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ABSTRACT. In this paper, we conduct an analysis of the problem concerning
the mean shadow cast by rotating objects. The original problem was introduced
by Cauchy in 1832. He proposed solutions for the 2-D and 3-D scenarios in
1842 and 1850 respectively. In the original problem, the shadow was formed
by orthogonal projection. In 2022, the problem was revisited under the 3-D
scenario of a light source with finite distance above the rotation center. Instead
of 3-D scenario, we focus on the 2-D case and generalize the problem by placing
the light source arbitrarily. We derive explicit formulae of the mean shadow.
With these formulae, we provide a numerical method to compute the mean
shadow, which surpasses the conventional simulation.
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1. INTRODUCTION

1.1. Motivation. This investigation is motivated by [1], a YouTube video which
proposes the following question:

Question 1.1. Find the average area of a cube’s shadow.

The average area of the shadow is taken over all possible orientations of the cube
rotating about its center. The shadow is formed by an infinite light source positioned
above the cube.

In the video, two distinctive solutions are presented. One solution involves concrete
computations while the other makes use of observation and symmetry. Finally, the
result is generalized from cubes to all 3-D convex objects.
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FIGURE 1. Thumbnail of the YouTube video from 3BluelBrown ([1])

To gain a deeper understanding towards related problems, literature review is
carried beforehand.

1.2. Literature review. Three results are found regarding the mean shadow
problem. The first two concerns orthogonal projection (light source of infinite
distance) while the third extends the realm to light source of finite distance. These
results are listed in the following subsections.

1.2.1. Infinite light source. The classical problems concerning mean shadow in R?
and R?® were proposed by Cauchy in [2] and [3]. The following questions and
theorems summerize Cauchy’s findings.

Question 1.2.

e In 2-D space, find the average length of the shadow of a rotating convex
object, where the shadow is formed by an infinite light source positioned
above the object.

o In 3-D space, find the average area of the shadow of a rotating convex object,
where the shadow is formed by an infinite light source positioned above the
object.

Theorem 1.3 (Cauchy, [2] & [3]).

o For 2-D space, the average length of the shadow of the convexr object is %
times its perimeter.

e For 3-D space, the average area of the shadow of the convex object is i
times its surface area.
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Sketch of Proof.

e For 2-D space, the object is first decomposed into an infinite number of
infinitesimal segments. Considering a single line segment of length ¢ rotating
in space, we can readily compute its mean shadow:
1 [ 2
— |¢cosf|df = — -
2 Jq us

14

Consequently, the mean shadow of the infinitesimal segments can be
reassembled into the mean shadow of the object:

1 2 1
Mean shadow = 3 < . Perimeter) = — - Perimeter
T T

Here, we have to divide by 2 because any straight line passing through a
convex object must intersect the edge of the shape twice (except for tangent
lines).

For 3-D space, the object is decomposed into an infinite number of infini-
tesimal subrectangles. Considering a single subrectangle of area A rotating
in space, we can readily compute its mean shadow:

w/2
l/ ‘ACOSQ|.Md9:1.A
s —7/2 2 2

Consequently, the mean shadow of the infinitesimal subrectangles can be
reassembled into the mean shadow of the object:

1 1 1
Mean shadow = 3 (2 - Surface area> =1 Surface area

FIGURE 2. Shadow of line segment or subrectangle, captured from [1]
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Note 1.4. We can easily verify Theorem 1.8 through a circle in 2-D space and a
sphere in 3-D space. Notice that their shadow remain the same under all possible
orientations.

e For the circle with radius v in 2-D space,

average length of shadow  2r 1

perimeter 2tr T

e For the sphere with radius r in 3-D space,

average area of shadow  mr? 1

surface area drr? 47

Having succeeded in both R? and R3, a general formula to R” was proved by T.
Bonnesen, H. Minkowski and T. Kubota in [4], [5] and [6] respectively. This theorem
posits that the mean orthogonal projection of a convex object is equal to its surface
area multiplied by a dimension-dependent constant.

Theorem 1.5 (Cauchy’s Surface Area Formula,[7]). Denote p,—1 the (n — 1)-
dimensional Lebesque measure on R"~ 1. Let S"~! be the unit sphere in R, and
B! be the unit ball in R*1.

Given a conver body K C R™ and u € S*™1, denote K|ut the orthogonal projection
of K onto the (n — 1)-dimensional subspace of R™ perpendicular to w. Furthermore,

denote S(K) the volume of the surface of K. We have

1

e

/ pin—1(K|ut) du.
Sn—1

Note 1.6. Theorem 1.5 tells us that the ratio between the mean shadow of K and
the the volume of the surface of K can be found by

Hn—1 (Bn_l)
fin (S”1)

The detailed proof can be found in [7].

1.2.2. Finite light source. While the two results mentioned above only deals with
orthogonal projection (light source of infinite distance), one may wonder what
happens if the projection is non-orthogonal, i.e. the light source is of finite distance.
This leads us to the following question:

Question 1.7. In 3-D space, find the average area of the shadow of a cube rotating
about its center, where the shadow is formed by a finite light source positioned above
1ts center.
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FIGURE 3. An illustration of the question, captured from [8]

A solution to Question 1.7 is provided in [8], a personal website of G. Egan. He
derives an expression of the average shadow cast by a unit cube. Taking one step
further, he extends this result to all regular polyhedra.

Theorem 1.8 ([8]). In 3-D space, the average area of the shadow casted by a regular
m-sided polyhedron rotating around the center with circumradius r, center height
h, face at distance p from center and light source at height & right above center is
given by

(h+6)? |:@ arctan2 (y = 2sin 21\/(172 —82)(p2 + 72 —62),x = —r% — (2p® + 12 — 26°) cos 2—71—) — TI':| .
2 m m

With Theorem 1.8, Egan plots the following graph for various regular polyhedra

and sphere with r = h = 1:

Shadow
divided by
surface area

[ Dodecahedron ¢| Sphere
10

Icosahedron

Cube

: Tetrahedron
2 K

FIGURE 4. Variation of mean shadow to surface area w.r.t J,
captured from [8]

Note 1.9. From the graph, we can see that as 6 — oo, the ratio of mean shadow

to the surface area of all objects appears to converge to i, which matches the result

of Theorem 1.3.
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The key ideas that Egan introduces are to consider a single face of the polyhedron
and cut it into rectangles. In this paper, we recognize the importance of Egan’s
findings and adopt his approach.

1.3. Setting Up the Main Question. Our study is based on the 2-D analogue of
Egan’s work. However, we aim to construct a system that can accommodate more
irregular shapes and arbitrary rotation centers. We also permit the free movement
of the light source. We begin with assumptions and definitions before stating the
main question of this paper:

Assumption 1.10.
e Any part of the object is above the ground.
o Any part of the object is under the light source.

These assumptions ensure the shadow is cast properly. Next, we introduce the
following notations for the position of the light source and the rotation center.

Definition 1.11 (R and k). Denote R as the rotation center of the object. Let
h be the height of R above the ground.

Definition 1.12 (& and 8). Denote & as the position of the light source. Let
0 be the vertical distance between R and S.

Definition 1.13 (Mean shadow). The average length of the shadow of an object is
called the mean shadow.

We now propose the main question of this paper.

Question 1.14. In 2-D space, find the mean shadow of a convex object rotating
about R, where the shadow is formed by a light source located at &.

In section 2, we consider the conventional case of the light source being directly
above the center of the regular polygon rotating about it’s center.

In section 3.1, we permit the light source to deviate from the position above the
center of the polygon. In section 3.2, we let the regular polygon to no longer rotate
about it’s center but an arbitrary rotation point. In section 3.3, we extend to any
convex shape. By systematically lifting the constraints imposed on the system, we
have managed to provide solutions expressed in explicit formulas for each stage. In
the end, we discuss practical applications of our findings and point out potential
directions for future research, suggesting feasible explorations that could further
build upon the foundation laid by our thesis.
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2. GROUNDWORK
To begin with, we focus on the most fundamental convex objects, regular polygons.

Question 2.1. Find the mean shadow of the reqular m-sided polygon with circum-
radius v and centered at *R.

An illustrative example is shown below:

Light Source s

Center

Rotation Center R

Shadow

FI1GURE 5. Illustrative example for Question 2.1

To solve the problem, we introduce the coordinate system. Without loss of generality,
set M as the origin. i.e., 58(0,0) and &(0,0). Meanwhile, we also consider the
projection of objects onto the z-axis instead of the ground (located on the line
y = —h). The following definition arises:

Definition 2.2 (Projection and Shadow). In the coordinated system, we call the
projection of an object from the light source to the x-axis a projection and call the
projection of an object from the light source to the ground a shadow.

Figure 6 illustrates the difference between a projection and a shadow. From the

similar triangles formed, their length always differed by a ratio of hT'HS

Light Source s Light Source s
3 3
R R
h h
Shadow Shadow

FI1GURE 6. Illustrations of projection and shadow
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A basic workflow is established to solve Question 2.1. It is also applied in further

section to solve a more general problem. The basic workflow is demonstrated below:
(1) Consider only an edge of the object.

(2) Find an expression of the length of the projection of the edge at a certain
angle of rotation.

(3) Compute the anti-derivative for the expression.

(4) Integrate the expression from 0 to 27, and divide by 27 to obtain the mean
projection over all possible orientations.

(5) Reassemble all edges to find the mean shadow of the complete object.
To start with, the following definition defines symbols related to the position of an
edge.
Definition 2.3 (1 and o). Placing an edge horizontally directly above the origin,
e denote 1 as the distance between the midpoint of the edge and the origin.

e denote o as half of the length of the edge.

R

F1GURE 7. Illustration of n and o
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Definition 2.4 (0). Denote 6 € [0,27) as the angle of rotation of an edge in
anti-clockwise direction.

o

R A R .

(a) (B)

FicURrE 8. Illustration of the angle of rotation 6
With these symbols, we find an expression for the edge’s projection at a certain
angle of rotation.

Theorem 2.5 (S1(0)). The length of the edge projection at 0 is |S1(0)|, where
200 (0 cosf —
S,(0) = ( n) .
(6 —ncosh)? —o?sin” 0

Proof. Notice that the coordinates of endpoints of the edge are
(o0 cos —nsinb,osinf +ncosh) and (—ocosh —nsinf, —osinb + ncosh).

Their projections on the x-axis are then given respectively by

0(o cos@ —nsinh)) 0 0d 0(—ocosf — nsin b)) 0
§ — (osin@ +ncosb)’ & § — (—osinf +ncosh))’ )’

Hence, the edge projection at rotation angle # can be found by
d(o cosf — nsinf)) d(—o cosf — nsin0)) ’ B ‘ 260 (6 cosf —n) ‘

6 — (osinf+ncosf) 0 — (—osinf + ncosh)) (6 —ncosh)? — o2sin® 6

O

Lemma 2.6 (I1(6)). An anti-derivative of S1(0) is given by
osinf

I =2 h—.
1(0) = 26 artan pp—

. : s . _ 9
Proof. Applying a tangent half-angle substitution ¢ = tan 3,
S - 17t2 - 2
S1(0)d = 260 / A : dt
/ (5_77.%%{2)2_ 2,% 1+ 2

__450/ (6 +m)t* + (6 = n)
N [(6 +n)t2 + 20t + (6 — n)][(6 + )2 — 20t + (6 — )]

dt.
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Using the technique of partial fractions, we have

5+77t+a 5+n)t—0
_y —2

=dn|( 6+77 t2+2ot+ (6 —n) \—51n\(5+n)t2—zat+ 5—n) {+c

sk 0 —ncosf + osind
N 0 —ncosf —osinf
osinf
=2 h
d artan Fpp—

In the last step, notice that the argument in the logarithm is always positive and
we have used the following identity for inverse hyperbolic tangent:

1+

— X

2artanh(z) = In
O

Having completed the calculation of the anti-derivative of S;(6), we determine the
signs of S1(0).

Lemma 2.7. Let
01 = arccos g and 69 = 27 — arccos g

° If9 € [0,91) U (92,27‘(’), then 51(9) >0
[ Ifg € (01,92), then 51(0) <0

Proof. Notice that S1(0) is a continuous function.

We only need to consider the sign of § cosé — 7, as all other factor in S;(0) are
always positive. Solving 6 cos§ —n = 0 for 6 € [0,27), we have § = 6, or 5. Since
0 < 6, <7< 6y < 27, the result can then be verified by testing the signs of

dcosf —nat 6 =0,7 and 2m. O
ocos6-n
A
2\ /
0 n an o=
-2 61 e 67 2

FIGURE 9. Plot of dcos® — 7 for § € [0,27) for n =2, and 6 =6
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Theorem 2.8. The mean shadow of the edge is given by

M artanh ——.
T 52 — 2

Proof. We first compute the mean projection of the edge. By Theorem 2.5 and
Lemma 2.7,

1 2 1 91 1 92 1 o
27 Jo 2m Jo T Jo, 7 Jo,
= % [(I1(61) — I1(0)) + (I1(61) — 11(02)) + (I1(2w) — I1(62))]

= (1)~ 1(62)

20 osinf, o sin 0y
= — (artanh ————— —artanh 7)
m 6 —ncosb 6 — ncosby
Note that we have
sinf; = —sinfy = 1—77—2 and COS(91:COS€2:ﬂ.
02 é

Together with artanh(—xz) = — artanh(z),

2

12 48 o\f1—F% 46
—/ |S1(0)|df = — artanh 22 = — artanh g
o Jo ™ o-n-34 62 —n?
The desired result can be obtained by multiplying the constant hTM O

For the regular m-sided polygon as in Question 2.1, we have
™ . T
n=rcos— and o =rsin—.
m m

Substituting the above relation in Theorem 2.8 and multiplying the result by %,
Question 2.1 is answered by the following theorem:

Theorem 2.9. In 2-D space, the mean shadow of the regular m-sided polygon with
circumradius r and centered at R is

rsin =
m

2m(h + 9)
artanh —2——.
02 —r2cos? I

3. THE GENERALIZED PROBLEM

3.1. Parameters Altering Edge Projection. In this section, we continue to
focus on an edge while introducing new degrees of freedom to the system, and talk
about how the edge projection formula changes with new parameters added.
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3.1.1. Arbitrary Position of Edge. In the previous section, the edge is limited to be
aligned with the center of rotation $R. This constraint is now relaxed:

Definition 3.1 (7). Placing the edge horizontally, denote T as the horizontal
distance between the midpoint of the edge and the origin.

FIGURE 10. Ilustration of 7

The following figures demonstrate the rotation of an edge:

y y

o x S
(A) (B)

FIGURE 11. Illustration of the edge at different rotation angles
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With these symbols, we then can compute the expression for the edge projection at
a certain rotation degree 6.

Theorem 3.2 (S3(0)). The length of the edge projection at 0 is |S2(0)|, where

200(0 cosf — 1)
(6 —ncosh —7sinf)? — o2sin? 6’

S2(0) =

Proof. Notice that the coordinates of endpoints of the edge are

(Tcosf+ ocosf —nsinb, 7sinf + osinb + n cos H)
and

(Tcosf —ocost —nsind, 7sinf — osinf + 7 cosb).

Their projections on the x-axis are then given respectively by

0(Tcosf + o cos —nsinb) 0 nd 0(7cos@ — o cos — nsin ) 0
§ — (rsinf + osinf + ncosh)’ & § — (rsinf —osinf +ncosh)’ )’

Hence, the edge projection at rotation angle # can be found by

‘6— (tsinf + osinf 4+ ncosh) §— (rsinf — osinb + ncosh)
200 (d cosb —n)
(6 —ncosf — Tsinh)? — o2sin? 0|’

0(7cos @ + o cosf — nsinb) 0(7cosf — o cos —nsinb) ‘

Note 3.3. Compare the formula for S1(0) and S2(0):

260 (§ cos —n)
(6 —ncosf)? — o2sin? 0

260(0cosf —n)
(6§ —ncos® — Tsin)2 — o2 sin? 6’

51(0) =

S2(0) =

3.1.2. Arbitrary Position of Light Source. We also relax the constraint of the light
source being right above the rotation center:

Definition 3.4 (\). Let A be the horizontal distance between R and S.
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y

1 A S

R

FIGURE 12. Illustration of A

With these symbols, we then can compute the expression for the edge projection at
a certain rotation degree 6.

Theorem 3.5 (S3(0)). The length of the edge projection at 0 is |S5(6)|, where
200(d cos —n — Asinb)

(6 —ncosh —7sinh)? — o2sin? 6

S3(0) =

Proof. Notice that the coordinates of endpoints of the edge are the same as those
in the previous section

(tcosf + ocost —nsinb, 7sinf + osinb + 1 cos 6)
and

(Tcos —ocosf —nsind, 7sind — osinb + ncosb).

Their projections on the x-axis are then given respectively by
A— (Tcost + ocosf —nsinb)
d — (7sinf + osinf + ncosb)
and
A — (Tcost — o cosh —nsinb)
A—0- - - 0.
d — (7sinf — osin @ + ncosh)

Hence, the edge projection at rotation angle # can be found by
A—(Tcosf+ ocosf —nsind)
A—0- - - .
0 — (7sinf + osinf + ncosb)

N s A — (Tcost —ocosf —nsinb)
§ — (rsinf — osinf + ncosb)

B ‘ 260(6 cosf —n — Asinf)
(0 —ncos® — Tsin0)? — 62 sin? 0
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Note 3.6. Compare the formula of S2(0) and Ss(6):

200 (d cos O —n)
(6 —ncosf — Tsinh)2 — o2 sin? @
S5(0) = 200 (8 cos) — n — Asin)
(6 —ncosf — Tsinf)2 — o2 sin? @

Sa(0) =

3.2. Mean Shadow Calculation and Assembling Full Shape. In this section,
we will be evaluating both the anti-derivative and the definite integrals corresponding
to the edge projection formula calculated in the previous section and simplify the
results. Upon doing so we can reassemble the edges into a complete shape.

3.2.1. Anti-derivative.

Lemma 3.7 ((I3(0))). An anti-derivative of S3(0) is given by

osin6

I =2 h
3(0) (5(artan 0 —ncosf — Tsinf

A (+n)tanl 4o —1
2
+ arctan
\/(52—(0—7')2—7]2 \/52—(0—7')2—772
A (6+n)tand —o—1
— arctan .
\/62—(04—7')2—772 \/52—(U+T)2—7]2

Proof. We write S3(0) = S4(0) + S5 (6), where

200 (0 cosf —n)

S5(0) =
3(0) (6 —ncosh — 7sinh)2 — o2sin” @
9 i
SU(0) = doAsind

(0 —ncosh — Tsinf)? — o2sin’ 0
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To integrate S%(6), apply tangent half-angle substitution ¢ = tan g:

/ S4(6) do

B / : 200 (6 cos® —n)

B § —ncosf — 7sin )2 — o2sin? @

2
_250/ 0 15— 24t
- 1—¢2 2t a2 2
((5_77'W_T'W)2—0'2'(1+t2)2 I+t

B 5(1—#%) —n(1+ )
= 450/ (6(1+2) —n(1 — £2) — 27t)2 — do2¢2 dt

:—450/ G+nt2—56+n gt
(6+n)t2+20t—21t+6—n) - (+n)t2—20t —27t+5—1n)

Using the technique of partial fraction, we have
b+mt+o—1
S5(0) do = 26 dt
/ 5 / (6 +n)t2 + 20t — 27t +0 — 17

b+mt—oc—71
—24 dt
/ O+ nt2 =20t —27t+5—1n

(5+n)t2+20t—27-t+6—77

C
( n)t? —20t727t+5777+
1—¢t2 2t 2t
— 51 6 - 1+t2+‘7'1+7—7'1w
- n6 1—t2 2t 2t +C
"1z T 13 T T T3
osinf
= 2§ artanh C.
(5—77(:089—7'si119+

To integrate S (6), we also apply tangent half-angle substitution t = tan ¢:

0.
/ SY(6)de

_/ 200 Asin 6 a0
(6 —ncosf — 7sin )2 — g2sin? 0

- _250/ ey . _2dt
(6—n- 1+t2 - T 13—12)2 _02(142-22)2 1+
t
= —860\ dt
7 / (O(L+12) —n(l —2) — 27)2 — 40242

t
—860)\/((5+n)t2+20t_27_t+5_n).((5+n)t2—20t—27t+5—7l)dt

_ 963 / dt _/ dt
N (§+n)t2+20t —27t+5—1n (§+mt2—20t —21t+5—n) "



282 WONG H.T., LAM N.W., KWONG W.C.

Using the technique of completing the square, we have

20 dt dt
" _
/53 (9) do = 5+ / 2 2(oc—71) 5—n _/ 2 2(o+7) §—n
n\J 2+ t+ 0 ) t+ &2

o+n o+n
- +
D) [ d(t + 257) ) d(t - 257)
S T—T\2 02—(o—71)%2—n? o472 62— (0+71)2—n2
+ (t+ 5+n) + (6+m)? (t 5+n) + (64n)?
20\ 1 t+
= ( arctan ———t"1
o+ n 62—(o—7)2—n? 02— (0—71)2—n2
(0+n)2 (0+m)?
1 t— o+T1
. _arctan—— 1| 4
52— (o+71)2—12 52— (o471)2—n2
(0+4m)? (0+n)?
26\ b+mMt+o—1
= arctan
52— (c—7)2 —n? 52— (0 —7)2 — 12
26 G+mt—0o—7
— arctan
02 —(o+7)2—n? 62— (o +7)% —n?
26\ (5+17)tang+0—7'
= arctan
- w
5 tan & — o —
202 arctan (94 ) tan 2 977 +C.
02— (o +71)%2—n? 2 —(c+7)2—n2

The result can be obtained by adding up the two indefinite integrals of S5(0) and
SY(9) . O
3.2.2. Sign-changing Point. Having completed the calculation of the anti-derivative
within the absolute value, we need to deal with the absolute value. To begin with,

we need to determine when Ss(6) is positive.

Lemma 3.8. Let

)
91 = arccos >\+—'_52 — arccos w, and
n 1)
0y = 27 — arccos ———— — arccos ————.
2 ‘/>\2+62 ‘/)\2+52

o Iff e [0,91) U (92,27‘[’), then 53(9) > 0.
o Iffc (91,92), then 53(9) < 0.
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Proof. Notice that S3(f) is a continuous function.

We only need to consider § cos —n — Asinf in

200(d cos —n — Asinf)
(6 —ncosf — 7sinf)2 — o2 sin? @

S3(0) =
as all other factors are positive. We can determine when the sign of S3(6) may
change by solving 6 cosf —n — Asinf = 0 for 6 € [0, 27):

dcos —m— Asinf =0

VA2 462 (6 cosf — )\sin9> =7
VAZ 452 VA2 452
cos (arccos 6) cos f — sin (arccos 6) sinf = S
)\2+52 )\2+52 1/A2+52
4 _
\//\24—62) VAT

cos <9 + arccos

Notice that § > 7 > 0 by Assumption 1.10.

Therefore,
0 < il L
arccos ————— — arccos ——— < m ,
1/)\24,52 ‘/)\2+52
)
0 <7< 27w — arccos __n__ arccos

— %<9
N+ 07 ere o

As y = cos (9 + arccos ﬁ) has a period of 27, the equation

Ui

1)
m)‘m

has at most two solutions for 6 € [0, 27), which are

cos (0 + arccos

01 = arccos — arccos

1)
NpeEs
— arccos \/)\QLW

"
VA + 62
0y = 27 — arccos L

VAZ 462

At last, the result can be verified by testing the signs of dcosf —n — Asiné at
0 = 0,7 and 2.

When 6§ = 0 and 0 = 27, dcosf —n — Asinf = § —n > 0. When 0 = 7,
dcosf —n— Asinf = —§ — n < 0. The result follows. (]
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S8cosB-n-Asing

10 /\
‘ . 0

0 . >

91 T 92 27

-20

FIGURE 13. Plot of dcosd —n — Asin@ for 6 € [0, 27) for n = 2,
6=6,and A =15

3.2.3. Definite Integral.

Theorem 3.9. The mean shadow of the edge is given by

2(h +6) osin 6y o sin 6y
artanh - — artanh -
T § —mcosfy — Tsin by § — mcosfy — Tsin by
A S+mtanl 40— 7 S+mtan 2 40— 1
+ (_f + arctan ( i 2 — arctan ( i 2 )
F-G-nr-mP 2 VE—G—E VE—G-E
A S+ntanl —o— 1 S+mtan2 — o — 1
(7z -+ arctan ( i 2 — arctan ( i 2 )) .
2 —(oc+7)2—n2\ 2 V62— (o +7)%2—n? V62 — (o +7)2—n?

Proof. Mean edge projection is given by

1 27 1 91 1 92 1 27
%/0 |S5(0)] d6 = %/0 S3(6) dG—% A 53(0)d9+% 5 S3(6) do
1 01 27 1 01
:%(/O 53(9)d0+/02 53(9)d0>+2ﬂ/92 S4(8) df
The first part is
1 91 27
ﬁ( | Sa0)a0+ | 5a(6) d9)
1
=5 [(I3(61) — I5(0)) + (I3(27) — I3(02))]
1
= — [I3(6,) — I
o [13(61) — 13(62)]
é o sin 04 o sin by
=2 h - h
s <artan 0 —ncosfy — Tsinby artan 0 —ncosby — Tsin by
s+n)tand +o —
+ A (arctan( tmtany to -7
\/(52—(0—7')2—772 \/62—(0—7')2—772

— arctan

(5+77)tan%2+077')
VP
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A
— (arctan

\/(52—(04—7')2—772

(G+mntanl —o—7

Vo2 — (o +71)2—n?
(5+77)tan——0—7

V02— (o +7)2—n? ))

— arctan

For the second part,

1 01 1 (22 2

- _ - / i 1" _ " 1"
o | Ss(0)d0= i S5(6) 0+ i S(6)do A S5(6) ).

The calculation of the first integral is already shown in the previous section, given
by

o sin 6, o sin 0,
— | artanh - — artanh - .
T 0 —ncosfy — Tsinby 0 —ncosfy — 7sin by

The rest of the expression involves an improper integral, which requires a special
approach.

61 T
%(/7r Sé’(@)d0/92 S(6) do)

1 <[ 26\ +mt+to—7
= — arctan
2T 02— (c—71)%2—n? 02— (0c—71)2—n?
2 — — tangT1
3 A _ axctan b+mt—oc—1 }
N e VAT
+[ 25\ arctan b+mt+o—1
02 — (0 —7)2 —n? 02 —(0—7)2—n?
B 20 arctan b+mt—o—71 }—OO
V62— (o +7)2—n2 V62— (o +7)2 77 tan 2
) t —
5( > A 2(—7T+arctan( +277) an 3 2 TO0 T
Vo2 —(oc—7)2—1 V6 —(0’—7’) —n?
_arctan(5+n)tan%2+077)

\/52—(0—7')2—772

A (+n)tanl —o—1
— (—7r+arctan
V62— (o +71)2 —n? V62— (o +7)2 —1?
— arctan ((5+n)tan— _O_T)>
\/527(a+7')2—772 .
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Therefore,
1
e N,
2 0
= é (artanh osindy - — artanh osinbs -
T d —ncosfy — Tsin b § —ncosfz — 7sin b2
A S+mtanl 40— 7 S+mtan 2 40— 1
+ (—7r ~+ arctan ( ") 2 — arctan ( ") 2 )
R VE— (G- VE— G-
A (5+77)tan%17<777

(—7r + arctan

(5+n)tan%’ —0c—T7
— arctan ))
N s N e
Finally, the result can be obtained by adding two results together, and multiplying
by % 0

02 —(c+7)2—n?

3.2.4. Simplification. In this section, we will simplify the mean shadow formula for
an edge found in the previous section.

Note 3.10. Note that I3(0) is given by

osinf A (5+n)tang+a—fr
arctan

6—ncos€—rsin9+m \/m

20 (artanh

(6+7])tan% —oc—T
arctan )

A
VRt VE (ot

To further simplify the expression, we must find the cosine and sine values of 6;
and 6,
1)

— arccos —)

cos 0, = cos(arccos
A2 452

)

= cos(arccos ) cos(arccos

_n
VAZ + 62

1 5
/N2 1 52 /N2 1 o2

) )

) sin(arccos ———)

NovEws

+ sin(arccos

o
NovEws

_ o) +w_’F.w_tV
VO TR RV Car A2 + 42 A2 + 42

_ o+ A/ A2+ 62 —n?

A2 + 2
And similarly,
sind =N+ 0/ A2+ 02 — n?
inf; =
1 A2 + o2
cos 0 _ AN A
2 A2+ §2
S — SN2 L 52 — 2
sin @y = " + n

A2 402
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while the tangent value of %land %Qis given by:

1 5
Arceos ——— — arccos ——=—
1 N2 152 /N2 152
tan — = tan ATH0 AT
2 2
sin(arccos ——L— ) — sin(arccos ——2>—)
_ N T Nz T
- n < 8 g
cos(arccos k=) + cos(arccos \/W)
S R
1 - 1- o
- n [
A2+62 + VAZ+62
VAT 2 — A
d+n '

And similarly,

) _ /2 2 _ 2
tan—2: Ato N )\.
2 d+n

Now we can start to simplify the expression in Theorem 3.9 one by one.

Lemma 3.11. - -
artanh gonb - — artanh g b -
0 —ncosfy — Tsinby d —ncosby — Tsin by
o o
= artanh + artanh

VA2 4602 —n2 -7 AN +62—n2+71

Proof. Substituting the previous trigonometric values in

o sin 64 o sin Oy
artanh - — artanh -
0 —ncosfy — Tsinby 0 —ncosby — Tsin by
o —nA+84/A2462—n2
2 2
= artanh A7+0
5 SN+A\/A2+52—n? —nA+54/A2+62—n?2
-n PR -7 AT 152
o- —nA—384/A2462—n?2
2 2
— artanh A*+o

dn—Ay/A24+62—n? - —NA—=84/A2452—n?2 '

6— n A2 +52 2152

287
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As0< 0y <7<l <27, sinby,sinfy #0

o- —NA+64y/A2+52—n2

artanh Sn+A\/A2+62 2/\2+62 A5/ A2+62—n2
+ +62— —nA+ +62—
6_77' 4 N2 102 1 — T u N2Fo2 U
= artanh
(6 L ontA A2462—n? ) A24-62 _
n 24452 _)‘77+5\/>‘2+52_772
o
= artanh - —
0(A2+402)—n(dn+A/A2+2—n?) -
7)\7]+5\/)\2+527'r]2
tanh g
= artan
B8 )M/ N n?)
—)\n+6\/>\2+52—n2
o
= artanh NP v
/N2 L 52 _ g2 ZANHONVATHOT T
AP 40 N —An+54/A2462—n?2
o
= artanh .
VAZ+02 -2 -7
Similarly,
o- —NA—=84/A2+62—n?
artanh SN—Ay\/A2+52 2)\2+52 A—04/A2462—n2
n— +62—n —nA— +62—n
o= T2 -7 ATF52
o
= —artanh .
VA 02 =2+
Therefore
osinf osinf
artanh ! - — artanh 2 -
d —ncosfy — Tsinby 0 —ncosfy — Tsin by
o o
= artanh - (— artanh )
VAZ+02 -2 -7 AN 4+62—n2+7
o o
= artanh + artanh .
VA2 -2 T N 4+62—n2+7
Lemma 3.12.
7 . (G+n)tanl +o—7 ) (+n)tan2 +o—1
§—|—arcan SRy R arctan PP
(c—71)>=n (c—7)>=n
Mo —1)
= arctan

V467 =) (82— (o —7)2 =)
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. . ] 2]
Proof. By substituting values of tan % and tan %,

arctan

(5+77)tan%1+077' (5+77)tan%2+0—7
— arctan
VE—-nEip VE G-
(54 n) YEEEZEA L (5 + n) - YL P A

+o—1
= arctan 4n — arctan 04n
\/62—(0—7')2—772 \/(52—(0—7')2—772
2 2 _ .2 R /N2 2 2 (g
= arctan Xto s <U i )\) + arctan X+o N <U i )\).

VE (0P V(0P

Simplifying this requires the arctan addition formula[9] denoted below:

arctan 1x_+myy ifxy <1

5 ifzy=1,andx>0o0ry >0
arctanx + arctany = ¢ —%5 ifey=1,and z <0ory <0

T + arctan f”_tayy ifey>1,andx>0o0ry >0

—7 + arctan fj;{y ifxy > 1,and x < 0 or y < 0.

In this case,

. X402 —n2+(c—17—]N)
V2 — (o —1)2—n?
SV F (0 -7\
V02— (o —1)2 —n? .
First of all, in the case zy > 1, i.e. z,y # 0, as
VA 46202 \/62—(c—7)2—12>0
and (c—7—-Aor —(c—7—=XA)>0
z,y >0

Therefore, some cases can be eliminated and with —% added, it becomes
-2+ arctan% if ey <1

—g + arctanx + arctany = < 0 ifay =1

T z+y :
5 +arctan 7~ ifxy > 1

It is observed that a sign of symmetry is reached.
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The further elimination of remaining cases can be achieved by a trick:

First of all, note that

N+ —n2+(c—T7=X) JN2+2-—n?—(c—7-))
Ty = 2 2 _ 2 * 2 2 _ 2
NG N
B /N1 62— 2

N

> 0.

Therefore,
I+y>01f:cy<1 and x+y<0ifxy>1.
1—2ay 1—2xy
Hence,
- —45 + 5 — arctan :qu if vy < 1
—— 4 arctanx + arctany = ¢ 0 ifxy=1
gfgfarctan% if xy > 1
1—2y zy —1
= —arctan = arctan .
+ Tty
At the end, the value of arctan ?Jr_yl can be found:
zy — 1
arctan
x+y
N+ -—n2+(c—7-XN) \/)\2+5277)27(0777)\)71
52 _ (o0 —7)2 _ 2 2 _ (o0 —71)2 _ 12
= arctan \/ 0-7) il \/ o -7) il
)\2+(52—772+(0'—7'—)\)+\/)\2—|-(52—172—(0—T—)\)
N e N T
N4+ - —(c—T7-N2=(2-(c—7)2—1n?)
2 (7 )2 2
= arctan 0 lo—7) U
) /N2 162 — 2
V62— (o —7)2 —n2
AN —(c—7T=X2+ (0 —1)2
2 (7 _ )2 _ 2
= arctan 0 lo—7) N
9 VAZ 462 —n?
\/527(077')2—772
Ao —171)
= arctan

V467 =) (82 — (0 —7)2 —1?)
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Applying similar methods as Lemma 3.12, the following part can also be simplified:

Lemma 3.13.
T ((5+n)tan——a—7’ (5+77)tan——0—7'
— — 4+ arctan — arctan
2 VE— -1 VE— ot
= —arctan )\(U + T>

VA2 +02 =) (0% — (0 +7)2 —n?)

By adding up all the simplified terms, we deduce the simplified theorem of Theorem
3.9.

Theorem 3.14. The mean shadow of the edge is given by

= M (artanh i + artanh g
T /)\2_|_52_,72_T X162 —p24r
+ A arctan Mo —7)
V=P —@=? @ o=+ )
+ A arctan (J + T) >
V2= — (o +71)?2 V@2 =2 — (0 +7)2)(A2+ 62 — 12)

3.2.5. Mean Shadow Theorem. The previous results represented the mean shadow
of line segments using 3 variables o,n and 7 only, which provided computational
convenience, but it makes our formulae less straightforward. Therefore, in this
section, we will use two relative position vectors A, B denoting the relative positions
of the edge’s two endpoints to R, and substitute o, and 7 in terms of A, B, which
points to our final mean shadow theorem.

And there is no reason to continue using A, d, therefore we will use R,, and &,, to
denote the n-th coordinate of R and &. Therefore, A = &1, § = &5 and h = R,.

Definition 3.15 (R, 6,). R, and &,, denote the n-th coordinate of R and &.

Definition 3.16 (A, B). A(x1,y1), B(xa,y2) are relative position vectors denoting
the relative positions of the edge’s two endpoints to R.

Definition 3.17. For vectors A = (x1,y1), B = (z2,y2),

1 Y

det(A,B) = T2 v

and (A, B) = z1x2 + Y192
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Theorem 3.18 (Mean shadow theorem).
Mean shadow of a line segment in R?

:gmwﬁaemH¢wnM BI? = det(4, B)?

™

16]]> - (A, B)
N S, S, . JA|I” - (A, B) )
& AF \/62 A2 VISI2IA — BJ? - det(A, B)?
6 S IB|* — {4, B)
* 2 arcta 2 2 2 2)
V&; — Bl \/6 IBI? ISP A - BIP - det(A, B)
Proof. First of all,
__la-n|
5 .
For 7, the perpendicular distance from R to the line segment, can be represented by
det(A, B)
|A=BJ|

We neglect the absolute value, as in Theorem 3.14, the formula only involves 7

By Pythagoras theorem,

o |[A+B|®  det(A, B)?
T2 [A—B|?
_ ||A+ BJ2|A - B|]? — 4det(A, B)?

4|A - B|]?

Let ¢ be the angle between A and B, and using the fact that
1A+ B[ = [|[A* + |B]|* - 2| Al|[| Bl cos ¢
1A = B|I* = [|[A* + |B]|* + 2| All[| Bl cos ¢

det(A, B)? = || A|*||B||? sin? 0
Then the above expression can be simplified as:

o _ (AP + IBI*)? — 4 AI?|[BI* cos® 0 — 4]|A||?|| B> sin* 0

4llA - BJ?
_ (AP = 1BI7)?
AlA=-Bl]P -

As whether 7 is positive or negative is not important due to the symmetry of the
formula in Theorem 3.14, therefore,

_ A2 - 1312
214~ 5]

Now, we can substitute these back into the original formula
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For the artanh part,

artanh J + artanh U
VAT s SR
|A— B
= artanh 2
A, B)? All?2 —||B|I?
/\2+52_det( ) )2 _ A I B]
|A— B 2|A - B
|A— B
+ artanh 2
A, B)? All?2 — || B||?
o s e QAR AP B
|A - B 2|A - B
= artanh HA_B”2
2¢/(N? + 62)[|A — B|]> — det(4, B)? — (||A]|2 — | B]?)
+ artanh 1A - BI?
2\/(A2 +0%)[|A — BJJ? — det(4, B)% + (|| A2 — || BI|?)
tanh 4)A = B|*/ (32 + 6?)[[A — B||> — det(4A, B)?
= artan )
10V + 84— BIP — 4det(A, B — (JAI? - [BI) + [4 - B
Note that

—4det(A, B)? — (|A]* - ||B|*)* + ||A - B|I*
= (14> + IBII* = 2[| All[| B]| cos ¢)* — | A|* — || BI|*
+ 2| A BII* - 4] A|I*[| B||? sin® ¢
= [lAI* + IBII* + 21 A% BI?
— 4[| AP (1Bl cos ¢ — 4||A[|[| B||* cos ¢ + 4]| A|]*|| B||* cos® ¢
— 1At = BJ*
+ 2| A|||BII* - 4] A|I*[| B]|? sin® ¢
= 8||A[1[|B||* cos? ¢ — 4[| A||?|| B|| cos ¢ — 4| A][[| B||* cos ¢
= 4(A, B)(2||A]l|| B|| cos 6 — || Al — || B]|*)
= —4||A - B|]*(A, B).

Therefore,

o o
+ artanh
VAZ £ 21 N+ 52 -2 47
4]|A = B|*\/(\? + 6?)[|A — B|]> — det(4A, B)?
4|A = B[[*(A* + 62 — (A, B))
\/()\2 +02)|]JA — B||? — det(A, B)?
A2 +42 — (A, B)

artanh

= artanh

= artanh
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For the arctan part,

A Ao —1)
arctan

VI =7 @ = e - (V48 )

+ A arctan )\(J + T)

N R e Y e
A |A-Bll [AlI* - IIBIIZ)

= #arctan 2 214 — Bj

V62— [|B? det(A, B)2

(02 = I BIIP)(A* + 6% — ———5)
\/ A - B|?
IA=B| , [Al” - B

A Al 2 2||A — B )
+ N/VE A arctan A D]
Vo — et
(02 = [AIP) (A2 + 62 — T ——=15)
\/ [A—BJ?
l4=BI? , JAI° - 1B
= ———— arctan( . 2 2 )
Vo2 — |l Al? V2= AR /(A +6?)|A - BJ? — det(A, B)?
\ \ IA-B|* _ [lA]* - |B]?
+ ————— arctan( . 2 2 )
Vo2 —|B]? Vo2 =Bl /(A2 +6%)[[A - BJ]? - det(4, B)?
A A . IA]I? — (A, B)

=~ arct
v AP " AP e ) [A =D A D)

T S B — (4, B)
VE—BI?

V=B /OZ+)[A - B — det(A, B)? )'

Adding two results up, we can obtain the formula:

2(h +9) \/()\2+52)HA—B||2—det(A,B)2
<artanh N+ 02— (A.B)
+ A arcta ( A ||"4||2 B <A7B> )
2 arctan .
V62— [|A[]? VOE— A2 /(A2 + 8)]|A - BJ]? — det(4, B)?
A A |B]I* = (A, B)
arctan( . )
2 Vo2 —[IB[? /(XN +%)[|A - B|? - det(4, B)?

+7
Vo2 —||B]

Lastly, the final formula can be obtained by replacing h as Ry, A as &1 and § as
Ga. O
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Vo

= x

FIGURE 14. Iteration of all edges of a convex polygon

3.2.6. Reassembling Complete Shape.

Theorem 3.19. For a convex polygon whose m wvertices (represented in clockwise
or anti-clockwise direction) have relative position vectors vy for k=0,...,m —1
from R,

Mean shadow

R - S|12||lvp_1 — 2 det(vp_1, v)2
— ﬂ Z artanh \/” ” Hvk 1 _ Uk” e (’Uk 1 ’Uk)
™ k=1 ||6|| - <Uk—1,’Uk>

G (G lok—1)% — (Vk—1, vi)
= arctan 5 = > = =
&3 — [Jvk—1ll V&3 —llve-1l? VISI2l[lox—1 — vkl — det(v—1, vg)

S, GH logll* = (vk—1,vk)
T arctan 5 = - > 5 5
&3 — [Jvkll V&3 —llukll> VISI2llve—1 — vkl — det(vr—1,vr)

Since “a polygon inscribed in a convex curve must be convex”[10], by approximating
a convex closed curve with a closed polygonal chain on the curve, we can deduce a
formula for the mean shadow of a convex closed curve.

3.3. Numerical Verification. Theorem 3.19 can be verified through simulation
in Mathematica. We generated a set of 500 random scenarios containing a randomly
placed light source, rotation center, and a random convex polygon.
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(a) (B) (c)

F1GURE 15. Examples of randomly generated polygons

Utilizing Mathematica’s numerical integration to estimate the mean shadow, we
compare estimation results with our results which is illustrated in the following plot.
The full code is provided in the appendix (Code 1).

Ahsolute Relative Error
25x1078
zox1078
15x1078
1.0x1078
5.0x107%
0 Times

FIGURE 16. Absolute Relative error of Mathematica simulation
from our proposed formula

From the graph, we can see that in all 500 randomly generated scenarios, the
absolute relative errors are below 3.0 x 1078, which assures that our result is
correct.

4. ANALYSIS

4.1. Symmetry in Our Formula. In Theorem 3.18, we can see that the sign
of &; does not matter as long as the absolute value is equal. Therefore we propose
the following conjecture:

Conjecture 4.1. In R?, with the same horizontal distance from the rotation center,
whether the light source is on the left side or on the right side does not effect the
mean shadow of an convex object.
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For a scenario like this:

-

FiGUure 17. Illustration two light sources of same horizontal
distance from rotation center

Shadow

—— Light Source on the Right
Light Source on the Left

F1GURE 18. Graph of the length of the shadow against angle of rotation

We simulated two cases for the light source being on opposite sides of the rotation
center with same horizontal distance. It can be seen that while the length of the
shadow projected at a specific orientation varies with the two light source, the area
under both curves are actually identical.

Times Faster
L

0 20 40 60 80 100

F1cUrRE 19. Our Method’s Performance Compared With Method 1
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m

Times Faster

7.5 8.0 8.5 9.0

FIGURE 20. Our Method’s Performance Compared With Method 2

4.2. Performance Comparison. We generated 50 different scenes to compare
3 methods about their speed to compute the mean shadow. The result is stated
below.

We design an algorithm that for each edge of the polygon, uses our mean shadow
theorem (Theorem 3.18) to compute the mean shadow of it, and then sums the
results up.

Method 1 calculates the projection of all vertices of the polygon and takes the
largest distance between the points of projection as the edge projection. The figure
above shows that our method’s performance can reach up to 90-fold of increase
compared to this method.

Method 2 is an algorithm that for each edge of the polygon, use numerical integration
to evaluate the mean shadow of it, and then sums up the results. The above figure
shows that our method’s performance can reach up to 8.5-fold of increase compared
to this method.

The full code is provided in the appendix (Code 2).

5. CONCAVE SHAPES

We propose the following conjecture:

Conjecture 5.1. For any 2-D concave polygon, its mean shadow of is equal to the
mean shadow of its convex hull.
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(a) (B) ()

FiGURE 21. Examples of randomly generated concave polygons
and its convex hulls

Absolute Relative Error
3.5x1078

3.0x1078
25x1078
2.0x1078
15x1078
1.0x10°8
50x107Y

0 Times

FIGURE 22. Mathematica simulation using our proposed formula
on convex hull of concave polygons

By conducting numerical verification in Mathematica, we compared the values of
the mean shadow of concave shapes with the mean shadow of their convex hull
respectively. As shown in the figure above, the absolute relative error between the
two values are all below 3.5 x 1078, so the conjecture is highly likely to be true. We
leave the proof as an open problem.

APPENDIX

All computer codes below are written and running in Mathematica (Version 13.3.0.0):
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Code 1:

ClearAll["Global +"]
OFf [NIntegrate: :slwcon] ;
OFf [NIntegrate: :ncvb] ;

benchtines = 500;
Error = (};
special

b

For[i=1, isbenchtines, i++,

R = (RandomReal [ (-10, 16} ], RandonReal[(20, 30}]};

S = (RandonReal [ (-10, 16} ], RandonReal[(20, 30}]};

n = RandonInteger[ (3, 30)];

poly = RandomPolygon [ {"Convex", m} , DataRange - (RandonReal[ (-1, 10}, 2], RandomReal[(-10, 16}, 2]}] // Normal;
v=poly // First;

poly = Translate [poly, R];

resultl = NIntegra(e[

Max[] - Win(#] (R+5) 121 - #[1] teals : . .
[7] &[{(R+S)[11 - (R+$) 120+~ —— """ "} & /e (Rotate[poly, o, R] // CanonicalizePolygon // First) ], (o, 6, 27}, Method » (Automatic, "SynbolicProcessing" -0},
27 (R+5) [2] - #[2]
MinRecursion - 20, MaxRecursion - 20

resultz - 220+ S

*Total |

Function [ 4, B},

/Norm[S]7 « Norm[ A - ]2 - Det[ (A, £}]?
ArcTanh ]
Norm[S]? - Dot [4, B]
s[11 [ s Norm[4]? - Dot [4, ]
~/s21? - Norm[4]? A[S[21% - Norm[A]?  4/Norm[S]? «Norm[A - 8] - Det[{A, B}]%
S

s Norm([5]2 - Dot [A, B]
an|

+/s[21? - Norm[5]2 A/s[21% - Norm[8]2  ~/Norm[S]? « Norm[A - B]? - Det [{A, B}]®

] te# 11, #010121), (#120020, #1210213] & /@ (Transposee (v, RotateLeftev))
Appemﬂo[zrmr, Ahs[

]

BarChart [Error, AxesLabel » (“Tines", "Absolute Relative Error"}]

resultl - result2 I
result1 ’



MEAN SHADOW OF ROTATING OBJECTS 301

Code 2:

ClearAll["Global™ %"]

Off[ slwcon
Off[ ncvb
R={-2, 6};

S={3, 10};

bench[] :=

poly = RandomPolygon [ {"Convex", 10}, DataRange -» {RandomReal[{-5, 5}, 2], RandomReal[{-5, 5}, 2]}] // Normal;

v =poly // First;
poly = Translate[poly, R];

{timel, resultl} = RepeatedTiming[

MIntegrate[
(Max[:r]z— Min[#] ) &[{(R+5) [1] - (R+S) [2] + (R+S) [1] - #[1]
n

}& /@ (Rotate[poly, &, R] // CanonicalizePolygon // First) ] B
(R+S)[2] - #[2]
{e, 0, 2}, Method » {Automatic, "SymbolicProcessing" - @}

E
{time2, result2} = RepeatedTiming[
RI2] +S[2

RELSED
2r
Function[{xl, y1, x2, y2},
X1xy2-x2%yl

P i A—
AV (x1-x2)24+ (y1-y2)?

N (x1-x2)24+ (y1-y2)?
oz —m8——————————

2
x1% - x22 + y1?2 - y2?
5
24/ (x1-x2)%+ (y1-y2)?
oxAbs[S[[2] Cos[6] - n - S[1] Sin[e
NIntegrate[ * (SI21 te1-n 111 te1l » {6, 0, 27}, Method » {Automatic, "SymbolicProcessing" -»e)]
(S[2] -nCos[e] - tSin[6])? - o?Sin[e]?

] [#[11 010, #[11020, #[201010, #[2]1[2]] & /@ (Transpose@ {v, RotateLeftev})

n=

T=

B
{time3, result3} = RepeatedTiming[
R[2: S[2.
RIS oy

b

Function[(A, BY,

«/Norm[S]Z*Norm[A -B]%-Det[{A, B}]?
ArcTanh[

Norm[S]? - Dot[A, B] ]
S[1] ArcTan[ Hieh| Norm[A]% - Dot[A, B] ]
*
+/s[212 - Norm[4]2 /s[212 -Norm[A]2  +/Norm[S]2«Norm[A - B]2 - Det[{A, 5}]?

S[1] SIi]

ArcTan Norm[B]? - Dot [A, B]
/s[212 - Norm[5]2

N
/s[212 - Norm[8]1%>  4/Norm[S]%xNorm[A - B]% - Det [{A, B}]1?
] [{#[1001], #0102}, {#[2]1010, #[21[2]}] & /@ (Transposee {v, RotateLeftev})

]

E
timel time2
{time3’ timeS}

results = {{}, {}};

For[i=1, i<50, i++, (
result = bench[];
AppendTo[results[1], result[1]];
AppendTo[results[2], result[2]];

)1

BoxWhiskerChart[results[1], "Mean", ChartStyle » {RGBColor[0.88, .67, 0.69]}]
BoxWhiskerChart [results[2], "Mean", ChartStyle -» {RGBColor[0.79, 0.5, ©.5]}]
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Code

Clea
Errol
For[
R=
S=
m=
pol;
con
pol;

res

(Max[zx] -Min[#]

WONG H.T., LAM N.W., KWONG W.C.

3:

rAll["Global™ +"]

r={};

i=1,1i<500, i++,

{RandomReal[{-10, 10}], RandomReal[ {20, 30}]};

{RandomReal[{-10, 10}], RandomReal[ {20, 30}]};

RandomInteger[{3, 30}];

y = RandomPolygon [m, DataRange » {RandomReal[{-10, 10}, 2], RandomReal[{-10, 10}, 2]}] // Normal;
vexpoly = ConvexHullMesh[poly] // CanonicalizePolygon // Normal;

y = Translate[poly, R] // CanonicalizePolygon // Normalj

ultl = NIntegrate[
(R+S)[1] - #[1]

]&[{(R+S)[[1]|-(R+S)|[2]]*7
(R+5) [2] - #[2]

}&/@ (Rotate [poly, 6, R] // CanonicalizePolygon // First)], 0, 0, 27},
2

Method » {Automatic, "SymbolicProcessing" - @}, MinRecursion - 20, MaxRecursion - 20

|5

res

App

J

Barcl

] .

ulta . RI2D+S021
x

.Total[

Function[(A, B},

ArcTanh A/Norm[S]2 «Norm[A - B]2 - Det [ {4, B}]2
rcTanl
[ Norm[S]2 - Dot[A, B] ]

S[1] S[1] Norm[A]2 - Dot[A, B]
ArcTan

+ *
+/s[21% - Norm[A4]2 y/s[21% - Norm[A]>  +/Norm[S]?«Norm[A - B]% - Det[{A, B}]2
sy

+/s[212 - Norm[5]?

s[1] . Norm[B]2 - Dot [A, B]

ArcTan [

y/s[212 - Norm[81%  +/Norm[S]Z«Norm[A - B] - Det [{A, B}]2
] [{#[1100, #[10021}, {#021011, #[2102]}] & /@ (Transposee {convexpoly // First, RotateLeft@ (convexpoly // First)})
result2 - resultl
resultl ”

endTo[Error, Abs[ H

hart [Error, AxesLabel » {"Times", "Absolute Relative Error"}]
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REVIEWERS’ COMMENTS

The authors studied the two-dimensional mean shadow problem of a rotating con-
vex polygon with a light source located at a finite distance. When the light source
is from infinity, the problem was studied by Cauchy and a satisfactory formula was
derived in any dimensions. The problem was recently studied (where the light has
a special location), and the main contribution in this report is to derive a formula
for the two-dimensional case.

Generally, reviewers regarded the problem was interesting, yet the authors may

need to explain more about the geometric meaning of some integral formulae ap-
peared in the article.
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