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Abstract. In this research, we are interested in how the solutions of the
famous Pell’s equation look like. It is well known that the solutions of the

Pell’s equation are generated by the fundamental solution of the equation,

which could be represented by a set of recursive equations. Therefore, we
would like to explore the characteristics of such recurrence sequences and tell

the relationship between the cycle length of the congruence modulo a number

and divisibility of the terms.

1. Introduction

Recursive sequences has been extensively studied by mathematicians. Among lin-
ear homogeneous recurrence sequences of order 2, divisibilities of some famous
sequences such as the Fibonacci sequence and the Lucas sequence have been stud-
ied well. This paper would concentrate on a certain type of recurrence relations,
namely, those which could generate solutions of the Pell’s equation, and investigate
the divisibilities of the terms.
The research explored the possible cycle length of the congruences of the recur-
rence relation generated by the Pell’s equation x2−Dy2 = 1. In the first place, we
found the general formulation of the solutions of the Pell’s equation by a recurrence
relation, namely, the n-th large solution of the Pell’s equation, (xn, yn), could be

represented by
(

1
2 (αn +βn), 1

2
√
D

(αn−βn)
)

. We then explore what would happen

when the recurrence is put under modulo a prime and find that the minimum cycle
m(p) is exactly the multiplicative order of the two roots of the characteristic equa-
tion of the recurrence sequence. [See reviewer’s comment (2) and (3)] We further
find that if 4 | m(p), then xm(p)

4
would be the minimum term divisible by p, and

p | xn if and only if n ≡ m(p)
4 (mod m(p)

2 ), and this result could be generalised to
any odd number k instead of a prime p. Finally, if the least multiple of two odd
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numbers among the sequence are the same, then their multiples in the sequence are
precisely the same.
I would like to thank my teacher Mr. Lee Kim Fung and my friend Ching Tak
Wing for inspirations of this paper.

2. The Pell’s equation

For any positive integer D which is not a square, there are infinitely many pairs
of integral solution of the Pell’s equation x2 − Dy2 = 1, given by xn + yn

√
D =(

x1 + y1
√
D
)n

, where (x1, y1) is the minimal non-trivial solution of the equa-

tion (which exists)[1]. From xn+1 + yn+1

√
D =

(
x1 + y1

√
D
)(
xn + yn

√
D
)

=

(x1xn + Dy1yn) + (y1xn + x1yn)
√
D we have the following recurrence relations:

[See reviewer’s comment (4)]

xn+1 = x1xn +Dy1yn (1)

yn+1 = y1xn + x1yn (2)

Therefore, by substituting (1) into (2), we obtain xn+2 − x1xn+1 = Dy21xn +
x1(xn+1 − x1xn), so xn+2 = 2x1xn+1 + (Dy21 − x21)xn, and finally, [See reviewer’s
comment (5)]

xn+2 = 2x1xn+1 − xn (*)

which is a linear homogeneous recurrence relation of order 2 with initial conditions
(x0, y0) = (1, 0), x1 and y1. Therefore, if α > β (as x1 6= 1, α 6= β) are the roots of
the characteristic equation t2 − 2x1t + 1 = 0, the general solution of xn would be
Aαn +Bβn for some number A and B such that A+B = 1 and Aα+Bβ = x1.[4]
From α+ β = 2x1 and the above equations we have A = B = 1

2 . Therefore,

xn =
1

2
(αn + βn)

and

yn =

√
x2n − 1

D
=

1

2
√
D

(αn − βn)

3. Congruences mod p

We would now consider the equations taken modulo an odd prime p. This gives
rise to a problem: could α and β exist mod p? Consider the characteristic equation
t2− 2x1t+ 1 ≡ 0 (mod p) ⇐⇒ (t−x1)2 ≡ x21− 1 ≡ Dy21 (mod p). Therefore, the
quadratic equation has roots in Fp if and only if Dy21 is a quadratic residue mod p.
We would separate the cases of whether p divides y1 or not.
If p | Dy21 , that means this equation has a double root in Fp, namely t ≡ x1 (mod
p), where x1 ≡ 1 or -1 (mod p). Hence xn ≡ xn1 (A + Bn) (mod p). After solving
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1 ≡ x0 ≡ A (mod p) and x1 ≡ x1(A+B) (mod p), this gives A ≡ 1 (mod p), B ≡ 0
(mod p), and

xn ≡ xn1 (mod p).

If not (as what would actually happen in general), then there are solutions in Fp if
and only if D is a quadratic residue mod p. [See reviewer’s comment (6)] If D is
not a quadratic residue mod p, we could actually consider a field extension of Fp[2]:

Lemma 1. There exist elements α, β in the field Fp2 such that they are the solutions
of

t2 − 2x1t+ 1 ≡ 0 (mod p).

Proof. Since t2 − 2x1t+ 1 ≡ 0 (mod p) ⇐⇒ (t− x1)2 ≡ x21 − 1 ≡ Dy21 (mod p), we
only need to show that there exists some element i ∈ Fp2 such that i2 ≡ D (mod p)
as α and β would then be given by some linear combination of elements in Fp2 . We

have ip
2 ≡ ip

2−1i ≡ (i2)(p−1)(
p+1
2 )i ≡ (Dp−1)

p+1
2 i ≡ i, the statement is true since

x ∈ Fp2 ⇐⇒ xp
2 − x ≡ 0 (mod p).

Hence, we know that for the recurrence relation, we would have the following:

Proposition 2. If xn+2 = 2x1xn+1−xn, then for any prime p, if x21 6≡ 1 (mod p),
we have

xn ≡ Aαn +Bβn (mod p)

for A,B, α, β ∈ Fp2 such that α+ β ≡ 2x1 (mod p) and αβ ≡ 1 (mod p).

[See reviewer’s comment (7)]

Proof. Since α and β are well defined and we could see division as taking the
multiplicative inverse mod p, the same formula of the general solution of the original
recurrence relations could be still applicable when considering modulo p.

By solving A+ B ≡ x0 ≡ 1 (mod p) and Aα + Bβ ≡ x1, we find that A ≡ B ≡ 1
2

(mod p) (here 1
2 represents the multiplicative inverse of 2 mod p). Therefore,

Corollary 3. If xn+2 = 2x1xn+1 − xn, then for any prime p, we have

xn ≡
1

2
(αn + βn) (mod p)

for some distinct α and β satisfying t2 − 2x1t+ 1 ≡ 0 (mod p).
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4. The Cycle

For every odd prime p, since there are only finitely many possible pairs of (xn, xn+1)
mod p (namely, at most p2 pairs), so there must exist some i < j such that xi ≡ xj
(mod p) and xi+1 ≡ xj+1 (mod p). Therefore, since each term is recursively defined
solely by the previous two terms, we could conclude that xi+n ≡ xj+n (mod p) for
every positive n. Moreover, since we could determine the previous terms from the
recurrence relations too, xi−n ≡ xj−n (mod p) for every positive n. So we finally
have the following: [See reviewer’s comment (8)]

Lemma 4. For any prime p, there exists a positive integer d such that

x0 ≡ xd (mod p) and x1 ≡ xd+1 (mod p)

Definition 5. Let m(p) be the minimum number satisfying x0 ≡ xm(p) (mod p)
and x1 ≡ xm(p)+1 (mod p). [See reviewer’s comment (9)]

Proposition 6. For all positive integers d satisfying x0 ≡ xd (mod p) and x1 ≡
xd+1 (mod p), we have m(p) | d.

Proof. If not, by the division algorithm, we may let d = m(p)q+r for some integers
q and r such that 0 ≤ r ≤ m(p) − 1. Then xm(p)q ≡ xd (mod p) and xm(p)q+1 ≡
xd+1 (mod p). Subtracting m(p)q in the subscripts implies x0 ≡ xr (mod p) and
x1 ≡ xr+1 (mod p), contradicting to the minimality of m(p).[3]

Corollary 7. For any positive integer i and j, xi ≡ xj (mod p) and xi+1 ≡ xj+1

(mod p) are both satisfied if and only if i ≡ j (mod m(p)).

If x1 ≡ 1 (mod p), then xn ≡ 1n ≡ 1 (mod p) for all n; if x1 ≡ 1 (mod p),
then x2n ≡ 1n ≡ 1 (mod p) for all n, i.e. xn ≡ 1 (mod p) if and only if n is
even. If x21 6≡ 1 (mod p), then α 6≡ β (mod p). From the general formula, we
obtain 1 ≡ 1

2 (αm(p) + βm(p)) (mod p) ⇐⇒ 1 − αm(p) ≡ βm(p) − 1 (mod p) ⇐⇒
α(1− αm(p)) ≡ α(βm(p) − 1) (mod p) and 1

2 (α+ β) ≡ 1
2 (αm(p)+1 + βm(p)+1) (mod

p) ⇐⇒ α(1− αm(p)) ≡ β(βm(p) − 1) (mod p). Combining the two congruences we
necessarily have βm(p) ≡ 1 (mod p). Since α is the multiplicative inverse of β, we
also have αm(p) ≡ 1 (mod p). On the other hand, if βd ≡ 1 (mod p) for some positive
integer d, we have αd ≡ 1, so 1 ≡ 1

2 (αd+βd) (mod p) and 1
2 (α+β) ≡ 1

2 (αd+1+βd+1)
(mod p), so m(p) | d. Therefore, we know that m(p) is the minimum positive integer
such that αm(p) ≡ βm(p) ≡ 1 (mod p). [See reviewer’s comment (10)]

Proposition 8. The minimum length of the congruence cycle of the recurrence
relation is the multiplicative order of α and β mod p.

From the fact that α ∈ Fp2 , we know αp2−1 ≡ 1 (mod p). Therefore, we van
conclude that

m(p) | p2 − 1.
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In the above arguments, we omitted the prime 2. In fact, we can take A = B =
1
2 in the general solution of recurrence sequences because we are considering an
odd modulo. Modulo 2 gives xn+2 ≡ xn (mod 2) for all non-negative integer n.
Therefore, the parity of the solutions of xi only depends on the parity of i, in
particular, for all even i, we have xi ≡ x0 ≡ 1 (mod 2). Therefore, we have

2 - x2n
for all non-negative integer n. What it remains would be the terms xi that i is odd.
If D is even, by considering the parity of the original equation x2 − Dy2 = 1, we
have xn ≡ 1 (mod 2) for all n. However, if x1 is even, then for all odd n, 2 | xn.

5. How if . . . not a prime?

If we are considering the modulo of a prime power, or even an arbitrary positive in-
teger, we also have a similar conclusion: if we consider the roots of the characteristic
equation mod pm, we have t2 − 2x1t ≡ 0 (mod pm) ⇐⇒ (t− x1)2 ≡ x21 − 1 ≡ Dy21
(mod pm). [See reviewer’s comment (11)] We need the following lemma first:

Lemma 9. If there exists some k ∈ Fp2 such that D ≡ k2 (mod p), and p - Dy21,
for all positive integer n, we have D ≡ k2n (mod pn) for some kn in the extension
of the reduced residue class modulo pn. (This implies that D is a quadratic residue
mod pn if and only if it is a residue mod p.)

Proof. We would proceed by mathematical induction. When n = 1, the statement
is trivial. Assume that D ≡ k2r (mod pr) for some r, and assume k2r ≡ spr + D
(mod pr+1) for some integer 0 ≤ s ≤ p− 1. Since there exist a number t such that
s ≡ −2krt (mod p) (by considering the multiplicative inverse of −2kr mod p, which
is in the field Fp2), we have (kr + tpr)2 ≡ k2r + 2tkrp

r ≡ (s+ 2tkr)pr +D ≡ D (mod
pr+1) as desired.

Therefore, since the powers of the roots α and β still have a limited possible con-
gruences mod pn, there must still exist distinct positive integers i < j such that
αi ≡ αj (mod pn), which means there exist some d such that αd ≡ 1 (mod pn).
For an arbitrary positive integer n, by the (extended) Chinese remainder theorem,
we would still have a proper definition of α and β, and there exists a positive integer
d such that αd ≡ 1 (mod n) if and only if Dy21 and n are co-prime. Therefore, we
can extend the definition of m(p) to positive integers:

Definition 10. m(n) is the least positive integer such that x0 ≡ xm(n) (mod n)
and x1 ≡ xm(n)+1 (mod n).

If so, we would also have a similar conclusion alike proposition 6: For all positive
integer d satisfying x0 ≡ xd (mod n) and x1 ≡ xd+1 (mod n), we have m(n) |
d. Otherwise, we could find a smaller number that satisfies the condition by the
division algorithm, hence a contradiction. Since there exists a number, namely 4d,
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that makes β4d ≡ 1 (mod n), we can conclude that for all odd divisor n of xd for
any d, gcd(n,Dy21) = 1. Moreover, we have a similar conclusion of the divisibility
of the terms in the recurrence sequence:

Lemma 11. If a term xd has an odd divisor n, then

n | x(2m+1)d

for all non-negative integer m.

6. Divisibility

Now consider an arbitrary odd number n such that there exists some positive integer
d such that n | xd and gcd(n,Dy21) = 1, we have 0 ≡ 1

2 (αd + βd) (mod n) ⇐⇒
−αd ≡ βd (mod n). Therefore we have β2d ≡ −1 (mod n) and β4d ≡ 1 (mod n).
Hence, we must have

m(n) | 4d and m(n) - 2d.

From this we have 4 | m(n). On the other hand, for any odd number n such that

4 | m(n), since
(
β

m(n)
2

)2
≡ 1 (mod n), we have

(
β

m(n)
2 − 1

)(
β

m(n)
2 + 1

)
≡ 0 (mod

n). From the minimality of m(n) tells us that β
m(n)

2 − 1 6≡ 0 (mod n). This gives

β
m(n)

2 ≡ −1 (mod n) and β
m(n)

4 ≡ αm(n)
4 β

m(n)
2 ≡ −αm(n)

4 . As a result, we have the
following:

Proposition 12. For any odd n which is co-prime with Dy21, there exits a positive
integer d such that n | xd if and only if 4 | m(n). Moreover, for all positive integer

k, p | xn if and only if m(n)
4 | k and m(n)

2 - k.

Corollary 13. If 4 | m(k) for some odd k, p | xn if and only if n ≡ m(k)
4 (mod

m(k)
2 ).

How if gcd(n,Dy21) is not 1? We discussed the situation that for a prime p such
that p | Dy21 , we have xn ≡ xn1 (mod p). Therefore, the terms in the sequence {xn}
are never divisible by p, and hence not divisible by n. By these, we have the lemma
here:

Lemma 14. If a term xd has an odd divisor n, then

n | x(2m+1)d

for all non-negative integer m.

This means if there exists two odd numbers i and j such that they divides xd for
some d, then 4d is a common cycle when the recurrence equation is in modulo i
and j. Therefore, 4d is divisible by both m(i) and m(j). Moreover, if m(i) = m(j),
we have

i | xn ⇐⇒ j | xn.
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Corollary 15. If the least multiples of two odd positive integers i and j among
the sequence {xn} are the same, then the recurrence sequence have the same cycle
modulo i and j, and i | xn ⇐⇒ j | xn.

7. General Recurrence Relations

From this, what we actually did is studying the solutions of the linear homogeneous
recurrence relations of order 2 when the constant term in the characteristic equation
is 1. In general, if product of the roots of the characteristic equation does not equal
to 1, then there will still be cycles when we take mod due to the limited number
of possible congruences, and the minimum cycle is still the multiplicative order of
the two roots (!), as A + B ≡ Aαm(p) + Bβm(p) (mod p) ⇐⇒ Aα(1 − αm(p)) ≡
−Bα(1 − βm(p)) (mod p) and Aα + Bβ ≡ Aαm(p)+1 + Bβm(p)+1 (mod p) ⇐⇒
Aα(1 − αm(p)) ≡ −Bβ(1 − βm(p)) (mod p), which tells us that either B ≡ 0
(mod p) (which means A ≡ Aαm(p) (mod p)), 1 − βm(p) ≡ 0 (mod p) or α ≡ β
(mod p) (which means A + B ≡ αm(p)(A + B) (mod p). In all the cases, we still
have m(p) would be the multiplicative order of at least one of α and β, and from
A+B ≡ Aαm(p) +Bβm(p) (mod p) we know that m(p) would be the multiplicative
order of both α and β, even if they are not the multiplicative inverse of each other.
However, when we study the divisibility of the terms of the sequence, the nice
relationship between the minimum cycle and least multiple of p among the sequence
could not hold.

8. Application and Conclusion

In this research, we find that the recurrence sequence that forms solutions for the
Pell’s equation is rather special that the cycle and the divisibility of the terms when
modulo a certain number could be related in a simple way. Moreover, if a term has
two co-prime odd divisors, we could determine that they have a common cycle when
we take mod with respect to these two odd divisors. This new exploration could
be applied to solve a group of Diophantine equations when they could be reduced
to the Pell’s equation. For example, for the Diophantine equation a2x = by2 + 1
with fixed a and b, we could consider the equations mod powers of a. When the
power increases, we could know that, for sufficiently large k such that am | xk for
some m, xk would have another odd divisor d, and hence we obtain that am | xn
⇐⇒ d | xn. This shows that this Diophantine equation has only a finite number of
solutions.
While the solutions of Pell’s equation x2 −Dy2 = 1 could be nicely represented by
recurrence relations, the solutions of the generalisation, x2 − Dy2 = n, has a less
neat formula and need to be represented by continuous fractions[1]. However, since
the solutions of the Pell’s equation is just the terms of a certain type of recurrence
relations, the findings could be applicable to the divisibilities of recurrence relations
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of type xn = Rxn−1 − xn−2. Nevertheless, knowing the divisibility and cycles of
the solutions of the Pell’s equation could be very useful.
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Reviewer’s Comments

Grammatical mistakes and typos

1. The reviewer has comments on the wordings, which have been amended in
this paper.

2. a prime → an odd prime p
3. the multiplicative order → the least common multiple of the orders
4. integral solutions (xn, yn) of
5. (1) into (2) → (2) into (1)
6. If not (as what would actually happen in general), then there are solutions
→ If p - Dy21 , then the quadratic equation has solutions

7. any prime → any odd prime
8. (namely, p2 pairs)
9. minimum positive number

10. (The second one) if x1 ≡ 1 (mod p) → x1 ≡ −1 (mod p)
11. odd prime power, or even an arbitrary odd positive integer

Comments

The author studied the solutions of the Pell’s equation x2−Dy2 = 1. He considered
a recursive sequence arising from the equation and investigated its properties mod-
ulo an odd prime p. Some interesting results on the cycle length and divisibility
properties were obtained. The author also tried to extend the results from p to an
arbitrary odd number in general.

It is nice to see that tools from both number theory and algebra, such as field exten-
sion, were used. I would suggest going further in this direction. For example, the
author studied the recursive sequence and the roots of its characteristic polynomial
both integrally and modulo n. The relationship between the two cases would be
made more transparent by regarding the numbers as elements of different rings and
considering homomorphism between these rings.

Expressing the results using the language of algebra may also increase clarity. For
instance, the mod p notation can be confusing. In the equation αi ≡ αj (mod pn),
the two sides may not be integers or elements of Z/pn. A better way is to write
the two sides as elements of some ring containing Z/pn.

Careful treatment should be given for the case when n is not a prime, since Z/n
is no longer an integral domain. In other words, two elements a, b with product
ab = 0 does not imply a = 0 or b = 0. More details should be provided for this
part.

Finally I recommend the author to improve the readability of the article by num-
bering important equations for later referencing.




