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Abstract. The ultimate objective of this paper is to examine the periodicity

of the Generalized Fibonacci Sequence (GFS) modulo j with different start-

ing numbers. In this paper, we introduce a brand new method to study the
period of the sequence inspired by the hand game ‘Chopsticks’ usually played

in primary schools.

We first prove that the period of GFS modulo a prime p other than 5 is
either half of the p-th Pisano Period or exactly equal to it in Theorem 16.

We then investigate the decomposition from the period of the game modulo j

to the least common multiple of the periods of the game modulo the prime-
power factors of j in Theorem 23. We continue our investigation on the

periodicity of GFS modulo p other than 5 and prime powers pk in Corollary
18-20, Lemma 7 and Theorem 26. Finally, we use Theorem 27 to give
a general expression for the period of GFS modulo j in terms of the pi-th

Pisano period, where pi’s are the prime factors of j.

1. Introduction

The ultimate objective of this paper is to investigate the generalized Fibonacci
sequence (as defined in [1]) modulo j.

Before studying the periodicity of generalized Fibonacci sequence modulo j, we
played with a hand game called ‘Chopsticks’ [4] which is famous among primary
school students. The hand game is easy to play and understand. However, it has
been very arduous to find the winning strategy We therefore investigate the game
step by step.
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Firstly, we study the game directly by finding out all possible situations leading to
winning the game or giving a draw in the very beginning. We examine the flow of
games played by 2 players as a foundation for our further investigation.

We then focus on analyzing repeating strategies to play the game. We discover that
some repeating strategies cause different cycles. During investigation of the period
of the cycles, we are excited to find that the game involving only one player with
two hands tapping each other may have a close relationship with generalized Fi-
bonacci sequence modulo j. All the results and conclusions we find about such game
are surprisingly correspondent to the periodicity of generalized Fibonacci sequence
modulo j, with starting numbers other than 0,1.

We first examine the period of the game modulo p, a prime, and then generalize
the result to power of primes. We further generalize the results to the periodicity
of the game modulo j. Finally, we construct our main theorem on the periodicity
of generalized Fibonacci sequence modulo j using the results in studying the period
of the hand game.

2. Hand game “Chopsticks”

2.1. Rules of the Game

To start the game, two players extend one finger on each hand. Players take turn
to attack the other. The attacker taps one of his hands against one of the other
three.

The number (of fingers) shown by the tapping hand remains unchanged but the
number shown by the tapping hand is added to the hand tapped. In other words,
the new number shown by the tapped hand is the sum of its own number and
the number shown by the tapping hand. If the sum is greater than four, then
the number shown by the tapped hand will be subtracted by 5. Mathematically
speaking, the game is played under modulo 5. When the number of a hand is
ZERO, it will be knocked out of the game. Once the both hands of a player are
knocked out, the player loses the game.

2.2. Wise Strategies on Different Games

Firstly, we start to investigate the game involving two players both with 1 hand,
and then the game with one player having 2 hands while the other having one hand
only. Finally we study the hand game “Chopsticks”.

We assume that both players are equally wise to know the right strategies that are
beneficial to them. They will first try to win the game, and avoid losing the game
if they fail winning.
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For the game involving two players having 1 hand, there is no winning strategy can
be used for both sides. However, we discover that it is closely related to Fibonacci
sequence and Pisano period (Refer to Appendix A for details). The outcome of the
game depends on the initial numbers shown by the hands of the players.

We investigate the game with one player having 2 hands while the other having
1 hand only since we want to know if the player with one hand can win. The
investigation seems extremely difficult as there are totally 128 cases. Yet, we can
greatly reduce the 128 cases (See Appendix A) by grouping them by the property
of module. Finally, we find that under certain initial condition, the player having
2 hands can always win the game.

Ultimately, we can directly investigate the game involving both players having 2
hands. Once again the number of cases can be greatly reduced. We can conclude

that both players fail to win the game started at

(
1 1
1 1

)

mod 5

(See Appendix A).

We also try the game with different initial values and find that the outcome of the
game depends on the initial values. For example, in Lemma 39 (See Appendix A):

Both players fail to win the game at

(
1 4
2 3

)

mod 5

. If we want to investigate the

hand game started at

(
1 1
1 1

)

mod 5

, we just need to determine if the game will

enter

(
1 4
2 3

)

mod 5

. If so, the game ends with a draw.

2.3. Mechanical Strategies of Hand Games

By repeating mechanical strategies, some cycles are somehow constructed. We hope
to investigate the periodicity of the game modulo j under some specific strategies.
We have tried all possible mechanical strategies and find that the game goes back to
the initial situation eventually. The periodicity of the game modulo j is related to
the initial values and the number j. In some cases, the game has a similar behavior
with Fibonacci sequence. Readers may look up for details of the strategies and
results in Appendix B.

3. The Game and the Pisano Period

In the previous investigation, we discover that one of the hand games is closely
related to the Fibonacci sequence. This is the game restricted to one player with
two hands tapping each other turn by turn, i.e. first use one’s left hand to tap
his right hand, and then use his right hand to tap his left hand, and so on. For
simplicity, we call it the game throughout the paper. Before exploring the period
of the game under modulo j, we need the following definitions.
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Definition 1. The generalized Fibonacci sequence is defined by the recursion

Fn = Fn−1 + Fn−2 for n ≥ 2

where F0 = a and F1 = b are initial integers.

Definition 2. Denote by π(a, b, j) the period of the generalized Fibonacci sequence
modulo j with initial integers a, b.

Definition 3.

(
Ln
Rn

)
represents the numbers of both hands of the game after n

steps, where Ln and Rn are the numbers of the left hand and right hand after n
steps respectively and L0 and R0 are the initial integers of the game.

Definition 4. For any positive integer n, j, define the n-step game modulo j by



L0 R0

L1 R1

...
Ln Rn




modj

, where 0 ≤ Li, Ri < j ∀i ∈ {0, 1, 2, . . . , n}

Definition 5. σ(L0, R0, j) is defined as the period of the game modulo j, which is
the smallest positive integer σ(L0, R0, j) such that

Lσ(L0,R0,j) ≡ L0(mod j) and Rσ(L0,R0,j) ≡ R0(mod j)

In most cases, we do not consider L0 = R0 = 0 as σ(0, 0, j) is simply equal to 1.

Now we are going to find the relationship between the periodicity of the game
modulo j and that of the generalized Fibonacci sequence modulo j in Lemma 6.

Lemma 6.

σ(L0, R0, j) =





π(R0, L0, j)

2
if π(R0, L0, j) is even

π(R0, L0, j) if π(R0, L0, j) is odd

Proof. Rearranging in pairs the terms in the generalized Fibonacci sequence modulo
j, we can form the array of the game as




F1 F0

F3 F2

F5 F4

...
Fk+1 Fk




modj

.

Below is the example for j = 3 with initial values 0,1.
Generalized Fibonacci sequence modulo 3: 0, 1, 1, 2, 0, 2, 2, 1, 0, 1, . . .
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The array of the game under modulo 3 is




1 0
2 1
2 0
1 2
1 0




mod3

.

If the period of generalized Fibonacci sequence modulo j is even, then the cycle can
be grouped into pairs of two directly. Since the last pair in the cycle is the same
with the first, it is obvious that the period of the game is exactly half of the period
of generalized Fibonacci sequence modulo j.

σ(L0, R0, j) =
π(R0, L0, j)

2

On the other hand, it the period of generalized Fibonacci sequence modulo j is odd,
then the last entry in the cycle of the sequence cannot be paired up. In this case,
we require one more cycle to complete the game. In this case, the period of the
game is exactly the period of generalized Fibonacci sequence modulo j,

σ(L0, R0, j) = π(R0, L0, j)

Here we show the example when j = 11 with initial values 3, 1.
Generalized Fibonacci sequence modulo 11: 3, 1, 4, 5, 9, 3, 1, . . .

The array of the game under modulo 11 is




1 3
5 4
3 9
4 1
9 5
1 3




mod11
In the third and the fourth row of the game, the generalized Fibonacci sequence
actually comes to the end of a cycle (3, 1), however, they belong to different row.
Thus one more cycle is needed for completing a cycle of the game.

Now we can relate the period of the game modulo j to the Pisano period by the
following lemmas.

Lemma 7.

σ(1, 0, j) =





π(j)

2
when j > 2

3 when j = 2
, where π(j) is the j-th Pisano period.

Proof. For j > 2, we know that the j-th Pisano period π(j) is an even number

in [3]. Note that the entries of the n-step game modulo j




1 0
2 1
5 3

...
1 0




modj

form the
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Fibonacci sequence modulo j, and it is obvious that the period of the game is half
of the j-th Pisano period for j > 2,

i.e. σ(1, 0, j) =
π(j)

2
∀ j > 2

When j = 2, the game becomes




1 0
0 1
1 1
1 0




mod2

. Thus σ(1, 0, 2) = π(2) = 3.

We are then interested in the game with the initial values multiplied by k and find
that the period remains the same in Lemma 8.

Lemma 8.

If (j, k) = 1, then σ(kL0, kR0, j) = σ(L0, R0, j).

Proof.

Consider the game




L0 R0

L1 R1

...
Ln Rn

...
Lπ(L0,R0,j) Rπ(L0,R0,j)




modj

and




kL0 kR0

kL1 kR1

...
kLn kRn

...
kLπ(L0,R0,j) kRπ(L0,R0,j)




modj

.

Suppose (j, k) = 1, then we have{
Ln 6= L0

Rn 6= R0
(mod j)⇒

{
kLn 6= kL0

kRn 6= kR0
(mod j) ∀ 0 < n < π(L0, R0, j)

But by definition,

{
Lσ(L0,R0,j) ≡ L0

Rσ(L0,R0,j) ≡ R0
(mod j), thus

{
kLσ(L0,R0,j) ≡ kL0

kRσ(L0,R0,j) ≡ kR0
(mod j),

i.e. σ(kL0, kR0, j) = σ(L0, R0, j)

Therefore, (j, k) = 1 ⇒ σ(kL0, kR0, j) = σ(L0, R0, j)
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Then we investigate the game when one of the initial numbers is zero and find that
the period of the game is just the same as that with initial values 0,1 or 1,0 in
Lemma 9

Lemma 9. For any L0, R0 and j such that (L0, j) = (R0, j) = 1, the games


L0 0
2L0 L0

...
L0 0




modj

and




0 R0

R0 R0

...
0 R0




modj

have same period for all positive L0 and R0.

i.e. σ(L0, 0, j) = σ(0, R0, j) =





π(j)

2
when j > 2

3 when j = 2

Proof. Obviously,




1 0
2 1
5 3

...
1 0




modj

and




0 1
1 1
3 2

...
0 1




modj

have same period as they both

perform in similarly as the j-th Pisano cycle, we thus have σ(1, 0, j) = σ(0, 1, j).
By Lemma 7 and Lemma 8, if (L0, j) = (R0, j) = 1, we get

σ(L0, 0, j) = σ(1, 0, j) = σ(0, 1, j) = σ(0, R0, j) =





π(j)

2
when j > 2

3 when j = 2

Now we are going to link up the game and Fibonacci sequence by successfully
express the Ln and Rn in terms of Fibonacci number and the initial values of the
game in Theorem 10.

Theorem 10.

(
Ln
Rn

)
=

(
F2n+1L0 + F2nR0

F2nL0 + F2n−1R0

)
, where Fn is the nth Fibonacci num-

ber with F0 = 0 and F1 = F2 = 1.

Proof 1: Magically, it can be easily proved by combining two independent games
to form another game as below:



L0 0
2L0 L0

...
L0F2n+1 L0F2n




modj

+




0 R0

R0 R0

...
R0F2n R0F2n−1




modj
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=




L0 R0

2L0 +R0 L0 +R0

...
L0F2n+1 +R0F2n L0F2n +R0F2n−1




modj

.

Therefore,

(
Ln
Rn

)
=

(
L0F2n+1 +R0F2n

L0F2n +R0F2n−1

)

However, we do want to know the general terms for the game with initial values
L0 and R0 and n only. If the step of the game can be treated as a transformation,
we may use the method of diagonalization to find its power and hence the general
term of the game.

To start, we have

(
L1

R1

)
=

(
2L0 +R0

L0 +R0

)
, where L0 and R0 are the initial values of

the left hand and right hand respectively. Thus each step can be represented by

the transformation matrix T =

(
2 1
1 1

)
. Now we have to compute Tn in order to

find the general form of

(
Ln
Rn

)
. For convenience, it is assumed that the player can

show any number by each of his both hands.

Theorem 11.

Tn =
1√
5




(1 +
√

5

2

)2n+1

−
(1−

√
5

2

)2n+1 (1 +
√

5

2

)2n
−
(1−

√
5

2

)2n

(1 +
√

5

2

)2n
−
(1−

√
5

2

)2n (1 +
√

5

2

)2n−1
−
(1−

√
5

2

)2n−1




Proof. Suppose det(T − λI)=det

(
2− λ 1

1 1− λ

)
= 0 for some real number λ.

Then we have (2− λ)(1− λ)− 1 = λ2 − 3λ+ 1 = 0 which gives the eigenvalues of

T , i.e. λ =
3±
√

5

2
.

When λ =
3 +
√

5

2
, by considering

(
2 1
1 1

)(
x1
y1

)
= λ

(
x1
y1

)
=

3 +
√

5

2

(
x1
y1

)
, we

have 



2x1 + y1 =
3 +
√

5

2
x1

x1 + y1 =
3 +
√

5

2
y1

⇒ x1 : y1 =
1 +
√

5

2

Thus,

(
1 +
√

5
2

)
can be an eigenvector for the eigenvalue λ =

3 +
√

5

2
.

When λ =
3−
√

5

2
, by considering

(
2 1
1 1

)(
x2
y2

)
= λ

(
x2
y2

)
=

3−
√

5

2

(
x2
y2

)
, we
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have 



2x2 + y2 =
3−
√

5

2
x2

x2 + y2 =
3−
√

5

2
y2

⇒ x2 : y2 =
1−
√

5

2

Thus,

(
1−
√

5
2

)
can be an eigenvector for the eigenvalue λ =

3−
√

5

2
.

Let Q =

(
1 +
√

5 1−
√

5
2 2

)
, then Q−1 = 1

4
√
5

(
2 −1 +

√
5

−2 1 +
√

5

)
and we have

Q−1TQ =
1

4
√

5

(
2 −1 +

√
5

−2 1 +
√

5

)(
2 1
1 1

)(
1 +
√

5 1−
√

5
2 2

)

=




3 +
√

5

2
0

0
3−
√

5

2




=




1 +
√

5

2
0

0
1−
√

5

2




2

Then

Tn = Q(Q−1T2×2Q)nQ−1

=
1

4
√

5

(
1 +
√

5 1−
√

5
2 2

)



1 +
√

5

2
0

0
1−
√

5

2




2n
(

2 −1 +
√

5

−2 1 +
√

5

)

Tn =
1

22n+2
√

5

(
1 +
√

5 1−
√

5
2 2

)(
2(1 +

√
5)2n (−1 +

√
5)(1 +

√
5)2n

−2(1−
√

5)2n (1 +
√

5)(1−
√

5)2n

)

=
1

22n+2
√

5

(
2(1 +

√
5)2n+1 − 2(1−

√
5)2n+1 4(1 +

√
5)2n − 4(1−

√
5)2n

4(1 +
√
5)2n − 4(1−

√
5)2n 8(1 +

√
5)2n−1 − 8(1−

√
5)2n−1

)

=
1√
5




(1 +
√

5

2

)2n+1

−
(1−

√
5

2

)2n+1 (1 +
√

5

2

)2n
−
(1−

√
5

2

)2n

(1 +
√

5

2

)2n
−
(1−

√
5

2

)2n (1 +
√

5

2

)2n−1
−
(1−

√
5

2

)2n−1




Using the general term for the Fibonacci sequence and Theorem 11, we can give
another proof for the Theorem 10.
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Proof 2 for Theorem 10: By Theorem 11, we have

Tn =
1√
5




(1 +
√

5

2

)2n+1

−
(1−

√
5

2

)2n+1 (1 +
√

5

2

)2n
−
(1−

√
5

2

)2n

(1 +
√

5

2

)2n
−
(1−

√
5

2

)2n (1 +
√

5

2

)2n−1
−
(1−

√
5

2

)2n−1




=

(
F2n+1 F2n

F2n F2n−1

)

Therefore,

(
Ln
Rn

)
= Tn

(
L0

R0

)
=

(
F2n+1 F2n

F2n F2n−1

)(
L0

R0

)
=

(
F2n+1L0 + F2nR0

F2nL0 + F2n−1R0

)

By Theorem 10, we get the following Identity 1.

Identity 12. F2n−1F2n+1 − F2n
2 = 1

Proof. By Theorem 11, we have

(
F2n+1 F2n

F2n F2n−1

)
=

(
2 1
1 1

)n

Taking the determinant of both sides, we get

F2n+1F2n−1 − F2n
2 =

[
det

(
2 1
1 1

)]n
= 1n = 1

Identity 13. (Fn+1 + Fn−1)2 = L2
n = 5Fn

2 + 4(−1)n where Ln is the nth Lucas
number.

Proof. Let φ =
1 +
√

5

2
and φ̄ =

1−
√

5

2
.

The general forms of Fibonacci number and Lucas number are known as follow:

Fn =
φn − φ̄n√

5
and Ln = φn + φ̄n

Now we have

Fn+1 + Fn−1 =
φn+1 − φ̄n+1

√
5

+
φn−1 − φ̄n−1√

5

=
φn(φ− φ−1) + φ̄n(−φ̄−1 − φ̄)√

5

But we have

φ−1 =
2

1 +
√

5
=

2(1−
√

5)

−4
= −

(1−
√

5

2

)
= −φ̄

φ̄−1 =
2

1−
√

5
=

2(1 +
√

5)

−4
= −

(1 +
√

5

2

)
= −φ
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Then

Fn+1 + Fn−1 =
φn(φ− φ−1) + φ̄n(−φ̄−1 − φ̄)√

5

=
φn(φ− φ̄) + φ̄n(φ− φ̄)√

5

= (φn + φ̄n)F1

= φn + φ̄n = Ln

Now since

(Fn+1 + Fn−1)2 − 5Fn
2 − 4(−1)n = (φn + φ̄n)2 − 5

(φn − φ̄n√
5

)2
− 4(−1)n

= (φn + φ̄n)2 − (φn − φ̄n)2 − 4(−1)n

= (2φn)(2φ̄n)− 4(−1)n

= 4
[(1 +

√
5

2

)(1−
√

5

2

)]n
− 4(−1)n

= 4(−1)n − 4(−1)n = 0

Thus we have (Fn+1 + Fn−1)2 = Ln
2 = 5Fn

2 + 4(−1)n.

Theorem 14. Let p be any prime number other than 5. The period σ(L0, R0, p)
of the game starting with L0 and R0, is independent of L0 and R0, where L0 and
R0 are not both zero.

Proof. For simplicity, we let x = L0 and y = R0.

Case I: either x = 0 or y = 0

By lemma 9, σ(x, 0, p) = σ(0, y, p) =





π(p)

2
when p > 2

3 when p = 2

Case II: x 6= 0 ∧ y 6= 0

Note that we can combine two independent games starting with x, 0 and 0, y to
form a new game with initial values x and y.

Since σ(x, 0, p) = σ(0, y, p) ∀ 0 < x, y < p, we have




x 0
2x x

...
xF2n+1 xF2n

...
x 0




modp

+




0 y
y y

...
yF2n yF2n−1

...
0 y




modp
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=




x y
2x+ y x+ y

...
xF2n+1 + yF2n xF2n + yF2n−1

...
x y




modp

.

From the equation, it is obvious that σ(x, y, p) | σ(x, 0, p) and σ(x, y, p) | σ(0, y, p).
Consider

{
xF2n+1 + yF2n ≡ x (mod p) (i)

xF2n + yF2n−1 ≡ y (mod p) (ii)

From (i) & (ii),

F2n ≡ 0 (mod p)⇔ F2n+1 ≡ F2n−1 ≡ 1 (mod p)

But (x 0) should appear ONLY in the first and last rows of




x 0
2x x

...
xF2n+1 xF2n

...
x 0




mod p

.

∴ F2n ≡ 0 (mod p)⇒ n = σ(x, 0, p) or n = 0

i.e. F2n ≡ 0 (mod p)⇒ σ(x, y, p) = σ(x, 0, p) = σ(0, y, p) (*)

Now assume F2n 6= 0 (mod p), (i) and (ii) can be transformed to

{
yF2n

2 ≡ (xF2n)(1− F2n+1) (mod p) (iii)

xF2n ≡ y(1− F2n−1) (mod p) (iv)

Substituting (iv) into (iii), we have

yF2n
2 ≡ y(1− F2n+1 − F2n−1 + F2n+1F2n−1) (mod p)

F2n+1 + F2n−1 ≡ F2n+1F2n−1 − F2n
2 + 1 (mod p)

By Identity 12, we have F2n+1F2n−1−F2n
2 = 1 and hence F2n+1+F2n−1 ≡ 2 (mod

p).
Then (F2n+1 + F2n−1)2 ≡ 4 (mod p).
By Identity 13, we have (F2n+1 + F2n−1)2 = 5F2n

2 + 4(−1)2n = 5F2n
2 + 4.
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Thus 5F2n
2 ≡ 0 (mod p).

But F2n 6= 0 (mod p), therefore 5 ≡ 0 (mod p), i.e. p = 5

∴ F2n 6= 0(mod p)⇒ p = 5

i.e. p 6= 5⇒ F2n ≡ 0 (mod p)

Combining (*), we have

p 6= 5⇒ σ(x, y, p) = σ(x, 0, p) = σ(0, y, p) =





π(p)

2
when p > 2

3 when p = 2

For completeness, we will study the case p = 5 in the Lemma 15.

Lemma 15.

σ(L0, R0, 5) =

{
2 if R0

2 − L0
2 + L0R0 ≡ 0 (mod 5)

10 otherwise

Proof. Recall the simultaneous equation in Theorem 10. Let x = L0, y = R0 and
p = 5. {

xF2n+1 + yF2n ≡ x (mod5) (i)
xF2n + yF2n−1 ≡ y (mod5) (ii)

Note that (x, p) = (y, p) = 1, we can compute (i)× y − (ii)× x:

(y2 − x2)F2n + xy(F2n+1 − F2n−1) ≡ 0 (mod5)

(y2 − x2 + xy)F2n ≡ 0 (mod5) (v)

The solutions of y2 − x2 + xy ≡ 0 (mod5) for 0 < x, y < 5 are
{
x = 3
y = 1

{
x = 2
y = 4

{
x = 1
y = 2

{
x = 4
y = 3

For p = 5, it is easy to exhaust all cases. All games are listed below.



1 0
2 1
0 3
3 3
4 1
4 0
3 4
0 2
2 2
1 4
1 0




mod5




0 1
1 1
3 2
3 0
1 3
0 4
4 4
2 3
2 0
4 2
0 1




mod5




3 1
2 4
3 1




mod5




1 2
4 3
1 2




mod5
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From the above cases, we can conclude that σ(x, y, 5) = 2 only for these choice of
x and y, then we have

σ(x, y, 5) = 2⇔ y2 − x2 + xy ≡ 0 (mod 5)

For other choice of x and y, σ(x, y, 5) =
π(5)

2
= 10.

By Theorem 14 and Lemma 15, we can made a conclusion that for any prime
number p,

either p 6= 5, σ(L0, R0, p) =





π(p)

2
when p > 2

3 when p = 2
,

or p = 5, σ(L0, R0, 5) =

{
2 if R0

2 − L0
2 + L0R0 ≡ 0 (mod5)

10 otherwise

4. Period of generalized Fibonacci sequence modulo p

We completely finish the investigation on the period of the game modulo p for all
prime numbers p. The periods are independent of the initial value of both hands
and are either constants 2, 3 and 10 or a function of p. By combining Lemma 6
and Theorem 14, we obtain our Main Theorem 16.

Main Theorem 16. Let p 6= 5 be a prime. The period of generalized Fibonacci

sequence modulo p, π(a, b, p) is either π(p) or π(p)
2 , where π(p) is the p-th Pisano

Period.

Proof. Let p 6= 5 be a prime.
By Lemma 6,

σ(L0, R0, p) =





π(R0, L0, p)

2
if π(R0, L0, p) is even

π(R0, L0, p) if π(R0, L0, p) is odd

By Theorem 14,

p 6= 5, σ(L0, R0, p) =





π(p)

2
when p > 2

3 when p = 2

Notice that π(2) = 3. Using the above results, we may conclude that

π(R0, L0, p) =





π(p)

2
if p > 2 and π(R0, L0, p) is odd

2π(p) if p = 2 and π(R0, L0, p) is even
π(p) otherwise

However, we can easily check that π(R0, L0, 2) must be odd since

π(1, 0, 2) = π(1, 1, 2) = π(0, 1, 2) = π(2) = 3
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Therefore, the only possible value π(R0, L0, p) is π(p) or
π(p)

2

We denote π(a, b, p) be πp in the later sections for simplicity.

Although we can tell the period of generalized Fibonacci sequence modulo p other
than 5, πp is either half of the period of the Fibonacci sequence modulo p or ex-
actly equal to it, we are still interested in knowing the divisibility of πp using the
periodicity of the game.

Theorem 17. Let p be a prime. If p ≡ ±1 (mod5), then σ(L0, R0, p) |
p− 1

2
.

Proof. Let p be a prime and p ≡ ±1 (mod5).
There are some relations between Fibonacci number and Legendre symbol [5].

Fp−( p
5 )
≡ 0 (mod p) and Fp ≡

(p
5

)
(mod p)

Note that we have the following.

(p
5

)
=





(1

5

)
≡ 1

5−1
2 ≡ 1 (mod5) ⇔ p ≡ 1 (mod5)

(2

5

)
≡ 2

5−1
2 ≡ −1 (mod5) ⇔ p ≡ 2 (mod5)

(3

5

)
≡ 3

5−1
2 ≡ −1 (mod5) ⇔ p ≡ 3 (mod5)

(4

5

)
≡ 4

5−1
2 ≡ 1 (mod5) ⇔ p ≡ 4 (mod5)

That is
(p

5

)
=

{
1 if p ≡ ±1 (mod5)
−1 if p ≡ ±2 (mod5)

If p ≡ ±1 (mod5), we have

Fp−1 ≡ 0 (modp) and Fp ≡ 1 (modp)

Then

Fp−2 = Fp − Fp−1 ≡ 1− 0 ≡ 1 (modp)

By Theorem 10, we have

{
Ln = F2n+1L0 + F2nR0

Rn = F2nL0 + F2n−1R0

Putting n = p−1
2 ,

{
L p−1

2
= F2( p−1

2 )+1L0 + F2( p−1
2 )R0 ≡ FpL0 + Fp−1R0 ≡ L0 (modp)

R p−1
2

= F2( p−1
2 )L0 + F2( p−1

2 )−1R0 ≡ Fp−1L0 + Fp−2R0 ≡ R0 (modp)

Thus σ(L0, R0, p) |
p− 1

2
for p ≡ ±1 (mod5).

Corollary 18. If p is a prime number satisfying p ≡ ±1 (mod5), then πp | p− 1.

Proof. By Theorem 16 and Theorem 17, the statement is proved.
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Theorem 19. If p is a prime number satisfying p ≡ ±2 (mod5), then σ(L0, R0, p) |
p+ 1 and p+1

σ(L0,R0,p)
is odd.

Proof. Let p be aprime and p ≡ ±2 (mod5).

By Theorem 17, we have Fp−( p
5 )
≡ 0 (modp) and F≡

(p
5

)
(modp)

(p
5

)
=

{
1 if p ≡ ±1 (mod5)
−1 if p ≡ ±2 (mod5)

Now since p ≡ ±2 (mod5), we have

Fp+1 ≡ 0 (modp) and Fp ≡ −1 (modp)

Then

Fp+2 = Fp + Fp+1 ≡ −1 + 0 ≡ −1 (modp)

By Lemma 15, we have

{
Ln = F2n+1L0 + F2nR0

Rn = F2nL0 + F2n−1R0

Putting n =
p+ 1

2
, we get

{
L p+1

2
= F2( p+1

2 )+1L0 + F2( p+1
2 )R0 ≡ Fp+2L0 + Fp+1R0 ≡ −L0 (modp)

L p+1
2

= F2( p+1
2 )L0 + F2( p+1

2 )−1R0 ≡ Fp+1L0 + FpR0 ≡ −R0 (modp)

Therefore the period does not divide
p+ 1

2
for p ≡ ±2 (mod5).

From the above, we know that
p+ 1

2
steps after

(
L0

R0

)
is

(
−L0

−R0

)
. Now consider

another
p+ 1

2
steps later, that is p+ 1 steps after

(
L0

R0

)
.

{
Lp+1 = F

2( p+1
2

)+1
(−L0) + F

2( p+1
2

)
(−R0) ≡ Fp+2(−L0) + Fp+1(−R0) ≡ L0 (modp)

Rp+1 = F
2( p+1

2
)
(−L0) + F

2( p+1
2

)−1
(−R0) ≡ Fp+1(−L0) + Fp(−R0) ≡ R0 (modp)

Thus if p ≡ ±2 (mod5), we have σ(L0, R0, p) | p+ 1 with
p+ 1

σ(L0, R0, p)
odd.

Corollary 20. If p is a prime number satisfying p ≡ ±2 (mod5), then πp | 2p+ 2.

Proof. By Theorem 16, we have
For p 6= 2, πp = π(p) = 2σ(L0, R0, p).
For p = 2, π2 = π(2) = σ(L0, R0, 2) = 3.
Since σ(L0, R0, 2) | p+ 1 by Theorem 19, σ(L0, R0, 2) | 2p+ 2 and then π2 | 2p+ 2.
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Conclusively, for any prime number p other than 5, the divisibility of πp is listed as
below: {

πp | p− 1 if p ≡ ±1 (mod5)
πp | 2p+ 2 if p ≡ ±2 (mod5)

5. Period of the game modulo a product of relatively prime numbers
n1n2

After studying the properties of the periodicity of generalized Fibonacci sequence
modulo a prime p using the period σ(L0, R0, p) of the game, we further study the
game modulo a product n1n2 of two relatively prime numbers n1 and n2. We
successfully find a beautiful formula for decomposing the period of game modulo
a product of two relatively-prime integers in Corollary 22 into the L.C.M. of their
own periods.

Theorem 21. For any two numbers n1 and n2, if

{
L0 ≡ 1L0 (mod n1)
R0 ≡ 1R0 (mod n1)

and
{
L0 ≡ 2L0 (mod n2)
R0 ≡ 2R0 (mod n2)

, we have

σ(L0, R0, [n1, n2]) = [σ(1L0,
1R0, n1), σ(2L0,

2R0, n2)].

Proof. Let mi = σ(iL0,
iR0, ni) for i = 1, 2. Consequently, we have

{
iLmi ≡ iL0 (mod ni)
iRmi ≡ iR0 (mod ni)

By the property of a period, it is trivial that for all positive integer ri,{
iLrimi

≡ iL0 (mod ni)
iRrimi ≡ iR0 (mod ni)

Now we consider for some positive integer M ,
{

iLM ≡ iL0 (mod ni)
iRM ≡ iR0 (mod ni)

The smallest integer M satisfying these equations is simply the least common mul-

tiple of m1 and m2, i.e. [m1,m2]. In this case ri =
[m1,m2]

mi
.

Now we let M = [m1,m2] and N = [n1, n2].
{

iLM ≡ iL0 (mod ni)
iRM ≡ iR0 (mod ni)

⇒
{

iLM ≡ iL0 +Nx
iRM ≡ iR0 +Ny

for some x, y ∈ Z

Then we have M being the smallest integer such that
{
LM ≡ F2M+1L0 + F2MR0 ≡ F2M+1

iL0 + F2M
iR0 ≡ iLM ≡ L0 (mod N)

RM ≡ F2ML0 + F2M−1R0 ≡ F2M
iL0 + F2M−1iR0 ≡ iRM ≡ R0 (mod N)
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Thus σ(L0, R0, N) = M = [σ(1L0,
1R0, n1), σ(2L0,

2R0, n2)]

Corollary 22. For any two relatively prime numbers n1 and n2,

σ(L0, R0, n1n2) = [σ(1L0,
1R0, n1), σ(2L0,

2R0, n2)].

Proof. If n1 and n2 are relatively prime, then we have N = n1n2 in Theorem 21.
Therefore σ(L0, R0, n1n2) = [σ(1L0,

1R0, n1), σ(2L0,
2R0, n2)], ∀ (n1, n2) = 1

6. Period of the game modulo an integer

For any integer j with its prime factorization, say j =

s∏

i=1

pkii . We can apply

Corollary 22 to decompose the period of game modulo j in Theorem 23.

Theorem 23. Let

{
L0 ≡ iL0 (mod pkii )

R0 ≡ iR0 (mod pkii )
. For any integer j with prime factor-

ization j =
s∏

i=1

pkii ,

σ(L0, R0, j) = [σ(1L0,
1R0, p

k1
1 ), σ(2L0,

2R0, p
k2
2 ), . . . , σ(sL0,

sR0, p
ks
s )]

Proof. Let j = pk11 p
k2
2 . . . pkss =

s∏

i=1

pkii , for some prime numbers pi.

We are going to prove the proposition by conducting mathematical induction on s.
The proposition is true when s = 2 by Corollary 22 as (pk11 , p

k2
2 ) = 1.

Assume the proposition is true when s = h for some h,
i.e. σ(L0, R0, p

k1
1 pk22 . . . p

kh
h ) = [σ(1L0,

1R0, p
k1
1 ), σ(2L0,

2R0, p
k2
2 ), . . . , σ(hL0,

hR0, p
kh
h )]

Consider the case when s = h+ 1,

σ(L0, R0, j) = σ(L0, R0, p
k1
1 pk22 . . . p

kh+1

h+1 )

= σ(L0, R0, (p
k1
1 pk22 . . . p

kh
h )p

kh+1

h+1 )

= [σ(L0, R0, p
k1
1 pk22 . . . p

kh
h ), σ(h+1L0,

h+1R0, p
kh+1

h+1 )]

= [[σ(1L0,
1R0, p

k1
1 ), σ(2L0,

2R0, p
k2
2 ), . . . , σ(hL0,

hR0, p
kh
h )],

σ(h+1L0,
h+1R0, p

kh+1

h+1 )]

= [σ(1L0,
1R0, p

k1
1 ), σ(2L0,

2R0, p
k2
2 ), . . . , σ(hL0,

hR0, p
kh
h ), σ(h+1L0,

h+1R0, p
kh+1

h+1 )]

The proposition is also true for s = h+ 1.
Therefore, the proposition is true for all positive integer s by the principle of math-
ematical induction.
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7. Period of the game modulo a power of prime

The last step in this paper is to investigate the period of the game modulo a power
of a prime number.

Lemma 24. Let c be a positive integer and let σpn = σ(L0, R0, p
n).

If

{
Lσpn

= L0 + pnx1
Rσpn

= R0 + pnxx
for some x1 and x2, then there exists two integer x3 and

x4 both are divisible by p such that

{
Lcσpn

= L0 + cpnx1 + pn+1x3
Rcσpn

= R0 + cpnx2 + pn+1x4

Proof. Let σpn = σ(L0, R0, p
n). In this proof, xi’s are integral constants.

Since

{
Lσpn

= F2σpn+1L0 + F2σpn
R0 ≡ L0 (mod pn)

Rσpn
= F2σpn

L0 + F2σpn−1R0 ≡ R0 (mod pn)
,

we may let

{
Lσpn

= L0 + pnx1
Rσpn

= R0 + pnx2
.

We now conduct mathematical induction on c to prove the proposition.
When c = 1, the proposition is true taking x3 = x4 = 0.

Assume the proposition is true for some c = k.

i.e.

{
Lkσpn

= F2kσpn+1L0 + F2kσpn
R0 = L0 + kpnx1 + pn+1x3

Rkσpn
= F2kσpn

L0 + F2kσpn−1R0 = R0 + kpnx2 + pn+1x4
Now consider the case when c = k + 1.

L(k+1)σpn
= F2(k+1)σpn+1L0 + F2(k+1)σpn

R0

= F2σpn+1(Lkσpn ) + F2σpn (Rkσpn )

= F2σpn+1(L0 + kpnx1 + pn+1x3) + F2σpn (R0 + kpnx2 + pn+1x4)

= (F2σpn+1L0 + F2σpnR0) + kpn(F2σpn+1x1 + F2σpn x2)

+ pn+1(F2σpn+1x3 + F2σpn x4)

= Lσpn + kpn(x1 + pnx′1) + pn+1(x3 + pnx′3)

= (L0 + pnx1) + kpn(x1 + pnx′1) + pn+1(x3 + pnx′3)

= L0 + (k + 1)pnx1 + pn+1(kpn−1x′1 + x3 + pnx′3)

L(k+1)σpn
= L0 + (k + 1)pnx1 + pn+1x′′3 where x′′3 is divisible by p

Similarly

R(k+1)σpn
= F2(k+1)σpn

L0 + F2(k+1)σpn−1R0

= F2σpn (Lkσpn ) + F2σpn−1(Rkσpn )

= F2σpn (L0 + kpnx1 + pn+1x3) + F2σpn−1(R0 + kpnx2 + pn+1x4)

= (F2σpnL0 + F2σpn−1R0) + kpn(F2σpn x1 + F2σpn−1x2)

+ pn+1(F2σpn x3 + F2σpn−1x4)

= (Rσpn ) + kpn(x2 + pnx′2) + pn+1(x4 + pnx′4)

= (R0 + pnx2) + kpn(x2 + pnx′2) + pn+1(x4 + pnx′4)

= R0 + (k + 1)pnx2 + pn+1(kpn−1x′2 + x4 + pnx′4)
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R(k+1)σpn
= R0 + (k + 1)pnx2 + pn+1x′′4 where x′′4 is divisible by p

The proposition is also true for c = k + 1.
By the principle of mathematical induction, the proposition is true for all positive
integer c.

Lemma 25. Let σpk = σ(L0, R0, p
k) and

{
Lσpn

= L0 + pnx1
Rσpn

= R0 + pnx2
for some x1 and

x2.

(a) σpn | σpn+1 and σpn+1 | pσpn .

(b) σpn+1 =

{
σpn if p | x1 ∧ p | x2
pσpn if (p, x1) = 1 ∨ (p, x2) = 1

.

Proof. (a) Let

{
Lσpn+1 = L0 + pn+1x1
Rσpn+1 = R0 + pn+1x2

for some x1 and x2.

Then

{
Lσpn+1 ≡ L0 (mod pn)

Rσpn+1 ≡ R0 (mod pn)
and hence σpn | σpn+1

By Lemma 24, we have

{
Lcσpn

= L0 + cpnx1 + pn+1x3
Rcσpn

= R0 + cpnx2 + pn+1x4
Putting c = p, we get

{
Lpσpn

= L0 + pn+1x1 + pn+1x3 ≡ L0 (mod pn+1)
Rpσpn

= R0 + pn+1x2 + pn+1x4 ≡ R0 (mod pn+1)
. (**)

Hence σpn+1 | pσpn .
(b) (i) If p | x1 and p | x2, then x1 = pk1 and x2 = pk2 for some k1 and k2.

So

{
Lσpn

= L0 + pn+1k1 ≡ L0 (mod pn+1)
Rσpn

= R0 + pn+1k2 ≡ R0 (mod pn+1)
Therefore σpn+1 | σpn . By (a), σpn = σpn+1 .

(ii) Assume (p, x1) = 1 ∨ (p, x2) = 1. By Lemma 24,

{
Lσpn

= L0 + pnx1
Rσpn

= R0 + pnx2
⇒
{
Lcnσpn

= L0 + cnp
nx1 + pn+1x3

Rcnσpn
= R0 + cnp

nx2 + pn+1x4

Note that

{
Lcnσpn

= Lσpn+1 ≡ L0 (mod pn+1)

Rcnσpn
= Rσpn+1 ≡ R0 (mod pn+1)

, therefore cn is a mul-

tiple of p. Knowing that we must take the smallest possible value for cn,
we have cn = p, σpn+1 = pσpn .

Theorem 26. If σpk+1 = pσpk for some k, then σpn = pn−kσpk for all n ≥ k.
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Proof. By the equations in (**), we have
{
Lpσpn

= L0 + pn+1x1 + pn+1x3 = L0 + pn+1(x1 + x3)
Rpσpn

= R0 + pn+1x2 + pn+1x4 = R0 + pn+1(x2 + x4)
.

If σpk+1 = pσpk , by Lemma 25(b), we have σpk 6= σpk implying (p, x1) = 1∨(p, x2) =
1.
As x3 and x4 are divisible by p by Lemma 24, we have (p, x1+x3) = 1∨(p, x2+x4) =
1.

By Lemma 24,
{

Lσ
pk+1

= Lpσ
pk

= L0 + pk+1(x1 + x3)

Rσ
pk+1

= Rpσ
pk

= R0 + pk+1(x2 + x4)

⇒
{

Lck+1σpk+1
= L0 + ck+1p

k+1(x1 + x3) + pk+2x5
Rck+1σpk+1

= R0 + ck+1p
k+1(x2 + x4) + pk+2x6

.

If

{
Lck+1σpk+1

= Lσ
pk+2

≡ L0 (mod pk+2)

Rck+1σpk+1
= Rσ

pk+2
≡ R0 (mod pk+2)

, then ck+1 must be a multiple of p.

Knowing that we must take the smallest possible value for ck+1, we have ck+1 = p
and σpk+2 = pσpk+1 . Inductively, we get σpn = pn−kσpk .

By Theorem 23, we have

σ(L0, R0, j) = [σ(1L0,
1R0, p

k1
1 ), σ(2L0,

2R0, p
k2
2 ), . . . , σ(sL0,

sR0, p
ks
s )].

However this result is for the periodicity of the game only, we now try to use some
of the theorems in our previous sections to make Theorem 23 applicable for the
period of the generalized Fibonacci sequence modulo j in Theorem 27.

Theorem 27. For any integer j with prime factorization j =
s∏

i=1

pkii , there exists

a set of s constants, {Ci} for i = 1, 2, . . . , s such that

π(R0, L0, j) = µ[π(p1), π(p2), . . . , π(ps),
s∏

i=1

pki−Ci
i ]

where µ = 2 or 1 or 1
2 or 1

4 .

Proof. Let j =

s∏

i=1

pkii , σpk = σ(L0, R0, p
k) and πN = π(R0, L0, N).

By Lemma 25(b),we know that σpn+1 = σpn or σpn+1 = pσpn .
Let Ci be the greatest integer such that σ

p
Ci
i

= σ
p
Ci−1

i

.

By Theorem 26,

If σpk+1 = pσpk for some k, then σpn = pn−kσpk for all n ≥ k.
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Therefore we have σpNi = pN−Ciσ
p
Ci
i

= pN−Ciσ
p
Ci−1

i

= . . . = pN−Ciσpi
Up to this moment, using Theorem 23, we have

σj = [σ
p
k1
i
, σ
p
k2
2
, . . . , σpks

s
]

= [pk1−C1
1 σp1 , p

k2−C2
2 σp2 , . . . , p

ks−Cs
s σps ]

σj = [σp1 , σp2 , . . . , σps ,
s∏

i=1

pki−Ci
i ]

By Lemma 6,

σn =

{ πn
2

if πn is even

πn if πn is odd

Then

σj = [σp1 , σp2 , . . . , σps ,
s∏

i=1

pki−Ci
i ]

= µ1[πp1 , πp2 , . . . , πps ,
s∏

i=1

pki−Ci
i ]

where µ1 = 1 or
1

2
.

Now by Theorem 16, for some prime p other than 5,

πp =
π(p)

2
or πp = π(p)

Therefore [πp1 , πp2 , . . . , πps ] = µ2[π(p1), π(p2), . . . , π(ps)] where ν2 = 1 or
1

2

We then have

σj = µ1µ2[π(p1), π(p2), . . . , π(ps),
s∏

i=1

pki−Ci
i ]

Recall the equation

σn =

{ πn
2

if πn is even

πn if πn is odd

We may write

πj = µ1µ2µ3[π(p1), π(p2), . . . , π(ps),
s∏

i=1

pki−Ci
i ] where u2 = 1 or 2

Let µ = µ1µ2µ3, we finally have

πj = µ[π(p1), π(p2), . . . , π(ps),
s∏

i=1

pki−Ci
i ] where µ = 2 or 1 or

1

2
or

1

4
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Note: The value of µ is determined by the choice of the initial values and j, yet we
fail to find the relationship in between.

8. Conclusion

The scope of this paper is to study the hand game Chopsticks in the beginning.
However, we realized that the generalized Fibonacci sequence (GFS) can be formed
by the game.

The Fibonacci sequence can be generalized in many ways. In this paper, we defined
the generalized Fibonacci sequence {Fn} by the recurrence relation

Fn = Fn−1 + Fn−1, for all n ≥ 2

with F0 = a and F1 = b, where a and b are fixed non-negative integers and called
the initial values of the sequence.

The game involving one player with both hands showing any two numbers (two
initial number L0 and R0) tapping on each other alternatively, may form the GFS
modulo j. We defined the period of the game σ(L0, R0, j) as the smallest number
of steps by which both hand show their initial numbers again. Then we figured out
that the period of the game is either the period of GFS modulo j, π(R0, L0, j) or
half of it, depending on whether π(R0, L0, j) is even or odd. By this relationship,
the periodicity of GFS modulo j can be easily found by the periodicity of the game.

We study the game modulo a prime number p first and successfully find that the

period of GFS modulo p, π(a, b, p) is either π(p) or π(p)
2 for any prime numbers

p other than 5, where π(p) is the p-th Pisano Period in our Main Theorem 16.
Then we further decompose the period σ(L0, R0, j) as the least common multiple

of the periods of power of prime factors σ(L0, R0, p
k1
i ) in Theorem 23. We also

disclose the periodicity π(a, b, j) of generalized Fibonacci sequence modulo p other
than 5 and prime powers pk in Corollary 18-20, Lemma 7 and Theorem 26.
Finally we use Theorem 27 to construct a general expression for the period of
GFS modulo j in terms of the pi-th Pisano period, where pi’s are the prime factors
of j.

Although we know the general form for the period of GFS modulo j in Theorem
27, we are still uncertain about the constants Ci’s and µ in the expression. Despite
this little imperfection, the result is such a great leap in history that the period
of GFS modulo j has been reduced to the period of Fibonacci sequence modulo a
prime p.
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Appendix A. Strategies on Different Game Situations

A.1. General Rules of the Game

1. Two players show their both hands with only one finger up at the beginning.
2. One of the players will be attacker.
3. Attacker can choose one of his or her hands as weapon to tap one of the three

other hands.
4. After that, the number represented by the weapon remains unchanged.
5. At the same time, the target (the hand the weapon taps) will have to change

the number, which is the sum of its original number and the weapon.
6. If the number represented by the target is 5, it will be knocked out and cannot

be used by the player again.
7. If the number represented by the target is greater than 5, subtract that number

by 5.
8. Players will take turns to be attacker.
9. The player with both hands knocked out will lose the game.

A.2. General notation of the game

1. The

(
1 1
1 1

)
will be used to represent the number shown by the 4 hands.

2. The first row is the hands of player A while the second row is the hands of player
B.

3. When the first row is in red font, it is player A’s turn. When the second row is
in red font, it is player B’s turn.

4. The words above the arrow represent the strategies used.
5. If both sides have only one hand, no words will be on the arrow as no strategies

can be used.
6. If the hand is knocked out, it is represented by “*”. It cannot be used again.
7. The player with both hands knocked out loses. The blue font will be used to

indicate the winner.
8. The notation of the strategies is Targetweapon, e.g. Ll. Here are the six possible

strategies:
a) Ll: tap opponents’ left hand by player’s own left hand.
b) Lr: tap opponents’ left hand by player’s own right hand.
c) Rl: tap opponents’ right hand by player’s own left hand.
d) Rr: tap opponents’ right hand by player’s own right hand.
e) Dl: tap player’s own right hand by player’s left hand.
f) Dr: tap player’s own left hand by player’s right hand.

9. We will also use x to denote any weapon of the player, but known target. For
example, we use Dx to denote tapping player’s own hand by player’s another
hand in general.

10. We will use Al, Ar, Bl and Br to represent the left hand, right hand of player A,
and left hand, right hand, of player B respectively.
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11. In general, we assume x = Al, y = Ar, z = Bl, a = Br.
12. Unless specified, we assume player A starts the game.

A.3. Mathematical Meaning of the strategies

In fact, the strategies described above can be expressed mathematically. It is an
addition of matrix. The corresponding addition will be shown above.

Strategy Original Addition of matrix Result

Ll

(
x y
a b

) (
x y
a b

)
+

(
0 0
x 0

) (
x y

a+ x b

)

Lr

(
x y
a b

) (
x y
a b

)
+

(
0 0
y 0

) (
x y

a+ y b

)

Rl

(
x y
a b

) (
x y
a b

)
+

(
0 0
0 x

) (
x y
a b+ x

)

Rr

(
x y
a b

) (
x y
a b

)
+

(
0 0
0 y

) (
x y
a b+ y

)

Dl

(
x y
a b

) (
x y
a b

)
+

(
0 x
0 0

) (
x x+ y
a b

)

Dr

(
x y
a b

) (
x y
a b

)
+

(
y 0
0 0

) (
x+ y y
a b

)

After tapping, it is player B’s turn. The red font moves from the first row to the
second row.

A.4. Demonstration of the game

(
1 1
1 1

)
Ll−→
(

1 1
2 1

)
Rl−→

(
1 3
2 1

)
Lr−−→

(
1 3
∗ 1

)
Ll−→
(

2 3
∗ 1

)
Dr−−→

(
∗ 3
∗ 1

)
→
(
∗ 4
∗ 1

)
→
(
∗ 4
∗ ∗

)

A.5. 1 hand vs 1 hand

Ultimately, we will have to investigate the hand game played by two players with
both have 2 hands initially. However, before that, we can investigate the situation
of 2 players, with both 1 hand first. For any two number x and y, they can be
expressed by one of the four cases:

1. x+ y ≡ 0 (mod 5)
2. x+ 2y ≡ 0 (mod 5)
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3. x+ 3y ≡ 0 (mod 5)
4. x+ 4y ≡ 0 (mod 5)

For instance, When x = 1 and y = 1, 1+4(1) = 5 ≡ 0 (mod 5). They can be
expressed by case 4. When x = 1 and y = 3, 1 + 3(3) = 10 ≡ 0
(mod 5). They can be expressed by case 3.

In the game, as the number represented by the hands cannot exceed 5, it is generally
true to say that x, y ∈ {1, 2, 3, 4} when we discuss our game.

In this paper, we use relations like x + y ≡ 0 (mod 5). The case will be the
same when the numbers of the 4 hands is multiplied by k, where k ∈ {2, 3, 4}, i.e.
x+ y ≡ 0 (mod 5) ⇒ (kx) + (ky) ≡ 0 (mod 5), where (k, 5) = 1. It is true to say

that

(
1 3
2 1

)
and

(
2 1
4 2

)
are the same.

A.6. Exhaustion

Here, we will exhaust all the cases and show the result. As 4× 4 = 16, there are 16

cases. However, we just need to talk about the cases of

(
1
h

)
, where h ∈ {1, 2, 3, 4}.

This can be done as the other 12 cases can be generated by multiplying k, where
k ∈ {2, 3, 4}.

Here are the results:(
1
1

)
→
(

1
2

)
→
(

3
2

)
→
(

3
∗

) (
1
2

)
→
(

1
3

)
→
(

4
3

)
→
(

4
2

)
→
(

1
2

)
→ . . .

(
1
3

)
→
(

1
4

)
→
(
∗
4

) (
1
4

)
→
(

1
∗

)

A.7. Conclusion and proof

From the process of exhaustion, it is easily found that there are a lot of similarities
among the results. In fact, the above 16 cases can be grouped into 4 cases, which
are closely related to the relations of x and y as discussed above.
Now we will generate the whole sequence:(

x
y

)
→
(

x
x+ y

)
→
(

2x+ y
x+ y

)
→
(

2x+ y
3x+ 2y

)
→
(

5x+ 3y
3x+ 2y

)
→
(

5x+ 3y
8x+ 5y

)
→

(
13x+ 8y
8x+ 5y

)
→ . . .

It can be easily observed that it is a Fibonacci sequence. Let n be the number of
steps.
The red font will be: Fnx+Fn−1y. The game is over when Fnx+Fn−1y ≡ 0 (mod 5).
Therefore, player A wins the game if the smallest solution of n in Fnx+Fn−1y ≡ 0
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(mod 5) is an even number.
Player B wins the game if the smallest solution of n in Fnx + Fn−1y ≡ 0 (mod 5)
is an odd number.
For convenience, we use x to represent A1 and y for B1.
Case 1:x+ y ≡ 0 (mod 5)
As x+ y ≡ 0 (mod 5) ⇒ x ≡ −y (mod 5),

Fnx+ Fn−1y ≡ 0 (mod 5)⇒ −Fny + Fn−1y ≡ 0 (mod 5)

⇒y(Fn−1 − Fn) ≡ 0 (mod 5)⇒ Fn − Fn−1 ≡ 0

n = 2(F2 = F1 = 1)
In this case, player A wins the game.

Case 2: x+ 2y ≡ 0 (mod 5)
As x+ 2y ≡ 0 (mod 5)⇒ x ≡ −2y (mod 5),

Fnx+ Fn−1y ≡ 0 (mod 5)⇒ −2Fny + Fn−1y ≡ 0 (mod 5)

⇒y(−2Fn + Fn−1) ≡ 0 (mod 5)⇒ Fn−1 ≡ 2Fn (mod 5)

There are no possible solutions. In fact, an infinite loop will be generated, and the
proof is given below:
P (n) : Fn − 2Fn+1 = 5R + h, where R is an integer and h is a positive integer
smaller than 5
When n = 0,
LS = 0− 2 = −2, which is not divisible by 5.
P (0) is true.

Assume P (k) is true, i.e. Fk − 2Fk+1 = 5R+ h
When n = k + 1,
Fk+1 − 2Fk+2 = −Fk+1 − 2Fk = −Fk+1 − 2(2Fk+1 + 5R+ h) =
−5Fk+1 − 10R− 2h, which is not divisible by 5
P (k + 1) is true.
By the principle of M.I., P (n) is true for all positive integer n.
Thus, an infinite loop is formed in case 2.

Case 3: x+ 3y ≡ 0 (mod 5)
As x+ 2y ≡ 0 (mod 5) ⇒ x ≡ −3y (mod 5),

Fnx + Fn−1y ≡ 0 (mod 5) ⇒ −3Fny + Fn−1y ≡ 0 (mod 5) ⇒ y(−3Fn + Fn−1) ≡
0 (mod 5)⇒ Fn−1 ≡ 3Fn (mod 5) n = 3 (3F3 = 3× 2 = 6 ≡ 1(mod 5), F2 = 1)
In this case, player B wins the game.

Case 4: x+ 4y ≡ 0 (mod 5)
As x+ 4y ≡ 0 (mod 5) ⇒ x ≡ −4y (mod 5),

Fnx + Fn−1y ≡ 0 (mod 5) ⇒ −4Fny + Fn−1y ≡ 0 (mod 5) ⇒ y(−4Fn + Fn−1) ≡
0 (mod 5)⇒ Fn−1 ≡ 4Fn (mod 5) n = 4 (F4 = 3, 4F3 = 8 ≡ 3 (mod 5))
In this case, player A wins the game.
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To conclude, the outcome of the game totally depends on the relation of x and y.
Result varies for different cases.

Lemma Aa): For x+ y ≡ 0 (mod 5)
Lemma Ab): For x+ 2y ≡ 0 (mod 5)
Lemma Ac): For x+ 3y ≡ 0 (mod 5)
Lemma Ad): For x+ 4y ≡ 0 (mod 5)

player A wins the game
It is a draw
player B wins the game
player A wins the game

From above, we have:

A\ 1 2 3 4
B
1 A Draw B A
2 B A A Draw
3 Draw A A B
4 A B Draw A

A.8. 1 hand vs 2 hand

Before going into the hand game played by two players with 2 hands, it is better
for us to investigate some simpler situation. Here, we assume that a player has 1
hand knocked out, with the enemy still have both hands. Can he fight back?

When we consider this game, it is very important to know that we assume both
players will know the best method that is most beneficial to them. For example,
if player A uses his left hand to tap player B’s hand, he will immediately wins the
game. However, when he uses his right hand to tap player B’s hand, he cannot
win. In this case, we assume player A will have the wise to choose the best route
for him, i.e. to win the game, or to avoid losing the game.

As the number represented by the hands cannot exceed 5, it is true to say that
x, y, z, a ∈ {1, 2, 3, 4}.

It is noticeable that we consider 2 cases when the game is started by different

players.

(
1 1
1 ∗

)
and

(
1 1
1 ∗

)
are considered as 2 cases. Therefore, to count roughly,

there are altogether 4× 4× 4× 2 = 128 cases. However, as we say before, the case
will be the same when the numbers of the 4 hands is multiplied by k, the number
of cases are greatly reduced.

Besides, some cases can be reduced, which will be discussed in the corollaries.
On the other hand, we do not consider the situations that Al +Bl ≡ 0 (mod 5), or

Ar+Bl ≡ 0 (mod 5) initially in Theorem 34. For cases like

(
1 2
4 ∗

)
, player A can

just win the game by using his left hand to tap player B. For cases like

(
1 2
4 ∗

)
,
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player B can simply fight back by tapping player A’s left hand. Therefore, it is

actually investigating 1 hand vs 1 hand, i.e.

(
2
4

)
, which has been discussed above.

After reducing, there are 12 cases left. They are based on the relations between
Al, Ar and Bl. These 12 cases will be discussed in Theorem 34.

A.9. The overview of the 12 cases

1.

(
y y
y ∗

)

2.

(
y y
y ∗

)

3.

(
y y
z ∗

)
, where Bl + 2Ar ≡ 0 (mod 5)

4.

(
y y
z ∗

)
, where Bl + 2Ar ≡ 0 (mod 5)

5.

(
y y
z ∗

)
, where Bl + 3Ar ≡ 0 (mod 5)

6.

(
y y
z ∗

)
, where Bl + 3Ar ≡ 0 (mod 5)

7.

(
y x
y ∗

)
, where Al + 2Ar ≡ 0 (mod 5)

8.

(
y x
y ∗

)
, where Al + 2Ar ≡ 0 (mod 5)

9.

(
y x
y ∗

)
, where Al + 3Ar ≡ 0 (mod 5)

10.

(
y x
y ∗

)
, where Al + 3Ar ≡ 0 (mod 5)

11.

(
y x
z ∗

)
, where Al +Ar ≡ 0 (mod 5)

12.

(
y x
z ∗

)
, where Al +Ar ≡ 0 (mod 5)

A.10. Lemma, Corollary, Proposition and Theorem

Before talking about different cases, we will give some simple propositions and
corollaries so that it is more convenient for us to show our outcome.

Corollary 28. Interchangeability of Ll, Lr, Rl, Rr

The initial value of Ll and Lr can interchange. Similar thing can be applied to

Rl, Rr.

(
x y
z a

)
,

(
y x
a z

)
,

(
y x
z a

)
and

(
x y
a z

)
should be considered as 1 case.

For example, in

(
x y
z a

)
if player A takes Ll, it is exactly the same for him to take

Rl in

(
x y
a z

)
.

When x 6= y, they cannot both satisfy one case (the four cases). However, they
are interchangeable, therefore we express the hand satisfy the case as Ax and Bx.
(This may be useful to explain below)

Proposition 29. If As + Bl ≡ 0 (mod 5), player B must tap As to avoid losing
the game, where s = l or r.

As As + Bl ≡ 0 (mod 5), player B must tap As to avoid losing, or As will knock
him out.
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Now, we assume As refers to Ar. Here is the situation of player B if he DOES
NOT tap player A’s right hand:(
x y
z ∗

)
Ll−→
(
x+ z y
z ∗

)
Lr−−→

(
x+ z y
∗ ∗

)

Player A taps player B and turn it to y + z, player B’s hand is knocked out.

Proposition 30. Given that Bl + 3As ≡ 0 (mod 5), if player B taps As, player A
wins, where s = l or r.

In Lemma Ac, we show that player A will lose if Bl + 3As ≡ 0 (mod 5) when the
game is started by player A. Now, the game is started by player B. If he taps As,
he is actually doing the same thing as what player A did in Lemma Ac. He will
lose the game.
Now, we assume s = r, here is the situation of player B if he TAPS Ar:(
x y
z ∗

)
Rl−→
(
x y + z
z ∗

)
Rl−→
(
x y + z
∗ ∗

)

Player A taps Bl and turns it to z + 2y. As z + 2y1 → 3z + y ≡ 0 (mod 5), player
B’s hand is knocked out.
These two Propositions are valid in 1 hand vs 2 hand, and general situation in 1
hand vs 2 hand. Special situation will be specified in the later proof.
In Lemma 31, we will assume Al = Ar. It will be simpler to deal with 2 variables
in the beginning. Note that this lemma is still valid in the cases of Al + Bl ≡ 0
(mod 5), but Theorem 34 and Lemma 33 does not (It will be discussed later).

Lemma 31. Given Al = Ar initially, if it is B’s turn now, A win.

Proof. Case 1: Bl + 2Al ≡ 0 (mod 5)
(
y y
z ∗

)
Ll−→
(
z + y y
z ∗

)
Dl−−→

(
z + y ∗
z ∗

)
→
(

2z + y ∗
z ∗

)
→
(
z + y ∗
∗ ∗

)

The situation is tricky. As Bl + 2Al ≡ 0 ⇒ 3Bl + Al ≡ 0 (mod 5), player A can
knock out his own right hand, forcing player B to tap his left hand and lose the
game.
Case 2: Bl + 3Al ≡ 0 (mod 5)
(
y y
z ∗

)
Ll−→
(
y + z y
z ∗

)
Ll−→
(
y + z y
∗ ∗

)

Player B must avoid tapping Al as 3Bl+Al ≡ 0 (mod 5). (Proposition 30) In this
case, he must tap one of player A’s hands, which are both equal to y. Therefore,
player B loses.
Case 3: 5Al ≡ 0 (mod 5) (Al = Bl)(
y y
y ∗

)
Ll−→
(

2y y
y ∗

)
Dl−−→

(
2y 3y
y ∗

)
Ll−→
(

3y 3y
y ∗

)
Ll−→
(

3y 3y
4y ∗

)

1z + 2y ≡ 0⇒ z ≡ −2y ⇒ 3z ≡ −6y ⇒ 3z ≡ −y ⇒ 3zy ≡ 0 (mod 5)
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After player A takes Dl?, player B must not tap player A’s right hand (Proposition
30). Nevertheless, after player A taps player B, player B is actually facing the same
situation as case 32. He loses the game.
(Extra)Case 4: Bl +Al ≡ 0 (mod 5) (This case is not included in Theorem 34)
(
y y
z ∗

)
Ll−→
(
∗ y
z ∗

)
Lr−−→

(
∗ y
∗ ∗

)

Player B must tap As to avoid losing the game. (Proposition 29) However, he
cannot tap both hands of player A. He can just choose one of them to tap. As player
B knocks out one of the hands, the other will knock Bl out. Player B eventually
loses the game.

Corollary 32. Given Al = Ar initially, if it is A’s turn now, A still wins.

The logic is extremely simple, when player A taps player B by any hand, it will
become one of the 4 cases in the above lemma. Player A still wins the game.

Lemma 33. Given that Al + Ar ≡ 0 (mod 5) and As + Bl 6= 0, if it is A’s turn,
A wins. Where s = l or r.

Proof. As As + Bl 6= 0 (mod 5) there are only 1 possible relationship for y and z:
Bl + 2Al ≡ 0 (mod 5), Bl + 3Ar ≡ 0 (mod 5)). Given Al + Ar ≡ 0 (mod 5), as
Al + Bl 6= 0 (mod 5) and Ar + Bl 6= 0 (mod 5), we can make such conclusion as
As +Bl 6= 0, and Bl 6= As. (if Bl = Al, Bl +Ar ≡ 0 (mod 5)). We can refer to p.2,
which shows that 2 cases out of the 4 cases are not true here.
Very obviously, player A can just knock out his own right hand by his left hand,
forcing player B to tap Al and lose. (Proposition 30)
Here is the situation described:(
x y
z ∗

)
Dl−−→

(
x ∗
z ∗

)
→
(
x+ z ∗
z ∗

)
→
(
x+ z ∗
∗ ∗

)

We have talked about 6 cases. The final 5 cases will be discussed under Theorem
34.

Theorem 34. Given that As + Bl 6= 0 (mod 5) initially, in any cases, A can win
the game, where s = l or r.

Proof. Here are 5 cases not discussed above:
For Al = Bl, Bl + 3Ar ≡ 0 (mod 5)(
z y
z ∗

)
and

(
z y
z ∗

)

Ar

23y + 3(4y) = 15y ≡ 0 (mod 5), this can be treated as Bl + 3Al ≡ 0 (mod 5)
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For Al = Bl, Bl + 2Ar ≡ 0 (mod 5)(
z y
z ∗

)
and

(
z y
z ∗

)

For Al 6= Bl, Al +Ar ≡ 0 (mod 5)(
x y
z ∗

)

Note:(
x y
z ∗

)
has been discussed in Lemma 33.

Case 1: For Al = Bl, Bl + 3Ar ≡ 0 (mod 5), player B first(
z y
z ∗

)

If player A takes Rl, as Bl + 3Ar ≡ 0 (mod 5), he loses. (Proposition 30)
If player A takes Ll, as 2Bl +Ar ≡ 0 (mod 5), it is A’s turn, A wins (Lemma 33)

Case 2: For Al = Bl, Bl + 3Ar ≡ 0 (mod 5), player A first
Assume player A uses Dl
(
z y
z ∗

)
Dl−−→

(
z z + y
z ∗

)

Player B must take Rl to avoid a loss. (Proposition 29)

After that, the situation becomes Lemma Ad

(
z ∗
z ∗

)
. Thus, player A wins the

game.

Case 3: Al = Bl, Bl + 2Ar ≡ 0 (mod 5) with player B first

(
z y
z ∗

) (
1 3
1 ∗

)

Knowing that 2Bl ≡ Ar3 (mod 5), if player B takes Ll, he loses. (Lemma 31)
(
z y
z ∗

)
Ll−→
(
y y
z ∗

)

However, as it takes Rl, the situation becomes the same as case 2 in this Theorem4(
z y
z ∗

)
Rl−→
(
z z + y
z ∗

)
(same as case 2)

Case 4: Al = Bl, Bl + 2Ar ≡ 0 (mod 5) with player A first
(
z y
z ∗

)
Dl−−→

(
z z + y
z ∗

)

3z + 2y ≡ 0 (mod 5) ⇒ z ≡ −2y (mod 5) ⇒ 2z ≡ −4y (mod 5) ⇒ 2z ≡ y (mod 5), i.e.
2Bl ≡ Ar.

4z + 2y ≡ 0 ⇒ 4z + 8y ≡ 0 ⇒ 4z + 3y ≡ 0 ⇒ z + 3(z + y) ≡ 0 (mod 5), i.e. Bl + 3Ar ≡ 0

(mod 5)
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Assume player A takes Dl:
If player B takes Rl, he loses (Bl + 3Ar ≡ 0 (mod 5)), (Proposition 29)
However, if A takes Ll, as 2z + (z + y) ≡ 0 (mod 5), i.e. Al + Ar = 0 (mod 5), he
will lose the game. (Lemma 33)

Case 5: For Al 6= Bl, Ar +Al ≡ 0 (mod 5)(
x y
z ∗

)

The situation is the same as Lemma 33, but it is player B’s turn. The relation
between Al, Ar and Bl are Bl + 2Ar ≡ 0 (mod 5), Bl + 3Al ≡ 0 (mod 5)
If player B takes Ll, he loses. (Proposition 30).
However, if player B takes Rl, as Al +Bl ≡ Ar (mod 5), he loses. (Lemma 31)
Situation when he TAPS Ar:(
x y
z ∗

)
Rl−→
(
x x
z ∗

)
,which is the same situation as Lemma 31.

Finally, all 12 cases are proved. B can win the game if he is wise enough.

A.11. 2 hand vs 2 hand

Unless specified, here are the positions of x, y, z, a:

(
x y
z a

)

Proposition 35. For Al + Ar + Bx (refer to above, see if it is ok)≡ 0 (mod 5),
player A must not tap his own hand. Otherwise, he loses. (Special situation will be
specified.)

Logic: If player A taps his own hand, player B will tap that hand also, causing that
hand to disappear.
(
x y
z a

)
Dl−−→

(
x+ y y
z a

)
Ll−→
(
∗ y
z a

)

Lemma 36. losing condition

Here I will suggest a situation the starting side will lose the game. Now, it is player
A’s turn. For Al + 3Ar ≡ 0 (mod 5),

Al + 3Ar ≡ 0 (mod 5) ⇒ 2Al +Ar ≡ 0 (mod 5) See footnote 1.

Case 1: If player A takes Dl, he loses one hand. (Proposition 35)
(
x y
x x

)
Dl−−→

(
x x+ y
x x

)
Rl−→
(
x ∗
x x

)

Case 2: If player A takes Dr, he loses one hand. (Proposition 35)
(
x y
x x

)
Dr−−→

(
x+ y y
x x

)
Ll−→
(
∗ y
x x

)
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Case 3: If player A takes Ll, he loses one hand. (Proposition 30)
(
x y
x x

)
Ll−→
(
x y
2x x

)
Rl−→
(

x ∗
x+ y x

)

Case 4: If player A takes Lr, he loses one hand. (Proposition 30)
(
x y
x x

)
Lr−−→

(
x y

x+ y x

)
Ll−→
(
∗ y

x+ y x

)

For all four cases player A will lose one hand. He will then lose the entire game
(Theorem 34).

If it is initial situation for player A, he will lose the game. However, for other initial
value, it is still possible for players to avoid facing situation like that. This will be
discussed in the Theorem 40.

Lemma 37. Al + Ar ≡ 0 (mod 5), Bl = Br, Player A can still avoid losing by a
proper move.

(
x y
z z

)

Player A cannot take Dl or Dr (Proposition 35)
For case like Ax = Bx, player A can win the game.
For convenience for us to explain, we assume Ax refers to Al.(
x y
x x

)
Rr−−→

(
x y
x ∗

)
Rl−→
(
x ∗
x ∗

)

For case like Ax 6= Bx, player A only has one choice.
For convenience for us to explain, we assume Ax refers to Al.
Note that Al + 2Bl ≡ 0 (mod 5), and Ar + 3Bl ≡ 0 (mod 5).
Player A must not take Lr, otherwise, he loses. (Proposition 30)
However, he can still take Ll to avoid losing the game.
(
x y
z z

)
Ll−→
(

x y
z + x z

)

Note that as 2Bl + Al ≡ 0 (mod 5), and Al 6= Bl. It is actually a situation of(
2 3
1 4

)
or

(
1 4
2 3

)
. This will be discussed in Lemma 39.

Lemma 38. For four different numbers x, y, z, a, and Al +Br ≡ 0 (mod 5), Ar +
Bl ≡ 0 (mod 5) initially, both players fail to win to game

We are now talking about situation like

(
1 2
3 4

)
and

(
4 2
3 1

)

(
x y
z a

)
, assume it is player A’s turn, he has 2 choices.

The relationship are once again Al + 2Bl ≡ 0 (mod 5) and Ar + Br ≡ 0 (mod 5).
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We can conclude this as x 6= y 6= z 6= a. Two out of four cases are not true here.
(Refer to p.2)

Player A must take either Rl or Lr. Otherwise, he loses. (Proposition 29)
Here are the consequence.

1. Rl(
x y
z a

)
Rl−→
(
x y
z ∗

)
Rl−→
(
x ∗
z ∗

)

As Al + 2Bl ≡ 0 (mod 5), it is an infinite loop. (Lemma Ab)
2. Lr(

x y
z a

)
Lr−−→

(
x y
∗ a

)
Rl−→
(
∗ y
∗ a

)

As Ar +Br ≡ 0 (mod 5), player A will lose the game. (Lemma Ac)

To conclude, as player A wants to avoid losing the game, he will choose Rl, forcing
the game into an infinite loop.

Lemma 39. Both side fails to win the game as it enters

(
1 4
2 3

)
or

(
1 4
2 3

)
.

By Corollary 32,

(
1 4
2 3

)
× 2 ≡

(
1× 2 4× 2
2× 2 3× 2

)
≡
(

2 3
4 1

)
(mod 5),

Now, we consider

(
1 4
2 3

)
.

Taking Dx will lose the game as 1 + 4 ≡ 0 (mod 5)
It is also undesirable to take Rl and Lr as both 1 + 3(3) and 4 + 3(2) ≡ 0 (mod 5).
Player A must not do this to avoid losing the game. (Proposition 30)
Therefore, there are only two ways for player A to choose, Ll and Rr.

For Ll:
Case 1a)
(

1 4
2 3

)
Ll−→
(

1 4
3 3

)
Ll−→
(

4 4
3 3

)
Ll−→
(

4 4
2 3

)
Rl−→
(

1 4
2 3

)
→ . . .

In step 1, there is another possible route, which will be discussed in case 2.
In step 2, there is another possible route, which will be discussed in case 1c.
In step 3, there is another possible route, which will be discussed in case 1b.
In step 4, player B has no choice but to take Rl (Lemma 37).

Case 1b)
(

1 4
2 3

)
Ll−→
(

1 4
3 3

)
Ll−→
(

4 4
3 3

)
Dl−−→

(
4 3
3 3

)
Rl−→
(

4 1
3 3

)
Lr−−→

(
4 1
2 3

)

In step 1, there are other possible routes, which will be discussed in case 2.
In step 4, it is undesirable for player B to take Ll, as he will eventually lose the
game if player A responds by Lr. If player B takes Dx, he loses. (Proposition
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30)
In step 5, player A has no choice but to take Lr (Lemma 37).

The situation of

(
1 4
2 3

)
is the same as

(
2 3
1 4

)
. (Discussed above)

Case 1c)
(

1 4
2 3

)
Ll−→
(

1 4
3 3

)
Rl−→
(

1 2
3 3

)
Rl−→
(

1 2
3 4

)

According to Lemma 38, the game will be turned into an infinite loop.

Case 2)
For Rr:
(

1 4
2 3

)
Rr−−→

(
1 4
2 2

)

However, By Corollary 32,
(

1 4
2 2

)
× 4 ≡

(
1× 4 4× 4
2× 4 3× 4

)
≡
(

4 1
3 3

)
(mod 5)

The situation is exactly the same as case 1.

Theorem 40. Both players cannot win the traditional game starting with

(
1 1
1 1

)

if they are both wise enough.

For x = y = z = a. i.e.

(
1 1
1 1

)

(
1 1
1 1

)
Ll−→
(

1 1
2 1

)
Lr−−→

(
2 1
2 1

)
Rr−−→

(
2 1
2 2

)
Ll−→
(

4 1
2 2

)
Lr−−→

(
4 1
2 3

)

According to Lemma 39, the game turns into a draw.
Note that in step 1, it is undesirable to take Dl, as player B will respond by Rl.
The situation will be as same as the one in Lemma 36, player A will eventually
lose the game.
In step 2, player B must take Lr or Rr (the same) to avoid losing. (Proposition
30)
In step 3, as x+ y+ z ≡ 0 (mod 5), it is undesirable to take Dx (Proposition 35)
Rl is also undesirable. (Proposition 30)
In step 4, Rl is a losing step, player A can just respond by Ll.
In step 5, player A just has one choice. (Lemma 37)

After that, we will investigate the situation when the game is starting by other
initial values.
Situation of A wins:
For of Al +Bx ≡ 0 (mod 5), Ar +Bx 6= 0 (mod 5), A wins.
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For cases like(
1 1
2 3

)
, A wins

(
1 1
1 2

)
, A wins

For situations above, player A can turn the game into the situation in Lemma 36,
so player B loses the game.

Situation of a draw:
For cases like(

1 1
1 3

)
, it is a draw

(
1 1
3 3

)
, it is a draw

(
1 2
1 1

)
, it is a draw

(
1 1
2 2

)
, it is a draw

(
1 2
1 2

)
, it is a draw

(
1 3
1 3

)
, it is a draw

(
1 3
3 3

)
, it is a draw

For x 6= y 6= z 6= a,

i.e.

(
1 4
2 3

)
, it is a draw.

i.e.

(
1 2
3 4

)
, it is a draw. (Lemma 38)

Situation of B wins:

The losing situation in Lemma 36, i.e.

(
1 3
1 1

)
and

(
1 2
2 2

)

To conclude, the result of the game is:




A wins, if x+ z ≡ 0 (mod 5) and y + a 6= 0 (mod 5), or cases like

(
1 1
2 3

)
and

(
1 1
1 2

)

B wins, if the situation starts with the losing situation in Lemma 15
Draw, if the game stars with other situation

Appendix B. Repeating Strategies of Traditional Hand Games

In a game of two players A and B each having two hands, we may denote the initial
value represented by left hand and right hand of A as LA0 and RA0 respectively.



314 H.K. HUI, K.H. LAI, T.C. TSANG, K.L. TSOI, C.T. YEUNG

These of B are denoted as LB0 and RB0 respectively. Then, the values represented
by them after nth round are denoted as LAn , R

A
n , L

B
n and RBn respectively. Then,

the different ways of attack are shown as the following table:

Attackers ‘Weapons’ ‘Targets’ Ways of attack

A
LAn RAn , L

B
n or RBn

6
RAn LAn , L

B
n or RBn

B
LBn LAn , R

A
n or RBn

6
RBn LAn , R

A
n or LBn

Thus, the number of combinations of ways of attack in a round is 6 × 6 = 36.
Without loss of generality, we assume that A attacks first. To analyze the properties
of the combinations systematically, we arrange them into different groups.

B.1. Group 1: 2 independent flows of fingers

There are 8 combinations in this group. (The tails and tips of the arrows indicate
the ‘weapons’ and ‘targets’ respectively.)

Situation

1 LAn RAn

LBn RBn

2 LAn RAn

LBn RBn

3 LAn RAn

LBn RBn

4 LAn RAn

LBn RBn

5 LAn RAn

LBn RBn
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Situation

6 LAn RAn

LBn RBn

7 LAn RAn

LBn RBn

8 LAn RAn

LBn RBn

In combination 1, RAn = nLA0 +RA0 and RBn = nLB0 +RB0 .
When LA0 = RA0 = 1, then the period equals the modulo j. The properties of the
remaining combinations are similar to those of combination 1.

B.2. Group 2: A pair of mutually attacking hands

There are 4 combinations in this group.

Situation

9 LAn RAn

LBn RBn

10 LAn RAn

LBn RBn

11 LAn RAn

LBn RBn

12 LAn RAn

LBn RBn
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Obviously, the properties of the 4 pairs of mutually attacking hands are exactly
the same as those of self-generating cycles. For those hands having no effect on the
game, they remain the same value throughout the game.

B.3. Group 3: Common target

There are 8 combinations in this group.

Situation

13 LAn RAn

LBn RBn

14 LAn RAn

LBn RBn

15 LAn RAn

LBn RBn

16 LAn RAn

LBn RBn

17 LAn RAn

LBn RBn

18 LAn RAn

LBn RBn
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Situation

19 LAn RAn

LBn RBn

20 LAn RAn

LBn RBn

In combination 13, LBn = n(LA0 +RB0 ) + LB0
When LBn = LA0 = RB0 = 1,

Period=





j if j is odd

j

2
if j is even

B.4. Group 4: A single flow of fingers (type 1)

This group contains 6 combinations.

Situation

21 LAn RAn

LBn RBn

22 LAn RAn

LBn RBn

23 LAn RAn

LBn RBn

24 LAn RAn

LBn RBn
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Situation

25 LAn RAn

LBn RBn

26 LAn RAn

LBn RBn

27 LAn RAn

LBn RBn

28 LAn RAn

LBn RBn

In combination 21,

LAn = LA0

LBn = nLAn + LB0

RBn = n(LB0 + LA0 ) +RB0

B.5. A single flow of fingers (type 2)

Situation

29 LAn RAn

LBn RBn

30 LAn RAn

LBn RBn

31 LAn RAn

LBn RBn
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Situation

32 LAn RAn

LBn RBn

33 LAn RAn

LBn RBn

34 LAn RAn

LBn RBn

35 LAn RAn

LBn RBn

36 LAn RAn

LBn RBn

In combination 28,

LBn = LB0

LAn = nLBn + LA0

RAn = nLA0 + (n− 1)LB0 +RA0
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Reviewer’s Comments

First of all, I would like to congratulate both the students and their guiding teacher
for a nice piece of research.

In this document, I would mainly focus on ways to make the Paper even more
reader friendly. Of course, these are only my personal opinions for the authors to
assess.

Fibonacci sequence is a well known sequence. Fibonacci and Pisano were one and
the same person. I think it helps as a gentle introduction to the topic to start
with the first few members of the Fibonacci sequence. With the help of EXCEL
spreadsheet, this is easily produced:

n = 0 1 2 3 4 5 6 7 8 9

Fn = 0 1 1 2 3 5 8 13 21 34

We count from n = 0. In the sequence we define F0 = 0, F1 = 1, then every
subsequent ones are simply equal to the sum of its two predecessors, ie. Fn =
Fn−1 + Fn−2 for n ≥ 2. If we take F0 = a, F1 = b, then we call the resulting
sequence a Generalised Fibonacci Sequence. If we take the mod 3 of the Fibonacci
sequence, for example, then the sequence above becomes:

n = 0 1 2 3 4 5 6 7 8 9

Fn= 0 1 1 2 3 5 8 13 21 34

Fn (mod 3)= 0 1 1 2 0 2 2 1 0 1

Refer to https://en.wikipedia.org/wiki/Pisano period

It is observed that the Fibonacci sequence module 3 has a period of 8. This period
is called Pisano period, denoted by π(3). If it is modulo j, it is denoted by π(j).
One should note that for the Fibonacci sequence to repeat itself, one requires the
initial pair 0, 1 to be repeated, as shown in the yellow highlighted cells. With the
exception of π(2) = 3, the Pisano period π(n) is always even.

Another example is when j = 11 with initial values 3, 1. The sequence will look
like:

n = 0 1 2 3 4 5 6 7 8 9 10 11

Fn = 3 1 4 5 9 14 23 37 60 97 157 254

Fn (mod 11)= 3 1 4 5 9 3 1 4 5 9 3 1

Note that the period of this Generalised Fibonacci Sequence modulo 11 is 5.

Proof of Lemma 6:



FROM ‘CHOPSTICKS’ TO GENERALIZED FIBONACCI SEQUENCE 321

At this point, it is worth noting it would be less confusing if we write:

right Left
F0 F1

F2 F3

F4 F5

F6 F7

But I will leave the notation as it is. From now on, I will assume that the two-
column matrix will always look like:

Left Right
F1 F0

F3 F2

F5 F4

F7 F6

In the first example of the usual Fibonacci Sequence modulo 3, the two-column
matrix will simply be:

left Right

1 0

2 1

2 0

1 2

1 0

The position of 0, 1 exactly align with the initial position of 0,1. So period of
the two-column matrix is half the original period of the Generalised Fibonacci
sequence.

In the second example, with initial values 3, 1, the two-column matrix will become:

left Right

1 3

5 4

3 9

4 1

9 5

1 3
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In this case the period of the Generalised Fibonacci Sequence is 5, an odd number,
resulting the first repeated number 3 appearing in the wrong column as the initial 3.
Hence we need one more cycle to get the column right. So period of the two-column
matrix is equal to the original period of the Generalised Fibonacci sequence.

This is Lemma 6. It is easier to understand by showing two examples.

Lemma 7 is a direct consequence of Lemma 6 and the fact that the Pisano period
π(n) is always even, except for π(2) = 3.

Lemma 8.

if (k, j) = 1.
May need more explanation. May be along this line:
Let j = pr11 p

r2
2 . . . prmm . Since (j, k) = 1, no pi divides k. if (Ln −L0)k ≡ 0 (mod j),

then all prii divides (Ln − L0), so (Ln − L0) ≡ 0 (mod j).

Proof of Lemma 9.

Lemma 9 follows from σ(L0×1, L0×0, j) = σ(1, 0, j), σ(R0×0, R0×1, j) = σ(0, 1, j)
by Lemma 8, provided (L0, j) = 1, and (R0, j) = 1.

Theorem 10 is just the adding up of the L0 and the R0 components in Lemma 9.
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It is worth noting that
the way Fibonacci sequence is constructed, each step is obtained by multiplying

the previous step by the matrix T =

[
2 1
1 1

]
.

There is an easier way to prove Theorem11.

Theorem 10 says Tn =

[
F2n+1 F2n

F2n F2n−1

]
, because

[
Ln
Rn

]
=

[
F2n+1 F2n

F2n F2n−1

] [
L0

R0

]

and

[
Ln
Rn

]
= Tn

[
L0

R0

]
.

We just need to show that F2n = ( 1+
√
5

2 )2n − ( 1−
√
5

2 )2n.
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F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2.

guess Fn = rn . Then “Fn = Fn−1 + Fn−2” implies

rn = rn−1 + rn−2

r2 = r + 1

or r2 − r − 1 = 0

r =
−(−1)±

√
(−1)2 − 4(1)(−1)

2
=

1±
√

5

2
.

General solution of “Fn = Fn−1 + Fn−2” is

Fn = A
(1 +

√
5

2

)n
+B

(1−
√

5

2

)n
n ≥ 2

F0 = 0⇒ A+B = 0, B = −A.

∴ Fn = A
(1 +

√
5

2

)n
−A

(1−
√

5

2

)n

F1 = 1⇒ 1 = A
(1 +

√
5

2

)1
−A

(1−
√

5

2

)1

1 =
A

2
{1 +

√
5− (1−

√
5)} = A

√
5

A =
1√
5

Hence Fn =
1√
5

{(1 +
√

5

2

)n
−
(1−

√
5

2

)n}
.

Theorem 11 is proved.


