1}, we
have

−c0 =

m∑
i=1

ci(
−Nb

Db
)i

−c0(Db)
m =

m∑
i=1

ci(−Nb)
i(Db)

m−i

Since Nb divides right-hand-side, but |c0| ≤ |Nb − 1| and gcd(Nb, Db) = 1, we
obtain c0 = 0 is the only possible value for c0.

We continue the argument by dividing both sides by −Nb

−c1(Db)
m−1 =

m∑
i=2

ci(−Nb)
i(Db)

m−i

Again, we must have c1 = 0.
By repeating the argument above m−1 times, it yields ci = 0 for all 0 ≤ i ≤ m−1
That is, we have ai = bi for all 0 ≤ i ≤ m− 1
Then, for the equality to occur, we must have am = bm. Hence, we have ai = bi
for all 0 ≤ i ≤ m, which concludes our proof.

Example. Consider base −9
4 . We can determine the integer expansion for the

fraction 3
64 by utilizing the recurrence relation equations (GE1) and (GE2).

By substituting N0 = 3
64 we have:

(
3

64

)
= −9

(
21

64

)
+ 3(GE1)

4

(
21

64

)
= −9

(
3

16

)
+ 3(GE2)

4

(
3

16

)
= −9

(
1

4

)
+ 3(GE2)

4

(
1

4

)
= −9(0) + 1(GE2)

By which we can conclude that the fraction 3
64 has an integer expansion 3

64 =

(1333)−9
4

in base −9
4 . Notice that the denominator of Ni ”Descends” by Db in
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every step in the sense that the power of (Db) in the denominator decreases by 1
every time (except for (GE1)) until all powers of (Db) is cancelled out, at which
Nk is an integer for some k ∈ Z≥0.

Example. Consider base −6
5 . Because we want to show that β–expansion can be

very long, we will demonstrate by finding the integer expansion for the integer 35.
Then by substituting N0 = 35 in the recurrence relation, we have:

(35) = −6 (−5) + 5(GE1)
5 (−5) = −6 (5) + 5 by Lemma 2.4 (iii)(GE2)
5 (5) = −6 (−4) + 1 by Lemma 2.4 (ii)(GE2)

5 (−4) = −6 (4) + 4 by Lemma 2.4 (iii)(GE2)
5 (4) = −6 (−3) + 2 by Lemma 2.4 (ii)(GE2)

5 (−3) = −6 (3) + 3 by Lemma 2.4 (iii)(GE2)
5 (3) = −6 (−2) + 3 by Lemma 2.4 (ii)(GE2)

5 (−2) = −6 (2) + 2 by Lemma 2.4 (iii)(GE2)
5 (2) = −6 (−1) + 4 by Lemma 2.4 (ii)(GE2)

5 (−1) = −6 (1) + 1 by Lemma 2.4 (iii)(GE2)
5 (1) = −6 (0) + 5 by Lemma 2.4 (ii)(GE2)

After applying Integer Expansion Recurrence Relation, we can conclude that
35 has an integer expansion of 35 = (51423324155)−6

5
in base −6

5 . Notice that
when |N1| ≤ Nb−1

Nb−Db
= 5, we apply Lemma 2.5, which gives that Nm = N2 = 5.

Now, we could apply the procedure given by Lemma 2.5: To apply Lemma 2.4(iii)
and Lemma 2.4(ii) respectively in accordance to Ni such that the value of |Ni+2|
descends by 1 in every two steps.

Corollary 2.8. Let x ∈ Z and y ∈ N such that gcd(x, y) = 1. The fraction x
y has

an integer expansion if and only if

y =
∏
p̂|Db

p̂ prime

p̂i
αi

for some αi ∈ Z≥0

Proof. Assume x
y has an integer expansion.

Write

x

y
= (dtdt−1 . . . d0)−Nb

Db

=

t∑
i=0

di

(
−Nb

Db

)i

=

t∑
i=0

di(−Nb)
i(Db)

t−i

(Db)t
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for some t ∈ Z≥0 and di ∈ D for all 0 ≤ i ≤ t.

Now, as

y

(
t∑

i=0

di(−Nb)
i(Db)

t−i

)
= x(Db)

t

Thus, we have y | x(Db)
t. However, gcd(x, y) = 1. By applying Euclid’s lemma,

we have y | (Db)
t, which concludes one side of the proof.

It is well-known that for a prime p and nonzero integer n, we let νp(n) denote
the largest integer e with pe dividing n. The notation νp(n) will be used in the
following.
Let

indDb
(p̂i) :=


αi

νp̂i
(Db)

, νp̂i
(Db) | αi⌊

αi

νp̂i
(Db)

⌋
+ 1, νp̂i

(Db) ∤ αi and νp̂i
(Db) ̸= 0

0, νp̂i
(Db) = 0

Take k = max
(
indDb

(p̂1), indDb
(p̂2), . . . , indDb

(p̂l)
)

where y has l prime factors
dividing Db

That is, k is the smallest non-negative integer such that y | (Db)
k.

x

y
=

x

y

 (Db)
k

y

(Db)k

y

 =
x
(

(Db)
k

y

)
(Db)k

where x
(Db)

k

y
∈ Z Since x

y =
x
(

(Db)
k

y

)
(Db)k

∈ Z
[

1

Db

]
, we apply Theorem 2.7 and we

know x
y has an unique integer expansion. □

Corollary 2.9. (i) Terminating expansion is unique.
(ii) Let x ∈ Z and y ∈ N where gcd(x, y) = 1. The number x

y has a terminating
expansion if and only if

y =
∏
p̂|Db

p̂ prime

p̂i
αi

∏
q̂|Nb

q̂ prime

q̂j
βj

for some αi, βi ∈ Z≥0

Proof.
Proof of part (i) Consider the number

x

y
= (ds . . . d0.a1 . . . ak)−Nb

Db

= (et . . . e0.b1 . . . bl)−Nb
Db
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where l ≥ k and ak, bl, ds, et ̸= 0.

When we multiply x
y by (−Nb

Db
)l, by Theorem 2.6, we know that the number x

y (
−Nb

Db
)l

has an unique integer expansion. If l > k, then we have l− k zeros directly on the
rightmost digit for the number (ds . . . d0a1 . . . ak)(

−Nb

Db
)l−k. Since x

y (
−Nb

Db
)l has an

unique integer expansion, we know that bl would be zero.
This contradicts with our assumption.
Hence l = k, and it is not possible to have l − k zeros directly on the rightmost
digit for the number x

y (
−Nb

Db
)l.

By a similar argument, we can also prove that s = t. Otherwise, ds = 0 or et = 0,
and contradiction occurs in both cases.

Now that we have proven l = k and s = t. We know that x
y (

−Nb

Db
)l has an unique

integer expansion. Hence, we have

ds = es, ds−1 = es−1, . . . , ak = bk

which concludes our proof.

Proof of part (ii)
Assume x

y has a terminating expansion

x

y
= (dt . . . d0.a1 . . . am)−Nb

Db

=

t∑
i=0

di(
−Nb

Db
)i +

m∑
i=1

ai(
−Db

Nb
)i

=

(
t∑

i=0

di(−Nb)
i(Db)

t−i

)
(Nb)

m +

(
m∑
i=1

ai(−Db)
i(Nb)

m−i

)
(Db)

t

(Db)t(Nb)m

Combining the fact

x(Db)
t(Nb)

m = y

[(
t∑

i=0

di(−Nb)
i(Db)

t−i

)
(Nb)

m +

(
m∑
i=1

ai(−Db)
i(Nb)

m−i

)
(Db)

t

]

Thus, we have y | x [(Db)
t(Nb)

m]. However, gcd(x, y) = 1. By applying Euclid’s
lemma, we have y | (Db)

t(Nb)
m.

As a result, we can express

y =
∏
p̂|Db

p̂ prime

p̂i
γi

∏
q̂|Nb

q̂ prime

q̂j
δj
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where γi, δj ∈ Z≥0.
Now, for the reverse direction, we assume that x

y is a fraction and

y =
∏
p̂|Db

p̂ prime

p̂i
αi

∏
q̂|Nb

q̂ prime

q̂j
βj

for some αi, βj ∈ Z≥0.

For simplicity, write
∏
p̂|Db

p̂ prime

p̂i
αi = PDb

and
∏
q̂|Nb

q̂ prime

q̂j
βj = PNb

Let

indNb
(q̂j) :=


βj

νq̂j (Nb)
, νq̂j (Nb) | βj⌊

βj

νq̂j (Nb)

⌋
+ 1, νq̂j (Nb) ∤ βj and νq̂j (Nb) ̸= 0

0, νq̂j (Nb) = 0

That is, we take m = max
(
indNb

(q̂1), indNb
(q̂2), . . . , indNb

(q̂l′)
)

where y has l′

prime factors dividing Nb.
Again, this meant that we take m to be the smallest non-negative integer such that
PNb

| (Nb)
m.

(
−Nb

Db

)m(
x

y

)
=

x

[
(−Nb)

m

PNb

]
(Db)

mPDb

(2)

where (−Nb)
m

PNb
∈ Z

Then, by Corollary 2.8, we know that

(
−Nb

Db

)m(
x

y

)
=

x

[
(−Nb)

m

PNb

]
(Db)

mPDb

has an integer expansion.
After that, we can simply multiply both sides by (−Db

Nb
)m which yields

x

y
= (

−Db

Nb
)m

x

[
(−Nb)

m

PNb

]
(Db)

mPDb

which has a terminating expansion. □

2.3. Primary Recurring Expansion and Complete Residue System The-
orem. In this subsection, we’ll first reflect on the properties of primary recurring
expansion, and then we will provide the first proof of the Complete Residue System
Theorem, which is the main theorem of this paper.
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Lemma 2.10. Let p
q = (0.s1 . . . sn)−Nb

Db

be a fraction having primary recurring
expansion where gcd(p, q) = 1 and n is a positive integer. Then

(i) −(Nb−1)Nb(Db)
(Nb)2−(Db)2

≤ p
q ≤ (Nb−1)(Db)

2

(Nb)2−(Db)2

(ii) q | (Nb)
n − (−Db)

n

(iii) Db | p
(iv) gcd(q,NbDb) = 1
(v) [−Nb(Db)

−1]n ≡ 1 (mod q)

Proof.
Proof of (i) The upper bound of the value of a primary recurring expansion

is
(
0. [0] [Nb − 1]

)
−Nb
Db

=
(Nb−1)(

−Nb
Db

)−2

1−(
−Nb
Db

)−2
= (Nb−1)(Db)

2

(Nb)2−(Db)2
by sum of geometric series

with common ratio (−Db

Nb
)2. We obtain

(
0. [0] [Nb − 1]

)
−Nb
Db

by maximizing the
positive component (digits with even power) and minimising the negative compo-
nent (digits with odd power).
The lower bound of the value of a primary recurring expansion is

(0. [Nb − 1] [0] )−Nb
Db

=
(Nb − 1)(−Nb

Db
)−1

1− (−Nb

Db
)−2

=
−(Nb − 1)Nb(Db)

(Nb)2 − (Db)2

by sum of geometric series with common ratio (−Db

Nb
)2. We obtain

(0. [Nb − 1] [0] )−Nb
Db

by minimizing the positive component (digits with even power) and maximizing
the negative component (digits with odd power).
Thus we have

−(Nb − 1)Nb(Db)

(Nb)2 − (Db)2
q ≤ p ≤ (Nb − 1)(Db)

2

(Nb)2 − (Db)2
q(B)

Proof of (ii) and (iii) By Definition 2.2(iii),

p

q
=

n∑
i=1

si(−Db)
i(Nb)

n−i

(Nb)n − (−Db)n

By rearranging terms, we have

p
(
(Nb)

n − (−Db)
n
)
= q(−Db)

( n∑
i=1

si(−Db)
i−1(Nb)

n−i
)

Thus we have q | p
[
(Nb)

n − (−Db)
n
]
. However, by assumption, gcd(p, q) = 1. We

apply Euclid’s Lemma to yield q |
[
(Nb)

n − (−Db)
n
]
, thus concluding (ii).

Also, Db | p
[
(Nb)

n − (−Db)
n
]
. Obviously, gcd

(
Db , (Nb)

n − (−Db)
n

)
= 1. We

apply Euclid’s Lemma to yield Db | p, which concludes (iii).
Proof of (iv) By Definition 2.1, we know Nb and Db is coprime.
Let gcd(Nb, q) = g, we know gcd(Db, g) = 1.
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However, by Proposition 2.10(ii)
(Nb)

n − (−Db)
n ≡ 0 (mod g)

−(Db)
n ≡ 0 (mod g)

Db ≡ 0 (mod g)

Thus, combining the fact gcd(Db, g) = 1 and g | Db, we conclude g = 1.
Similarly, let gcd(Db, q) = g′, we can deduce that Nb ≡ 0 (mod g′)
Thus, showing g = g′ = 1
Hence, gcd(q,NbDb) = 1, which concludes our proof.
Proof of (v) By considering Proposition 2.10(ii),

(Nb)
n − (−Db)

n ≡ 0 (mod q)

(Nb)
n ≡ (−Db)

n (mod q)

(Nb)
n
(
(−Db)

−1
)n ≡ 1 (mod q)[

−Nb(Db)
−1
]n ≡ 1 (mod q)(3)

□
Now that we have established our lemmas above, we will dive into the core proof
of the paper: Complete Residue System Theorem.
For context, we will talk about the motivation of the Complete Residue System
and the process of its formation. Initially, our objective was to search for a neces-
sary and sufficient condition for fractions to possess primary recurring expansions.
Specifically, we aimed to determine all numerators of fractions that have primary
recurring expansions for a fixed q. While we were unable to find such a condition,
our investigation into fractions exhibiting primary recurring expansions yielded an
intriguing observation regarding the numerators. We discovered that, for a fixed q,
the numerators of fractions with primary recurring expansions, having a denomi-
nator of q, form a complete residue system modq. Upon further examination, this
notable property held true for all q where gcd(q,NbDb) = 1. This seems natural,
as it aligns back with our theory in Section 2.2 — The number x

y has a terminating
expansion if and only if y only contains factors of Nb and Db.
That is, we know that among numerators that have the same residue modq, there
exists at least one such numerator, say p, such that p

q has a primary recurring
expansion. We believe this property is crucial for understanding fractions having
primary recurring expansions.

Definition 2.11. Denote
Pq := {p | p ∈ Z, q ∈ N,

p

q
has primary recurring expansion }

Denote
Pq := {p mod q | p ∈ Pq}

It is obvious that, by definition, Pq forms complete residue system modq if and
only if Pq = Zq

Theorem 2.12 (Complete Residue System Theorem). If gcd(q,NbDb) = 1, then
Pq forms a complete residue system modq
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Theorem 2.12 tends to be ”naturally” correct on a class of q, where q = (Nb)
2n −

(−Db)
2n and n ∈ N. Therefore, it is our prioritized study target.

Hence, unless otherwise stated, from Definition 2.13 to Corollary 2.19 we will fix
q = (Nb)

2n − (−Db)
2n where n ∈ N.

Definition 2.13. Remaining the assumption that q = (Nb)
2n − (−Db)

2n. Take
β ∈ Zq such that β ≡ −Nb(Db)

−1 (mod q).
Define

(i) (t2n−1, t2n−2, . . . , t1, t0)β to be a β-expansion modq of an integer k if

k ≡ (t2n−1, t2n−2, . . . , t1, t0)β :=

2n−1∑
i=0

tiβ
i (mod q)

(ii) Denote

T := {
2n−1∑
i=0

tiβ
i mod q | ti ∈ Z and 0 ≤ ti ≤ Nb − 1 for 0 ≤ i ≤ 2n− 1}

to be the set collection of residue modq of β-expansion modq
Denote

S := {
2n∑
i=1

siβ
2n−i mod q | si ∈ Z and 0 ≤ si ≤ Nb − 1 for 1 ≤ i ≤ 2n}

Note that T is defined for convenient notation in later theorems.
Obviously, T = S. For the sake of clarity, we include below the correspondence of
expansions T and S:
place value βi β2n−1 β2n−2 β2n−3 . . . β4 β3 β2 β1 β0

ti t2n−1 t2n−2 t2n−3 . . . t4 t3 t2 t1 t0
si s1 s2 s3 . . . s2n−4 s2n−3 s2n−2 s2n−1 s2n

In short, (t2n−1, t2n−2, . . . , t1, t0)β = (s1, s2, . . . , s2n−1, s2n)β ∈ T if and only if that
β-expansion (t2n−1, t2n−2, . . . , t1, t0)β = (s1, s2, . . . , s2n−1, s2n)β ∈ S

The β-expansion has a close relationship with fractions having primary recurring
expansion. Given the same digits si, by definition of β-expansion, the residue
formed by the β-expansion modq:

(t2n−1, t2n−2, . . . , t1, t0)β = (s1, s2, . . . , s2n−1, s2n)β =

2n−1∑
i=0

tiβ
i (mod q)

is the same as the residue of the numerator of a primary recurring expansion

α

2n∑
i=1

si

(
−Nb

Db

)2n−i

, where α = (Db)
2n.

Hence, the notion of β-expansion is beneficial to understand the residues of numer-
ators of fraction having primary recurring expansion.
Also, the length of the β-expansion (t2n−1, . . . , t0)−Nb

Db

is fixed to be 2n. The fact
that the β-expansion has 2n is vital in the proving Theorem 2.17, which shows that
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an β-expansion modq for the integer k + 1 given that the previous integer k has
an β-expansion modq.
That is, the method we propose in Theorem 2.17 will not work if we simply take
β-expansion to have length n.

Lemma 2.14. Remaining the assumption that q = (Nb)
2n − (−Db)

2n. Given that

k ≡ α

2n∑
i=1

siβ
2n−i (mod q) where α = Db

2n. Then, retaining the digits si, we know

k ≡ α

2n∑
i=1

si

(
−Nb

Db

)2n−i

(mod q) and
α

2n∑
i=1

si(
−Nb

Db
)2n−i

q
has a primary recurring

expansion.

Proof. It is, trivial, that by definition of β, we know that k ≡ α

2n∑
i=1

si

(
−Nb

Db

)2n−i

(mod q).

Then, we know that
α

2n∑
i=1

si

(
−Nb

Db

)2n−i

q =

2n∑
i=1

si(−Db)
i(Nb)

2n−i

(Nb)2n−(−Db)2n
has primary

recurring expansion by Definition 2.2(iii). □

Theorem 2.15. Remains the assumption on q = (Nb)
2n − (−Db)

2n. If T = Zq,
then T = Pq = Zq

Proof. The inclusion Pq ⊆ T = Zq is trivial. It is because Pq is the set collection
of residues of the numerator of primary recurring expansion modq.
Now, we want to show the inclusion T ⊆ Pq.

Assume p′ has a β-expansion modq

Write p′ ≡ (t2n−1, . . . , t0)β (mod q) ∈ T where ti ∈ D for all 0 ≤ i ≤ 2n− 1
Then we know p′ ≡ (s1, . . . , s2n)β (mod q) ∈ S where si ∈ D for all 1 ≤ i ≤ 2n.

Since gcd(α, q) = 1 and T = Z(Nb)2n−(−Db)2n .
Then the set{

α

2n∑
i=1

siβ
2n−i mod q | si ∈ Z and 0 ≤ si ≤ Nb − 1 for 1 ≤ i ≤ 2n

}
= Z(Nb)2n−(−Db)2n = T = S

Hence, write p′ ≡ α

2n∑
i=1

si
′β2n−i (mod q) for some si

′ ∈ D
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Then Apply Lemma 2.14, we know that
α

2n∑
i=1

si
′(
−Nb

Db
)2n−i

q
has a primary recur-

ring expansion.

But, by the same Lemma, we know p′ ≡ α

2n∑
i=1

si
′β2n−i ≡ α

2n∑
i=1

si

(
−Nb

Db

)2n−i

(mod q) ∈ Pq

Hence T ⊆ Pq, which concludes our proof. □

Now that we have established a strong connection between the set of of β-expansion
and Pq given that T forms complete residue system mod q. We would now spend a
considerable amount of effort on showing that the set of β expansion modq forms
a complete residue system modq. That is, we are proving the set equality T = Zq.
To achieve this, we will combine Lemma 2.16 and Theorem 2.17, which gives the
final form of the proof in Corollary 2.18.

We discover that the hardest part of the proof lies on Theorem 2.17. This says
that if k has a β-expansion modq, then k + 1 also has a β-expansion modq.

However, before we can do that, we have to first define a few well-defined ”actions”
that we can do to manipulate the β-expansion.

Therefore, we would introduce Lemma 2.16, which introduces three key congruence
identities. The three congruence identities are crucial as they will be repeatedly
used in Theorem 2.17. In short, Lemma 2.16 allows us to do well-defined ”actions”
in Theorem 2.17.

Lemma 2.16. It is given that q = (Nb)
2n − (Db)

2n, the following congruence
identities hold:

Nb ≡ −Dbβ (mod q)(I1)
Nb ≡ Dbβ

2 + (Nb −Db)β (mod q)(I2)
β2n ≡ 1 (mod q)(I3)

Proof.
For (I1), By Definition 2.13, we know β ≡ −Nb(Db)

−1 (mod q). Also, (Db)
−1 mod

q is well-defined because (q,Db) = 1 by Lemma 2.10(iv). Then simple rearrange-
ment concludes (i).

For (I2),

Dbβ
2 + (Nb −Db)β ≡ (Nb)

2(Db)
−1 +Nb − (Nb)

2(Db)
−1

≡ Nb (mod q)
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Note that (I3) comes from the following:

β2n − 1 ≡
(
−Nb(Db)

−1
)2n − 1

≡ (Nb)
2n(Db)

−2n − (Db)
2n(Db)

−2n

≡ (Db)
−2n

(
(Nb)

2n − (Db)
2n
)

≡ 0 (mod q)

□
Now that we have proved these three congruence identities, we would use them for
the hardest part of the proof for the set equality T = Zq. As mentioned above, the
hardest part lies in how to find a well-defined β-expansion modq of k + 1 given a
well-defined β-expansion of k.

The following Theorem 2.17 investigates how a well-defined β-expansion of k, could
lead to another well-defined β-expansion for k + 1.

When adding 1 each time to the β-expansion, we found out that the most difficult
part lies on some β-expansion of k such that the β-expansion of k+1 has carrying
issue (See Case 2 of Theorem 2.17). To tackle this problem, we will be repeatedly
using the three congruence identities found in Lemma 2.16.

Theorem 2.17. If an integer k has a β-expansion modq, then k + 1 also has a
β-expansion modq

Proof.
By definition, k ≡ (t2n−1, t2n−2, . . . , t1, t0)β (mod q)

• Case 1 If t0 ≤ Nb − 2, then

k + 1 ≡ ( t2n−1, t2n−2, . . . t1, (t0 + 1) )β (mod q)

where t0 + 1 ≤ Nb − 1 and k + 1 has a well-defined β-expansion modq
• Case 2 Assume t0 = Nb − 1 Then

k + 1 ≡ ( t2n−1, t2n−2, . . . t1, (0) )β +Nb (mod q)

However, it is not yet a well-defined β-expansion modq as we have an extra Nb at
the end.
Then, we observe the following pattern when determining the value of other values
of si

(i) If t1 ≥ Db, then using congruence equation (I1)

k + 1 ≡ ( t2n−1, t2n−2, . . . , (t1 −Db) , 0)β (mod q)

where t1 −Db ≥ 0 and k + 1 has a well-defined β-expansion mod q
This is because −Dbβ ≡ Nb (mod q) from (I1).
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(ii) If t1 < Db, then using congruence equation (I2)

k + 1 ≡ ( t2n−1, t2n−2, . . . , (t2 +Db) , (t1 +Nb −Db) , 0)β (mod q)

where 0 ≤ t1 +Nb −Db ≤ Nb − 1.

However, a well-defined β-expansion mod q of k+1 depends on the value of
t2+Db. Notably, if t2+Db < Nb, then k+1 has a well-defined β-expansion
modq. But if t2 +Db ≥ Nb, we need to further manipulate the expression
t2 + Db and β-expansion modq in order for k + 1 to have a well-defined
β-expansion modq

With the consideration of inequality assumptions on different t, we di-
vide all possible (t2n−1, t2n−2, . . . t1, t0)β into the following cases.

• Case 2A
There exists an integer H such that 0 ≤ H < n− 1 such that
t2i−1 < Db for all 0 < i ≤ H

t2i ≥ Nb −Db for all 0 < i ≤ H

t2H+1 ≥ Db or t2H+2 < Nb −Db

• Case 2B

For all i = 1, 2, . . . , n− 1

{
t2i−1 < Db,

t2i ≥ Nb −Db

□

Example on Case 2A
We visualize the proving logic of Case 2A by setting an example when H = 1. We
focus on t1, t2, t3, t4. Consider

k + 1 ≡ ( t2n−1, t2n−2, . . . , t1, 0 )β +Nb (mod q)

By definition,


t1 < Db

t2 ≥ Nb −Db

t3 ≥ Db or t4 < Nb −Db

Step 1:
Consider i = 1. Since i ≤ H = 1, we are concerning the first and second inequal-
ity. Observe t1. we can’t apply (I1), and cannot form ( t2n−1, t2n−2, . . . , t2, (t1 −
Db), 0 )β since t1 −Db < 0. Therefore only(I2) can be applied.
Step 2:
Perform (I2). Then

k + 1 ≡ (t2n−1, t2n−2, . . . , t3, (t2 +Db), (t1 +Nb −Db), 0)β (mod q)

≡ (t2n−1, t2n−2, . . . , t3, (t2 +Db−Nb), (t1 +Nb −Db), 0)β +Nbβ
2 (mod q)

Note we subtract Nb from the place value for β2 and then we add back Nbβ
2 at

the end.
Notice Nb − 1 ≥ t2 + Db − Nb, t1 + Nb − Db ≥ 0. Then we are done with the
digits t2 and t1 as t2, t1 ∈ D. We are also done with the first and second inequality
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t2i−1 < Db for all 0 < i ≤ H

t2i ≥ Nb −Db for all 0 < i ≤ H

within the simultaneous inequality
t2i−1 < Db for all 0 < i ≤ H

t2i ≥ Nb −Db for all 0 < i ≤ H

t2H+1 ≥ Db or t2H+2 < Nb −Db

Write t2 +Db −Nb = t2
′ and t1 +Nb −Db = t1

′

Then we consider how can t3 or t4 absorb the Nbβ
2 to form a well-defined β-

expansion modq.
That is we are considering the third inequality t2H+1 ≥ Db or t2H+2 < Nb

within the simultaneous inequality.

(a) If t3 ≥ Db. Also, if we have the case where both t3 ≥ Db and t4 < Nb−Db,
then we consider the case for the t3 ≥ Db. Then apply (I1), which yields:

k + 1 ≡ ( t2n−1, t2n−2, . . . , (t3 −Db), t2
′, t1

′, 0 )β (mod q)

where 0 ≤ t3 −Db, t2
′, t1

′ ≤ Nb − 1.
This is because by (I1), Nbβ

2 ≡ −Dbβ
3 (mod q)

in which t3 absorbs −Dbβ
3 to form a well-defined β-expansion modq.

(b) If t4 < Nb −Db only. Then we can only apply (I2), where

k + 1 ≡ ( t2n−1, t2n−2, . . . , (t4 +Db), (t3 +Nb −Db), t2
′, t1

′, 0 )β (mod q)

where 0 ≤ t4 +Db, t3 +Nb −Db, t2
′, t1

′ ≤ Nb − 1.
This is because by (I2), Nbβ

2 ≡ Dbβ
4 + (Nb −DB)β

3 (mod q).
Hence, we conclude that; in any subcases, where k has a well-defined β-expansion
modq satisfying the simultaneous inequality in Case 2A, we know that k + 1 also
has a well-defined β-expansion modq.

Therefore, under the inequality assumption of Case 2A, we conclude that if k lies
in Case 2A, we have the following general formulas:

Case 2A(i) If t2H+1 ≥ Db, then we have the following general formula

k + 1 ≡
(t2n−1, t2n−2, . . . , t2H+2, (t2H+1 −Db), (t2H +Db −Nb), (t2H−1 +Nb −Db),

(t2H−2 +Db −Nb), (t2H−3 +Nb −Db), . . .

. . . , (t2 +Db −Nb), (t1 +Nb −Db), 0 )β (mod q)

where 0 ≤ (t2H+1−Db) ≤ Nb− 1 and 0 ≤ (t2i+Db−Nb), (t2i−1+Nb−
Db) ≤ Nb − 1 for all 0 < i ≤ H.
Hence, the above is a well-defined β-expansion modq
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Case 2A(ii) If t2H+2 < Nb −Db, then we have the following general formula.

k + 1 ≡
(t2n−1, t2n−2, . . . , (t2h+2 +Db), (t2H+1 +Nb −Db), (t2H +Db −Nb),

(t2H−1 +Nb −Db), (t2H−2 +Db −Nb),

(t2H−3 +Nb −Db), . . .

. . . , (t2 +Db −Nb), (t1 +Nb −Db), 0 )β (mod q)

where 0 ≤ (t2H+2 +Db), (t2H+1 +Nb −Db) ≤ Nb − 1 and
0 ≤ (t2i +Db −Nb), (t2i−1 +Nb −Db) ≤ Nb − 1 for all 0 < i ≤ H.
Hence, the above is a well-defined β-expansion modq.

On Case 2B
The difference between Case 2A and Case 2B is that the former has H < n − 1,
whilst the latter includes H = n− 1.
Hence we can apply the same proving procedure from Case 2A until the index
H = n− 1, hence continuing the proving procedure until t2n−2 and t2n−3.
Applying the argument in Case 2A yields:

k + 1 ≡
(t2n−1, (t2n−2 +Db −Nb), (t2n−3 +Nb −Db), (t2n−4 +Db −Nb), . . . ,

(t2 +Db −Nb), (t1 +Nb −Db), 0 )β +Nbβ
2n−2 (mod q)

where 0 ≤ (t2i +Db −Nb), (t2i−1 +Nb −Db) ≤ Nb − 1 for all 0 < i ≤ H.

Case 2B If t2n−1 < Db, again, (I1) should not be used as taking
Nbβ

2n−2 ≡ −Dbβ
2n−1β

will yield (t2n−1 −Db) < 0.
Hence, we perform (I2) on Nbβ

2n−2, which yields

k + 1 ≡
Dbβ

2n+((t2n−1+Nb−Db), (t2n−2+Db−Nb), (t2n−3+Nb−Db), (t2n−4+Db−Nb), . . .

. . . , (t2 +Db −Nb), (t1 +Nb −Db), 0 )β (mod q)

where 0 ≤ (t2i +Db −Nb), (t2i−1 +Nb −Db) ≤ Nb − 1 for all 0 < i ≤ H.
This is because by (I2), Nbβ

2n−2 ≡ Dbβ
2n + (Nb −DB)β

2n−1 (mod q).

But notice from (I3), we have β2n ≡ 1 (mod q). Hence we write

k + 1 ≡
( (t2n−1 +Nb −Db), (t2n−2 +Db −Nb), (t2n−3 +Nb −Db), (t2n−4 +Db −Nb), . . .

. . . , (t2 +Db −Nb), (t1 +Nb −Db), Db )β (mod q)

where 0 ≤ (t2i +Db −Nb), (t2i−1 +Nb −Db) ≤ Nb − 1 for all 0 < i ≤ H.
Hence, the above is a well-defined β-expansion modq and also a general
formula for Case 2B.
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Obviously if t2n−1 ≥ Db, then we can apply (I1) and we have (t2n−1 −
Db) ≥ 0 and the Nbβ

2n−2 will be cancelled out to form a well-defined
β-expansion modq.

Corollary 2.18. Given q = (Nb)
2n − (−Db)

2n. Then Zq = T

Proof.
The inclusion T ⊆ Zq is trivial.
This is because T takes residues in modulo q of β-expansion modq, naturally
T ⊆ Zq

For the inclusion T ⊇ Zq We first claim that every natural number has a β-
expansion modq.
We will proceed with induction.

Base case: Notice that 1 ≡ (0, 0, . . . , 1)β (mod q) has a well-defined β-expansion
modq.
Inductive step: Now, we proceed with induction on k.
Applying Theorem 2.17 in the inductive step finishes the proof. Hence, every
natural number has a well-defined β-expansion modq.
Therefore, every natural number k ∈ Zq has a well-defined β-expansion mod q. But
we know T contains all residues β-expansion. Hence these well-defined β-expansion
modq forms a subset of T , that is Zq ⊆ T □

Corollary 2.19. Given q = (Nb)
2n − (−Db)

2n. The set T = Pq = Zq, i.e. (Pq

forms a complete residue system modq)

Proof. Apply Corollary 2.18, we have T = Zq.
Then apply Theorem 2.15, we have T = Pq = Zq. □
Now, we want to show that the numerators of primary recurring expansions form
the complete residue system P(Nb)2n−(−Db)2n = Z(Nb)2n−(−Db)2n doesn’t only occur
when q = (Nb)

2n − (−Db)
2n.

In the following theorem, we will no longer fix q′ = (Nb)
2n − (−Db)

2n.
We will prove that as long as (q′, NbDb) = 1, then Pq′ = Zq′

Theorem 2.20. (i) If gcd(q′, NbDb) = 1. Then there exists m ∈ N such that
q′ | (Nb)

2m − (−Db)
2m

(ii) If Py forms complete residue system mody and x | y. Then Px forms
complete residue system modx.

Proof.

Proof of (i) By the assumption (q′, NbDb) = 1, we have (q′, Db) = 1. Then, since[
−(Db)

−1
]−1 ≡ Db (mod q′) is well-defined, −(Db)

−1 (mod q′) is also
well-defined. Combining this with the fact that (q′, Nb) = 1, we know that
−Nb(Db)

−1 (mod q′) is also well-defined and gcd(−Nb(Db)
−1, q′) = 1.
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The coprime condition then allows us to apply Euler’s Theorem, which
yields [

−Nb(Db)
−1
]2ϕ(q′) ≡ 1 (mod q′)

(Nb)
2ϕ(q′)

(
(−Db)

−1
)2ϕ(q′) ≡ 1 (mod q′)

(Nb)
2ϕ(q′) ≡ (−Db)

2ϕ(q′) (mod q′)

(Nb)
2ϕ(q′) − (−Db)

2ϕ(q′) ≡ 0 (mod q′)

Therefore, q′ | (Nb)
2ϕ(q′) − (−Db)

2ϕ(q′) where ϕ(q′) is the Euler-Toitent
function.

Proof of (ii) Since Py forms complete residue system mody by assumption, we know
that there exists p ∈ Py such that p = k y

x + gky for all k ∈ Zx where gk is
an integer.

Collect those p in the set O

O := {0, ,
y

x
+ g1y , 2

y

x
+ g2y , . . . , (x− 1)

y

x
+ gx−1y}

We know that

0 ,
y
x + g1y

y
,

2 y
x + g2y

y
, . . . ,

(x− 1) yx + gx−1y

y

are fractions having primary recurring expansion.
Now, we know that

0 = 0 ,
y
x + g1y

y
=

1 + g1x

x
,

2 y
x + g2y

y
=

2 + g2x

x
, . . . ,

(x− 1) yx + gx−1y

y
=

(x− 1) + gx−1x

x

are fraction having primary recurring expansion.
Then 0 , 1 + g1x , 2 + g2x , . . . , (x− 1) + gx−1x ∈ Px.

Then, it is obvious that Px forms complete residue system modx as, after
taking modulo x, we obtain every residue modx.

□

Having established the necessary theorems and corollaries, we return to prove the
complete residue system theorem.

Theorem 2.12. If gcd(q′, NbDb) = 1, then

Pq′ := {p | p

q′
has primary recurring expansion }

forms a complete residue system modq′

Proof. Assume that gcd(q′, NbDb) = 1. Apply Theorem 2.20(i), there exists
n ∈ N such that q′ | (Nb)

2n− (−Db)
2n. Since q′ | (Nb)

2n− (−Db)
2n for some n ∈ N
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and by Corollary 2.19, we know that P(Nb)2n−(−Db)2n forms complete residue sys-
tem mod(Nb)

2n − (−Db)
2n and Then, applying Theorem 2.20(ii), Pq′ also forms

complete residue system modq′, which concludes our proof.
□

Example. The existence of an integer expansion for every integer has been well
established. However, the existence of a β-expansion for all residues remains un-
certain, unless utilizing Theorem 2.17.

The concern is indeed valid. As demonstrated in the previous example, even a
relatively small integer like 35 has an integer expansion with 11 digits in base −6

5 .
To obtain a β-expansion with a digit length of 2n, it is necessary to apply the
congruence identities outlined in Lemma 2.16.

In the subsequent example, we will illustrate the β-expansion of residues modulo
65 in base −3

2 .
We observe that the β-expansion mod65 of residues from 0 to 5 corresponds to
their integer expansions and requires fewer than 2n = 4 digits. The first difficulty
naturally arises when dealing with larger integers such as 6, as the length of their
integer expansions may exceed the desired number of digits.
To attain a β-expansion with 4 digits, we must follow the procedures outlined in
Theorem 2.17.

Given that the number 5 has a β-expansion mod65 in the form 5 ≡ (0, 2, 1, 2)−3
2

(mod 65), we would like to find the β-expansion mod65 of the residue 6.

Since t0 = Nb − 1 = 2, we are in Case 2.

But, we know


t1 = 1 < Db

t2 = 2 ≥ Nb −Db

t3 = 0 < Db

Since for all i = 1, 2, we have
{
t2i−1 < Db,

t2i ≥ Nb −Db

By definition, we are in Case 2B.
However, we know Case 2A and Case 2B differs only on the case for t2(n−1)+1 =
t2(2−1)+1 = t3.
Hence, we apply Case 2A for t1 and t2.
Hence we know

5 + 1 ≡
(
t3, (t2 +Db −Nb), (t1 +Nb −Db), 0

)
β
+Nbβ

2n−2 (mod 65)

≡
(
0, 1, 2, 0

)
β
+ 3β2 (mod 65)

Know that t2n−1 = t3 = 0 < Db, hence we can only perform (I2) on 3β2n−2, which
yields

5 + 1 ≡ 2β4 + ((0 + 3−2), 1, 2, 0 )β (mod 65)
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Refer to (I3), we have β4 ≡ 1 (mod 65). Hence,

5 + 1 ≡ (1, 1, 2, 2 )β (mod 65)

which is a well-defined β-expansion modq.
Now that we have determined 6 has a β-expansion mod65 where 6 ≡ (1, 1, 2, 2)β
(mod 65), we would like to find the β-expansion mod65 of the residues 7.
Since t0 = Nb − 1 = 2, we are in Case 2.

But, we know


t1 = 2 = Db

t2 = 1 = Nb −Db

t3 = 1 < Db

Since, for H = 0, we know t2H+1 = t1 = Db, we are in Case 2A(i).
Then, apply the general formula

6 + 1 ≡ (1, 1, (t1 −Db), 0)β (mod 65)

≡ (1, 1, 0, 0)β (mod 65)

To reduce redundancy, we only list the β-expansion of residues mod65 up to 10
below. Nevertheless, we know that other residues from 10 to 65 have at least 1
corresponding β-expansion modq.

Residue β-expansion (mod 65)
0 (0,0,0,0)β
1 (0,0,0,1)β
2 (0,0,0,2)β
3 (0,2,1,0)β
4 (0,2,1,1)β
5 (0,2,1,2)β
6 (1,1,2,2)β
7 (1,1,0,0)β
8 (1,1,0,1)β
9 (1,1,0,2)β
10 (2,0,1,2)β

2.4. Reverse Algorithm - A second proof for the Complete Residue Sys-
tem theorem. In the following subsection, we will provide a second proof to
Theorem 2.12 by utilizing the Reverse Algorithm, which can also efficiently decide
whether a rational number has a primary recurring expansion. It should be noted
that throughout this subsection, q is strictly fixed such that gcd(q,NbDb) = 1 in
order to attain a recurring expansion for the sake of proof.
We will first define the algorithms that will be used in our proof.

We will first define the Forward Algorithm in Definition 2.21, on account of
its close relationship with the expansion of a fraction p

q to its right-hand-side.
Second of all, the Forward Algorithm is highly relevant to fractions with primary
recurring expansions. We can find a necessary and sufficient condition between a
primary recurring expansion, its digits ai and ”remainders” ri in Theorem 2.22.
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That is, if p = rk for some k, then naturally through the Forward algorithm p
q

has primary recurring expansion. In addition, given that p
q = (0.a1 . . . ak)−Nb

Db

has
primary recurring expansion; subsequently, after applying p, q and a1 . . . ak to the
Forward algorithm, naturally r1

q , . . .
rk−1

q can attain primary recurring expan-
sions as well. The details will be provided in Corollary 2.23.

After defining the Forward Algorithm, we will define the Reverse Algorithm
on Definition 2.24. The Reverse Algorithm is observed to be interdependent
with the Forward Algorithm. The relationship will be mentioned in the para-
graph before Definition 2.24 where we discuss the motivation; and also Definition
2.24 itself.

Definition 2.21 (Forward Algorithm). Let b = −Nb

Db
and we define the following

procedure as the Forward Algorithm: [2]

Input: Alg(p, q,A = {a1, a2, . . . , ak}), where p ∈ Z, q ∈ N, ai ∈ D such that aiq +
ri ≡ 0 (mod Db) for all 1 ≤ i ≤ k
Output: r1, r2, . . . , rk

bp = a1q + r1

br1 = a2q + r2

. . .

brk−2 = ak−1q + rk−1

brk−1 = akq + rk

. . .

The Forward Algorithm is closely related to the expansions of p and ri for
1 ≤ i ≤ k.

More specifically, we have
p

q
= (0.a1)−Nb

Db

+

(
−Db

Nb

)
r1
q

ri
q

= (0.ai+1)−Nb
Db

+

(
−Db

Nb

)
ri+1

q

And that
p

q
= (0.a1 . . . ak)−Nb

Db

+

(
−Db

Nb

)k
rk
q

According to our definition, we know ri is an integer for all i.
We are aware that the stipulation aiq + ri ≡ 0 (mod Db) for all 1 ≤ i ≤ k is not
technically a strict requirement for finding the expansion for p

q . However, we will
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consider such a stipulation while defining our algorithm for convenience.

In Section 3, we will forgo the stipulation aiq + ri ≡ 0 (mod Db) and consider the
case where ri may not be an integer.

Theorem 2.22. Let b = −Nb

Db
. There exists A = {a1, a2, . . . , ak} where ai ∈ D

and at least one ai is non-zero such that p = rk and ri ̸= rj for all 1 ≤ i, j < k
and i ̸= j, if and only if p

q = (0.a1 . . . ak) is a fraction having a primary recurring
expansion with period k.

Proof. Assume there exists A = {a1, a2, . . . , ak} where ai ∈ D and at least one ai
is non-zero such that p = rk and ri ̸= rj for all 1 ≤ i, j < k and i ̸= j for all j ∈ N
We perform the Forward Algorithm on Alg(p, q,A = {a1, a2, . . . , ak}).

bp = a1q + r1 p = b−1(a1q + r1) = q(b−1a1) + b−1r1

. . .

brk−1 = akq + rk p = q(b−1a1 + b−2a2 + b−3a3 + · · ·+ b−(k−1)ak−1 + b−kak)

+ b−krk

. . .

br2k−1 = a2kq + r2k p = q(b−1a1 + b−2a2 + b−3a3 + · · ·+ b−(k−1)ak−1 + b−kak)+

+ qb−k(b−1ak+1 + b−2ak+2 + b−3ak+3 + . . .

+ b−(k−1)a2k−1 + b−ka2k) + b−2kr2k

. . . . . .

Thus, by taking ahk+1 = a1 , ahk+2 = a2 , . . . , a(h+1)k−1 = ak−1 , a(h+1)k =
ak for all h ∈ N, we obtain

p = q

∞∑
i=0

b−ik

 k∑
j=1

b−jaj



=

 k∑
j=1

(
−Db

Nb

)j

aj

 q

1−
(

−Db

Nb

)k

=

k∑
j=1

aj(−Db)
i(Nb)

k−i

(Nb)k − (−Db)k
(q)

p

q
=

k∑
j=1

aj(−Db)
i(Nb)

k−i

(Nb)k − (−Db)k
is a fraction with a primary recurring expansion, as it

satisfies Definition 2.2(iii).
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Assume that p
q = (0.a1 . . . ak) is a fraction having a primary recurring expansion

with period k.
Then, we can simply substitute it back into the Forward Algorithm, and that
the result p = rk and ri ̸= rj for all 1 ≤ i, j < k where i ̸= j comes naturally. □

Corollary 2.23. If p
q is a fraction having a primary recurring expansion with period

k, then after performing Forward Algorithm on p
q , the fractions p

q ,
r1
q ,

r2
q , . . . ,

rk−1

q

must be distinct fractions such that they have primary recurring expansions with
same period k.

Proof. Consider the forward algorithm defined in Definition 2.21 and Theorem
2.22. Note that if p

q = (0.a1 . . . ak)−Nb
Db

has a primary recurring expansion, there
exists a set A = {a1, a2, . . . , ak} such that p = rk and ri ̸= rj for all 1 ≤ i, j < k
and i ̸= j.
We perform the Forward Algorithm on r1

q with the input

Alg(r1, q,A = {a2, . . . , ak, a1}).

Taking ahk+1 = a2 , ahk+2 = a3 , . . . , a(h+1)k−1 = ak , a(h+1)k = a1 for all
h ∈ N, we obtain

r1 = q(b−1a2 + b−2a3 + b−3a4 + · · ·+ b−(k−1)ak + b−ka1)

+ qb−k(b−1a2 + b−2a3 + b−3a4 + · · ·+ b−(k−1)ak + b−ka1)

+ qb−2k(b−1a2 + b−2a3 + b−3a4 + · · ·+ b−(k−1)ak + b−ka1)

+ qb−3k(b−1a2 + b−2a3 + b−3a4 + · · ·+ b−(k−1)ak + b−ka1)

+ . . .

Repeat the steps above in Theorem 2.22. We obtain, r1
q = (0.a2a3 . . . aka1)−Nb

Db

,
which is a well-defined primary recurring expansion with period k. Similarly, we
can utilize the procedure to find the primary recurring expansions for r2

q , . . . ,
rk−1

q

By assumption ri ̸= rj for all 1 ≤ i, j < k and i ̸= j, such fractions are all distinct.
□

However, the Forward Algorithm has limitations. There might be more than one
ai that satisfies aiq+ri ≡ 0 (mod Db). For example, if (Nb−1)q+ri ≡ 0 (mod Db),
then (Nb−Db− 1)q+ ri ≡ 0 (mod Db) while (Nb− 1) ∈ D and (Nb−Db− 1) ∈ D.
This implies that even if p

q has a primary recurring expansion, one ”wrong” choice
of ai will lead to failure of finding the target expansion. To avoid wasting time
doing trial and error to find out the correct set of A = {a1, a2, . . . , ak}, we develop
the ”Reverse Algorithm”.
With the Forward Algorithm, we play with the set of A = {a1, . . . , ak} to try
find such A such that p

q has primary recurring expansion. Then, we try ”reverse
engineering” the process, that is, given a fraction N0

q , we try to substitute backward
to the ”last step” of the Forward Algorithm brk−1 = akq + rk. But now we
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substitute N0 for rk, a0′ for ak and get N1 for rk−1. While doing so, we obtain
N1 = −Db

Nb
(a0

′q +N0).
With the digits a0′ ∈ D, to keep N1 ∈ Z, we observed that the equation a0

′q+N0 ≡
0 (mod Nb). However, we notice that the congruence equation a0

′q + N0 ≡ 0
(mod Nb) has only one solution for a0

′ ∈ D.
Below is a motivating example, which exemplifies the importance of the Reverse
Algorithm. Consider base −3

2 , we apply the our new ”Reverse Algorithm” on
N0 = 7. (The actual Definition will be provided below)

N1 = −8 =

(
−2

3

)
[(1)(5) + 7](4)

N2 = 2 =

(
−2

3

)
[(1)(5)− 8](5)

N3 = −8 =

(
−2

3

)
[(2)(5) + 2](6)

But by reversing the order, we have the format for the Forward Algorithm(
−3

2

)
(−8) = [(2)(5) + 2](

−3

2

)
(2) = [(1)(5)− 8]

Notice N1 = N3 and N1 ̸= N2 and N2 ̸= N3. Thus, we apply Theorem 2.22, and
know that −8

5 = (0.21)−3
2

.
We see while testing for N0 in our ”Reverse Algorithm”, we magically get that
−8
5 has primary recurring expansion. We also find out that Equation (5) and

Equation (6) ”suggest” digits for the primary recurring expansion of N1

q = N3

q .
In conclusion, we know that such ”Reverse Algorithm” allows us to find a pri-
mary recurring expansion, while the digits of the ”Reverse Algorithm” are the
digits for that particular primary recurring expansion.
This motivates us to define a Reverse Algorithm and find properties of such
algorithm.

Definition 2.24 (Reverse Algorithm). We define the following procedure as the
Reverse Algorithm.
Input: N0 ∈ Z, where N0 ∈

[
−(Nb−1)Nb(Db)
(Nb)2−(Db)2

q , (Nb−1)(Db)
2

(Nb)2−(Db)2
q
]

Output: {a0, a1, . . . }, {N1, N2, . . . }

Z ∋ Ni+1 =
−Db

Nb
(aiq +Ni)(R.A.)

where a ∈ D such that aiq +Ni ≡ 0 (mod Nb).

Note that the existence and uniqueness of ai ∈ D in the above congruence equation
(R.A.) is guaranteed, as (q,Nb) = 1. The restriction N0 ∈ Z gives a unique solution
of Ni ∈ Z for all i ≥ 0.
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The Forward Algorithm gives birth to the Reverse Algorithm. Knowing that
the Forward Algorithm gives an expansion on p

q and ri
q for all 1 ≤ i ≤ k − 1,

we define the Reverse Algorithm. As mentioned above, we know the Reverse
Algorithm gives the digits ai for some fraction Ni

q . With the above definition,
ai, which is uniquely defined, suggests the digit choice A = {a1, a2, . . . ak} for
Ni

q . Then, we can apply the Forward Algorithm to deduce a primary recurring
expansion for Ni

q .

The restriction N0 ∈ Z, where N0 ∈
[
−(Nb−1)Nb(Db)
(Nb)2−(Db)2

q , (Nb−1)(Db)
2

(Nb)2−(Db)2
q
]
, allows us

to deduce the properties of Ni in the following propositions.
Recall Lemma 2.10(i). To have a primary recurring expansion for p

q ,
we have,

−(Nb − 1)Nb(Db)

(Nb)2 − (Db)2
q ≤ p ≤ (Nb − 1)(Db)

2

(Nb)2 − (Db)2
q(B)

Now that we have restricted N0 in bound (B), after applying (R.A.) on N0, we
deduce the following property on Ni for i > 0.

Lemma 2.25. It is given that Ni satisfies (B), i.e.

Ni ∈
[
−(Nb − 1)Nb(Db)

(Nb)2 − (Db)2
q ,

(Nb − 1)(Db)
2

(Nb)2 − (Db)2
q

]
,

and Ni+1 is the resultant after performing (R.A.) on Ni. Then Ni+1 also satisfies
(B).

Proof.
We first consider the lower bound of Ni.
From bound (B), we have

Ni ≤
(Nb − 1)(Db)

2

(Nb)2 − (Db)2
q

aq +Ni ≤(
(Nb − 1)(Db)

2

(Nb)2 − (Db)2
+ ai)q

Ni+1 =
−Db

Nb
(aq +Ni) ≥

−Db

Nb

(
(Nb − 1)(Db)

2

(Nb)2 − (Db)2
+Nb − 1

)
q (take ai = Nb − 1)

=
−Db

Nb

(
(Nb − 1)((Db)

2 + (Nb)
2 − (Db)

2)

(Nb)2 − (Db)2

)
q

= −Db

(
(Nb − 1)(Nb)

(Nb)2 − (Db)2

)
q

Note that we take ai = Nb − 1 to obtain the lower bound of Ni
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Now we consider the upper bound of Ni

From (B), we have

Ni ≥
−(Nb − 1)(Nb)(Db)

(Nb)2 − (Db)2
q

aq +Ni ≥
(−Nb − 1)(Nb)(Db)

(Nb)2 − (Db)2
+ aiq

Ni+1 =
−Db

Nb
(aq +Ni) ≤

−Db

Nb

(
−(Nb − 1)(Nb)(Db)

(Nb)2 − (Db)2
+ 0

)
q (take ai = 0)

=
−Db

Nb

(
(Nb − 1)((Db)

2 + (Nb)
2 − (Db)

2)

(Nb)2 − (Db)2

)
q

=
(Nb − 1)(Db)

2

(Nb)2 − (Db)2
q

□
We have found the amazing property that once N0 is inside bound (B), then ev-
ery iteration Ni afterward also satisfies bound (B). This property shows that all
iterations Ni lie within the interval

[
−(Nb−1)Nb(Db)
(Nb)2−(Db)2

q , (Nb−1)(Db)
2

(Nb)2−(Db)2
q
]
. That means

that after a certain iteration, we know there must exist Ni = Nj for some i, j ∈ N.
Referring back to our motivating example above, we know that such Ni

q =
Nj

q has
primary recurring expansion. In the lemma below, we will give a formal proof of
the existence of Ni = Nj for some i, j ∈ N. We also would like to prove that the
occurrence of the equality Nx = Ny implies that Nx

q =
Ny

q has a primary recurring
expansion.

Lemma 2.26. It is given that N0 satisfies (B).
(i) After performing the Reverse Algorithm on N0 for finitely many times,

there exists j > i ≥ 0 such that Ni = Nj for some i, j ∈ Z≥0, where
Na ̸= Nb for distinct a, b and i ≤ a, b < j.

(ii) Perform Reverse Algorithm finitely many times on N0. If Nx = Ny for
some y > x ≥ 0 where Na ̸= Nb for distinct a, b and x ≤ a, b < y. Then,
Nx

q has primary recurring expansion with period y − x.

Proof.
Proof of (i)
Assume such i, j does not exist. Then Ni ̸= Nj for all distinct i, j ≥ 0.
Then, N0 ̸= N1 ≠ N2 ̸= · · · ̸= N⌊ (Nb−1)Db

Nb−Db
q⌋+1

. By Lemma 2.25, we know

N0, N1, . . . , N⌊ (Nb−1)Db
Nb−Db

q⌋+1
∈
[
−(Nb − 1)Nb(Db)

(Nb)2 − (Db)2
q ,

(Nb − 1)(Db)
2

(Nb)2 − (Db)2
q

]
,

so the interval
[
−(Nb−1)Nb(Db)
(Nb)2−(Db)2

q , (Nb−1)(Db)
2

(Nb)2−(Db)2
q
]

contains at least ⌊ (Nb−1)Db

Nb−Db
q⌋+ 2

distinct integers.
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However, the length of the interval is

(Nb − 1)(Db)
2

(Nb)2 − (Db)2
q − −(Nb − 1)Nb(Db)

(Nb)2 − (Db)2
q =

(Nb − 1)Db

Nb −Db
q

at which there are at most
⌊
(Nb−1)Db

Nb−Db
q
⌋
+1 distinct integers within the bound (B).

Contradiction occurs.

Hence, there exists j > i ≥ 0 such that Ni = Nj for some i, j ∈ Z≥0.
where Na ̸= Nb for distinct a, b and i ≤ a, b < j.
Then, by the well-ordering principle, there exists smallest j such that Ni = Nj ,
and this concludes the proof.

Proof of (ii)
We perform Reverse Algorithm y times on N0.
Assume Nx = Ny for some y > x ≥ 0, where Na ̸= Nb for distinct a, b and
x ≤ a, b < y.
Omitting the first x times of Reverse Algorithm, we have

Nx+1 =
−Db

Nb
(axq +Nx)

Nx+2 =
−Db

Nb
(ax+1q +Nx+1)

. . .

Ny =
−Db

Nb
(ay−1q +Ny−1) = Nx

Now, we take A = {ay−1, ay−2, . . . , ax}, where al ∈ D for all x ≤ l ≤ y − 1
By substituting A = {ay−1, ay−2, . . . , ax} into the Forward Algorithm and re-
versing its order,

−Nb

Db
Ny = ay−1q +Ny−1

. . .

−Nb

Db
Nx+2 = ax+1q +Nx+1

−Nb

Db
Nx+1 = axq +Nx

We know Ny = Nx. But we also know Na ̸= Nb for distinct a, b such that x ≤
a, b < y by assumption. Combining both, we apply Theorem 2.22, which shows
that Ny

q = Nx

q = (0.ay−1 . . . ax) has a primary recurring expansion with period
y − x. □
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From Lemma 2.26(i), we know that, after applying Reverse Algorithm finitely
many times, there must exist a fraction Nj

q having primary recurring expansion for
some j ∈ N .
Then, from Lemma 2.26(ii), we also know that, after applying the Reverse Algo-
rithm such that the iterations Nx and Ny are equal, a primary recurring expansion
occurs.
Therefore, we know that some Ni

q do not have primary recurring expansions while
others do; the idea is to classify which of those Ni

q has primary recurring expansion
and when exactly do we have one. Throughout our exploration, we have found out
that after certain iterations of the Reverse Algorithm, say i times, Ni

q , Ni+1

q , . . .

also attain primary recurring expansions. Additionally, the ones ”before”, those
N0

q , N1

q , . . . , Ni−1

q , do not.
Therefore, in Theorem 2.27 and Remark 2.28, we will formalize such statements.

Theorem 2.27. It is given that N0 satisfies (B) and performs the Reverse Al-
gorithm j times. If there exists j > i ≥ 0 such that Ni = Nj for some i, j ∈ Z≥0,
and Ni ̸= Nk for all i < k < j. Then, all the fractions Ni

q , Ni+1

q , . . . ,
Nj−1

q have
primary recurring expansions with period j − i.

there exists j > i ≥ 0 such that Ni = Nj for some i, j ∈ Z≥0, where Na ̸= Nb for
distinct a, b and i ≤ a, b < j
Proof. Substitute x = i, y = j in Lemma 2.26(ii), we know Ni

q has primary recur-
ring expansion with period j − i.

Since Ni = Nj , it follows that Ni+m = Nj+m for all 0 ≤ m ≤ j − i− 1.
This is because the Reverse Algorithm gives unique values of Nk for all k ≥ 0,
hence the above can be easily obtained.

Note that Na ̸= Nb for distinct a, b such that i + m ≤ a, b < j + m easily fol-
lows.

Then, after applying x = i + m, y = j + m into Lemma 2.26(ii) for all 0 ≤ m ≤
j − i − 1, we know that the fractions Ni

q , Ni+1

q , . . . ,
Nj−1

q have primary recurring
expansions with period j − i.
In particular,

Ni

q
= (0.aj−1 . . . ai)

Ni+1

q
= (0.aiaj−1 . . . ai+1)

. . .

Nj−1

q
= (0.aj−2aj−3 . . . aj−1)

□
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Remark 2.28. We note that Nu

q does not have primary recurring expansion for
all 0 ≤ u < i. This is because there does not exist Nu = Nv for all u < i where
u < v, we know Nu

q doesn’t have primary recurring expansion.

After knowing which of those Ni

q have primary recurring expansions, we will intro-
duce some basic properties that are direct consequences of Reverse Algorithm.
These properties act as the stepping stones for Lemma 2.30, which is crucial for
understanding the residues’ cycles of numerators in primary recurring expansions.

Ni

−Db
Nb

(aq + Nj-1)

Ni−1

. . .

N0

Nj−1

−Db
Nb

(aq + Nj-2)

Ni−1

. . .

N0Nj−2

−Db
Nb

(aq + Nj-3)
Ni−1

. . .

N0

Nj−3

−Db
Nb

(aq + Nj-4)

Ni−1

. . .

N0

. . .

−Db
Nb

(aq + Ni)

Ni−1

. . .

N0

Figure 1. A ”spiral”-shaped generated by inputting N0 into
the reverse algorithm, in which Ni = Nj .
It should be noted that the arrows are going down the algo-
rithm, taking the steps labelled.

We provide a geometric interpretation to visualize the Reverse Algorithm and
its process in Figure 1.
We notice that the Reverse Algorithm starts at N0. For each iteration, we apply
the congruence equation (R.A.) Ni+1 = −Db

Nb
(aiq +Ni).

By the visualization, it is easy to see that N0

q , . . . , Ni−1

q does not having primary
recurring expansion as they do not belong to the ”cycle” within the ”spiral”-shaped
figure. We also know that Ni

q , . . . ,
Nj−1

q also have primary recurring expansion as
they stand within the ”cycle”.

Lemma 2.29. It is given that β ≡
[
−Nb(Db)

−1
]

(mod q) where β ∈ Zq. Applying
the Reverse Algorithm on Ni, we deduce the following properties.

(i) Ni+1 ≡ β−1Ni (mod q)
(ii) Ni+ordq(β) ≡ Ni (mod q)

(iii) If p
q has a primary recurring expansion with period n. Then, after applying

N0 = p in the Reverse Algorithm n times, we have (β−1)n ≡ 1 (mod q)
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Proof.
Proof of (i):
Consider the Equation (R.A.). Taking modulo q, we have

Ni+1 ≡ β−1Ni (mod q)

Proof of (ii):
Since gcd(β, q) = 1, we have ordq(β) exists.
Hence, we can deduce the following congruence equation

βordq(β) ≡
[
−Nb(Db)

−1
]ordq(β) ≡ 1 (mod q)

After applying the Reverse Algorithm ordq(β) times, we obtain

Ni+ordq(β) ≡ (β−1)ordq(β)Ni (mod q)

≡ Ni (mod q)

which concludes our proof.

Proof of (iii):
By Theorem 2.27, we have N0 = Nn. However, by continuously applying 2.29(i),
we know Nn ≡ (β−1)nN0 (mod q). Hence (β−1)n ≡ 1 (mod q) □
Having proven the basic properties about Reverse Algorithm through Lemma
2.29 and its relation with primary recurring expansion through Lemma 2.26 and
Theorem 2.27; we will investigate on the relationship between residues of each
iteration of Reverse Algorithm modq.
We observe that a cycle of residues repeats itself through each iteration of the Re-
verse Algorithm.

For instance, we apply N0 = 11 and q = 7 in base −3
2 to the Reverse Algorithm

until Ni = Nj for some j > i ≥ 0.
In order to save time and space, which is required by calculation, we construct a
table of Ni and its residues after applying Reverse Algorithm.

i 0 1 2 3 4 5 6 7 …
Ni 11 -12 8 -10 2 -6 4 -12 …

Ni mod q 4 2 1 4 2 1 4 2 …
Note that N1 = N7, hence we can simply apply Reverse Algorithm 7 times, and
we find all the primary recurring expansion that there is to offer.

We observe that the residue cycle 2, 1, 4 repeated twice for primary recurring ex-
pansion.
This interesting observation motivates us to the following Lemma 2.30(i), which
shows this phenomenon occurs indefinitely in the Reverse Algorithm.
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Besides, we observe that the residues formed by Ni, . . . , Nj−1, where i, j are small-
est possible integers, encompass the residues formed by N0, . . . , Nj−1. That is, we
have N0 mod q = 4 ∈ {N1 mod q , . . . , N6 mod q} = {2, 1, 4} Therefore, knowing
that Ni

q , . . . ,
Nj−1

q form primary recurring expansions, this motivates us to show
that the residues Ni, . . . , Nj−1 mod q are same as those as N0, . . . , Ni−1 mod q in
Lemma 2.30(ii).
Lemma 2.30. It is given that N0 satisfies (B), and we perform the Reverse
Algorithm finitely many times on N0. Given that there exists i ≥ 0 such that
Ni = Nj for some j > i ≥ 0, where Ni ̸= Nk for all i < k < j.

(i) If ã ≡ b̃ (mod j− i) where a ≤ b for some ã, b̃ ∈ Z≥0. Then, after applying
the Reverse Algorithm b̃ times on N0, we obtain Nã ≡ Nb̃ (mod q)

(ii) For all a ∈ Z≥0, there exists c where i ≤ c ≤ j − 1 such that after applying
the Reverse Algorithm finitely many times on N0, we obtain Na ≡ Nc

(mod q)

Proof.
Proof of (i):
Assume ã ≡ b̃ (mod j − i).
Write b̃ = k(j − i) + ã for some positive integer k.
Then, by Lemma 2.29(i) and (iii), we have Nx ≡

(
β−1

)x
N0 (mod q) and

(
β−1

)j−i ≡
1 (mod q).

Consider

Nb̃ ≡
(
β−1

)b̃
N0

≡
(
β−1

)k(j−i)+ã
N0

≡
(
β−1

)ã
N0

≡ Nã (mod q)

which concludes our proof.

Proof of (ii):
Note that the set of indices {i, . . . , j−1} forms a complete residue system mod j − i
That is, for all a ∈ Z≥0, there exists c ∈ N where i ≤ c ≤ j − 1 and a ≡ c
(mod j − i).
Apply Lemma 2.30(i). For all a ∈ Z≥0, there exists c ∈ N such that Na ≡ Nc

(mod q) where i ≤ c ≤ j − 1. □

Having established the necessary definitions and lemmas, we will now proceed to
demonstrate the Second proof for the complete residue system theorem.

Theorem 2.12.
We remain the assumption that gcd(q,NbDb) = 1, then

Pq := {p | p

q
has primary recurring expansion }
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forms a complete residue system modq′.

Proof.
First, we want to discover subsets of Pq through the Reverse Algorithm.
Pick an arbitrary element N0 ∈ Zq. Obviously, N0 satisfies bound (B).
Perform the Reverse Algorithm ⌊ (Nb−1)Db

Nb−Db
q⌋+2 times on N0, which is, theoret-

ically, the longest possible length such that Ni = Nj for some j > i ≥ 0 in Lemma
2.26(i) as there are at most

⌊
(Nb−1)Db

Nb−Db
q
⌋
+1 distinct integers within the bound (B).

By Lemma 2.26(i) and the well-ordering principle, there exists the smallest non-
negative integer i such that Ni = Nj for some j > i ≥ 0, where Ni ̸= Nk for all
i < k < j.

Applying Lemma 2.27, then Ni

q , Ni+1

q , . . .
Nj−1

q also have primary recurring expan-
sion with period j − i.
We denote nz = Nz mod q where Nz are the resultant after performing Reverse
Algorithm on N0

Denote C1 := {nk | i ≤ k ≤ j − 1}.

That is, C1 is defined to be the set of residues of numerators Ni, . . . , Nj−1 mod q

for the fractions Ni

q , . . . ,
Nj−1

q having primary recurring expansion after applying
Reverse Algorithm on N0.

Recall Definition of Pq in Definition 2.11., we know C1 ⊆ Pq by definition of C1

Then, we pick an arbitrary element N0 ∈ Zq \ C1. Obviously, N0 satisfies bound
(B).

Perform the Reverse Algorithm ⌊ (Nb−1)Db

Nb−Db
q⌋+ 2 times on N0

′.

We denote nz
′ = Nz

′ mod q where Nz
′ are the resultant after performing Reverse

Algorithm on N0
′

Similarly, denote C2 := {nk
′ | i ≤ k ≤ j − 1}.

Notice that C2 ̸= ∅. This is because, by Lemma 2.30(ii), we know there exists
i ≤ l ≤ j − 1 such that Nl ≡ N0 (mod q).
Again, I know C2 ⊆ Pq by definition of C2

Repeat the above process of picking N0 ∈ Zq \ (C1 ∪ C2 ∪ · · · ∪ Ck), applying Re-
verse Algorithm and constructing the set Ck+1. Again, by a similar argument,
we know that Ck is non-empty and that Ck ⊆ Pq. After applying the procedure

for finitely many times, we obtain Zq \
l⋃

i=1

Ci = ∅ for some l ∈ N.
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The idea is that we would like to fill up elements in Zq via C1,C2, . . . until the
union of C equals to Zq. We know we could do so because every time we pick an
element in Zq, but different from those the previous C.

Now we know that Zq \
l⋃

i=1

Ci = ∅. That is, every residue n ∈ Zq, then n ∈ Ck for

some 1 ≤ k ≤ l.

But, we also know that
l⋃

i=1

Ci ⊆ Pq by the definition of those Ci.

This meant that every n ∈ Ci for all 1 ≤ i ≤ l, there exists a corresponding p such
that p ≡ n (mod q) and that p

q has primary recurring expansion.

However, we also know that Pq ⊆ Zq =

l⋃
i=1

Ci because Pq contains element modq.

Thus we have the relation
l⋃

i=1

Ci = Pq = Zq.

Notice that Zq = Pq is logically equivalent to Pq forms complete residue system
modq in Definition 2.11. Thus, this concludes our proof. □

Example. Suppose we q = 7 in base −3
2 . We would like to exemplify that

l⋃
i=1

Ci = Pq = Zq for some l ∈ N.

Consider take N0 = 5 ∈ Z7.

The following table shows the results of Reverse Algorithm after performing it
on N0 until Ni = Nj for some j > i ≥ 0. Note that in Second proof of Complete
Residue System Theorem, we perform the Reverse Algorithm | Nb−1

Nb−Db
|+2 times.

This is for ”safety”, because we know that there must exist some j > i ≥ 0 such
that Ni = Nj after performing that many time. Hence, in actual numerical calcu-
lation, we rarely perform the Reverse Algorithm strictly | Nb−1

Nb−Db
|+ 2 times.

i 0 1 2 3 4
Ni 5 -8 -4 -2 -8
ni 5 6 3 5 6

Notice that N1 = N4. Hence, this time, we just need to perform the Reverse
Algorithm four times.
Now, from Theorem 2.27, we know that 5

7 does not have primary recurring expan-
sion while −8

7 , −4
7 , −2

7 also having primary recurring expansion.
Now, by definition, C1 = {6, 3, 5}.

We know that C1 ⊆ P7 by definition of C1.



EXPANSION OF FRACTIONS IN NEGATIVE RATIONAL BASE 233

Now, we take N0 ∈ Z7 \ {6, 3, 5}, say N0 = 4.

The following table shows the results of Reverse Algorithm after applying it on
N0 = 4 until Ni = Nj for some j > i ≥ 0.

i 0 1 2 3 4 5 6
Ni 4 -12 8 -10 2 6 4
ni 4 2 1 4 2 1 4

Notice that N0 = N6. Hence, this time, we just need to perform the Reverse
Algorithm six times.
Then, from Theorem 2.27, the fractions 4

7 ,
−12
7 , 8

7 ,
−10
7 , 2

7 ,
6
7 all having primary re-

curring expansion.
Now, by definition, C2 = {4, 2, 1}. Again, by definition of C2, we know that
C2 ⊆ P7.
Now we know that Z7 \ (C1 ∪ C2) = ∅. We could not take out any more element
from Z7 \ (C1 ∪ C2)
We know that C1 ∪ C2 ⊆ P7 by definition of Ci.
But we also know P7 ⊆ Z7 = (C1 ∪ C2) because P7 contains element mod7.

Thus, (C1 ∪ C2) = P7 = Z7.

That is, we know the set of residues of primary recurring expansion after applying
N0 ∈ Z7 to the Reverse Algorithm and the set of residues of primary recurring
expansion after applying N0 ∈ Z7 \ C1 to the Reverse Algorithm combine to
form a complete residue system mod7. That is, (C1 ∪ C2) = P7 = Z7.

−8(6)
4(4)

−2(5)

4(4)

−4(3)

4(4)

Figure 2. A ”spiral”-liked
shape figure is generated by in-
putting 5 into the reverse algo-
rithm, in which N1 = N4;
We take q=7 in base −3

2

4(4)

6(1)2(2)

−10(4)

8(1) −12(2)

Figure 3. A ”spiral”-liked
shape figure is generated by in-
putting 4 into the reverse algo-
rithm, in which N0 = N6;
We take q=7 in base −3

2
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Remark 2.31. When performing N0 = 5 ∈ Zq, even though 5
q does not having

primary recurring expansion, the residue n0 = 5 also belongs to the set C1 =
{6, 3, 5}. That is,

{nk | 0 ≤ k ≤ j − 1} = C1

In fact, by Lemma 2.30(ii), we know that after performing the Reverse Algorithm
with input N0 ∈ Zq \ (C1 ∪ C2 ∪ · · · ∪ Ck) the set of residues

{nk | 0 ≤ k ≤ j − 1} = Ck+1

Remark 2.32. If p
q has an primary recurring expansion, then its expansion is

unique.
This can be easily shown as, by the Reverse Algorithm, we know that the digit
choice is unique for every iteration

2.5. Number of representation in the form of terminating or recurring
expansion. In this subsection, we will determine the number of representations
in the form of terminating or recurring expansion.
As mentioned in the introduction, the paper A Number System with Base -3/2 [3]
has determined there to be multiple expansions in the form of (dk . . . d0.d−1d−2 . . . )−3

2

– in fact, it claims that there are ”infinitely many” [3]. However, there are interest-
ing bounds that can be observed if only the terminating and recurring expansions
are considered, and we can conclude a fixed value for the number of representa-
tions, which is finite.

We will first prove that every rational number has at least 1 terminating or recur-
ring expansion in Theorem 2.34.

Then, in Theorem 2.35, we are going to prove that there are at most ⌊ Nb−1
Nb−Db

⌋+ 1

number of terminating or recurring expansion.

We will address the non-terminating, non-recurring expansions of p
q in a later sec-

tion, which we believe to have infinitely many.

Lemma 2.33. It is given that N0 satisfies (B), and we perform the Reverse
Algorithm finitely many times on N0. There are at most ⌊ Nb−1

Nb−Db
⌋ + 1 distinct

integers such that they all have the same residue modDbq.

Proof. Since the length of the interval (B)(ii) is (Nb−1)
Nb−Db

Dbq. We divide by
Dbq to find the number of distinct integers modDbq. Hence there are at most
⌊ (Nb−1)Db

Nb−Db
⌋+ 1 distinct integer such that they have the same residue modDbq □

Theorem 2.34. For all m
n ∈ Q, where gcd(m,n) = 1. The number m

n has at least
1 representation with terminating expansion or recurring expansion.
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Proof.
Case (I). When

n =
∏
p̂|Db

p̂ prime

p̂i
αi

∏
q̂|Nb

q̂ prime

q̂j
βj

for some αi, βi ∈ Z≥0. Then apply Corollary 2.9 (ii). We know that m
n has

a representation with terminating expansion.

Case (ii). When
n = q

∏
p̂|Db

p̂ prime

p̂i
αi

∏
q̂|Nb

q̂ prime

q̂j
βj

for some N ∋ q ̸= 1, gcd(q,NbDb) = 1 and αi, βi ∈ Z≥0.

Refer to Corollary 2.9(ii) for the Definition of indNb
(q̂j)

We take y = max
(
indNb

(q̂1), indNb
(q̂2), . . . , indNb

(q̂l′)
)

where y has l′ prime
factors dividing Nb. That is, we have y is the smallest non-negative integer
such that PNb

| (Nb)
y.

For simplicity, write,∏
p̂|Db

p̂ prime

p̂i
αi = PDb

and
∏
q̂|Nb

q̂ prime

q̂j
βj = PNb

Then we know,

(
−Nb

Db

)y (m
n

)
=

[
(−Nb)

y

PNb

]
m

(Db)
yPDb

(q)
(7)

where (−Nb)
y

PNb

∈ Z We know gcd

(
(Db)

yPDb
, q

)
= 1 by our definition in

Case 2.

We apply Bezout’s Lemma, and hence there exist a, p ∈ Z such that
qa+ (Db)

y [PDb
] (p) = 1

q

(
am

[
(−Nb)

y

PNb

])
+ (Db)

yPDb

(
pm

[
(−Nb)

y

PNb

])
=

[
(−Nb)

y

PNb

]
m(8)

Substituting Equation (8) in the numerator in Equation (7),

(
−Nb

Db

)y (m
n

)
=

q

(
am

[
(−Nb)

y

PNb

])
+ (Db)

yPDb

(
pm

[
(−Nb)

y

PNb

])
(Db)yPDb

(q)

= am

[
(−Nb)

y

PNb

]
(Db)yPDb

+ pm

[
(−Nb)

y

PNb

]
q
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Write a′ = am

[
(−Nb)

y

PNb

]
∈ Z and p′ = pm

[
(−Nb)

y

PNb

]
∈ Z.

We have (
−Nb

Db

)y (m
n

)
=

a′

(Db)
yPDb

+
p′

q

Now, apply Complete Residue System Theorem (Theorem 2.12)
There exists c ∈ Z such that p′ ≡ c (mod q), where c

q has primary recurring
expansion.
Obviously, c−p′

q ∈ Z. Write,

(
−Nb

Db

)y (m
n

)
=

a′

(Db)
yPDb

+
p′

q

=
a′

(Db)
yPDb

− c− p′

q
+

c

q

This means that a′

(Db)
yPDb

− c− p′

q
∈ Z[

1

Db
], while c

q
has a primary

recurring expansion.

Apply Theorem 2.6 and Definition 2.2.
For some t ∈ Z≥0 and n ∈ N, we write,(

−Nb

Db

)y (m
n

)
= (dt . . . d0)−Nb

Db

+ (0.s1 . . . sn)−Nb
Db

= (dt . . . d0 . s1 . . . sn)−Nb
Db

m

n
=

(
−Db

Nb

)y

(dt . . . d0 . s1 . . . sn)−Nb
Db

Note that if t ≥ y, then,(
−Db

Nb

)y

(dt . . . d0 . s1 . . . sn)−Nb
Db

= (dt−y . . . dy . dy−1 . . . d0s1 . . . sn)−Nb
Db

.
And if t < y, then(
−Db

Nb

)y

(dt . . . d0 . s1 . . . sn) = (0 . 0 . . . 0︸ ︷︷ ︸
y − t times

dt . . . d0s1 . . . sn)−Nb
Db

.
which is a representation with recurring expansion. □
Having known the minimum number of representations m

n has, we naturally proceed
to determine its maximum number of representations.

Theorem 2.35. Let m
n ∈ Q. If m

n has recurring expansion, then m
n has at most

⌊ Nb−1
Nb−Db

⌋+ 1 recurring expansions.
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Proof. One can easily show that a fraction m
n ∈ Q cannot be both terminating

expansion and recurring expansion.
Assume one has both terminating and recurring expansion. By Lemma 2.9(ii), we
know

n =
∏
p̂|Db

p̂ prime

p̂i
αi

∏
q̂|Nb

q̂ prime

q̂j
βj

where αi, βi ∈ Z≥0 and hence gcd

(
(Nb)

n − (−Db)
n,

∏
p̂|Db

p̂ prime

p̂i
αi

∏
q̂|Nb

q̂ prime

q̂j
βj

)
= 1 as

m
n has terminating expansion.

However, we know that
(

−Nb

Db

)y (
m
n

)
has a primary recurring expansion, and that

by Theorem 2.6, we know that one can write that
(

−Nb

Db

)y
m
n = v

(Db)l
for some

v ∈ Z and l ∈ Z≥0.

By rearrangement, we have m(−Nb)
y(Db)

l = vn(Db)
y, and hence n | m(−Nb)

y(Db)
l.

But we know that m ̸=
∏
p̂|Db

p̂ prime

p̂i
αi

∏
q̂|Nb

q̂ prime

q̂j
βj for some αi, βi ∈ Z≥0 because if it

is, then m
n would only have a terminating expansion, which contradicts with our

assumption that m
n has both terminating and recurring expansion.

Now, by our assumption of the theorem, we know that m
n must not have terminat-

ing expansion when it already has a recurring one.

Thus, we write
n = q

∏
p̂|Db

p̂ prime

p̂i
αi

∏
q̂|Nb

q̂ prime

q̂j
βj

for some N ∋ q ̸= 1, gcd(q,NbDb) = 1 and αi, βi ∈ Z≥0.

Then, by Case (ii) of Theorem 2.34, we have y = max
(
ind(1), ind(2), . . . , ind(l′)

)
where y has l′ prime factors dividing Nb, and there exist a′, p′ ∈ Z

(
−Nb

Db

)y (m
n

)
=

[
(−Nb)

y

PNb

]
m

(Db)
yPDb

(q)
=

a′

(Db)
yPDb

+
p′

q

By Case (ii) of Theorem 2.34, we know that there exist p′ ≡ c (mod q) such that
a′

(Db)yPDb
+ p′

q = a′

(Db)
yPDb

− c−p′

q + c
q , where c

q has primary recurring expansion.

Write a′

(Db)
yPDb

− c− p′

q
=

b

(Db)
yPDb

∈ Z[
1

Db
]
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Rewriting [
(−Nb)

y

PNb

]
m = qb+ (Db)

yPDb
(c)(9)

Knowing that such c exists, we would like to let there be b̃ and c̃ respectively, in
which b̃

(Db)yPDb
forms a fraction having integer expansion, and c̃

q has a primary
recurring expansion.
We would like to investigate the maximum possible values of c̃ such that c̃ ≡ c
(mod q), and find all possible c̃ such that the above is fulfilled. This is because, for
any b̃ ∈ Z, the fraction b̃

(Db)yPDb
has integer expansion by Theorem 2.8.

In the following, by fixing c̃
q to have a primary recurring expansion, c̃ has to fulfil

the following conditions such that c̃
q has primary recurring expansion.

Consider Equation (9).

Taking modulo q, [
(−Nb)

y

PNb

]
m ≡ (Db)

yPDb
(c̃) (mod q)

By rearranging,

c̃ ≡ m

[
(−Nb)

y

PNb

]
(Db)

−y (PDb
)
−1

(mod q)(10)

Knowing that c̃
q has a primary recurring expansion, by Lemma 2.10, we know

c̃ ≡ 0 (mod Db)(11)

Consider (10) and (11), after applying Chinese remainder theorem, we know

c̃ ≡ u (mod Dbq)(12)

where u is an integer such that 0 ≤ u < Dbq.

However, by bound (B), we know all potential values of c̃ such that c̃
q has primary

recurring expansion lies on the following bound.

−(Nb − 1)(Nb)(Db)

(Nb)2 − (−Db)2
q ≤ c̃ ≤ (Nb − 1)(Db)

2

(Nb)2 − (−Db)2
q

Now, we can show that the potential value of c̃ ≤ ⌊ Nb−1
Nb−Db

⌋+ 1.

We can now apply Lemma 2.33, which shows the potential value of c̃ such that
there are at most ⌊ Nb−1

Nb−Db
⌋+ 1 many c̃

q .
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That is, for c̃ to be inbound, such c̃ are in the form
−(Nb − 1)(Nb)(Db)− α

(N b)2 − (−Db)2
q + u, . . . , u−Dbq, u, u+Dbq, . . . ,

(Nb − 1)(Db)
2 − β

(N b)2 − (−Db)2
q + u︸ ︷︷ ︸

at most ⌊ Nb−1

Nb−Db
⌋ + 1 terms

where α is the smallest positive integer such that{
−(Nb − 1)(Nb)(Db)− α ≡ 0 (mod (Nb)

2 − (−Db)
2)

α ≡ 0 (mod Db)

and β is the smallest positive integer such that{
(Nb − 1)(Db)

2 − β ≡ 0 (mod (Nb)
2 − (−Db)

2)

β ≡ 0 (mod Db)

Note that both congruence simply ensure both −(Nb−1)(Nb)(Db)−α
(Nb)2−(−Db)2

and (Nb−1)(Db)
2−β

(Nb)2−(−Db)2

are integer and that both −(Nb−1)(Nb)(Db)−α
(Nb)2−(−Db)2

q and (Nb−1)(Db)
2−β

(Nb)2−(−Db)2
q are multiples of

Dbq, and that both α and β are well-defined.

c̃
q has exactly ⌊ Nb−1

Nb−Db
⌋ + 1 many primary recurring expansions occurs when all

the inbound residues c̃, after having been divided by q, have primary recurring
expansion.

That is, all
−(Nb−1)(Nb)(Db)−α

(Nb)2−(−Db)2
q + u

q
, . . . ,

u−Dbq

q
,
u

q
,
u+Dbq

q
, . . . ,

(Nb−1)(Db)
2−β

(Nb)2−(−Db)2
q + u

q

have primary recurring expansions. □
Then, we have found the minimum and maximum numbers of terminating, re-
curring expansions m

n , it will be interesting to go a step further and define the
procedure for finding all terminating or recurring expansions of m

n .

Procedure for finding all terminating or recurring expansion of m
n

Consider m ∈ Z, n ∈ N where gcd(m,n) = 1.

Case 1 If
y =

∏
p̂|Db

p̂ prime

p̂i
αi

∏
q̂|Nb

q̂ prime

q̂j
βj

for some αi, βi ∈ Z≥0.

Then, we take y = max
(
indNb

(q1), indNb
(q2), . . . , indNb

(ql′)
)

where y has
l′ prime factors dividing Nb.
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Since we know (−Nb

Db
)y
(
m
n

)
has integer expansion, we can refer to The-

orem 2.6 for the procedure to find such integer expansion.
Case 2

n = q
∏
p̂|Db

p̂ prime

p̂i
αi

∏
q̂|Nb

q̂ prime

q̂j
βj

where N ∋ q ̸= 1, gcd(q,NbDb) = 1 and αi, βi ∈ Z≥0.

Again, we take y = max
(
indNb

(q1), indNb
(q2), . . . , indNb

(ql′)
)

for some y
has l′ prime factors dividing Nb.

Then, there exist b, c ∈ Z such that

(
−Nb

Db

)y (m
n

)
=

[
(−Nb)

y

PNb

]
m

(Db)
yPDb

(q)
=

b

(Db)
yPDb

+
c

q

where b

(Db)
yPDb

has integer expansion and c
q has primary recurring ex-

pansion.

By taking the common denominator,[
(−Nb)

y

PNb

]
m = qb+ (Db)

yPDb
(c)(13)

By Theorem 2.35, the number of c̃ such that c̃
q has primary recurring ex-

pansion is at most ⌊ Nb−1
Nb−Db

⌋+ 1 times. We would like to find all c̃.

Use the necessary condition from Equation (10) and (11) at Theorem
2.35, we know such c̃ must satisfy the following.c̃ ≡ m

[
(−Nb)

y

PNb

]
(Db)

−y (PDb
)
−1

(mod q)

c̃ ≡ 0 (mod Db)
.(C1)

Also, it must satisfy our bound (B).

−(Nb − 1)(Nb)(Db)

(Nb)2 − (−Db)2
q ≤ c̃ ≤ (Nb − 1)(Db)

2

(Nb)2 − (−Db)2
q(C2)

Denote Cq be the set of c̃ that satisfy both (C1) and (C2).

The purpose of the new set Cq is to eliminate values of c̃ where it is
impossible for c̃

q to have primary recurring expansion. Hence, it allows
us to reduce the time needed to test whether c̃

q has primary recurring
expansion

We will now verify the validity of potential primary recurring expansion
c̃
q by input c̃ = N0 in the Reverse Algorithm.
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Pick c̃i ∈ Cq for all Ni

After applying Reverse Algorithm finitely many times individually.
If there exist j ∈ N such that N0 = Nj , then by Theorem 2.26(ii), we know
such c̃i

q has primary recurring expansion.

We know J =
{
c̃i ∈ Cq | c̃i

q has primary recurring expansion
}

.

Then we substitute all p ∈ J in (16) to find the value of b respectively.

Now we obtain a set of solutions

S =

{
(b, p) ∈ Z2 |

(
−Nb

Db

)y (m
n

)
=

b

(Db)
yPDb

+
p

q

}
where b

(Db)
yPDb

has integer expansion and p
q has primary recurring ex-

pansion.

Then, refer to Theorem 2.6 for the procedure for integer expansion.
Also, refer to Theorem 2.26(ii) to find the digits of the primary recurring
expansion p

q .

Now, we can simply divide
(

−Nb

Db

)y
both sides and obtain

m

n
=

(
−Db

Nb

)y

(dt . . . d0 . s1 . . . sn)−Nb
Db

Then, we would refer to the procedure in Theorem 2.34 to find the
recurring expansion of m

n , and we are done.

Example. Consider a fixed composite base, say −21

16
. We want to find the number

of terminating expansion or recurring expansion for the fractions −13
1332 ,

−25
1332 respec-

tively.

Consider m
n = −13

1332 .
We know, by prime factorization, that 1332 = 2232(37),

Take y = max(indNb
(3)) = 2

Then, there exist b, c ∈ Z such that

(
−21

16

)2(−13

1332

)
=

[
(−21)2

32

]
(−13)

(16)222(37)
=

b

(16)222
+

c

37

where b

(16)2(22)
has integer expansion and c

37 has primary recurring expansion.
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By taking common denominator,
−637 = (37)b+ (16)222 c(14)

Now, we would like to find all c̃ such that c̃
q has primary recurring expansion.

By our procedure above, we know such c̃ must satisfy the following.{
c̃ ≡ −637(16)−2

(
22
)−1

(mod 37)

c̃ ≡ 0 (mod 16)
.(C1)

This simplifies to {
c̃ ≡ 13 (mod 37)

c̃ ≡ 0 (mod 16)
.(C1)

Apply Chinese Remainder Theorem, we have
c̃ ≡ 272 (mod 592)

Also, it must satisfy our bound (B).

−(21− 1)(21)(16)

212 − (−16)2
(37) = −1344 ≤ c̃ ≤ (21− 1)(16)2

212 − (−16)2
(37) = 1024(C2)

Then Cq = {−912,−320, 272, 864}
We will now verify the validity of potential primary recurring expansion c̃

q by input
N0 = c̃ in the Reverse Algorithm.

c̃i −912 −320

N1 = 272 =
−16

21
[(15)(37)− 912] N1 = −320 = −16

21 [(20)(37)− 320]

N2 = −320 =
−16

21
((4)(37) + 272)

N3 = −320 =
−16

21
((20)(37)− 320)

N2 = N3 N0 = N1

c̃i 272 864

N1 = −320 =
−16

21
((4)(37) + 272 N1 = −912 = −16

21 ((9)(37) + 864)

N2 = −320 =
−16

21
((20)(37)− 320) N2 = 272 = −16

21 ((15)(37)− 912)

N3 = −320 =
−16

21
((4)(37) + 272)

N4 = −320 = −16
21 ((20)(37)− 320)

N1 = N2 N3 = N4
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By Reverse Algorithm, we found out that only −320
37 has primary recurring

expansion while the others are not.
Hence, we know J = {−329}
Then we substitute all p = −272 in Equation (16), and obtain

−637 = (37)b+ (16)222 (−320)

b = 8839

Now we obtain a set of solutions

S = {(8839,−320)}

where 8839
(16)222 has integer expansion and −320

37 has primary recurring expansion.

Then, refer to Theorem 2.6 for the procedure for integer expansion and we have
8839
1024 = ([4] [5] [3] [13])−21

16
where [d] denotes digit and d ∈ D.

Also, refer to Theorem 2.26(ii), we know −320
37 = (0.[20])−21

16
.

Now, we can simply divide
(−21

16

)2 both sides and obtain

−13

1332
=

(
−16

21

)2

([4] [5] [3] [13] . [20])−21
16

=

(
[4] [5] . [3] [13] [20]

)
−21
16

This solution is the only solution on terminating or recurring expansion for −25
1332 in

base−21
16 .

Consider m
n = −25

1332 Take y = max(indNb
(3)) = 2. Then, there exist b, c ∈ Z such

that

(
−21

16

)2(−25

1332

)
=

[
(−21)2

32

]
(−25)

(16)222(37)
=

b

(16)222
+

c

37

where b

(16)2(22)
has integer expansion and c

37 has primary recurring expansion.

By taking common denominator,

−1225 = (37)b+ (16)222 c(15)
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Following our procedure, we know such c̃ must satisfy the following.{
c̃ ≡ −1225(16)−2

(
22
)−1

(mod 37)

c̃ ≡ 0 (mod 16)
.(C1)

This simplifies to {
c̃ ≡ 25 (mod 37)

c̃ ≡ 0 (mod 16)
.(C1)

Apply Chinese Remainder Theorem, we have
c̃ ≡ 432 (mod 592)

Also, it must satisfy

−−(21− 1)(21)(16)

212 − (−16)2
(37) = −1344 ≤ c̃ ≤ (21− 1)(16)2

212 − (−16)2
(37) = 1024(C2)

Then Cq = {−1344,−752,−160, 432, 1024}
We will now verify the validity of potential primary recurring expansion c̃

q by input
N0 = c̃ in the Reverse Algorithm.

c̃i −1344 −752

N1 = 1024 =
−16

21
[(0)(37)− 1344] N1 = 432 = −16

21 [(5)(37)− 752]

N2 = −1344 =
−16

21
[(20)(37) + 1024] −752 = −16

21 [(15)(37) + 432]

N0 = N2 N0 = N2

c̃i −160 432

N1 = −160 =
−16

21
((10)(37)− 160) N1 = −752 = −16

21 ((15)(37) + 432)

N2 = −320 =
−16

21
((20)(37)− 320) N2 = 432 = −16

21 ((5)(37)− 752)

N0 = N1 N0 = N2

c̃i 1024

N1 = −1344 =
−16

21
((20)(37) + 1024)

N2 = −1024 =
−16

21
((0)(37)− 1344)

N0 = N2

By our Reverse Algorithm, we found out all −1344
37 , −752

37 , −160
37 , 432

37 , 1024
37 has pri-

mary recurring expansion.

Hence, we know J = {−1344,−752,−160, 432, 1024}
Then we substitute all p ∈ J in Equation (16), and obtain a set of solution
S = {(37163,−1344), (20779,−752), (4395,−160), (−11989, 432), (−28373, 1024)}
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where b
(16)222 has integer expansion and p

37 has primary recurring expansion.

Now, we could easily deduce

First solution
−25

1332
=

(
−21

16

)2 [
37163

(16)222
+

−1344

37

]
=

(
[16] [9] [1] . [5] [14] [20] [0]

)
−21
16

Second solution
−25

1332
=

(
−21

16

)2 [
20779

(16)222
+

−752

37

]
=

(
[4] [6] . [0] [19] [15] [5]

)
−21
16

Third solution
−25

1332
=

(
−21

16

)2 [
4395

(16)222
+

−160

37

]
=

(
[4] [6] . [0] [3] [10]

)
−21
16

Fourth solution
−25

1332
=

(
−21

16

)2 [−11989

(16)222
+

432

37

]
=

(
[4] [6] . [16] [8] [5] [15]

)
−21
16

Fifth solution

−25

1332
=

(
−21

16

)2 [−28373

(16)222
+

1024

37

]
=

(
[20] [11] . [11] [13] [0] [20]

)
−21
16

where [d] means digit where d ∈ D.

These are all the terminating or recurring expansion for −25
1332 in base−21

16 .

In our paper, we will focus on the primary recurring expansions. To make our
analysis easier, we aim to identify the potential values of p that result in a primary
recurring expansion for p

q , rather than examining each expansion individually.

Procedure for finding all possible value of p such that p
q has primary
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recurring expansion given fixed q

By Lemma 2.10(iv), we know that if p
q has primary recurring expansion , then

gcd(q,NbDb) = 1.

For a fraction p
q to have a primary recurring expansion, we have two necessary

conditions for such p
q .

From Lemma 2.10(iii),
p ≡ 0 (mod Db)(D1)

Also, recall form Lemma 2.10(i), p
q must satisfy

−(Nb − 1)(Nb)(Db)

(Nb)2 − (−Db)2
q ≤ p ≤ (Nb − 1)(Db)

2

(Nb)2 − (−Db)2
q(D2)

Denote V = {p | p satisfy D1 and D2 and q ∤ p}.

Pick an arbitrary element p ∈ V. Take N0 = p and apply the Reverse Al-
gorithm finitely many times, until there exists j > i ≥ 0 such that Ni = Nj .
Then by Theorem 2.27, we know the fractions Ni

q , . . .
Nj−1

q have distinct primary
recurring expansions. Also by Remark 2.28, we know Nu

q does not have primary
recurring expansion for all 0 < u < i.

Denote V1 = {N0, . . . , Nj−1}
Then pick an element p ∈ V \ V1

Then repeat the process taking for N0 = p and apply it to the Reverse Algorithm
finitely many times. Then, we can again determine whether each N0

q , . . . ,
Nj−1

q has
primary recurring expansion.

Again, we denote V2 = {N0, . . . , Nj−1}

Repeat the above process of picking p = N0 ∈ V \ (V1 ∪ V2 ∪ · · · ∪ Vk), apply-
ing Reverse Algorithm and taking Vk+1 = {N0, . . . , Nj−1} out of V; until

V \
l⋃

i=1

Vi = ∅ for some l ∈ N.

We have found all primary recurring expansion for a fixed q. By Definition 2.11,
the numerators Ni are in the set Pq

Example. Consider base −4
3 . We would like to find all fractions having primary

recurring expansion for q = 13.

We consider the necessary condition for a primary recurring expansion p
13 .

By the procedure above,
p ≡ 0 (mod 3)(D1)
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and
−468

7
≤ p ≤ 351

7
(D2)

By definition, V = {−66,−63,−60 . . . ,−42,−36,−3, 3, . . . , 36, 42, 45, 48}.
Note that, by definition, −39, 0, 39 ̸∈ V as they are divisible by 13.
Pick an arbitrary p ∈ V, say −51. Take N0 = −51 and apply the Reverse
Algorithm until Ni = Nj for some j > i ≥ 0.

i 0 1 2 3 4 5 6 7
Ni -51 9 -36 27 -30 3 -12 9

Note that N1 = N7, we perform the Reverse Algorithm 7 times and we have
found all the primary recurring expansion for this input N0. We know that −51

13 does
not have primary recurring expansion, while the fractions 9

13 .
−36
13 , 27

13 ,
−30
13 , 3

13 ,
−12
13

all have primary recurring expansion.

Now, pick p ∈ V \ V1 = V \ {−51, . . . ,−12}.

Say, we pick p = N0 = −60 and apply the Reverse Algorithm until Ni = Nj for
some j > i ≥ 0.

i 0 1 2 3 4 5 6 7 8 9
Ni -60 45 -63 18 -33 -15 -21 6 -24 18

Note that N3 = N9, we perform the Reverse Algorithm 9 times and we have
found all the primary recurring expansion for this input N0. We know that
−60
13 , 45

13 ,
−63
13 doesn’t have primary recurring expansion, while the fractions

18

13
.
−33

13
,
−15

13
,
−21

13
.
6

13
,
−24

13

all have primary recurring expansion.

Now, we would conduct a similar process as above, and pick p ∈ V \ (V1 ∪V2) and
input to the Reverse Algorithm.
To save redundant calculation and space, in the following table, we collect all
choices of N0, all the element Ni that occur after N0 is applied to the Reverse
Algorithm and their respective set Vk.
In the table, we denote PRE as primary recurring expansion. The parenthesized
and sub-scripted parts of the number denote its residue mod13.

Trial Picked Ni where Ni
q

has PRE Ni where Ni
q

is not PRE
element

1 −51(1) 9(9),−36(3), 27(1),−30(9), 3(3),−12(1) −51(1)
2 −60(5) 18(5),−33(6), 15(2),−21(5), 6(6),−24(2) −60(5), 45(6),−63(2)
3 −66(12) −9(4),−3(10),−27(12) −66(12), 30(4),−42(10), 12(12)
4 −57(8) −18(8),−6(7),−15(11) −57(8), 33(7),−54(11), 21(8),−45(7), 24(11)]
5 42(3) N/A 42(3)
6 48(9) N/A 48(9)
7 −48(4) N/A −48(4), 36(10)
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Where N/A implies that no new Ni such that Ni

q has PRE is discovered with the
corresponding input.
The following is a record of the set of Vk in chronological order of the picked
element

V1 = {−51, 9,−36, 27,−30, 3,−12}
V2 = {−60, 45,−63, 18,−33, 15,−21, 6,−24}

V3 = {−66, 30,−42, 12,−9,−3,−27}
V4 = {−57, 33,−54, 21,−45, 24,−18,−6,−15}

V5 = {42,−51, 9,−36, 27,−30, 3,−12, 9}
V6 = {48,−36, 27,−30, 3,−12}

V7 = {−48, 36,−27,−9,−3}

Now that we have every element Ni ∈ V has appeared and has been determined
whether Ni

q has primary recurring expansion, we have

P13 = {9,−36, 27,−30, 3,−12, 18,−33, 15,−21, 6,−24,−9,−3,−27,−18,−6,−15}

, and we have classified all primary recurring expansion for a fixed q = 13.
Below, we provide a graphical representation of all the elements in V, after being
applied to the Reverse Algorithm for a fixed q = 13. The Ni with a ”tail” is
those Ni ∈ V such that Ni

q does not have primary recurring expansion. Those Ni

inside the ”cycle” are those such that Ni

q have primary recurring expansion.

42 (3)

−51 (1)

9 (9)

−36 (3) 27 (1)

−30 (9)

3 (3)−12 (1)

48 (9)

−60 (5)

45 (6)

−63 (2)

18 (5)

−33 (6) 15 (2)

−21 (5)

6 (6)−24 (2)



EXPANSION OF FRACTIONS IN NEGATIVE RATIONAL BASE 249

−66 (12)

30 (4)

−42 (10)

12 (12)

−9 (4)

−3 (10)

−27 (12)

36 (10)

−48 (4)

−57 (8)

33 (7)

−54 (11)

21 (8)

−45 (7)

24 (11)

−18 (8)

6 (7)

−15 (11)

Note that the above example provides a database of the primary recurring expan-
sion P13. Now, we could determine the number of representations of the range of
numerator given a fixed q in that base
Consider base −4

3 . And we would like to find the number of representations for
m = 1, . . . , 10 given a fixed denominator n = 454597 = (3)2(4)2(13).

We first apply the procedure similar to that of Procedure for finding all ter-
minating or recurring expansion of m

n .
Notice I already have
P13 = {−36,−33,−30,−27,−24,−21,−18,−15,−12,−9,−6,−3, 3, 6, 9, 15, 18, 27}

from above.
Consider m

n = 1
(3)2(4)2(13) =

1
1872 .

Take y = max(ind4(4)) = 2
Then, there exist b, c ∈ Z such that

(
−4

3

)2(
1

(3)2(4)2(13)

)
=

[
(−4)2

(4)2

]
(1)

(3)2(3)2(13)
=

b

(3)2(3)2
+

c

13
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where b

(3)4
has integer expansion and c

13 has primary recurring expansion.

By taking common denominator,
1 = (13)b+ (3)4 c(16)

By our procedure above, we know such c̃ must satisfy the following.{
c̃ ≡ (1)(3)−4 (mod 13)

c̃ ≡ 0 (mod 3)
.(C1)

This simplifies to {
c̃ ≡ 9 (mod 13)

c̃ ≡ 0 (mod 3)
.(C1)

Apply Chinese Remainder Theorem, we have
c̃ ≡ 9 (mod 39)

Also, it must satisfy
−(4− 1)(4)(3)

42 − (−3)2
(13) =

−468

7
= −66.857142

≤ c̃ ≤ (4− 1)(3)2

42 − (−3)2
(13) =

351

7
= 50.142857(C2)

Then C13 = {−30, 9, 48}
We will now verify the validity of potential primary recurring expansion c̃

q directly
by checking how many of those C13 are in P13.
Now, we can verify whether something is primary recurring expansion without in-
putting N0 = c̃ in the Reverse Algorithm for every single time, which saves time.

Note that the Complete Residue Theorem guarantees there must exist a c̃ ∈ C13
such that c̃ is also in P13.

By comparing C13 and P13, we find out that −30, 9 is in both sets. This meant that
we know J = {−30, 9}. This means that there is only one pair of (b, c̃) satisfying(

−4

3

)2(
1

(3)2(4)2(13)

)
=

b

(3)2(3)2
+

c

13

where b

(3)4
has integer expansion and c̃

13 has primary recurring expansion.

Then we substitute all p ∈ J in Equation (16), and obtain a set of solution S.
Now, substituting c̃ = 9 in (16), b = −56. Substituting c̃ = −30 in (16), b = 187.
Thus, we have

S = {(−56, 9), (187,−30)}
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where b
34 has integer expansion and c̃

13 has primary recurring expansion.

Now, we could easily deduce the first and only solution.

First solution
1

1872
=

(
−3

4

)2 [−56

34
+

9

13

]
=

(
[1] [2] [2] . [2] [0] [0] [1] [2] [1] [0] [3]

)
−4
3

Second solution
1

1872
=

(
−3

4

)2 [
187

34
+

−30

13

]
=

(
[1] [2] [2] . [2] [3] [1] [0] [3] [0] [1] [2]

)
−4
3

These are all the terminating or recurring expansion for 1
1872 in base−4

3 .
To save redundant calculation step, we will make a table listing the m, corre-
sponding C13, its intersection with P13, which ultimately decides the number of
terminating or recurring expansion for m

n .

m C13 C13 ∩ P13 Number of recurring expansion
1 {-30,9,48} {-30,9} 2
2 {-60,-21,18} {-21,18} 2
3 {-51,-12,27} {-12,27} 2
4 {-42,-3,36} {-3} 1
5 {-33,6, 45} {-33,6} 2
6 {-63,-24,15} {-24,15} 2
7 {-54,-15,24} {-15,} 1
8 {-45,-6,33} {-6} 1
9 {-36,3,42} {-36,3} 2
10 {-66,-27,12} {-27} 1

3. Non-terminating, non-recurring expansion for p
q in the Number

System with Base −Nb

Db

In this section, we will explore the non-terminating, non-recurring expansions for a
fraction p

q , as they are relevant to its number of representations. The main theorem
in this section aims to prove the existence of such expansions.
In order to obtain a non-terminating, non-recurring expansion for p

q satisfying
bound (B), we will provide, in this section, a way of picking ai for p

q , which is
achieved by inputting p

q into a variation of the Forward Algorithm – the Un-
conditional Forward Algorithm.
The appearance of this variation has been indicated in Section 2.3.
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Note that for a fraction p
q satisfying bound (B), there are many different ways

to achieve a non-terminating, non-recurring expansion. In the following, we pro-
vide a method of choosing ai that we believe is the best in terms of the speed of
convergence.

The method we use is to choose ai such that |ri| is minimum. We could use a close
form to describe that in the Lemma 3.5.

We will first define the Unconditional Forward Algorithm

Definition 3.1 (Unconditional Forward Algorithm). Let b = −Nb

Db
and we define

the following procedure as the Unconditional Forward Algorithm:

Input: UnconAlg(p, q,A = {a1, a2, . . . , ak}), where p ∈ Z, q ∈ N and ai ∈ D
Output: r1, r2, . . . , rk

bp = a1q + r1

br1 = a2q + r2

. . .

brk−2 = ak−1q + rk−1

brk−1 = akq + rk

. . .

We know that

p

q
= (0.a1 . . . ak)−Nb

Db

+

(
−Db

Nb

)k
rk
q

Is different from the original Forward Algorithm; as defined in Definition 3.1, we
have forgone the stipulation aiq + ri ≡ 0 (mod Db), hence ri does not necessarily
have to be an integer. However, we restrict ri such that −(Nb−1)Nb(Db)

(Nb)2−(Db)2
(q) < ri <

(Nb−1)(Db)
2

(Nb)2−(Db)2
(q) for all i ≥ 1

That is, we no longer limit ourselves to finding terminating expansion or recurring
expansion for p

q , but also non-terminating and non-recurring expansion.

We will now define the necessary lemma and corollary. We want to establish that
rk is bounded for all k ∈ N under certain circumstances.

Definition 3.2. We call p
q has a integer-free expansion if it has an expansion in

the form of p
q = (0.a1a2 . . . )−Nb

Db

or (0.a1a2 . . . ak)−Nb
Db

for some k ≥ 1

Lemma 3.3. If p
q has an integer-free expansion, then −(Nb−1)Nb(Db)

(Nb)2−(Db)2
< p

q <
(Nb−1)(Db)

2

(Nb)2−(Db)2
, disregarding whether the expansion terminates or recurs.
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Proof. The following proof is very similar to Lemma 2.10 (i)
The upper bound of the value of an integer-free expansion is

(
0.[0] [Nb − 1]

)
−Nb
Db

=
(Nb − 1)(−Nb

Db
)−2

1− (−Nb

Db
)−2

=
(Nb − 1)(Db)

2

(Nb)2 − (Db)2

by sum of geometric series with common ratio (−Db

Nb
)2. We obtain

(
0.[0][Nb − 1]

)
−Nb
Db

by maximizing the positive component (digits with even power) and minimising the
negative component (digits with odd power).
The lower bound of the value of an integer-free expansion is

(0.[Nb − 1][0])−Nb
Db

=
(Nb − 1)(−Nb

Db
)−1

1− (−Nb

Db
)−2

=
−(Nb − 1)Nb(Db)

(Nb)2 − (Db)2

by sum of geometric series with common ratio (−Db

Nb
)2. We obtain (0.[Nb − 1][0])−Nb

Db

by minimizing the positive component (digits with even power) and maximizing
the negative component (digits with odd power). □

Lemma 3.4. If p
q has an integer-free expansion (0.a1a2 . . . ak . . . )−Nb

Db

, after per-
forming the Unconditional Forward Algorithm with the input UnconAlg(p, q,A =
{a1, a2, . . . , ak, . . . }), then,

(i) The fraction ri
q has an integer-free expansion for all i ≥ 1.

(ii) −(Nb−1)Nb(Db)
(Nb)2−(Db)2

< ri
q < (Nb−1)(Db)

2

(Nb)2−(Db)2
for all i ≥ 1

Proof.
Proof of (i) Assume p

q = (0.a1a2 . . . ak . . . )−Nb
Db

. By Definition 3.1, p
q = (0.a1)−Nb

Db

+(
−Db

Nb

)
r1
q .

We have

(0.a1a2 . . . ak . . . )−Nb
Db

= (0.a1)−Nb
Db

+

(
−Db

Nb

)
r1
q

(0.a1)−Nb
Db

+ (0.0a2 . . . ak . . . )−Nb
Db

= (0.a1)−Nb
Db

+

(
−Db

Nb

)
r1
q

(0.a2 . . . ak . . . )−Nb
Db

(
−Db

Nb

)
=

(
−Db

Nb

)
r1
q

r1
q

= (0.a2 . . . ak . . . )−Nb
Db

Therefore, r1
q has an integer-free expansion. Similarly, by the same token, if r1

q has
an integer-free expansion, then r2

q has an integer-free expansion. By induction, we
can conclude that ri

q has an integer-free expansion for all i ≥ 1.

Proof of (ii)
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By Lemma 3.4, ri
q has an integer-free expansion for all i ≥ 1. Combining with the

findings in Lemma 3.3, we can conclude −(Nb−1)Nb(Db)
(Nb)2−(Db)2

< ri
q < (Nb−1)(Db)

2

(Nb)2−(Db)2
for all

i ≥ 1
□

This is the reason we restrict −(Nb−1)Nb(Db)
(Nb)2−(Db)2

(q) < ri <
(Nb−1)(Db)

2

(Nb)2−(Db)2
(q) for all i ≥ 1

in the Unconditional Forward Algorithm.

Lemma 3.5. Let b = −Nb

Db
. It is given −(Nb−1)(Nb)(Db)

(Nb)2−(Db)2
q < ri <

(Nb−1)(Db)
2

(Nb)2−(Db)2
q for

some i > 0.

If we perform the Unconditional Forward Algorithm for ri
q where

ai+1 =

{
0 if ri > 0

min
[
⌊ bri+

q
2

q ⌋, Nb − 1
]

if ri ≤ 0

then −(Nb−1)(Nb)(Db)
(Nb)2−(Db)2

q < ri+1 < (Nb−1)(Db)
2

(Nb)2−(Db)2
q.

Proof. Recall bri = ai+1q + ri+1, or equivalently ri+1 = bri − ai+1q.
Now, we would split ri into two different cases ri ≥ 0 and ri < 0.
We want to show that −(Nb−1)(Nb)(Db)

(Nb)2−(Db)2
q < ri+1 < (Nb−1)(Db)

2

(Nb)2−(Db)2
q for both cases.

Case 1 When

0 ≤ ri <
(Nb − 1)(Db)

2

(Nb)2 − (Db)2
q

By assumption, take ai+1 = 0.
We know

0 ≥ bri >

(
−Nb

Db

)(
(Nb − 1)(Db)

2

(Nb)2 − (Db)2

)
q =

−(Nb − 1)(Nb)(Db)

(Nb)2 − (Db)2
q

−(Nb − 1)(Nb)(Db)

(Nb)2 − (Db)2
q < ri+1 = bri ≤ 0

Case 2 When
−(Nb − 1)(Nb)(Db)

(Nb)2 − (Db)2
q < ri < 0

Multiplying both sides by b, we know

(Nb − 1)(Nb)
2

(Nb)2 − (Db)2
q =

(
−Nb

Db

)
−(Nb − 1)(Nb)(Db)

(Nb)2 − (Db)2
q > bri > 0(17)

By assumption, take a = min
[
⌊ bri+

q
2

q ⌋, Nb − 1
]
.

Now, we may split into two more cases to analyze.
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Case 2a If bri − (Nb − 1)q ≥ −q
2 .

Then

bri +
q
2

q
≥ (Nb − 1)q

q
= Nb − 1

But we know Nb − 1 is integer, hence⌊
bri +

q
2

q

⌋
≥ (Nb − 1)q

q
= Nb − 1

Then, we take ai+1 = min
[
⌊ bri+

q
2

q ⌋, Nb − 1
]
= Nb − 1.

Then, apply Inequality (17)

ri+1 = bri − ai+1q = bri − (Nb − 1)q

<
−(Nb − 1)(Nb)

2

(Nb)2 − (Db)2
q − (Nb − 1)q

=
(Nb − 1)(Db)

2

(Nb)2 − (Db)2
q

Notice

ri = bri − ai+1q

≥ −q

2

= (−1)(1)(
1

2
)q

> (−1)

[
(Nb − 1)(Db)

Nb −Db

] [
Nb

Nb +Db

]
q

=
−(Nb − 1)(Nb)(Db)

(Nb)2 − (Db)2
q

Case 2b If bri − (Nb − 1)q < −q
2 .

Then

bri +
q
2

q
<

(Nb − 1)q

q
= Nb − 1

Obviously, ai+1 = min
[
⌊ bri+

q
2

q ⌋, Nb − 1
]
= ⌊ bri+

q
2

q ⌋.
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Then,
ri+1 = bri − ai+1q

= bri −
(⌊

bri +
q
2

q

⌋)
q

≥ bri −
[
bri +

q

2

]
= (−1)(1)(

1

2
)q

> (−1)

[
(Nb − 1)(Db)

Nb −Db

] [
Nb

Nb +Db

]
q

=
−(Nb − 1)(Nb)(Db)

(Nb)2 − (Db)2
q

It is obvious that bri − ai+1q < (Nb−1)(Db)
2

(Nb)2−(−Db)2
.

Combining Case 2a and Case 2b,
−(Nb − 1)(Nb)(Db)

(Nb)2 − (Db)2
q < ri+1 <

(Nb − 1)(Db)
2

(Nb)2 − (Db)2
q,

which concludes our proof.
□

Corollary 3.6. Given that −(Nb−1)(Nb)(Db)
(Nb)2−(Db)2

q < p < (Nb−1)(Db)
2

(Nb)2−(Db)2
q.

If we perform the Unconditional Forward Algorithm for ri
q where

ai+1 =

{
0 if ri > 0

min
[
⌊ bri+

q
2

q ⌋, Nb − 1
]

if ri ≤ 0

. Then −(Nb−1)(Nb)(Db)
(Nb)2−(Db)2

q < rk < (Nb−1)(Db)
2

(Nb)2−(Db)2
q for all k ∈ N.

Proof. If p is in (B), then by Lemma 3.5, r1 is also in (B) by choosing

ai =

{
0 if ri > 0

min
[
⌊ bri+

q
2

q ⌋, Nb − 1
]

if ri ≤ 0
.

Then we can easily show by induction that
−(Nb − 1)(Nb)(Db)

(Nb)2 − (Db)2
q < rk <

(Nb − 1)(Db)
2

(Nb)2 − (Db)2
q

for all k ∈ N. □
Having established the necessary preliminaries, we will now move on to proving
the main theorem in this section.

Theorem 3.7. Suppose p
q is a fraction and −(Nb−1)(Nb)(Db)

(Nb)2−(Db)2
q < p < (Nb−1)(Db)

2

(Nb)2−(Db)2
q.

There exists an integer-free, non-terminating, non-recurring expansion for p
q .
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Proof. By Lemma 3.5, we know that for every p
q in bound (B), combined with a

specific way to pick A = {a1, . . . , aj , . . . }; after applying to Unconditional For-
ward Algorithm, (0.a1 . . . aj . . . )−Nb

Db

forms a well-defined expansion.

Note that if, after performing Unconditional Forward Algorithm, we obtain
digits ai such that there p

q has a primary recurring expansion. Then, we can easily
find a second way to pick ai.
Then, by remark 2.32, for the same fraction p

q , we know the second method of
picking ai must not be a primary recurring expansion.

Now, notice if we substitute in the Unconditional Forward Algorithm, we have

p

q
= lim

k→∞

[
(0.a1 . . . ak)−Nb

Db

+

(
−Db

Nb

)k
rk
q

]
= lim

k→∞

[ ∞∑
i=1

ai

(
−Db

Nb

)i

+

(
−Db

Nb

)k
rk
q

]

Combining the fact |−Db

Nb
| < 1 and rk

q is bounded, we know lim
k→∞

(
−Db

Nb

)k
rk
q

= 0,
which yield

p

q
= lim

k→∞
(0.a1 . . . ak)−Nb

Db

= lim
k→∞

[ ∞∑
i=1

ai

(
−Db

Nb

)i
]

Hence, we deduce p
q = lim

k→∞
(0.a1 . . . ak)−Nb

Db

to be an integer-free, non-terminating,
non-recurring expansion. □

Example. In the following sample, we will show that by the method of choosing
ai such that |ri| is minimum in Lemma 3.5, the values of ai is picked such that p

q

converges quickly.
Consider the base −7

3 , we would like to find an integer-free, non-terminating, non-
recurring expansion for −30

11 . We know that −(7−1)(7)(3)
(7)2−(3)2 (11) < −30 < (7−1)(3)2

72−(3)2 (11).
Thus, we can apply the method of choosing

ai+1 =

{
0 if ri > 0

min
[
⌊ bri+

q
2

q ⌋, Nb − 1
]

if ri ≤ 0
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r1 =

(
−7

3

)
(−30)− 6 (11) = 4 a1 = 6

r2 =

(
−7

3

)
(4)− 0 (11) =

−28

3
a2 = 0

r3 =

(
−7

3

)(
−28

3

)
− 2 (11) =

−2

9
a3 = 2

r4 =

(
−7

3

)(
−2

9

)
− 0 (11) =

14

27
a4 = 0

r5 =

(
−7

3

)(
14

27

)
− 0 (11) =

−98

81
a5 = 0

r6 =

(
−7

3

)(
−98

81

)
− 0 (11) =

686

243
a6 = 0

r7 =

(
−7

3

)(
686

243

)
− 0 (11) =

−4802

729
a7 = 0

r8 =

(
−7

3

)(
−4802

729

)
− 1 (11) =

9557

2187
a8 = 1

r9 =

(
−7

3

)(
9557

2187

)
− 0 (11) =

−66899

6561
a9 = 0

r10 =

(
−7

3

)(
−66899

6561

)
− 2 (11) =

35267

19683
a10 = 2

In fact, this could go on forever without terminating. However, we will stop now
and take these ten digits as an approximation for −30

11 .

(0.6020000102)−7
3

= (6)(−7
3 )−1 + (2)(−7

3 )−3 + (1)(−7
3 )−8 + (2)(−7

3 )−10

≈ (−2.727515819)10 ≈ (−2.72)10 = −30
11

We can see that this approximation has a certain error, but the error will approach
0 as the number of digits taken approaches to infinity.

Remark 3.8. Note that choosing ai+1 such that |ri+1| is minimum is not the
only way to produce an ri+1 such that −(Nb−1)(Nb)(Db)

(Nb)2−(Db)2
q < p < (Nb−1)(Db)

2

(Nb)2−(Db)2
q. In

fact, when there are multiple ai+1 that leads to inbound ri+1, after performing
Unconditional Forward Algorithm infinitely many times, there will be infinitely
many different sets of A = {a1, . . . , aj , . . . }, i.e. there are infinitely many non-
terminating non-recurring expansion for p

q . However, these other ways of picking
ai+1 do not converge to our target fraction as quickly as the method stated in 3.5.

For any base Nb > Db ≥ 1. If

−(Nb − 1)(Db)
3

(Nb)(Nb)2 − (Db)2
q ≤ ri <

(
(Nb − 1)(Db)

2

(Nb)2 − (Db)2
− Db

Nb

)
q
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Multiplying by b, we obtain
(Nb − 1)(Db)

2

(Nb)2 − (Db)2
q ≥ bri >

(
−(Nb − 1)(Nb)(Db)

(Nb)2 − (Db)2
+ 1

)
q

Now, we have at least two choices of ai+1 = 0 or ai+1 = 1 to pick from, both which
makes ri+1 satisfies bound (B).
Now, that we know for some ri

q , there are infinitely many representations for the
fraction ri

q

Note that in other bases and other scenarios, there might be even more choices of
ai that make ri+1 satisfy bound (B).

4. Conclusion and Area for Further Research

Conclusion.
In conclusion, through exploring the fundamental properties of a number system
with base −Nb

Db
, we have found the interesting properties of the Complete residue

System Theorem, and that by adopting terminating and recurring expansions
of m

n , the case in which there are infinite representations will not occur. Further-
more, we deduce the minimum and maximum numbers of representations to be 1
and ⌊ Nb−1

Nb−Db
⌋+ 1 respectively.

Area for Further Research.
The interesting properties that lead to the Complete Residue System Theorem
has been discovered and well-developed in this paper. However, we did not find
a necessary and sufficient condition on finding the numerators of fraction having
primary recurring expansion given a fixed q. We believe that the numerators of
primary recurring expansion does not acquire an obvious pattern. The necessary
and sufficient conditions are very useful as one can quickly determine the numera-
tors of fraction having primary recurring expansion. This raises the efficiency for
testing the recurring expansion of m

n it eliminates the need for the two necessary
conditions (10) and (11) as described in Procedure for finding all terminating
or recurring expansion of m

n .
While dealing with primary recurring expansions, we have discovered that the
period of a primary recurring expansion has an interesting feature. Recall that
β ∈ Zq is an integer such that β ≡ −Nb(Db)

−1 (mod q).

Conjecture 1. For all Nb > Db ≥ 1. If p
q has primary recurring expansion, then

the period of p
q is either ordq(β) or 2 ordq(β)

Although this is not the main focus on finding number of representation, this
conjecture is highly useful in related studies. For instance, if we know that N0

q has
primary recurring expansion. Then, we know that we just need to perform the
Reverse Algorithm for a maximum of 2 ordq(β) times. We would also know that
the cardinality of C1, . . . ,Cl would be ordq(β) or 2 ordq(β).
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REVIEWERS’ COMMENTS

The article focuses on the expansion of fractions on negative rational bases. The
objective is to establish a finite number of recurring expansions using novel theories
and algorithms. The authors introduce definitions and conditions for four types of
expansions and present two distinct proofs for the Complete Residue System The-
orem. The second main result outlines the bounds of terminating and recurring
expansions in any number system and provides a method to compute all expansions
for any fraction m

n .

One reviewer considers the report belongs to recreational mathematics, as un-
orthodox number systems were considered, yet there are several works along the
direction of the report have appeared in the literature before, showing some interest
from the community. Overall, the article apparently has sufficient research content,
and is commendable as the work by high school students.
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