
Hang Lung Mathematics Awards c© 2008, IMS, CUHK
Vol. 3 (2008), pp. 53–87

SUFFICIENT CONDITION OF

WEIGHT-BALANCE TREE

TEAM MEMBERS

Chi-Yeung Lam, Yin-Tat Lee1

SCHOOL

The Methodist Church HK Wesley College

Abstract. Huffman’s coding provides a method to generate a weight-
balanced tree, but it is not generating progressively. In other words, we
cannot have meaningful output if we terminate the algorithm halfway in
order to save time. For this purpose, we want to design an alternative
algorithm, therefore this paper aims at finding out a sufficient condition
of being a weight-balanced tree.

In this paper, we have found out a sufficient condition. Besides, as
the solution of building a weight-balanced can be applied to solving
other problems, we abstract the problem and discuss it in the manner
of graph theory. The applications are also covered.

1. Introduction

In many situations, we need to compress information in order to transmit
it effectively. However, Claude Shannon found that the rate of compres-
sion has lower bound, which is also known as Shannon entropy[1]. After a
while, David A. Huffman found an algorithm to compress information by
variable-length code which is optimal for independent input[2]. However, the
algorithm is not suitable for some problems of compression. For example, we
cannot terminate the algorithm halfway to have meaningful output in order
to save time. Also, the algorithm assumes that the occurrence of the inputs
are independent and requires the probabilities of all inputs. Therefore we
want to create another algorithm for these purposes.

1This work is done under the supervision of the authors’ teacher, Mr. Chun-Kit Ho

53

54 C.Y. LAM, Y.T. LEE

The process of finding the optimal code scheme, which is the same as finding
the weight-balanced tree2, has much more applications than we thought.
For example, we found that we can accelerate the searching speed for some
sequences by making a binary decision tree according to the probability
distribution of each element being searched, as an alternative to using binary
search or linear search. Therefore, we abstract the problems and try to
answer this question: what a good sufficient condition of being a weight-
balanced tree can be? If we answer this question, we may be able to design
an alternative algorithm instead of Huffman’s.

At first, in order to give us a better understanding and some tools for fur-
ther investigation, we chose to investigate general binary trees. During the
investigation, we found we can give sufficient conditions for some weight(or
probability) distributions more easily, therefore, we solved these special cases
first. We observed that the corresponding trees to these cases were similar,
so we drew out the trees and investigated them. After that, we investi-
gated the properties of the weight-balanced tree and found out the sufficient
condition.

In this paper, besides the answer to the question, there are some by-products,
which are also discussed.

This paper divided into 5 sections. Section 1 is this introduction. Section
2 is the preliminary, which will introduce some common definitions, some
basic theorems and some operations about binary trees that will help us to
prove. Section 3 is the main body of this paper, we will discuss the prop-
erties of weight-balance tree, the bound of the minimum weighted mean of
heights of the leaves, different types of trees, different weight functions, a
sufficient condition of being a weight-balanced tree and algorithms. Finally,
Section 4 will discuss the applications and we will show that how this paper
is related. Section 5 is conclusion that will summarize the main body.

2. Preliminary

In this section, we will introduce some terminologies which have been defined
by someone else and widely used. Also we will prove some basic theorems
that will be used in later sections.

2The terminology “weight-balanced tree” in this paper is referred to a binary tree with
minimum weighted mean of heights of leaves among trees with the same weights on the
corresponding leaves and the same number of leaves.

SUFFICIENT CONDITION OF WEIGHT-BALANCED TREE 55

2.1. Terminology

This subsection introduces the terminologies and notations describing a tree,
which will be used in the whole paper.

For all tree T , we have the following terminologies:

1. A root is a designated node and the root must exists. The root of T
is denoted as rpT q or simply r.

2. The parent of a node n in T is a neighbour of n and in the path from
n to root, which is denoted as parT pnq or simply parpnq. Notice that
parprq is undefined, that is a root has no parent. We can simply call a
parent of some nodes as a parent.

3. We say node n is a child of parpnq.
4. A sibling of node a is another node b with parpaq � parpbq.
5. If the path from node a to root includes another node b, then b is an

ancestor of a and a is a descendant of b.
6. A leaf is a node with no children.
7. V pT q denotes the set of nodes of T .
8. LpT q denotes the set of leaves of T , obviously LpT q � V pT q.
9. The height of a node n of T is the length of the path from the root

to node n, which is denoted as hT pnq or simply hpnq. Note that the
height of the root is zero.

10. The height of T is the maximum value of height of a node which is
denoted as hpT q.

11. A subtree at node n is an induced subgraph. The nodes of a subtree
are exactly n and all its descendant. The subtree of T at n is denoted
as Tn.

Example 1. Let a be the root3 of tree T ,

Tree T
a

b

d

e f g

c

Figure 1

The following statements are true for T :

3For convenience, the root of a tree in this paper is always shown at the top of the
graph.

56 C.Y. LAM, Y.T. LEE

1. parpbq � a, and b is a child of a.
2. b has one child, while d has three children.
3. e, f, g are siblings; b, c are siblings; but a and d have no siblings.
4. hpaq � 0, hpbq � hpcq � 1, hpdq � 2, hpfq � hpgq � hpiq � 3
5. hpT q � 3
6. V pT q � ta, b, c, d, e, f, gu
7. LpT q � tc, e, f, gu

2.2. Operation

Later we will perform two operations several times on trees in proofs, there-
fore we choose to state it first.

Operation 2. A swap is an operation performed on two nodes which do not
have ancestor-descendant relationship. After we swap node a and node b,
the parents of the two nodes are exchanged. Let T and T 1 be the trees before
and after the swap respectively. Here are some effects of this operation:

1. The number of leaves is unchanged.
2. The number of nodes is unchanged.
3. For all nodes na in V pTaq and nb in V pTbq, let k � hpbq � hpaq, we

have #
hT 1pnaq � hT pnaq � k

hT 1pnbq � hT pnbq � k

Example 3.

Tree T
n1

a

n3

n4 n5

n2

b
Swappa,bqÝÝÝÝÝÝÝÑ

Tree T 1
n1

b n2

a

n3

n4 n5

Figure 2

Operation 4. A merge is an operation performed on a node and its only
child 4. After we merge the node a and the only child b, node b will be taken

4It is because we will only perform merge on nodes and their only child in the following
proofs.

SUFFICIENT CONDITION OF WEIGHT-BALANCED TREE 57

away and all the children of b will become the children of a. Let T and T 1
be the trees before and after merge respectively. Here is some effects of this
operation:

1. The number of leaves is unchanged.
2. The number of nodes is reduced by 1.
3. For all descendants of node b, the heights are decreased by 1, while

heights of other nodes are unchanged.

Note that even if b is a leaf, the number of leaves will not change after
merging.

Example 5.

Tree T
n1

a

b

n4 n5

n2

n3

Mergepa,bqÝÝÝÝÝÝÝÑ

Tree T 1
n1

a

n4 n5

n2

n3

Figure 3

2.3. Binary Tree

In this paper, we only concern about binary trees, so that we do not need to
handle many special cases. Also, as it is more common to use two alphabets
to encode messages for computer, focusing on binary tree does not affect the
importance of this research. In this subsection, we will discuss some basics
about binary trees.

Definition 6. A binary tree is a tree that all nodes have 0, 1 or 2 children.

Example 7.

Tree T1 (binary tree)
a

b

d

f g

c

e

Tree T2 (not binary tree)
a

b

d

c

e f g

Figure 4

58 C.Y. LAM, Y.T. LEE

Tree T1 is a binary tree while tree T2 is not, because node c of T2 has 3
children.

Before we directly investigate our problem, we want to eliminate some ir-
relevant binary trees. When we view binary tree as a decision tree, it is
unusual to have a parent node with only one child since that node cannot
reveal any information. Just like the following figure shown:

Tree T1
Object

Alive

Can swim Cannot swim

Dead

Tree T2
Integer Between 4 to 10

Even

Is Not a Prime

Odd

Figure 5

Since all even numbers between 4 and 10 are not prime numbers, tree T2
has a redundant node and tree T1 does not have. We said T1 is proper and
tree T2 is improper5.

As a proper tree is a more compact structure, we believe that weight-
balanced tree is a proper tree. Also, we believe that there are some special
properties in proper tree so that we can use them to find out the answer.
Now, we define the proper tree first, then we will try to find some properties
for proper tree.

Definition 8. A binary tree is said to be proper if all nodes of the tree has
0 or 2 children. Otherwise, the binary tree is said to be improper which
has some nodes with exactly one child.

After dividing binary tree into two types, we wonder if there are some other
ways to determine whether a binary tree is proper. After a while, we have
discoverd the first method and borrowed some idea from code theory to find
out the second method.

Theorem 9 provide a method about |V | and |L| that is straightforward and
we believe there is someone else who has discoverd this relation.

Theorem 11 provide a method about
°

lPL 2�hplq. Note that Theorem 11
is first stated in the thesis of Kraft, Leon G.[7]. In his thesis, it is proved
by counting the combinations of prefix codes therefore that proof can be

5They are not original terms, but this may be a good explanation for these terms.

SUFFICIENT CONDITION OF WEIGHT-BALANCED TREE 59

applied to prefix code only. After that, McMillan extends the theorem to any
uniquely decodable code[9]. And we find that the theorem can be applied to
binary tree and the equality can be used to distinguish proper and improper
tree. Although the theorem here is equivalent to Kraft’s, but we give the
inequality a new interpretation and usage. We will prove that in the manner
of graph.

Theorem 9. A binary tree is proper if and only if

|V | � 2|L| � 1

Proof.

For |V | � 1, the only node has no children, therefore the tree is proper. Also
because |V | � 1 � 2|L| � 1, the statement is true.

For |V | ¡ 1, we divide the proof into two parts:

Only if part:

We know that for all graphs,
°

nPV dpnq � 2|E|. For all trees, |E| � |V | � 1.
And for proper binary trees, the degree of a node is

dpnq �

$'&
'%

1, n P L
2, n � r

3, otherwise

By summing up the degrees of nodes in a proper tree, we have¸
nPV pT q

dpnq �
¸
nPL

dpnq � dprq �
¸

nPV zptruYLq
dpnq

2|E| � |L| � 2� 3p|V | � |L| � 1q
2p|V | � 1q � 3|V | � 2|L| � 1

|V | � 2|L| � 1

If part:

If a binary tree T is improper, there exists a parent node with exactly one
child. Let m be the number of nodes with exactly one child. After we merge
all these nodes with their children as Operation 4 on page 56 stated, we get
a proper tree T 1 with same number of leaves and

|V pT 1q| � |V pT q| �m

60 C.Y. LAM, Y.T. LEE

Therefore,

|V pT q| ¡ |V pT 1q| � 2|LpT 1q| � 1 � 2|LpT q| � 1

Corollary 10. For all binary tree,

|V | ¥ 2|L| � 1

And equality holds if and only if the tree is proper.

Proof. From the proof of Theorem 9, if T is proper, |V | � 2|L| � 1. Other-
wise, |V | ¡ 2|L| � 1.

Although this theorem is easy to use, we seldom deal with the number
of nodes. Therefore, we have not used this in our research. Instead, our
research is mainly dealing with the heights of leaves. And the next theorem
is exactly for this purpose.

Theorem 11. A binary tree is proper if and only if¸
lPL

2�hplq � 1

Proof.

Only if part:

Let Sphq be a statement

“For all proper tree T with hpT q � h,
¸

lPLpT q
2�hT plq � 1”

For h = 0, there is only root and its height is 0. So, we have¸
lPLpT q

2�hplq � 2�0 � 1

Therefore, Sp0q is true.

Assume that Sphq is true for all 0 ¤ h ¤ k.

SUFFICIENT CONDITION OF WEIGHT-BALANCED TREE 61

For h � k � 1, the root of proper binary tree T has two children a and b.
For all leaves la and lb which are in LpTaq and LpTbq respectively,#

hTaplaq � hT plaq � 1

hTb
plbq � hT plbq � 1

Since the subtrees are proper and their heights are smaller than k, from
induction hypothesis, SphpTaqq and SphpTbqq are true, that is¸

lPLpTaq
2�hTa plq �

¸
lPLpTbq

2�hTb
plq � 1

From this, we can prove Spk � 1q,¸
lPLpT q

2�hT plq �
¸

lPLpTaq
2�hT plq �

¸
lPLpTbq

2�hT plq

� 1

2

¸
lPLpTaq

2�phTa plqq � 1

2

¸
LPLpTbq

2�phTb
plqq

� 1

Since Spk � 1q is true, for all nonnegative integer h, Sphq is true.

If part:

If a binary tree T is improper, there exists a parent node n which has only
one child. After we merge all these nodes with their child as Operation 4
on page 56 stated, we can get a proper tree T 1 with unchanged number of
leaves but the height of some leaves decrease, therefore¸

lPLpT q
2�hplq

¸
lPLpT 1q

2�hplq � 1

Corollary 12. For all binary tree,¸
lPL

2�hplq ¤ 1

And equality holds if and only if the tree is proper.

Proof. From the proof of Theorem 11, if a binary tree is proper, we know
that

°
lPL 2�hplq � 1. Otherwise,

°
lPL 2�hplq 1.

62 C.Y. LAM, Y.T. LEE

We realize that Theorem 11 is useful. For example, if we want to prove that
a proper binary tree is perfect6 if and only if |L| � 2h, we can simply apply
Theorem 11 to prove it.

Corollary 13. A proper binary tree T is perfect if and only if

|L| � 2hpT q

Proof.

Only if part: Since
°

lPL 2�hplq � 1, |L| � 2hpT q.

If part: If T is not perfect, there exists a leaf a with hpaq hpT q. So, we
have

1 �
¸
lPL

2�hplq ¥ p|L| � 1q2�hpT q � 2�hpaq

Therefore
|L| ¤ 2hpT q � 2hpT q�hpaq � 1 2hpT q

3. Weight-balanced Tree

Because there are two types of weighted trees, we need to declare which type
of weighted tree we will use. In our research, only leaves are with assigned
weights instead of nodes. Moveover, for future proofs, we will define the
weight of a parent as the sum of weights of its descendant leaves. In this
way, we can simplify our proofs and statements.

Definition 14. An L-tree7 is a tree that there is a function assigning each
node a positive number which is called weights. The function is said to be a
weight function, denotes as wT , where T is the L-tree. Weight function is
constrained that the weights of parent nodes equal to the sum of all weight
of its descendant leaves, that is

wT : V pT q Ñ R�, wT pnq �
#

assigned weight of a leaf, if n P LpT q°
lPLpTnqwT plq, otherwise

Considering the applications of an L-tree, what we want to do is to minimize
the cost, which is the weighted mean of heights of the leaves.

6A proper binary tree T is perfect if and only if for all leaf l, hplq � hpT q.
7L stands for leaf-weighted.

SUFFICIENT CONDITION OF WEIGHT-BALANCED TREE 63

Definition 15. The weighted mean of heights of the leaves of an L-tree T
is denoted by HT or simply H. We denote that the sum of weights of all
leaves as WT or simply W , therefore

H �
°

lPLwplqhplq
W

And the tree with the minimum H is what we want to generate.

Definition 16. If an L-tree T has a minimum H among all T 1 with same
weight function, we say that T is a weight-balanced tree. And the mini-
mum H is denoted as H*.

Example 17. Let w is a weight function where wpaq � 1, wpbq � 2, wpcq �
3, wpdq � 4. As HA � 1.9 2 � HB, B is not weight-balanced.

Tree Ap10q

n1p6q

n2p3q
ap1q bp2q

cp3q

dp4q

Tree Bp10q

n1p4q
ap1q bp3q

n2p6q
cp2q dp4q

Figure 6

Actually, by exhaustive method, we deduced that HA � H* and thus A is a
weight-balanced tree.

As what we guessed, we have found that, a weight-balanced tree is proper,
therefore the problems become easier to be solved.

Theorem 18. A weight-balanced tree is proper.

Proof. If an L-tree T is improper, there exists a node a with its only one
child b. After we merge nodes a and b to produce L-tree T 1 without changing
the weight function as Example 5 on page 57 stated, all the height of leaves
of Ta decreases by 1 while others remain unchanged. Therefore HT ¡ HT 1

and T is not weight-balanced.

3.1. Properties of Weight-balanced Tree

We found some common properties of all weight-balanced tree. These prop-
erties are useful for us to understand weight-balanced tree more and lead us

64 C.Y. LAM, Y.T. LEE

closer to the answer of the question, what a sufficient condition of weight-
balanced tree can be. The first property we have found is about the relation
between weight and height.

Theorem 19. If a tree is weight-balanced, for all nodes8 a and b, the fol-
lowing statements are true:

1. wpaq ¡ wpbq ñ hpaq ¤ hpbq
2. wpaq � wpbq ñ |hpaq � hpbq| ¤ 1

Proof. These two statements can be proved by swap.

(1): If a and b has an ancestor-descendant relationship, as wpaq ¡ wpbq,
node b is a descendant of a and hpaq hpbq.
If a and b do not have an ancestor-descendant relationship, assume that
wpaq ¡ wpbq and hpaq ¡ hpbq. As Operation 2 on page 56 stated, we can
produce another L-tree T 1 by swapping a and b without changing the weight
function. Notice that

HT 1 �HT � phpaq � hpbqqpwpbq � wpaqq
W

 0

It contradicts the assumption that the tree is weight-balanced.

(2): Assume that wpaq � wpbq and hpaq � hpbq ¥ 2. Because wpaq � wpbq,
nodes a and b do not have an ancestor-descendant relationship.

As the tree has at least two nodes a and b, we know that hpbq ¥ 1. Since
hpaq�hpbq ¥ 2, we know that hpaq ¥ 3. Therefore, node b has a parent and
the parent of node a has a parent, in other words, there exists pb � parpbq
and ppa � parpparpaqq.
Then, we rearrange the nodes as following:

By considering the difference of HT and HT 1 ,

HT 1 �HT � 1

W
pwpbq � wpsaq � pk � 1qwpaqq

� 1

W
p�wpsaq � pk � 2qwpaqq 0

It contradicts the assumption that T is weight-balanced.

8Either parents or leaves.

SUFFICIENT CONDITION OF WEIGHT-BALANCED TREE 65

Tree T

...
pb

b sb

...

...

ppa

pa

a sa

spa

1. Swappb,saqÝÝÝÝÝÝÝÝÝÝÑ
2. Swappsa,paq

Tree T 1

...
pb

pa

b a

sb

...

...

ppa

sa spa

Figure 7

After we found out these relations, we wonder if there are any non-weight-
balanced trees satisfies all these properties. However, the answer is yes. Tree
B in Example 5 is one of the non-weight-balanced trees satisfies all these
properties. Therefore, they are not sufficient conditions of weight-balanced
tree.

3.2. Bound of H*

The next property is the bound of H* which we have seen in a book about
information theory by David J.C. MacKay[8]. However, we have found an-
other way to prove it. Although it cannot help us to find the weight-balanced
tree, it give us an algorithm to create a nearly weight-balanced tree. Before
the proof, we have to prove that we can construct a tree by giving a suitable
sequence of heights of leaves.

Lemma 20. Given a finite sequence of positive integers tanu with¸
k

2�ak ¤ 1

there exists a binary tree that the finite sequence of heights of all leaves equals
to tanu.

Proof. We will show the construction method in order to prove the binary
tree exists.

For
°

k 2�ak � 1, let h be the maximum integer in tanu. Let finite sequence

tbnu � t2h�anu. Notice that¸
k

bk � 2h
¸
k

2�ak � 2h

66 C.Y. LAM, Y.T. LEE

Therefore, we can first construct a perfect binary tree with height h. From
left to right, we label the leaves with k for bk times. For example, if
tanu � t1, 2, 3, 3u, we have tbnu � t4, 2, 1, 1u and we will label the tree
as the following figure shown.

Perfect tree T1

1 1 1 1 2 2 3 4

Figure 8. Label the leaves of the perfect tree.

Because all bk is the power of two, we can put all label k into one subtree.
Then, we can delete the whole subtree except the root of that subtree. Label
the root of the subtree as k, and its height is exactly h�log2pbkq � ak. Using
the same example, as all leaves of the left child of the root are labelled “1”,
after we perform the operation, the tree become this:

Proper tree T2

1
2 2 3 4

Figure 9. Perform an operation to leaves labelled 1.

After deleting all the specific nodes, we build up the binary tree we want.

For
°

k 2�ak 1, we extend the sequence. Let D � 1 � °k 2�ak . By
converting D from decimal to binary, we can easily find out a finite sequence
tcnu that

°
k 2�ck � D. Let La be the length of tanu, Lc be the length of

tcnu and

dk �
#
ak, if 1 ¤ k ¤ La

cpk�Laq, if La � 1 ¤ k ¤ La � Lc

As
°

k 2�dk � 1, using the above-metioned method, we can generate a binary
tree. After deleting the node with height in tcku, we can generate the tree
we want.

Theorem 21. For all weight function w,

�
¸

lkPLpT q

wplkq
W

log2
wplkq
W

¤ H* 1�
¸

lkPLpT q

wplkq
W

log2
wplkq
W

SUFFICIENT CONDITION OF WEIGHT-BALANCED TREE 67

Proof. As any weight-balanced tree is a proper tree, from Theorem 11 on
page 60, we know that

°
lPL 2�hplq � 1.

First, we wish to minimize H subject to the constraint
°

lPL 2�hplq � 1,
but it is difficult to solve this problem since heights of leaves are integer.
Therefore we ignore this constraint in order to find the lower bound of H.

Let l1, . . . , ln be the leaves of the tree, pk � wplkq{W and thku be any
sequence of numbers satisfies

°
k 2�hk � 1.

Let f and g be two functions that

#
fph1, h2, . . . , hnq �

°
k pkhk

gph1, h2, . . . , hnq � 1�°k 2�hk

Considering the partial derivatives of function g, we find that (cf. Re-
viewer’s Comment 1)

Bg
Bhk � lnp1

2
qp1

2
qhk � 0

As ∇g � 0, we can use the Lagrange multiplier to find the extrema of
function f .

Let j be a function that

jph1, h2, . . . , hn, λq �
¸
k

pkhk � λp1�
¸
k

2�hkq

Set the derivative ∇j � 0, which yields the system of equations:

Bj
Bhk � pk � λ logp1

2
qp1

2
qhk � 0

Bj
Bλ � 1�

¸
k

p1
2
qhk � 0

68 C.Y. LAM, Y.T. LEE

Combining the first two equations,

pk � λ logp1
2
qp1

2
qhk———-(*)¸

k

pk � λ logp1
2
q
¸
k

p1
2
qhk

1 � λ logp1
2
q

From(*), pk � p1
2
qhk

hk � � log2ppkq

Then we are going to prove that point is the global minimum point.

Claim (1): H has no uppper bound.

By Considering the case when h1 � � log2p1� pn� 1q2�M q and
h2 � h3 � � � � � hn �M , we found that

H �
¸
k

pkhk ¡ pnhn �Mpn

As M is independent of pn, there is no upper bound of H.

Claim (2): H has lower bound.

Since
°

kp12qhk � 1, we know that hk ¥ 0 for all k. Therefore H ¥ 0.
Therefore, lower bound of H exists.

Because H has lower bound and has not upper bound, at the only critical
point hk � � log2ppkq, H attains a global minimum value, in other words,

�
¸
lkPL

wplkq
W

log2
wplkq
W

¤ H*

From Lemma 20 on page 65, since we can get a tree T 1 by setting hplkq �
r� log2ppkqs, where

°
lkPL 2�hplkq ¤ 1,

HT 1 �
¸
k

pk r� log2ppkqs
¸
k

pkp1� log2ppkqq � 1�
¸
k

pk log2ppkq

SUFFICIENT CONDITION OF WEIGHT-BALANCED TREE 69

Therefore,

�
¸
lkPL

wplkq
W

log2
wplkq
W

¤ H* 1�
¸
lkPL

wplkq
W

log2
wplkq
W

By giving examples, we can understand the lower and upper bound of H*
more. Let T is a proper tree with exactly two leaves a and b. We know that
H* � 1. Suppose wpaq � 1 and wpbq � m� 1, and E is the lower bound of
H*.

E � � 1

m
log2p

1

m
q � m� 1

m
log2p

m� 1

m
q � log2pmq �

m� 1

m
log2pm� 1q

When m � 2, E � 1 � H*.

When nÑ 1 (cf. Reviewer’s Comment 2),

E � 0� lim
mÑ1

m� 1

m
log2pm� 1q � 0 � H*� 1

Therefore, we can see the lower bound is achievable in some cases and H*
can near the upper bound no matter how small we want.

After proving the bound of H*, we find that there is a method to create
a binary tree within the bound of H* just as the proof have mentioned.
However, this is not our target, so we do not discuss this algorithm or the
implement.

3.3. Special Trees

After we have proved some properties of weight-balanced tree, we still can-
not find out a sufficient condition. Therefore, we try to ask a simple question
first, when weight function is a constant function, how the trees with mini-
mum and maximum H look like? We call them S-tree and H-tree.

Definition 22. If a tree T has minimum
°

lPL hplq among all proper trees
with the same number of leaves, that is for all binary tree T 1 where |LpT 1q| �
|LpT q|, ¸

lPLpT q
hplq ¤

¸
lPLpT 1q

hplq

70 C.Y. LAM, Y.T. LEE

we say that T is an S-tree9.

Definition 23. If a tree T has maximum
°

lPL hplq among all proper trees
with the same number of leaves, that is for all binary tree T 1 where |LpT 1q| �
|LpT q|, ¸

lPLpT q
hplq ¥

¸
lPLpT 1q

hplq

we say that T is an H-tree10.

After we have defined the tree want to investigate, we now try to find some
equivalent definitions. In this way, we can find how these trees look like.
Now, we investigate S-tree first.

Theorem 24. A proper tree T is a S-tree if and only if for all leaf a and
leaf b,

|hpaq � hpbq| ¤ 1

Proof.

Only if part:

Assume that there is a tree T with maxhplq �minhplq ¥ 2. Let a and b be
a leaf with maximum height and a leaf with minimum height respectively.
Now we perform swap on T to produce T 1 as the following figure shows.

Tree T

...

...

pppaq

ppaq
a sa

sppaq

...
pb

b sb

Swapppa,bqÝÝÝÝÝÝÝÑ

Tree T 1

...

...

pppaq

b sppaq

...
pb

ppaq
a sa

sb

Figure 10

Let k � maxhplq�minhplq. The sum of the height of all leaves of tree T 1 is¸
lPL

hT 1plq �
¸
lPL

hT plq � |LpTsaq|pk � 1q
¸
lPL

hT plq

Therefore T is not an S-tree.

9S stands for shortest, however, a tree T with minimum hpT q is not necessarily a S-tree.
10H stands for the ’highest’

SUFFICIENT CONDITION OF WEIGHT-BALANCED TREE 71

If part:

Let h � hpT q, n � |L| and there are m leaves with height h � 1. So, there
are n�m leaves with height h.

From Theorem 11 on page 60,

1 � mp1
2
qh�1 � pn�mqp1

2
qh

m� n � 2h

Using this, we can find that¸
lPL

hplq � ph� 1qm� hpn�mq � ph� 1qn� 2h

Also, As 0 ¤ m n,

n ¤ m� n � 2h 2n

Taking logarithm for both sides,

log2pnq ¤ h log2pnq � 1

h � rlog2pnqs

Therefore, ¸
lPL

hplq � prlog2pnqs� 1qn� 2rlog2pnqs

For all given value of n, S-tree exists. From definition, an S-tree has mini-
mum

°
lPL hplq. And we know that, if a tree is an S-tree, the statement “for

all leaf a and b, |hpaq � hpbq| ¤ 1” is true. Also, for all proper trees, the
trees with the statement is true have the same

°
lPL hplq, therefore they are

S-trees.

Example 25. Tree T is an S-tree, but T 1 is not because |hT 1paq�hT 1pbq| � 2.

Tree T (S-tree)
n1

n2

n4

n8 n9

n5

n3

n6 n7

Tree T 1(not S-tree)
n1

n2

n3

n7 b

n4

n5 n6

a

Figure 11. Figure of Example 5.

72 C.Y. LAM, Y.T. LEE

Theorem 26. Let Ak and Bk be two sets of nodes that, Ak is the set of all
parents with height k in the tree while Bk is the set of all leaves with height
k in the tree, that is

#
Ak � tn P V zL : hpnq � ku
Bk � tn P L : hpnq � ku

For all proper tree T with more than two nodes, these statements are equiv-
alent:

1. T is an H-tree

2. |Ak| �
#

0, if k � hpT q
1, if 0 ¤ k ¤ hpT q � 1

3. |V pT qzLpT q| � hpT q

4. |Bk| �

$'&
'%

0, if k � 0

1, if 1 ¤ k ¤ hpT q � 1

2, if k � hpT q

Proof. For k � hpT q, as there is no nodes with height hpT q � 1, there is no
parents with hpT q, that is |Ak| � 0.

For 0 ¤ k ¤ hpT q�1, by considering the path from a leaf l with hplq � hpT q,
we know there exists a parent n where hpnq � k. Therefore |Ak| � 0.

(1)ñ(2):

For 0 ¤ k ¤ hpT q � 1, if |Ak| ¥ 2, there exists two parents a and b where
hpaq � hpbq � k. Let c be a descendant leaf of a where hpcq ¥ hpaq. After
swapping nodes b and c, we get another tree T 1 with the same number
of leaves as Operation 2 on page 56 stated. Let K � hpcq � hpbq ¡ 0,
considering the difference between the two trees, we have

¸
lPLpT 1q

hT 1plq �
¸

lPLpT q
hT plq � Kp|LpTbq| � 1q

As T is proper and b is a parent node, |LpTbq| ¡ 1, T is not a H-tree.

(2)ñ(3):

SUFFICIENT CONDITION OF WEIGHT-BALANCED TREE 73

Directly counting the number of parents from (2),

|V zL| � 1� hpT q � 0� 1 � hpT q

(3)ñ(2):

It is proved that |AhpT q| � 0 and for 1 ¤ k ¤ h� 1, |Ak| � 0. If there exists
k ¥ 1, |Ak| ¥ 2. Therefore, we have

|V zL| ¥ 2� 1� 1� phpT q � 1q � 0� 1 ¡ hpT q

(2)ñ(4):

For k � 0, as |V | ¥ 2 and the root is the only node with height zero, the
root is a parent and |B0| � 0. For 1 ¤ k ¤ hpT q, as |Ak�1| � 1, there
are two nodes with height k. As |Bk| � 1, |Ak| � 1. Also as |AhpT q| � 0 ,
|BhpT q| � 2.

(4)ñ(1):

Summing up the height of leaves according to (4),

¸
lPL

hplq � 1� 2� � � � � phpT q � 1q � 2� hpT q � 1

2
hpT qphpT q � 3q

Also, we know that the relation of L and h is as follows:

|L| � 1� phpT q � 1q � 2� 1 � hpT q � 1

Combining the two equation, we have¸
lPL

hplq � 1

2
p|L| � 1qp|L| � 2q

For all given value of L, H-tree exists. From definition, an H-tree has max-
imum

°
lPL hplq. And we know that, if a tree is an H-tree, statement (4) is

true. Also, for all proper trees, if statement (4) is true, they have the same°
lPL hplq. Therefore all proper trees with (4) is true are H-trees.

74 C.Y. LAM, Y.T. LEE

3.4. Weight Function

After we have found how S-tree and H-tree look like, we want to investigate
S-tree and H-tree more to see under what sorts of weight functions, they
are weight-balanced. We hope that investigating this problem will give us a
sufficient condition.

For all S-tree, it is easy to know that if all the leaves are with equal weight,
it is weight-balanced. But, there are much more sorts of weight function
satisfies this condition. However, they cannot be easily found before we find
a sufficient condition and they seem to be tedious. Therefore we do not
handle it.

For all H-tree, the answer is a simple inequality. It is quite beautiful and we
have found a way towards a sufficient condition.

Theorem 27. Let T is an L-tree. l1, l2, . . . , l|L| be the leaves of T .

We said a weight function is an H-function if for all 1 ¤ k ¤ |L| � 2

ķ

i�1

wpliq ¤ wplk�2q

We can construct a weight-balanced H-tree if and only if the weight function
is an H-function.

Proof.

Only if part:

From Thereom 26 on page 72, for all 0 ¤ i ¤ h � 1, there is exactly one
parent and exactly one leaf with height i. Also, there are two leaves with
height hpT q, just as the following figure shows.

By considering leaf li and node ni�1, for 1 ¤ i ¤ hpT q � 2, we have

hpni�1q ¡ hpliq

From Theorem 19 on page 64,

wpni�1q ¤ wpliq

SUFFICIENT CONDITION OF WEIGHT-BALANCED TREE 75

Tree T
n0

n1

n2

...

nhpT q�1

lhpT q�1 lhpT q

lhpT q�1

l3

l2

l1

Figure 12

As the weight of parent node equals to the sum of all weight of its descendant
leaves and leaf lj is a decendant of node ni for all j ¡ i

i�2̧

j�hpT q�1

wpljq ¤ wpliq

If we alter the label of leaf from k to hpT q � 2� k, we have

hpT q�i¸
j�1

wpljq ¤ wplhpT q�i�2q

If part:

Assume that weight-balanced tree T with H-function is not a H-tree.

From Theorem 26 on page 72, there exists i where there are more than two
leaves with height i, that is

| tl : hplq � iu | ¥ 3

Consider the largest i. Let the three leaves with largest weights among the
leaves with height i be l1, l2 and l3, and their weights are w1, w2 and w3

respectively such that w1 ¤ w2 ¤ w3.

We can put these leaves under the same parent of parent by swapping with-
out changing their heights as the following figure shows.

If we swap l3 and p2 as Operation 2 on page 56 stated, we can produce T 1
as following figure shows.

76 C.Y. LAM, Y.T. LEE

...

p2

n l1

p1

l2 l3

Figure 13

Tree T
...

p2

l1 n

p1

l2 l3

Swappl3,p2qÝÝÝÝÝÝÝÝÑ

Tree T 1
...

l3 p1

l2 p2

l1 n

Figure 14

Notice that, from the inequality the difference of H between two trees T 1
and T is

HT 1 �HT �
�
� ¸

lPLpTnq
wplq � w1

�
� w3 ¤ 0

By repeating this procedure, we can reduce the number of height i, which
there are at least three leaves with height i. Ultimately, we can obtain a
H-tree T 7 such that HT 7 ¤ HT � H*. Therefore, T 7 is weight-balanced.

After finding this interesting inequality, we find something about weight-
balanced tree which is related to golden ratio.

Corollary 28. Suppose an L-tree has more than three leaves and the ordered
sequence of the weights of leaves is geometric. We can construct a weight-

balanced H-tree if the ratio is greater than the golden ratio, that is
?
5�1
2 .

Proof. Let wpliq � ari�1.

SUFFICIENT CONDITION OF WEIGHT-BALANCED TREE 77

r ¥
?

5� 1

2

r2 � r � 1 ¥ 0 ¡ �1

aprk � 1q
r � 1

¤ ark�1

ķ

i�1

wpliq ¤ wplk�2q

Therefore the weight function is also an H-function. From Theorem 27 on
page 74, we can construct a weight-balanced H-tree.

However, other types of geometric weight functions are not our focus. Also,
we find that someone has found a general weight-balanced tree for geometric
weight functions[6].

3.5. A Sufficient Condition

In this subsection, we will introduce a visual sufficient condition of being a
weight-balanced tree. Before that, we will introduce a labeling method that
is directly related to the condition.

Definition 29. We can label a tree from left to right and from top to bottom
like this:

1

2

4

8 9

5

3

6 7

10 11

12 13

Figure 15

This label method is called natural labeling. We can name the nodes and
weights by their labels. For example, on the above figure, n1 is the root, n3
is a child of n1, and wpn1q = w1.

78 C.Y. LAM, Y.T. LEE

In the investigation of H-tree, we find that the weights of nodes in a weight-
balanced tree is ordered under natural labeling after swapping the nodes
with same height. And we find that it is the sufficient condition for our
research.

Theorem 30. Under natural labeling, L-tree T is weight-balanced if

wpn1q ¥ wpn2q ¥ � � � ¥ wpn|L|q

Proof.

In this proof, we call wpn1q ¥ wpn2q ¥ � � � ¥ wpn|L|q as Inequality (*). Now,
we use induction on the number of leaves m.

For m � 1, L-tree is weight-balanced.

For m ¥ 2, assume that the statement holds for all proper tree with m� 1
leaves. Consider T1 is a weight-balanced tree and T2 is a proper L-tree with
the same weight function that satisfies Inequality (*). By swapping the
leaves with height of hpT1q, we can put the two leaves with smallest weight
under the same parent node without changing HT1 .

Let the least two weights be w1 and w2. If we remove the two leaves from
T1 and T2 to produce T 1

1 and T 1
2 , the parent of the leaves will become a leaf.

Set the weight of the parent to w1 � w2 as following figure shows.

Tree T
...

w1 � w2

w1 w2

...
Removepw1,w2qÝÝÝÝÝÝÝÝÝÝÝÑ

Tree T 1
...

w1 � w2 ...

Figure 16. Weights are shown in the labels

The value of H will become:

#
HT 1

1
� HT1 � pw1 � w2q

HT 1
2
� HT2 � pw1 � w2q

As Inequality (*) is still true for tree T 1
1 and T 1

2 and |LpT 1
1q| � |LpT 1

2q| � m�1,
from the induction hypothesis, T 1

1 is a weight-balanced tree. Therefore,
HT 1

1
¤ HT 1

2
and HT1 ¤ HT2 � H*.

Hence, T1 is a H-tree. (cf. Reviewer’s Comment 3)

SUFFICIENT CONDITION OF WEIGHT-BALANCED TREE 79

Although this condition seems to be difficult to use, actually as we can
rearrange the nodes with the same height without changing HT , if an L-tree
is not weight-balance, we cannot rearrange from left to right in descending
order of weights for every height of leaves. Therefore, we can recognize the
non-weight-balanced tree by this condition. Furthermore, this condition can
be used to prove an algorithm that can generate weight-balanced tree and
to help design another algorithm.

3.6. Algorithms

If we do not alow to swap the order of node, our condition is not necessary
because the weights on same level can be in wrong order. However, if we
allow to swap the order, it is sufficient by using Huffman Algorithm. In
this section, we will discuss the algorithms that generate a weight-balanced
tree. First we will prove the Huffman tree is valid by using our sufficient
condition. Although our proof maybe longer than some widely known proof
of this problem, it is a good way to show how to use the sufficient condition.
After that we will introduce an idea of another algorithm, which may solve
some problems that Huffman coding cannot.

Definition 31. A Huffman tree is a tree generated by the optimum binary
coding procedure.[2] (cf. Reviewer’s Comment 4)

Corollary 32. Huffman tree is weight-balanced.

Proof. Assume that there is a Huffman tree T that is not weight-balanced.
And we will use natural labeling method to label the nodes and its weights.
By swapping, we can rearrange the node without changing HT such that for
all nodes with same height, if label i j, wi ¥ wj . From Theorem 30 there
exists b ¡ a such that

w1 ¥ w2 ¥ � � � ¥ wa�1 ¥ wb ¡ wa

As for all node nk, w1 ¥ wk, the node na is not the root and a � 1. Denote
labpnq as the label of the node. By considering the labeling method, we
know that labpparpnaqq ¤ labpparpnbqq because a b.

If labpparpnaqq � labpparpnbqq, nodes na and nb are siblings. Therefore,
hpnaq � hpnbq. From the assumption of rearrangment, b ¡ a and wa ¥ wb

which is a contradiction to the assumption wb ¥ wa. Thus labpparpnaqq
labpparpnbqq and wpparpnaqq ¥ wpparpnbqq.

80 C.Y. LAM, Y.T. LEE

As nodes na and nb are not siblings and the tree is proper, therefore, there
exists nodes sa and sb are siblings of na and nb respectively as following
figure shows.

...

parpnaq
na sa

parpnbq
nb sb

Figure 17. We have assumed wb ¡ wa and wpparpnaqq ¥ wpparpnbqq

As each step of the Algorithm, two subtrees with smallest weights will be
put together to become one subtree, therefore

wpparpnbqq � wpsbq � wpnbq ¡ wpsaq � wpnaq � wpparpnaqq
It is a contradiction.

The method of Huffman’s coding can construct a weight-balanced tree in
Opn log nq time. Besides, because the weights of leaves are ordered in a
weight-balanced tree, while inserting or deleting a leaf, we can update a
weight-balanced tree in Opnq time, where n is the number of leaves. How-
ever, sometimes we may need to construct or update a weight-balanced tree
progressively. As we may want to terminate the algorithm in order to gen-
erate a lower H in less time as a trade-off, we want to design an algorithm
for this purpose. Here is the general idea of our algorithm to optimize an
L-tree:

Algorithm 33. (Optimization by swap)

1. rFinds Under natural labeling, find any pair of nodes ni and nj, where
i ¡ j and wi wj. If we cannot find them, terminate.

2. rSwaps Swap nodes ni and nj.
3. rRepeats Go to (1).

When the algorithm terminates, as we cannot find any pair of specific nodes,
therefore w1 ¤ w2 ¤ . . . ¤ w|V |. By Theorem 30, we know the tree is weight-
balanced.

However, the algorithm is not workable yet, because there are some prob-
lems we have not solved due to insufficient time. First, how to locate the
pairs effectively? Second, does this algorithm end in all cases? We have a

SUFFICIENT CONDITION OF WEIGHT-BALANCED TREE 81

conjecture that the total number of swap is smaller than |V |2 in all cases.
Third, after we locate the pairs, which pair should we swap first? These are
open questions.

4. Applications

4.1. Prefix Code

When we talk about code, we are discussing how to represent an information
from a set of information. Usually, we would like to reduce the transmission
cost of the set of information.

We call a code prefix if any code word is not a prefix of another code word.
The advantage is that we can identify each code word from the message
easily. Just like other code, a prefix code is usually presented as a finite
sequence of bits. We can draw a prefix code out as a binary tree. For
example t0, 10, 110, 111u is a prefix code. If we draw the code out, we will
the next figure. Each leaf would present a piece of information, and the code
word of each information would be the path from the roots to the leaves.
For instance t0, 01, 10, 11u is not a prefix code because 0 is not a leaf.

Code

0 1

0 1

0 1

Code

0

0 1

1

0 1

Figure 18. The left is prefix code and the right is not.

Suppose every piece of information would have certain probability of being
transmitted. If we define the weight of a leaf as equal to the probability of
the information being transmitted, the expected code length is equal to H.
Therefore finding a weight-balanced tree is exactly finding the optimal code
scheme.

4.2. Binary Operation

Also, a question of Hong Kong Olympiad in informatics 2002 [10] inspired
us the third application.

Suppose there is a factory building a machine. The cost of building each
subpart n is Cpnq and the cost connecting subpart a and b is Cpaq � Cpbq.

82 C.Y. LAM, Y.T. LEE

Then, we want to know how to connect all subpart together with the mini-
mum cost. We denote the cost of connecting a and b as

Cpa` bq � Cpaq � Cpbq
Example 34. The figure represent the process of pa` bq ` pc` dq.

pa` bq ` pc` dq
a` b

a b

c` d

c d

Cpaq � Cpbq � Cpcq � Cpdq

Cpaq � Cpbq
Cpaq Cpbq

Cpcq � Cpdq
Cpcq Cpdq

Operations Costs

Figure 19

First, we need to find out the relation between H and the total cost of
connecting different subparts.

Proposition 35. ¸
lPL

wplqhplq �
¸

nPNztru
wpnq

Proof. From the definition of weight function w,

¸
nPV

wpnq �
¸
nPV

�
� ¸

lPLpTnq
wplq

�

Since each leaf l is a descendant of hplq different leaves, each leaf appears in
the expansion exactly hplq � 1 times. Therefore we have,¸

nPV
wpnq �

¸
lPL

wplqphplq � 1q
¸

nPV ztru
wpnq �

¸
lPL

wplqphplq � 1q �
¸
lPL

wplq

�
¸
lPL

wplqhplq

Let C is the total cost of connecting and building subparts.We have,

C �
¸
nPV

wpnq �
¸
lPL

wplqhplq �W �W pH � 1q

SUFFICIENT CONDITION OF WEIGHT-BALANCED TREE 83

As W is a constant, if we find the minimum H, the minimum C is also
found.

Example 36. We have n1, n2, n3, n4 and their costs are respectively 1, 2, 3, 4.
By Huffman’s algorithm, we can generate a weight-balanced tree like this:

10

6

3

1 2

3

4

Figure 20

Hence, in order to acheive the minimum total cost, the operating process
should be like this:

ppn1 ` n2q ` n3q ` n4

4.3. Search

After reading about searching an ordered table in The Art of Computer Pro-
gramming Volumn 3 [3], it inspired us to think a new application. Assume
that we have ordered sequence of values and the probability of searching for
the values are known. If we want to locate a particular value in the list,
we commonly use “linear search” or “binary search”. However, as they do
not consider the probability of searching for a particular value, they are not
optimal in all cases.

Therefore we find that searching in ordered sequence may be also an ap-
plication for our research. Given that we have an ordered sequence with
the probability which is monotonic with the value. We have found another
algorithm that can optimize the searching process.

Algorithm 37. (Building up a binary search tree)

1. rBuild up a weight-balanced trees Using probability of searching
values to bulid up a weight-balanced tree.

2. rSwaps Swap the nodes with same height to put node n that have lower
maxlPLpTnqwplq on lefter.

3. rLabel parentss Label each parent node by the largest value11 of the
leaves of the left subtree.

11Here, we label the largest for probabilities increasing with the values and the smallest
value for probabilities decreasing with the values.

84 C.Y. LAM, Y.T. LEE

Example 38. The ordered sequence is t1, 2, 3, 4, 5, 5u and the probabilities
are t0.05, 0.1, 0.15, 0.2, 0.25, 0.25u respectively.

(1) rBuild up a weight-balanced trees (weights are shown)
1

0. 55

0.25 0.30

0.15

0.05 0.1

0.15

0.45

0.20 0.25

(2) rSwaps (weights are shown)
1

0.5

0.3

0.15

0.05 0.10

0.15

0.20

0.5

0.25 0.25

(3) rLabel parentss (values are shown)
4

3

2

2

1 2

3

4

5

5 5

Figure 21

After creating the search tree, we can locate a value by the tree.

Example 39. Use the previous example. When we search for value 2, as
the leaves with the biggest value on the left subtree is smaller than the value
of the parent, the path is: 4 Ñ 3 Ñ 2 Ñ 2 Ñ 2.

Although this searching algorithm uses double memory comparing to using
binary search tree, we guess this algorithm may have some special uses, such
as analyzing which searching method is better. For example, if the ratio of

successive probabilities of values greater or equal to
?
5�1
2 , we can find that

the generated search tree is an H-tree and searching the ordered sequence
simply by linear search is better than binary search.

SUFFICIENT CONDITION OF WEIGHT-BALANCED TREE 85

5. Conclusion

The objective of this paper is achieved, as we have found a sufficient condi-
tion of a weight balance tree(Theorem 30 on page 78).

Besides the objective, mainly we have these by-products:

1. The bound of H of weight-balanced tree. (Theorem 21 on page 66)
2. The relationship between heights and weights of nodes in a weight-

balanced tree. (Theorem 19 on page 64)
3. A weight-balanced tree with H-function is an H-tree. (Theorem 27 on

page 74)
4. For geomatric weight function with the ratio greater than the golden

ratio, weight-balanced H-tree exists. (Corollary 28 on page 76)
5. Huffman’s algorithm is valid. (Corollary 32 on page 79)

For the proposed swap algorithm, there are three open questions:

1. How to effectively locate the pair that the labels i ¡ j but the weights
wi wj under natural labeling?

2. Does the algorithm end in all case? If yes, how many times we need to
swap in order to generate a weight-balanced tree?

3. Which pair should be swap first?

Answering these questions helps to create an effective algorithm which may
allow us to have a halfway termination with valid output.

6. Acknowledgments

The authors would like to express their thanks to Prof. CHUNG Tsz Shun
of The Chinese University of Hong Kong for his helpful suggestions.

REFERENCES

[1] C.E. Shannon, A Mathematical Theory of Communication. Bell System Technical
Journal, vol. 27, pp. 379-423, 623-656, 1948.

[2] David A. Huffman, Huffman, A Method for the Construction of Minimum-
Redundancy Codes. Proceedings of the Institute of Radio Engineers, 40(9):1098-1101,
1952.

[3] Donald E. Knuth, Sorting and Searching, The Art of Computer Programming, Vol-
ume 3, Second Edition. Addison Wesley, 1998.

86 C.Y. LAM, Y.T. LEE

[4] Donald E. Knuth, Tracy Larrabee and Paul M. Roberts, Mathematical
Writing. The Knowledge Engineering Review, Volume 12, Issue 3:331–334,
(http://portal.acm.org/citation.cfm?id�976246.976258), 1989.

[5] Douglas B. West, Introduction to Graph Theory. Prentice Hall, 1996.
[6] Golomb, S.W., Run-length encodings. IEEE Transactions on Information Theory,

IT–12(3):399–401, 1966.
[7] Kraft, Leon G, A device for quantizing, grouping, and coding amplitude modu-

lated pulses. Cambridge, MA:MS Thesis, Electrical Engineering Department, MIT,
(http://dspace.mit.edu/handle/1721.1/12390), 1949.

[8] MacKay, D. J. C., Information Theory, Inference, and Learning Algorithms. Cam-
bridge University Press, 2003.

[9] McMillan, Brockway, Two inequalities implied by unique decipherability. IEEE Trans.
Information Theory 2(4): 115!V116,
(http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber�1056818), 1956.

[10] The HKOI Organizing Committee, Question 2 Addition, Past Paper of HKOI2002
Final Event Senior Group. (http://www.hkoi.org/ref/2002fse.doc), 2002.

SUFFICIENT CONDITION OF WEIGHT-BALANCED TREE 87

Reviewer’s Comments

1. On page 13, line 1, Bg
Bhk

� ln
�
1
2

� �
1
2

�hk should be Bg
Bhk

� ln 2
�
1
2

�hk .

Subsequent equalities are okay. All the log should be log2.

2. On page 14, line 14, “When nÑ 1” should be “When mÑ 1”.

3. At the end of the proof of Theorem 30, “T1 is a H-tree” should be “T1
is a weight-balanced tree”.

4. On page 23, originally there is no definition of Huffman tree. To the
reviewer, the explanation of “prefix code” is not clear. It is hard to
understand what a prefix code is after reading the paragraph.

Final Words: Congratulations to the authors and the supervisor for such
a good paper. It is good to see that mathematics is flourishing in Hong Kong.

