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Abstract. Previous articles have discussed about the properties of orthocen-

tric tetrahedrons: nine-point circles on each face cospherical and the 3D Euler

line. This paper aims at finding the sufficient and necessary conditions for the
nine-point circles to be cospherical in the triangular polyhedrons. First, we

discussed the conditions for the nine-point circles to be cospherical in a tetra-

hedron, in a hexahedron and in an octahedron. Next, we found that the 3D
orthocenter HC , the center of the 24-point sphere (48-point sphere) NC and the

3D circumcenter OC of a tetrahedron (an octahedron), if they exist, must be

collinear and the ratio of the distance between them is HCNC : NCOC = 1 : 1.
After studying the properties of triangular polyhedrons, we have found that

the existence of the 3D orthocenter and the 3D circumcenter is the necessary

condition for the nine-point circles to be cospherical.

1. Introduction

In this paper, we continue the study and the proof in “the 24-point sphere” 〈〈 24 點
球面 〉〉 (Liu & Lin, 2007) regarding the properties of the orthocentric tetrahedron.
We try to use different ways to prove the sufficient and necessary conditions for the
nine-point circles to be cospherical. Liu & Lin have also made some assumptions
(without proof) about the 36-point sphere and the 48-points sphere in a hexahe-
dron and in an octahedron respectively. In this paper, we develop those concepts
and prove the sufficient and necessary conditions for the nine-point circles to be
cospherical in a hexahedron and an octahedron.

We use vectors to prove several simple properties of orthocentric tetrahedron and to
explain why the 36-point sphere will never exists. In the study of the octahedron, we
use vectors as well as the 3-dimensional coordinate geometry to obtain the sufficient
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and necessary conditions for the nine-point circles to be cospherical. “Vector” serves
as an important mathematical tool in our studies.

In the second part, we use the 3-dimensional coordinate geometry to analyse the
properties regarding the 3D Euler line in a tetrahedron and in an octahedron. It is
amazing to discover that the 3D centroid GC and the center of the 24-point sphere
NC are coincided in an orthocentric tetrahedron. After our studies about the ortho-
centric tetrahedron, we have found that the 3D orthocenter HC , the center of the
24-point sphere (48-point sphere) NC and the 3D circumcenter OC in a tetrahedron
(an octahedron), if they exist, must be collinear and ratio of the distance between
them is HCNC : NCOC = 1 : 1. The relation between the three centers inspires us
in studying the properties of the 6N -point sphere in traiangular polyhedron.

In the third part, we use the properties found in the second part to prove some
necessary conditions for the nine-point circles of triangular polyhedron to be co-
spherical. In the future, we hope that the sufficient and necessary conditions for
the existence of the 6N -point sphere will be further discussed and developed.

2. Part Zero: Basic Knowledge

1. Properties of the Euler line
1.1. The orthocenter(H ), the centroid(G), the circumcenter(O) of any trian-

gles are collinear.
1.2. HG : GO = 2 : 1.
1.3. The center of the nine-point circle(N ) also lies on the Euler line, where

HN : NO = 1 : 1 and HN : NG : GO = 3 : 1 : 2.
2. Properties of nine-point Circle

2.1. In a triangle, the three mid-points on each side, the three foots of each
altitude and the three mid-points of the line segments joining the vertices
and the orthocenter are concyclic.

3. Properties of the 3D orthocenter, the 3D centroid and the 3D cir-
cumcenter of a tetrahedron
3.1. Definition: In this research paper, we define, in a tetrahedron,

3.1.1 The 3D median to be the line joining a vertex to the centroid of
the opposite face.

3.1.2 The 3D altitude to be the line passing through the orthocenter of
a face and is perpendicular to that face.

3.1.3 The 3D normal (or the 3D perpendicular bisector) to be the line
passing through the circumcenter of a face and perpendicular to
that face.

3.2. The four 3D medians are concurrent. We define the intersection point to
be the 3D centroid.

3.3. The distance from a vertex to the 3D centroid on a 3D median is three
fourth of the length of that 3D median.
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3.4. The six perpendicular plain bisectors of the edges are concurrent. We
define the intersection point to be the 3D circumcenter.

3.5. We define a tetrahedron to be an orthocentric tetrahedron if every edge of
the tetrahedron is perpendicular to the opposite edge (that is, if we let ~a

be a vector parallel to an edge and ~b be a vector parallel to the opposite

edge, then ~a ·~b = 0).
3.6. The four 3D altitudes of an orthocentric tetrahedron are concurrent. We

define the intersection point to be the 3D orthocenter.
3.7. In an orthocentric tetrahedron, the 3D altitude will pass through the ver-

tex opposite to the face as well, i.e. the 3D altitude will be the height of
the tetrahedron as well.

4. Properties of an orthocentric tetrahedron
4.1. The orthocentric tetrahedron OXYZ has the following properties.





~x · ~y = ~z · ~x
~z · ~y = ~z · ~x
~y · ~z = ~y · ~x

In other words,
the projection of ~y on ~x = the projection of ~z on ~x,
the projection of ~x on ~z = the projection of ~y on ~z,
the projection of ~z on ~y = the projection of ~x on ~y,

4.2. The 3D Euler line exists in an orthocentric tetrahedron.
4.3. The other properties of the 3D Euler line will be proved in this research

paper.
5. Triangular polyhedron

5.1. We define a polyhedron with all triangular faces to be a triangular poly-
hedron.

3. Part One: The sufficient and necessary conditions for the nine-point
circles on each face to be cospherical in a tetrahedron, a hexahedron
and an octahedron

If a triangular polyhedron with N faces contains N cospherical nine-
point circles, the sphere are said to be a ‘6N-point sphere’.

Proof. Assume that all the nine-point circles on each face of a polyhedron with N
triangle faces are cospherical. Let P be the polyhedron and S be the sphere. Note
that
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1. S intersects each edge at two points (the foot of the perpendicular and the
mid-point of the edge) and S intersects each face at three other points (the
mid-points of the orthocenter and the vertices), and

2. P has N faces and 3N
2 edges.

Therefore, there are

[
3(N) + 2

(
3N
2

)]
cospherical points on the surface of S and

we define S to be a “6N -point sphere”.

3.1. The sufficient and necessary conditions for the existence of the 24-
point circle

Theorem 1. If the nine-point circles on each face of a tetrahedron are cospherical,
then the tetrahedron is an orthocentric tetrahedron.

Lemma 2. In a triangular polyhedron, if the foots of the perpendicular from the
vertices of two adjacent faces are coincided, we call the two faces having “coincided
foot”. If the nine-point circles on each face of a polyhedron are cospherical, then
any two adjacent faces on the polyhedron must have “coincided foot”.

Proof. Assume the nine-point circle on each face of tetrahedron ABCD are co-
spherical.

Let
E be the foot of the perpendicular of B to AC in ∆ABC,
G be the foot of the perpendicular of D to AC in ∆ACD,
F be the mid-point of AC.

Note that there are at most two intersection points for a
sphere and a straight line. Hence, at least two of the points
E, F or (and) G must be coincided.

Assume that E and F are coincided, the nine-point circle of ∆ABC will intersect
AC at one point E only, where the nine-point circle of ∆ACD will intersects AC
at two points E and G. Hence, the two nine-point circles are not cospherical.
Contradiction occur. Therefore, E and F are not coincided. Similarly, F and G
are not coincided as well.

Hence, E and G are coincided. The two adjacent face ∆ABC and ∆ACD have the
“coincided foot”.

Hence, the edge BD is perpendicular to the edge AC (
−−→
BD · −−→AD = 0). In other

words, the tetrahedron is an orthocentric tetrahedron and the 3D orthocenter exists.

Theorem 3. If a tetrahedron is an orthocentric tetrahedron, then the nine-point
circles on each face of the tetrahedron are cospherical.
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Lemma 4. If any two intersecting circles are not coplanar, the two circles must be
cospherical. The two non-coplanar intersecting circles define a sphere.

Proof. We can cut two intersecting circles with any ratio
on a sphere. In the other words, two intersecting circles
with any ratio are cospherical if they are not co-planar.
The intersection point of the normals from the centers of
the two circles is the center of the sphere.

Lemma 5. If any four points are not co-planar, the four points must be cospherical.
The four points define a sphere.

Proof. In the 3D coordinate system, the equation of a sphere with center (xc, yc, zc)
is:

(x− xc)2 + (y − yc)2 + (z − zc)2 = r2.

There are four unknowns xc, yc, zc and r in the equation, hence, we need four
points to get an unique solution for the four unknowns.

Assume that the tetrahedron ABCD is an orthocentric
tetrahedron.

Let E, I be the foots of the perpendiculars of ∆ABC,
G, I be the foots of the perpendiculars of ∆APC,
J , F , H be the mid-point of AC, BC, CD respectively.

Let the nine-point of ∆ABC, ∆ADC and ∆BCD be Cα, Cβ and Cγ respectively.

According the lemma 4, any two non-coplanar circles must be cospherical, we let

S(α,β) be the sphere defined by Cα and Cβ

S(β,γ) be the sphere defined by Cβ and Cγ , and

S(γ,α) be the sphere defined by Cγ and Cα.

Note that I, J , F and H lie on the surface of S(α,β), S(β,γ) and S(γ,α). Since I, J ,
F , H are no coplanar, according to lemma 5, S(α,β), S(β,γ) and S(γ,α) are the same
sphere. Therefore, Cα, Cβ and Cγ are cospherical. Similarly, we can prove that
the nine-point circles on any three faces of tetrahedron are cospherical. Hence, all
nine-point circles on the faces of the tetrahedron are cospherical.

Combining theorem 1 and 3:
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24-point sphere exists if and only if the tetrahedron is an ortho-
centric tetrahedron.

3.2. The conditions for the existence of the 36-point circle

Theorem 6. The 36-point sphere does not exist.

Lemma 7. If three adjacent faces of a tetrahedron have “coincided foots”, then any
two adjacent faces of the tetrahedron must have “coincided foots” as well.

Proof. Assume that ∆OXY , ∆OY Z and ∆OZX have “coincided foots”, we have:

|−−→OX| cos∠XOY = |−→OZ| cos∠ZOY
|−−→OX||−−→OY | cos∠XOY = |−→OZ||−−→OY | cos∠ZOY

~x · ~y = ~z · ~y

Similarly, ~y · ~x = ~z · ~x and ~x · ~z = ~y · ~z.

Hence





~x · ~y = ~z · ~x
~z · ~y = ~z · ~x
~y · ~z = ~y · ~x

⇒





(~x− ~z) · (~y − ~z) = −~z · (~y − ~z)
(~z − ~x) · (~y − ~x) = −~x · (~y − ~x)
(~y − ~x) · (~z − ~x) = −~x · (~z − ~x)

.

In other words, the foot of the perpendicular from the vertex of the forth face are
also coincided with the foot of the perpendicular form the vertices of the other three
faces.

Hence, the tetrahedron OXY Z is an orthocenric tetrahedron.

Now, we consider the hexahedron OABCD.
Assume that the 36-point sphere exists in the hexahedron
OABCD.
According to the lemma 2, then the foots of the perpendic-
ular of ∆OAB, ∆OAD and ∆BAD are coincided. Hence,
according the lemma 7, the tetrahedron OABD is an or-
thocentric tetrahedron. Similarly, the tetrahedron COBD
is an orthocentric tetrahedron.

However, we have proved that the center of the 24-point sphere is the 3D centroid
of the tetrahedron (Part 4, Theorem 13), which lies inside the tetrahedron. In other
words, the centers of the two 24-point spheres of the tetrahedron OABD and the
tetrahedron COBD are not coincided. Contradiction occurs as it is impossible for
the 36-point sphere having two center. Hence, the 36-point sphere does not exist.
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3.3. The sufficient and necessary conditions for the existence the 48-
point sphere

Theorem 8. If the 48-point sphere exists, then the octahedron EABCDF fulfills
the following conditions:

I The three diagonals of the octahedron are
perpendicular to each other (i.e. AC ⊥
BD ⊥ EF ) and concurrent, and

II (OA)(OC) = (OB)(OD) = (OE)(OF ),
where O is the intersection of AC, BD and
EF .

Lemma 9. If the 48-point sphere exists in the octahedron EABCEF , then the
vertices A,B,C,D, vertices F,B,E,D and vertices F,A,E,C must be coplanar.

Proof.
Assume the 48-point sphere exists in the octahedron EABCEF .

Consider the four edges ~a,~b,~c, ~d connenting to V0.
According to lemma 2,

S0





~a ·~b = ~c ·~b
~b · ~c = ~d · ~c
~c · ~d = ~a · ~d
~a ·~b = ~a · ~d

Similarly, consider the four edges −~a, ~d− ~a,~e− ~a,~b− ~a connecting to V1:

S1





−~a · (~d− ~a) = (~e− ~a) · (~d− ~a)

(~d− ~a) · (~e− ~a) = (~b− ~a) · (~e− ~a)

(~e− ~a) · (~b− ~a) = −~a · (~b− ~a)

(~b− ~a) · (−~a) = (~d− ~a) · (−~a)

⇒





~e · ~d = ~e · ~a
~d · ~e− ~d · ~a =~b · ~e− ~e · ~a

~e ·~b = ~e · ~a
~b · ~a = ~d · ~a

⇒





~e · ~d = ~e · ~a
~d · ~e =~b · ~e
~e ·~b = ~e · ~a
~b · ~a = ~d · ~a

Now, consider the four edges −~b, ~a−~b, ~e−~b, ~c−~b connecting to V2,

the four edges −~c, ~b− ~c, ~e− ~c, ~d− ~c connecting to V3,

the four edges −~d, ~c− ~d, ~e− ~d, ~a− ~d connecting to V4,

the four edges ~a− ~e, ~d− ~e, ~c− ~e, ~b− ~e connecting to V5,



234 Y.L. LEE, K.C. TAN

we have S2





~e · ~a = ~e ·~b
~a · ~e = ~e · ~c
~e · ~c = ~e ·~b
~a ·~b = ~c ·~b

, S3





~e ·~b= ~e · ~c
~e ·~b= ~d · ~e
~e · ~d= ~e · ~c
~d · ~c=~b · ~c

, S4





~e · ~c = ~e · ~d
~e · ~c = ~a · ~e
~e · ~a = ~e · ~d
~a · ~d = ~c · ~d

, and

S5





(~a− ~e) · (~d− ~e) = (~c− ~e) · (~d− ~e)
(~d− ~e) · (~c− ~e) = (~b− ~e) · (~c− ~e)
(~c− ~e) · (~b− ~e) = (~a− ~e) · (~b− ~e)
(~b− ~e) · (~a− ~e) = (~d− ~e) · (~a− ~e)

⇒





~a · ~d− ~a · ~e=~c · ~d− ~c · ~e
~d · ~c− ~d · ~e=~b · ~c−~b · ~e
~c ·~b− ~c · ~e=~a ·~b− ~a · ~e
~b · ~a−~b · ~e= ~d · ~a− ~d · ~e

Combining S0, S1, S2, S3, S4 and S5, we have ST





~a ·~b=~c ·~b
~b · ~c= ~d · ~c
~c · ~d=~a · ~d
∗~b · ~e= ~e · ~a
∗~d · ~e= ~e ·~b
∗~a · ~e= ~e · ~c

.

From the equation with ∗, we know A, B, C, D are coplanar.
Next, consider the vertices F , B, E and D. Let

−~a be ~i,

~d− ~a be ~k,

~e− ~a be ~l,

~b− ~a be ~m, and

~c− ~a be ~n,

Consider the vectors connecting V1 and other vertices




~k · ~n= ~n ·~i
~m · ~n= ~n · ~k
~i · ~n= ~n ·~l

⇔





(~c− ~a) · (~b− ~a) = (~c− ~a) · (−~a)

(~b− ~a) · (~c− ~a) = (~d− ~a) · (~c− ~a)
(−~a) · (~c− ~a) = (~c− ~a) · (~e− ~a)

⇔





~b · ~c=~a ·~b
~b · ~c−~b · ~a=~c · ~d− ~d · ~a

~e · ~c= ~e · ~a
⇔





~b · ~c=~a ·~b
0 = 0

~e · ~c= ~e · ~a
In other words, F , B, E and D are coplanar.
Next, consider the vertices F , A, E and C. Let

−~d be ~u,

~c− ~d be ~v,

~e− ~d be ~w,

~a− ~d be ~x, and

~b− ~d be ~y.
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Consider the vectors connecting V4 and other vertices.




~v · ~y = ~y · ~u
~x · ~y = ~y · ~v
~v · ~y = ~y · ~w

⇔





(~b− ~d) · (~a− ~d) = (~b− ~d) · (−~d)

(~b− ~d) · (~a− ~d) = (~c− ~d) · (~b− ~d)

(−~d) · (~b− ~d) = (~b− ~d) · (~e− ~d)

⇔





~a ·~b=~a · ~d
~a ·~b− ~a · ~d=~c ·~b− ~c · ~d

~e ·~b= ~e · ~d
⇔




~a ·~b=~a · ~d

0 = 0

~e ·~b= ~e · ~d

Hence, F , A, E and C are coplanar.

Lemma 10. If the 48-point sphere exists in the octahedron EABCEF , then the
diagonals AC, BD and EF must be perpendicular to each other.

Proof.

Note that

(~a−~c) · (~b− ~d) = (~a ·~b−~a · ~d)− (~c ·~b−~c · ~d) = 0,

Hence, AC is perpendicular to BD.

Similarly, we know the diagonals AC, BD, EF are perpendicular to each other.

Lemma 11. If the 48-point sphere exists in the octahedron EABCEF , then
(OA)(OC) = (OB)(OD) = (OE)(OF ), where O is the intersection point of the
diagonals AC, BD and EF .

Proof. Now we introduce the 3D coordinate system to the octahedron EABCDF .
Since the diagonals are perpendicular to each other, we transform the octahedron
EABCDF such that AC lies on the x-axis, BD lies on the y-axis and EF lies on
the z-axis.
Let
A = (a, 0, 0), B = (0, b, 0), C = (c, 0, 0),
D = (0, d, 0), E = (0, 0, e), C = (0, 0, f), and
Mαβ be the mid-point of α and β,
where α, β ∈ {A,B,C,D,E, F}.

Consider the plane ABCD.
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Note that ∆CBA ∼ ∆MCBBMAB and ∆CDA ∼
∆MCDDMAD.
Hence, MABMCB//AC//MADMCD.
Similarly, MCBMCD//BD//MABMAD.
In other words, MABMCBMCDMAD is a parallelo-
gram.

Moreover, since MAB , MCB , MCD and MAD are co-
circular, and ∠MCBMABMAD = ∠MADMCDMCB

(property of parallelogram), MABMCBMCDMAD is
a rectangle.
Similarly, MEBMFBMFDMED and MEAMECMFCMFA are rectangles also.

Hence, the 12 mid-points of the edges of
the octahedron EABCDF ,
i.e. MEA,MEB ,MEC ,MED,MAB ,MCB ,
MCD,MAD,MFA,MFB ,MFC and MFD

lies on the 12 edges of a cuboid.

Note thatMEB ,MEA,MEC andMED are
con-cyclic and MEBMED ⊥MEAMEC ,
therefore

tan∠MEAMEDMEB = tan∠MEBMECMEA.

i.e. tan θ =
b
2
c
2

=
a
2
d
2

Similarly, tanλ =
e
2
d
2

=
b
2
f
2

.

Therefore we have ac = bd = ef .

Theorem 12. The 48-point sphere exists if the octahedron EABCDF fulfills the
following conditions:

I The three diagonals of the octahedron are perpendic-
ular to each other (i.e. AC ⊥ BD ⊥ EF ) and con-
current, and

II (OA)(OC) = (OB)(OD) = (OE)(OF ), where O is
the intersection of AC, BD and EF .
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The coordinates of the 12 mid-points of the 12 edges are:

MEA =
(a

2
, 0,

e

2

)
, MEC =

( c
2
, 0,

e

2

)
, MEB =

(
0,
b

2
,
e

2

)
, MED =

(
0,
d

2
,
e

2

)

MAD =

(
a

2
,
d

2
, 0

)
, MAB =

(
a

2
,
b

2
, 0

)
, MCD =

(
c

2
,
d

2
, 0

)
, MBC =

(
c

2
,
b

2
, 0

)

MFA =

(
a

2
, 0,

f

2

)
, MFC =

(
a

2
, 0,

f

2

)
, MFB =

(
0,
b

2
,
f

2

)
, MFD =

(
0,
d

2
,
f

2

)

Since ac = bd = ef , there exist a point G

(
a+ c

4
,
b+ d

4
,
e+ f

4

)
such that G is

equidistant with all the 12 mid-points above. Let r be the distance between G and
the mid-points,

r2 =
a2 + b2 + c2 + d2 + e2 + f2 − 2x

42
where x = ac = bd = ef .

Hence, G is the center and r is the radius of the 48-point sphere. In other words,
the 12 mid-points are cospherical.

In addition, the three mid-points of the triangle on each face define the nine-point
circle, i.e. the 8 nine-point circles are cospherical. In other words, the 48 points of
the 8 nine-point circles are cospherical.

Combining theorem 8 and 12:

The 48-point sphere exists if and only if the octahedron EABCDF fulfills
the following conditions:

I. The three diagonals of the octahedron are perpendicular to each other
and concurrent, and

II. (OA)(OC) = (OB)(OD) = (OE)(OF ), where O is the intersection
of AC, BD and EF .

4. Part Two: Analysis of the tetrahedron and octahedron

4.1. Analysis of the tetrahedron

Theorem 13. In an orthocentric tetrahedron, the center of the 24-point sphere and
the 3D centroid coincided.
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Let the four vertices of an orthocentric tetrahe-
dron be A(x1, y1, 0), B(x2, y2, 0), C(x3, y3, 0) and
D(x4, y4, z4). In an orthocentric tetrahedron, the 3D
altitude will be the height of the tetrahedron which
passes through the orthocenter of the opposite face,
therefore, the coordinates of the orthocenter H of
∆ABC is (x4, y4, 0).

Consider the properties of Euler line and nine-point circle, the ratio of the distance
between the orthocenter H, the center of nine-point circle N , the centroid G and
the circumcenter O of ∆ABC are HN : NG : GO = 3 : 1 : 2.

Using the section formula, the coordinates of the center of the nine-point circle of
∆ABC is
(

3
(

x1+x2+x3
3

)
+ x4

4
,

3
(

y1+y2+y3
3

)
+ y4

4
, 0

)
=

(
x1 + x2 + x3 + x4

4
,
y1 + y2 + y3 + y4

4
, 0

)

Let the 3D centroid of tetrahedron be GC , the coordinates of GC is:
(x1 + x2 + x3 + x4

4
,
y1 + y2 + y3 + y4

4
,
z4
4

)

In other words, N is the projection of GC to ∆ABC. Hence, GC is equidistant
from any points on the nine-point circle of ∆ABC.

Now, we consider the coordinates of the mid-points of the three vertices and the
orthocenter H(x4, y4, 0) of ∆ABC:

MHA

(x1 + x4

2
,
y1 + y4

2
, 0
)
, MHB

(x2 + x4

2
,
y2 + y4

2
, 0
)
, MDC

(x3 + x4

2
,
y3 + y4

2
,
z4
2

)

These three points are equidistant from GC as they lie on the nine-point circle of
∆ABC.

Considering the coordinates the mid-points of DA, DB and DC:

MDA

(x1 + x4

2
,
y1 + y4

2
,
z4
2

)
, MDB

(x2 + x4

2
,
y2 + y4

2
,
z4
2

)
, MDC

(x3 + x4

2
,
y3 + y4

2
,
z4
2

)

These three points are also equidistant from GC . In other words, these above six
points are all equidistant from GC and they all lie on the surface of the 24-point
sphere.

According to lemma 5, these six points define the sphere, hence, the 3D centroid
GC is the center of the 24-point sphere.
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Theorem 14. The center of the 24-point sphere GC is the mid-point of 3D ortho-
center HC and the 3D circumcenter OC of the tetrahedron.

Since the 3D Euler line exists in an orthocentric tetrahedron, the 3D orthocenter
HC , the 3D centroid GC and the 3D circumcenter OC are collinear.

Note that the projection of OC to ∆ABC is the
circumcenter O of ∆ABC, the projection of HC

to ∆ABC is the orthocenter H.

According to theorem 13, the center of the nine-
point circle N is the projection of GC to ∆ABC.
Hence, using the intercept theorem,

HCGC : GCOC = HN : NO = 1 : 1

Hence, the center of the 24-point spher NC is the mid-point of 3D orthocenter HC

and the 3D circumcenter OC of the tetrahedron.

4.2. Another proof for the existence of the 24-point sphere in an ortho-
centric tetrahedron

Assume that the tetrahedron ABCD is an orthocentric tetrahedron.

Let A1BA2CA3D to be the net of tetrahedron ABCD,

C1, C2, C3 and C0 be the center of the nine-point circles of ∆A1BD,∆A2BC,

∆A3CD and ∆BDC respectively, and

L1, L2, L3 and L0 be the normal passing through the center of C1, C2, C3 and

C4 respectively.
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Definition 15. In a 3-dimensional space, we denote the situation “Ln and Lm has
a point of intersection” by (Ln ◦ Lm).

Note that the line segment joining the centers of two adjacent circles is perpen-
dicular to chord formed by joining the two intersection points of that two cir-
cles. Hence, (L1 ◦ L0), (L2 ◦ L0), (L3 ◦ L0), (L1 ◦ L2), (L2 ◦ L3) and (L3 ◦ L1).
Suppose L1, L2 and L3 do not intersect at the same point
at L0. Then L1, L2 and L3 will never intersect with each
other, however, since L1 ◦ L2, contradict occurs. Hence,
at least two of the normals L1, L2 and L3 are concurrent
with L0.

Suppose L1 ◦ L2 ◦ L0, but they do not intersect with
L3, then L3 and L1 will never intersect with each other,
however, since L3 ◦ L1, contradict occurs. Therefore,
L1 ◦ L2 ◦ L0 ◦ L3. And, thus, C1, C2, C3 and C0 are co-
spherical and the 24-point sphere exists

4.3. The analysis of the octahedron

Theorem 16. The 3D circumcenter of an octahedron exists if the 48-point sphere
exists.

The 3D circumcenter of is the intersection of planes which perpendicularly bisect
each edge. Assume that the 48-point sphere exists in the octahedron EABCDF .

Considering the x− y plane.
Let LAB and LBC be the perpendicular bisectors of
AB and BC respectively,

mLAB
= − b

a
, mLBC

= −b
c

LAB : b
(
y − b

2

)
= a

(
x− a

2

)
⇒ by − b2

2
= ax− a2

2
.

LBC : b
(
y − b

2

)
= c
(
x− a

2

)
⇒ by − b2

2
= cx− c2

2
.

Let the intersection of LAB and LBC be P (u, v), we
have

au− a2

2 = cu− c2

2 bv − b2

2 = a(a+c)
2 − a2

2

(a− c)u = a2−c2
2 and v = ac+b2

2b

u = a+c
2 v = bd+b2

2b = b+d
2

Hence, P =
(a+ c

2
,
b+ d

2

)
.
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Similarly, P is the intersection of LAB , LBC , LCD and LDA.

Therefore, the ‘3D perpendicular bisector ’ on x-y plane is:
(a+ c

2
,
b+ d

2
, t
)
, t ∈ R.

Similarly, the ‘3D perpendicular bisector ’ on x-z plane is:
(a+ c

2
, s,

e+ f

2

)
, s ∈ R,

while the ‘3D perpendicular bisector ’ on y − z plane is:
(
w,

b+ d

2
,
e+ f

2

)
, w ∈ R.

Hence, the 3D circumventer is:
(a+ c

2
,
b+ d

2
,
e+ f

2

)
.

By considering the coordinates of the six vertices of the octahedron:
A(a, 0, 0), B(0, b, 0), C(c, 0, 0), D(0, d, 0), E(0, 0, e) and F (0, 0, f), the radius R of
the circumsphere of the octahedron is:

R2 =
a2 + b2 + c2 + d2 + e2 + f2 + 2x

22
, where x = ac = bd = ef .

Theorem 17. The 3D orthocenter of an octahedron exists if the 48-point sphere
exists.

In a orthocentric tetrahedron, the 3D altitude to be the line passing through the
orthocenter of a face and is perpendicular to that face, which is also the height of
the tetrahedron, however, there is not easy to define the ‘height’ of a octahedron.
Hence, we define the 3D altitude of an octahedron as follow:

Definition 18. A ‘3D altitude’ of a triangular polyhedron is normal to a face a t
the orthocenter.

Suppose the 48-point sphere exists in an octahedron, the
three diagonals of the octahedron are perpendicular to each
other and concurrent, therefore, the octahedron can be split
into eight right-angled tetrahedrons. One of the right-angled
tetrahedron is shown in the figure on the right.

Since O is the 3D orthocenter of the tetrahedron OBCE, the normal of the or-
thocenter of ∆BCE must pass through the point O. Similarly, the normal of the
orthocenter of all other faces will pass through the point O. Now, from the defini-
tion of the 3D altitude of polyhedron, O(0, 0, 0) will be the 3D orthocenter of the
octahedron.

Now, according to theorem 12, 16 and 17, the coordinates of the 3D circumcen-
ter OC , the center of the 48-point sphere NC , and the 3D orthocenter HC are(
a+c
2 , b+d2 , e+f2

)
,
(
a+c
4 , b+d4 , e+f4

)
, (0, 0, 0) respectively. Hence

The 3D orthocenter HC, the center of 48-point sphere NC and 3D
circumcenter OC are collinear and HCNC : NCOC = 1 : 1. We call
this line “the 3D Euler line”.
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According to theorem 13,

The center of the 24-point sphere is the 3D centroid of the tetrahedron.

Therefore we guess, there will be a relation between the 3D centroid of a polyhedron
the center of the 6N -point sphere. Under a certain condition, the 3D centroid and
the center of the 6N -point sphere will coincide.

5. Part Three:Analysis of the triangular polyhedron

5.1. The condition of 6N-point sphere of a polyhedron

Theorem 19. If the 3D orthocenter and 3D circumcenter of a triangular polyhe-
dron exist, then the center of the 6N-point sphere must exist.

Suppose the 3D orthocenter HC and the 3D circumcenter
OC exist in a triangular polyhedron. HC is the intersec-
tion of the 3D altitudes, while OC is the intersection of the
3D normals (or the 3D perpendicular bisectors). There-
fore, the orthocenter and circumcenter on each face can
be viewed is the projection of HC and OC on that face
respectively.

Note that, on any faces of a triangular polyhedron, the center of a nine-point circle
N on is the mid-point of orthocenter H and circumcenter O. Using the intercept
theorem, the normals passing through the centre of the nine-point circles on each
face must intersect at NC and HCNC : NCOC = 1 : 1, where NC is the center of
the 6N -point sphere.

Hence, the center of sphere of 6N -point sphere exists and it must be the mid-point
of the 3D orthocenter and the 3D circumcenter.

Theorem 20. If the 3D orthocenter and the 3D circumcenter exist in a triangular
polyhedron, then the polyhedron can be divided into N orthocentric tetrahedrons.

Lemma 21. In the tetrahedron ADEF , if the 3D altitude is the height of a tetrahe-
dron, i.e. the 3D altitude at C passes through A as well, then AB ⊥ EE,AG ⊥ DF
and AH ⊥ DE.
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Proof.
Since EF ⊥ DB, AB will be the shortest distance
from A to EF . Hence AB ⊥ EF .
Similarly, AG ⊥ DF,AH ⊥ DE.

Lemma 22. If the net ABCDEF of a tetrahedron fulfills the following condition:
(I)AE ⊥ CF , (II) AC ⊥ BE and (III) CE ⊥ AD, the 3D orthocenter of a
tetrahedron exists

Proof. Considering the projection of
−−→
AB on

−→
AC and

−→
AE on

−→
AC,

~a · (~a− ~c) = (~a · ~e) · (~a− ~c)⇒ ~a · ~e = ~a · ~c
Similarly, 




~a · (~a− ~c) = (~a− ~e) · (~a− ~c)
~e · (~e− ~c) = (~e− ~a) · (~e− ~c)
~e · (~e− ~a) = (~e− ~c) · (~e− ~a)

⇒





~e · ~a = ~e · ~a
~a · ~e = ~a · ~c
~c · ~e = ~c · ~a

Hence, the 3D orthocenter of the tetrahedron exists.

If the 3D orthocenter of a N -face triangular polyhedron exists, using the 3 vertices
of any face and 3D orthocenter, we can divide the polyhedron into N tetrahedrons.
Considering the tetrahedrons formed, the 3D altitudes will also be the height of
the tetrahedrons as well, hence, according to lemma 21 and lemma 22, all the
tetrahedrons formed are orthocentric tetrahedrons.
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6. Conclusion

In the above study, we have shown that:

1. The 24-point sphere exists if and only if the tetrahedron is an orthocentric tetra-
hedron.

2. The 36-point sphere does not exist.
3. The 48-point sphere exists if and only if the octahedron EABCDF fulfills the

following conditions:
I. The three diagonals of the octahedron are perpendicular to each other and

concurrent, and
II. (OA)(OC) = (OB)(OD) = (OE)(OF ), where O is the intersection of AC,

BD and EF .
4. In an orthocentric tetrahedron, the center of the 24-point sphere is the 3D centroid

of the tetrahedron.
5. The 3D orthocenter HC , the center of the 24-point sphere NC , and the 3D cir-

cumcenter OC of an orthocentric tetrahedron are collinear. In addition, HCNC :
NCOC = 1 : 1.

6. The 3D circumcenter of an octahedron exists if the 48-point sphere exists.
7. If the 48-point sphere exists in an octahedron, the 3D orthocenter HC , the

center of 48-point sphere NC and 3D circumcenter OC are collinear and HCNC :
NCOC = 1 : 1. We call this line “the line of centers of sphere”.

8. If the 3D orthocenter and 3D circumcenter of a triangular polyhedron exist, then
the center of the 6N-point sphere exists.

9. If the 3D orthocenter and the 3D circumcenter exist in a triangular polyhedron,
all the vertices of the polyhedron are cospherical and the polyhedron can be
divided into N orthocentric tetrahedrons.

7. Discussion

According to “the 24-point sphere” 〈〈 24 點球面 〉〉 (Liu & Lin, 2007), Liu &
Lin suggested that the 6N -point sphere exists only if the numbers of the faces
connecting to every vertex is the same. Someone also suggested that if the 3D
orthocenter exists in a triangular polyhedron, the adjacent vertices for any vertex are
coplanar and any two adjacent faces must have “coincided foot”. Their suggestions
are to be proved.

Yet, we are still looking for the sufficient and necessary condition for the existence
of the 3D orthocenter, the 3D circumcenter and the 6N -point sphere in a triangular
polyhedron. In addition, it will be challenging to find out the relation between the
3D orthocenter, the 3D circumcenter, the 3D centroid and the center of the 6N -
point sphere, if they exist, in a triangular polyhedron. We are interested in the
questions like: Are the centers collinear? What will be the ratio of the distance
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between the centers? We hope that, in the future, the properties of the 6N -point
sphere will be further discussed and developed.
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Reviewer’s Comments

First of all, I congratulate the students and the supervising teacher for their achieve-
ments. I wish I had a mathematics teacher like that in my high school years. I
was told not to focus too much on the correctness of the proofs, rather I should
comment on the readability and read-friendliness of the article. Hence I take the
liberty of suggesting a re-arrangement of the starting part of the essay.

I found that the toughest part is “Part Zero: Basic Knowledge”. Not enough details
were given to motivate the subsequent investigations. The reader had to look up a
lot of different preparation material before he/she can start reading the subsequent
parts. I looked up the various facts and proofs as usual via Google, and finally
pieced everything together. Here is what I found:

There are many centers for a triangle, amongst them: centroid, circumcenter, or-
thocenter. The first amazing theorem is the Euler line saying that all these centers
are collinear, for ANY triangle. Of course, for an equilateral triangle, they all co-
incide.
http://mathforum.org/pcmi/hstp/sum2011/afternoon/TetraEulerLine.pdf is a
good source of information. It does not give you all the details, and proof. The
first question one can ask is: Does any tetrahedron have an Euler line, joining the
centroid, circumcenter, orthocenter of the tetrahedron, given that tetrahedron is a
natural generalization of the triangle in 3D space.

Before we can answer this question, we have to generalize the notion of centroid,
circumcenter, orthocenter to a tetrahedron. Related to that of course, we have to
generalize the notion of median, perpendicular bisectors, altitude to a tetrahedron.

It is natural to expect the medians for a tetrahedron to be concurrent, because
we expect the center of gravity to exist for all objects. Similarly we expect the
perpendicular bisectors of a tetrahedron to be concurrent, because we know that 4
non-coplanar points determine a sphere. For the altitudes, we do not expect them
to be concurrent, unless there are some restrictions on the shape of the tetrahe-
dron. Just imagine you have an altitude on one face, just moving the other vertex
slightly would ruin the concurrency. The extra condition we need turns out to be
“orthocentric”. Then the Euler line in an orthocentric tetrahedron.

Going into another direction, on each face of the tetrahedron, there is a nine-point
circle, which passes through the three mid-points on each side, the three foots of
each altitude and the three mid-points of the line segments joining the vertices and
the orthocenter of that face. There are four faces in a tetrahedron. Hence there
are four such nine-point circles associated with each tetrahedron. It is natural to
ask whether these four nine-point circles are co-spherical, ie lie on the same sphere.
This is one of the questions studied in this essay.



COSPHERICAL NINE-POINT CIRCLES 247

This sphere is called the 24-point sphere. It helps if a simple explanation is given
as to why it is “24-point”.1

For your consideration, below is how I would present the beginning part of the
essay:

The Centroid of a triangle:

The following pictures have been taken from
http://mathforum.org/pcmi/hstp/sum2011/afternoon/TetraEulerLine.pdf

The locus of balance points of strips parallel to a
side of the triangle is the median.

The three medians are concurrent at a point
called the centroid, which is the center of gravity for the triangle.

(It depends on how much detail you want to go into, you may want to add a few
more elementary facts on centroid, or point people to some suitable websites.)

1Every face of a tetrahedron has a nine-pint circle. There are 4 faces. 4× 9 = 36 points There
are 6 edges. On each edge the midpoint, foot of altitude get double counted. Getting rid of the

double counting, we get 36 − 6 × 2 = 24 distinct points.
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The circumcenter has to be on the perpendic-
ular bisector of each of its sides of a triangle. The perpendicular bisectors of a
triangle are concurrent.

(again, depending on how much detail you want to go into, you may want to add a
few more elementary facts and proofs, or point people to some suitable websites.)

The orthocenter is the point where the altitudes (height) of a triangle meet.
There are several proofs that the three altitudes of a triangle are concurrent. Or
one can see the orthocenter of one triangle as the circumcenter of another related
triangle, as follows:

2

Given ∆ABC, we construct ∆EFG by drawing lines through vertices which are
parallel to their opposite sides. In the above diagram, GAF (resp. GBE, ECF ) is
the straight line through A (B, C), parallel to BC (resp. AC, BA). Since GACB,
FABC are parallelograms, easy to see that GA = AF , and the altitude of ∆ABC

2I don’t have any drawing software to use. So I draw the picture, and scan it.
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through A is the perpendicular bisector of GF in ∆EFG. Since perpendicular
bisectors of a triangle are concurrent, so must be the altitudes.

http://aleph0.clarku.edu/∼djoyce/java/Geometry/eulerline.html:

Focus your attention on the centroid G. For each point, like A on one side of it,
there is another, like A′ on the other side of it but half as far away. On one side is
B, the other B′; on one side C, the other C ′. In fact, this correspondence sends the
whole triangle ABC to the smaller, but similar, triangle A′B′C ′, called the medial
triangle. The sides of the medial triangle A′B′C ′ are parallel and half the length
of the sides of the original triangle ABC.

You can see from the figure that this correspondence sends the altitudes of the
original triangle, which are AD, BE, and CF , to the altitudes of the medial triangle,
which are A′D′, B′E′, and C ′F ′. Since the altitudes of the original triangle meet at
the orthocenter H of the original triangle, the altitudes of the medial triangle will
meet at its orthocenter H ′ which you can see in the figure is labelled O. Behold!
This orthocenter O of the medial triangle is the circumcenter of the original triangle!
Thus, this correspondence sends H to O, that is, H and O are on the opposite sides
of the centroid G, and O is half as far away from G as H is.

The above gives you an intuitive reason why the centroid(G), circumcenter(O) and
orthocentre(H) of a triangle should be collinear, why HG : GO = 2 : 1. HGO is
called the Euler line.
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The following diagram from http://ninepointcircle.weebly.com/history.html may
also help:

On an interesting note, the following article by Ed Sandifer3 gives an account on
how Euler discovered the line known as Euler line today:

http://eulerarchive.maa.org/hedi/HEDI-2009-01.pdf

Now some information about the nine-point circle:

http://ninepointcircle.weebly.com/history.html :

3Ed Sandifer (SandiferE@wcsu.edu) is Professor of Mathematics at Western Connecticut State

University in Danbury, CT.
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Now we come to the first question about whether there exists Euler line in a tetra-
hedron (a tetrahedron being a 3D triangle).

First of all, how do we generalise the notion of centroid, circumcenter, orthocentre
of a tetrahedron?

Centroid of a tetrahedron:

Pictures taken from tjones@alpinedistrict.org

We could slice a tetrahedron into thin slices parallel to a face. Each slice would be
a triangle that balances at its centroid.

This segment in the tetrahedron is the analog of the me-
dian in a triangle. It is the locus of the centroids of each triangular slice, and a
skewer piercing the tetrahedron along this segment will balance it.

The median is the line joining a vertex to the cen-
troid of the opposite face of the tetrahedron.
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AG is the locus of centroids of tri-
angular slices parallel to ∆BCD. Since we expect the center of gravity to be a
point, therefore we expect the four 3D medians of a tetrahedron to be concurrent.
(A proof is not provided here. There are many proofs available; for example, using
coordinate geometry.) At least this fact is believable.

Circumcenter of a tetrahedron:

circumcentre .

PO is a perpendicular bisector of ∆BCD. Any point on the perpendicular bisector
is equidistant from B, C, D.

See Section 3.1.3 of the Essay. The 3D normal ( or the 3D perpendicular bisector)
to be the line passing through the circumcenter of a face and perpendicular to that
face. Using congruent triangles, it is easy to see that any point on the perpendicular
bisector is equi-distant from the vertices of the base triangle B, C, D.

Any 3 points not on a straight line determines a circle. Any 4 points not on the
same plane determines a sphere.(this was mentioned in lemma 5.) So we expect the
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four perpendicular bisectors on the four faces of the tetrahedron to be concurrent.
The common intersection point is called the circumcenter of the tetrahedron, which
is the center of the sphere circumscribing the tetrahedron.

The Orthocenter of a tetrahedron:
Orthocentre.
The 3D altitude is the line passing through the orthocentre of a face, perpendicular
to the face.

−−→
DA =

−−→
DH +

−−→
HA

−−→
DA · −−→BC =

−−→
DH · −−→BC +

−−→
HA · −−→BC = 0 + 0 = 0

3.1.2 The 3D altitude to be the line passing through the orthocenter of a face and
is perpendicular to that face.

From the picture, it is easy to see that
−−→
DA =

−−→
DH +

−−→
HA,

−−→
DA · −−→BC =

−−→
DH · −−→BC +

−−→
HA · −−→BC = 0 + 0 = 0. (**)

3.5 We define a tetrahedron to be an orthocentric tetrahedron if every edge of the
tetrahedron is perpendicular to the opposite edge (that is, if we let ~a be a vector

parallel to an edge and ~b be a vector parallel to the opposite edge, then ~a ·~b = 0.

So the argument in (**) shows that if all altitudes are actually heights (ie. passing
through the opposite vertex), then the tetrahedron must be orthocentric.

[I suppose the converse is also true. Can the authors provide a proof of this?]

This motivates the introduction of orthocentric tetrahedron very naturally.

It would be nice if the proof of “The 3D Euler line exists in an orthocentric tetra-
hedron” is also included in the paper. (This fact is mentioned in 4.2 of Part Zero
of the Paper.)

From here on, I think the subsequent Part One, Part Two,. . . would be much easier
to read.
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The following gives a few more suggestions on some specific parts of the Paper.

Part Zero Section 4.1

From definition of orthocentric tetrahedron, one gets ~x · (~z− ~y) = 0, ~y · (~x−~z) = 0,
~z · (~y − ~x) = 0, which imply ~x · ~z = ~x · ~y, ~y · ~x = ~y · ~z, ~z · ~y = ~z · ~x.

Part One:

If a triangular polyhedron with N faces contains N co-spherical nine-point circles,
the sphere are said to be a ‘6N -point sphere’.

I would provide a proof like this:

One face has 3 sides of a triangle4. N faces have 3N sides of triangles. 2 sides form
1 edge. There are altogether 3N/2 edges.

There are 9 points of the nine-point circle per face, 9N points for N faces. 2 points
per edge are double counted. Without double counting, there are 9N−2× 3N

2 = 6N
distinct points.

Part One, bottom of page 4:

“Hence, the edge BD is perpendicular to the edge AD(
−−→
BD · −→AC = 0)). In other

words, the tetrahedron is an orthocentric tetrahedron and the 3D orthocenter ex-
ists.”

I would present the proof as follows:

−−→
BD =

−−→
BE +

−−→
ED =

−−→
BE +

−−→
GD, because by Lemma 2, E = G.

−−→
BD · −→AC = (

−−→
BE +

−−→
GD) · −→AC =

−−→
BE · −→AC +

−−→
GD · −→AC = 0 + 0 = 0.

Lemma 4

Top view: if the two circle are intersecting and co-planar:

4This is where we used the fact that the polyhedron is formed by only triangular faces.
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Side view: if the two circle are intersecting and co-planar:

The blue line on the left is perpendicular through the centre of the circle. Any
point on this perpendicular is equidistance from the circumference of the circle.

Any point on the perpendicular through the center of the planar circle is equi-
distant from any point on that circle.

Imagine that the smaller circle is tilited away from the plane of the bigger circle,
hinged at the two intersecting points. Then we have the following side view:

The blue point represents the centre of the sphere containing the two circles.

Then the intersecting point of the two perpendiculars through the two centers is
the center of the sphere containing the two circles. (That is the proof of Lemma
4.) I think the important point is to let the reader “see” what is going on.
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Assume that the tetrahedron ABCD is an orthocentric tetrahedron.

Let E, I be the foots of the perpendiculars of ∆ABC.
Let G, I be the foots of the perpendiculars of ∆ADC.
J , F , H be the mid points of AC, BC, CD respectively.

The foots I in the above statements coincide because of the orthocentric assump-
tion.
Assume only that BI ⊥ AC.
By orthocentricity of the tetrahedron,

0 =
−−→
BD · −→AC = (

−−→
BC +

−→
ID) · −→AC =

−→
BI · −→AC +

−→
ID · −→AC =

−→
ID · −→AC.

⇒ I is the foot of height DI on ∆ADC.

Let the nine-point circle of ∆ABC, ∆ADC and ∆BCD be Cα, Cβ and Cγ respec-
tively.

According to Lemma 4, any two non-planar circles must be cospherical, we let

S(α,β) be the sphere defined by Cα and Cβ ,

S(β,γ) be the sphere defined by Cβ and Cγ ,

S(γ,α) be the sphere defined by Cγ and Cα.

Note that
I, J, F lie on Sα
I, J,H lie on Sβ

}
⇒ I, J, F,H lie on S(α,β).

Note that
I, J,H lie on Sβ
F,H lie on Sγ

}
⇒ I, J, F,H lie on S(β,γ).

Note that
F,H lie on Sγ
I, J, F lie on Sα

}
⇒ I, J, F,H lie on S(γ,α).

Since I, J , F , H are not coplanar, according to lemma 5, S(α,β), S(β,γ), and S(γ,α)

are the same sphere.
Therefore Cα, Cβ and Cγ are co-spherical.

. . .


