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Abstract. We want to prove that in R2, the greatest density of unit circle

packing is equal to π
2
?
3
.

Elementary techniques were mainly used in the following proof(s). Dissection

method was used to form a house circumscribing the circle. After all cases were
considered, the regular hexagonal house was found with the smallest area.

Hence, the circle inside this regular hexagonal house is of the highest density,

which is π
2
?
3
.

1. Introduction

Circle packing on plane is an old problem. Many people have thought this
problem when they put coins on table. How dense can the coins be put?

Moreover, it is quite practical in our daily lives, like how the fire extinguish-
ers can be put so that they are easily found in fire accidents but smallest
number of them is required, how the soccer players can be placed so that
they can defense most efficiently and how the rubbish bin can be placed so
as to facilitate citizens and to minimize government expenditure.

The problem was partly solved by Fejes Tóth L for infinite area in 1953.
However, his proof was as long as 47 lines with a figure and it was certainly
not very loquacious. Therefore, we want to solve the same question in a
more basic-technique approach but we try to make our proofs as rigorous as
Fejes’ method.

1This work is done under the supervision of the authors’ teacher, Mr. Kwok-Kei Chang.
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2. Problem

Prove that in R2, the greatest density of unit circle packing � π

2
?

3
.

We have two different proofs.

2.1. Proof 1

Step 1.

We will use a polygon called convex house to contain each unit circle. Now
we introduce how to construct a convex house.

First, we are going to connect the centre of circle A and G, B and G, . . ., F
and G. Then, we will draw a line which perpendicular to AG and passing
through the mid-point of AG. Similarly, a line will be constructed with
circle B and G, C and G, . . ., F and G. Finally, the convex house will be
formed which is the hexagon containing circle G in the above graph.

Step 2.

We will show that the area of all convex houses ¥ 2
?

3. And this area
of house, i.e the smallest area of house can be obtained by hexagonal pack-
ing.

Claim: The smallest house � circumscribed regular hexagon containing the
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unit circle and touching it.

The figure is shown in the following:

Proof of Step 2.

(A) We will construct a convex house which is a circle with radius
2?
3

with the same center of the unit circle.

The diagram is shown as below:
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(B) Now, we will show that at most 7 points A1, A2, . . ., A7 can only co-
exist within the white region (between the dotted house and the shaded unit
circle).

From the graph, OM is perpendicular to A1A2 and AB as M is a mid-point
of AB. Also, A1 and A2 are the mid-point of OA and OB respectively.

Clearly, A1M
1 � 1

2
AM ¥ 1

2
and A2M

1 � 1

2
BM 1 ¥ 1

2
. Therefore, A1A2 ¥ 1,

as AB ¥ 2.

Similarly, A2A3, A3A4, . . ., AnAn�1 ¥ 1. As the perimeter of the house

is 2π

�
2?
3



� 7.255 . . ., for 8 points or above, the perimeter of that poly-

gon ¥ 8 ¥ 2π

�
2?
3



� the perimeter of the outer circle(remember the house

is convex) which cannot co-exist in the white region. As a result, there are
at most 7 points in the white region between the house and the unit circle.

(C) From (B), we know that we have only at most 7Ai in the region be-
tween outer circle and inner circle. But we only need to consider cases of
6 or 7Ai because if there is a 3 side polygon around the unit circle, we can
form a 4 side polygon with smaller area around the unit circle, similarly,
we can form 5 side, 6 side . . . polygons with smaller areas around the unit
circle. (Refer to Appendix A).

Now we consider the case of 7Ai. For this case, the K lines the region
between outer and inner circles will have 3 situations:
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Case I:

Case II:

Case III:
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Prove that Case I cannot exist.

First of all, the following figure,

the chord AB can be considered as the common chord between the two

identical circles with radii
2?
3

like as below:
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Then, if we have Case I, it means we have three identical circles overlapping

together with region CBQ with radii
2?
3

:

AB and CD are the two chords intersecting together with M , N , P be the
centres of three circles. However it is impossible. The reason is as follows.

Consider the 4MNP , the smallest distance for MN , NP , PM is 2 only
because these three circles are formed by 3 original circles inside them with
radii 1 and these 3 original circles can only touch other in most dense way
as below.
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Now, let 4MNP be equilateral triangle with side 2 and G be the centroid.

We know that the distance between G and M or N or P is
2?
3

just the

radius of the large circle. Clearly, this is for the most dense way to form
4MNP , for other ways if the circles not packing so dense, 4MNP will be
larger than this one, and the distance between G and M or N or P will be

greater or equal to
2?
3

. Then it means the three outer circles with radii

2?
3

can at most intersect together at one point but they cannot intersect

together to form a region CBQ like Figure A, i.e. Figure A cannot exist.
Then Case I must be rejected.
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(D) Now consider case II and case III. Here, only seven bisectors can be in
the shaded region. They form a heptagon enclosing the inner circle.

Case 1:

If there exists 3 intersecting points of bisector lines (the wall of the house)A,
B, C, which are on the bigger circumference, we can draw a line that is not
intersecting with the inner circle, to form a hexagon with one less edge and
with 4ABC’s area minuend. Therefore, the area of heptagon in this case
is not the smallest house to contain the circle.

Case 2:

If we cannot draw a line joining AB without intersecting the inner circle, we
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can draw a tangent of the inner circle from A to C 1 and connect C 1 back to
B instead. As a matter of fact that C 1 is of a perpendicular distance to AB
shorter than C, the area of 4ABC ¡ 4ABC 1. We can then form a new
heptagon with ABC 1 with an area smaller than the original ones (by area
of 4ABC� area of 4ABC 1). Therefore, the area of heptagon in this case
is not the smallest house to contain the circle.

Case 3:

If C is a point that is out of the white region R and we can join AY with out
cutting the inner circle to form C 1, we join AC 1 that area 4ABC ¡ 4ABC 1.
A new heptagon is formed with ABC and that will have a smaller area than
the original one (by area of 4ABC� area of 4ABC 1). Followed by this,
the heptagon is of case 1 and 2.
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Case 4:

If we can not joint AY without cutting the inner circle, we can join a tangent
of inner circle from A and intersect the bigger circle’s circumference at C 1

and C 1 can also be joint to B without intersecting the inner circle. A new
heptagon is formed with ABC 1 and it is in case 1 and 2.

Case 5:

If A and B can only form two tangents with the inner circle and barely join
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together, this case is impossible that the proof is as follows:

1. Ma and Mb are the positions of the bisecting inter-centre distance
points (BICD pts) closet to X 1Y 1 from the corresponding circles.

2. A1Ma � B1Mb � 1 � the smallest distance between bisecting BICD
pts

3. Consider the case that X 1 and Y 1 are just touching each other so that
the arc length A1GB1 is the greatest and we can put maxium number
of BICD pts on the circumference.

Please be noticed that the lines joining the BICD pts are convex as the bi-
sectors has to be joint in convex way.

=AX 1B � π

3

α � π

3
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(it is equivalent to that of circle in a circumscribed hexagon)

β �
π � cos�1pA

1Ma2 �OMa2 �A1O2

2A1MaB1Mb
q

2
pby cosine law, base angles of isos. 4q

�
π � cos�1 1

3
2

The arc Length of A1GB1 �
�

2π � π

3
� π � cos�1 1

3



(radius)

�
�

2

3
π � cos�1 1

3


�
2?
3




� 3.839788654   4

Therefore, the BICD pts cannot have at least 3 points inside the white re-
gion. It contradicts to the fact that the inner circle is within heptagon house
formed.

The case that the tangents of A and B cannot join within the bigger red
circle is also impossible and the proof is similar to the proof in Case 5 men-
tioned above.
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(E) Hence, only 6 points of Ai must be considered. By simple theorem ([1],
Chapter 5), we know that the smallest area of hexagon around a circle is
a regular hexagon. By simple calculation, the area of a regular hexagon
around a unit circle is 2

?
3.

Hence, the area of any convex house ¥ 2
?

3.

By Step 1 and 2, We can conclude that:

Since the area of any convex house ¥ 2
?

3,

the greatest density of unit circle packing in R2 plane

� area of a unit cirle/area of a regular hexagon house

� πp1q2
2
?

3
� 0.9068997

This is the end of Proof 1.

2.2. Proof 2

Here is another proof with a different approach and it is to solve the same
problem as the proof above is.

First there exists a group of circles on a planar surface. We want to show

that the density is small than
π

2
?

3
, i.e. � 0.90689968 . . . in infinite area.

The density of those circles must be smaller than those mapped to be touch-
ing with maximum no. of circle is possible (by any means).

Step 1
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Step 2

We connect those circles’ centers by straight lines to the neighboring cir-
cles which is touching to each other.

Step 3

We consider a polygon that is formed by the straight lines one by one,
like:
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The polygon’s area is more than the area occupied by the circles. The num-
ber of circles is counted as the sum of the proportion of circle at each angle.
Simply,

the no. of circles � pn� 2qπ
2π

� n� 2

2
pangle sum of polygon � pn� 2qπq.
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As those circles are in infinite area, each circle must be completely shared
by polygons, e.g.

The shaded circle is right shared by 4 polygons. Therefore, there will be no
circle miss-counted in this way.

Step 4

First, we consider the smallest angle in the polygon. Of course, the an-

gle must be greater than
π

3
. We then connect the centers of the neighouring

circles with a straight line to form a new triangle and a new polygon.

Say ABC is the smallest angle in this polygon. We consider the triangle
ABC at the first place.

Case 1: Angle ABC is smaller than
π

3
.

As the sum of the interior angles is forever equal to π, changes in the shape
of the triangle (with side-lengths greater than 2r, where r is the radius of
the circle) will not affect the area occupied by the circles.

By shifting the circle A to the assigned position (circle with dotted lines),

angle ABC is equal to the smallest angle
π

3
and AB, BC, AC are with
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lengths of the shortest lengths 2r.

As the area of triangle � 1

2
ab sin θ, the original area of triangle must be

greater than the new one.

The new area � 1

2
� 2r � 2r � sin

π

3
� r2

?
3.

The area the circles occupied � π � r2

2
.

The highest density �
π � r2

2
r2
?

3
� π

2
?

3
.

Case 2: The angle ABC is larger than
2π

3
.

That implies every angle in the polygon is greater than
2π

3
. It is only

true when the number of sides of the polygon, n, is greater than or equal to
6:

pn� 2qπ ¥ 2π

3
n

3n� 6 ¥ 2n

n ¥ 6

For hexagon (n � 6) with angles just equal to
2π

3
, it is a regular hexagon

which we can put one more circle(the blue one) into without overlapping
the circle at the angles. Thus, after putting one more circle into it with
touching maximum circle if possible, the density can be increased and we
can connect the centers(with dotted lines) again to form new polygons.
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For those polygons with no. of sides greater than 6, since their angle must

be larger than
2π

3
, the area must be large enough to scribe a hexagon into

it. Consider this diagram:

Therefore, one more circle can be scribed into the polygon if its smallest

angle is greater than
2π

3
and finally an angle less than

2π

3
is formed.
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Step 5

After considering the circle, we can omit the triangle and consider the re-
maining parts of the polygon.

As the circles connected with the dotted line are not touching to each other,
this provides space that the circle can be mapped until touching so that
the density can be increased. Those circles will finally touch each other so
that one or more new line connecting centre of touching circle can be joint
and there must be another polygon formed. Then, we can consider the new
polygon from the step 2.

After those steps, say the original polygon is of n sides. Each considera-
tion from step 2 to step 5 will at least omit one side of polygon for next
consideration. Therefore, the maximum number of triangle being omitted
after “consideration” is (n� 2) (as we can only consider 3 circle at the last
step). Therefore, the maximum value of density:

The max. density � the area of total circle inside

the area of the polygon

�
n� 2

2
π � r2

the total area of (n� 2) “smallest triangle”

�
n� 2

2
π � r2

n� 2

2
� 2r � 2r � sin

π

3

� π

2
?

3
� 0.90689968.

This is the end of Proof 2.
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Appendix A.

1. For example, there is a triangle ABC circumscribing the unit circle. We
can cut one of the angles as follows, we can form a quadrilateral with smaller
area (by cutting the triangle with the dotted line) and i.e. the triangle ABC
cannot obtain the smallest area. By similar argument, quadrilateral, pen-
tagon also cannot obtain the smallest area. It means that only hexagon or
heptagon can obtain the smallest area circumscribing the unit circle.

2. Further Investigation for Finite Packing:

In M � N rectangular region, we want to compare which packing for unit
circle is denser — rectangular packing or hexagonal packing? We start from
arranging circles horizontally, row by row and from bottom to top. We de-
duce the formula for the number of circles in hexagonal packing. The proof
is as follows:

We pack the circles (radius = 1) horizontally first, M , N ¡ 2. There
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are

�
N

2

�
circles in the first row, and

�
N � 1

2

�
circles in the second row.

J � 2 sin 60� � ?3. There are

�
M � 2?

3

�
� 1 columns.

Case 1

N �
�
N

2

�
� 2 ¥ 1 i.e. 2r � 1 ¤ N ¤ 2r � 2 r P Z

The no. of balls �
�
N

2

���
M � 2?

3

�
� 1



.

Case 2

N �
�
N

2

�
� 2 ¤ 1 i.e. 2r ¤ N ¤ 2r � 1 r P Z

The no. of balls �
�
N

2

���
M � 2?

3

�
� 1



�

�
���

�
M � 2?

3

�
� 1

2

�
���

�
�
N

2

���
M � 2?

3

�
� 1



�
�
M � 2

2
?

3
� 1

2

�
.

Or simply

the no. of balls �
�
N

2

���
M � 2

2
?

3

�
� 1



�
�
N � 1

2

� �
M � 2

2
?

3
� 1

2

�
.

Also, it is easy to find that the formula for the number of circles in rectan-

gular packing is

�
M

2

�
�
�
N

2

�
.

When we compare these two numbers we find that the number for hexagonal
packing is greater when M ¥ 16 and N ¥ 14.

We use EXCEL Program to illustrate the result.
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